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Abstract

This article is a continuation of the paper [6]. Smooth complex pro-
jective 3-folds with nonnegative Kodaira dimension admitting nontrivial
surjective endomorphisms are completely determined. Especially, it is
proved that, for such a 3-fold X, there exist a finite étale Galois covering
eX → X and an abelian scheme structure eX → T over a smooth variety
T of dimension ≤ 2.

1. Introduction

A surjective endomorphism f : X → X of a variety X is called nontrivial if
it is not an automorphism. Our purpose is to determine the structure of smooth
complex projective 3-folds X with nonnegative Kodaira dimension admitting
nontrivial surjective endomorphisms. Since the objects of our interest are not
the endomorphisms f but the varietiesX, we replace freely f with a power fk =
f◦· · ·◦f in the discussion below. Abelian varieties and toric varieties are typical
examples of varieties admitting nontrivial surjective endomorphisms. Moreover,
the direct productX×Y admits a nontrivial surjective endomorphism if so does
X. On the other hand, the existence of nontrivial surjective endomorphisms f
induces strong restrictions on the varieties X, as follows:

• X is not of general type, i.e., the Kodaira dimension κ(X) is less than
dimX.

• If κ(X) ≥ 0, then f is étale. In particular, the Euler–Poincaré charac-
teristic χ(X,OX) and the Euler number χtop(X) are zero.

A smooth projective curve C admits a nontrivial surjective endomorphism
if and only if C is isomorphic to the projective line P1 or an elliptic curve.
The classification of the compact complex varieties X of dimX > 1 admitting
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nontrivial surjective endomorphisms has been done in the following cases: ho-
mogeneous manifolds (cf. [22], [2]); smooth projective surfaces (cf. [6], [21]);
smooth compact complex surfaces (cf. [7]); projective bundles (cf. [1]); smooth
projective 3-folds with κ ≥ 0 except for the case where a general fiber of the
Iitaka fibration is an abelian surface (cf. [6]).

The purpose of this paper is to complete the classification of smooth com-
plex projective 3-folds with nonnegative Kodaira dimension admitting nontriv-
ial surjective endomorphisms by showing the following:

Main Theorem. Let X be a smooth complex projective 3-fold with
κ(X) ≥ 0. Then the following conditions are equivalent to each other:

(A) X admits a nontrivial surjective endomorphism.

(B) There exist a finite étale Galois covering τ : X̃ → X and an abelian
scheme structure ϕ : X̃ → T over a variety T of dimension ≤ 2 such that the
Galois group Gal(τ ) acts on T and ϕ is Gal(τ )-equivariant.

The implication (B) ⇒ (A) holds in any dimension by Theorem 2.26 below.
The implication (A) ⇒ (B) can be checked easily for smooth projective 3-folds
classified in our previous paper [6] (cf. Section 3.3). Therefore, we shall focus
our attention to the remaining case, i.e., the case where the Iitaka fibration is
an abelian fibration over a curve.

Note that Main Theorem solves the question En,a for n = 3 in [6], and
gives a refinement of En,a. Our method in [6] and in this article is not enough
for solving the question En,a for n > 3. Indeed, our proof in dimension three
uses special properties of threefolds and elliptic curves; especially, the existence
of flips, flops, and the abundance theorem in the minimal model theory and the
finiteness of the order of automorphism group of an elliptic curve preserving
the origin.

In order to study compact complex manifolds X admitting nontrivial sur-
jective endomorphisms, it is important to analyze data of X preserved by the
endomorphisms, since they reveal much of the deeper structure of the variety
X. We have considered the following data in our previous papers [6], [7], [21]:

(1) Iitaka fibration: Let ϕ : X ···→Z be the Iitaka fibration of X. Then for
a surjective endomorphism f of X, there exists an automorphism h of Z with
ϕ ◦ f = h ◦ ϕ.

(2) Extremal rays : A surjective endomorphism ofX with κ(X) ≥ 0 induces
a permutation of the set of extremal rays of X (cf. [6]).

(3) Curves with negative self-intersection number : If dimX = 2, then X
has only finitely many irreducible curves with negative self-intersection number,
and any surjective endomorphism of X induces a permutation of the set of such
curves (cf. [7], [21]).
The automorphism h of (1) is expected to be of finite order. If Z is a curve and
a general fiber of ϕ is an abelian variety, then this is true by a similar argument
to Lemma 3.7 below using Corollary 2.12. In particular, combined with results
in [6], the finiteness of order of h is established in case dimX ≤ 3.
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Our proof of Main Theorem is based on an argument used in [6]. The
outline is as follows: Let f : X → X be a nontrivial surjective endomorphism
of a smooth projective 3-fold X with κ(X) ≥ 0. In the first step, we assume
that X is not minimal, i.e., the canonical bundle KX is not nef. We apply the
minimal model program. For any extremal ray R of NE(X), the contraction
morphism ContR : X → X ′ associated to R is just the blowing up of a smooth
projective 3-fold X ′ along an elliptic curve E. This is shown by Mori’s cone
theorem and the classification of extremal rays on smooth projective 3-folds
in [14]. Since the exceptional divisor of ContR is contained in the fixed part
of the linear systems |mKX | for m > 0, X has only finitely many extremal
rays. Thus f induces a permutation of the finite set of extremal rays. By
replacing f with a suitable power fk, we may assume that f∗R = R for any
extremal ray R. Then the contraction morphism ContR induces a nontrivial
surjective endomorphism f ′ of X ′ such that f ′−1E = E and ContR ◦f = f ′ ◦
ContR. Taking contractions of extremal rays successively, we eventually obtain
a nontrivial surjective endomorphism fmin of a smooth minimal model Xmin of
X.

In the second step, we assume that X is minimal. Then KX is semi-ample
by the abundance theorem (cf. [9], [12], [13]). Let ϕ : X → Z be the Iitaka
fibration. Then ϕ◦f = h◦ϕ for an automorphism h of Z of finite order (cf. [6],
Proposition 3.7). We can prove that a suitable finite étale Galois covering X̃
of X has a structure of an abelian scheme over a variety of dimension at most
two. In fact, this is shown as follows:

(i) If κ(X) = 0, then this is a consequence of Bogomolov’s decomposition
theorem.

(ii) If κ(X) = 2, then ϕ is an elliptic fibration. By considering the equi-
dimensional models of ϕ in the sense of [19, Appendix A] and by an argument
in [16], [17], we can find a finite étale Galois covering X̃ isomorphic to E × S
for an elliptic curve E and a smooth surface S of general type.

(iii) If κ(X) = 1 and a general fiber of ϕ is a hyperelliptic surface, then we
can find a finite étale covering X̃ isomorphic to E × S for an elliptic curve E
and a surface S by applying Fujiki’s generic quotient theorem [4], [5], and by a
similar argument to (ii).

(iv) In the remaining case, a general fiber of ϕ is an abelian surface. The
existence of X̃ is proved in Sections 4 and 5 below. For the proof, we need
some results related to abelian fibrations prepared in Section 2 and the theory
of global structure of elliptic fibrations in [20].

In the final step, we go back to the situation where X is not minimal.
Then a finite étale Galois covering X̃min of the smooth minimal model Xmin is
isomorphic to E × S′ for an elliptic curve E and a smooth projective surface
S′ by the second step (cf. [6, MAIN THEOREM (A)] for (i)–(iii), Sections 4
and 5 for (iv)). Let X̃ → X be the étale covering obtained as the pullback of
X̃min → Xmin by the birational morphism X → Xmin. Then, by analyzing the
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centers of blowups connecting X to Xmin, we can show that X̃ � E × S for
another smooth projective surface S and that fmin can be lifted to recover the
original endomorphism f or a suitable power fk.

We shall explain more on the situation (iv). Let ϕ : X → C be an abelian
fibration from a smooth projective 3-foldX to a smooth curve C and let f : X →
X be a nontrivial surjective endomorphism satisfying ϕ ◦ f = f . Then the
natural homomorphism π1(Xt) → π1(X) of fundamental groups is not a zero
map for a general fiber Xt = ϕ−1(t). If π1(Xt) → π1(X) is injective, then
ϕ is called primitive; if not, called imprimitive. In the imprimitive case, the
kernel of π1(Xt) → π1(X) contains a nonzero proper Hodge substructure of
π1(Xt) � H1(Xt,Z) by Corollary 2.15 below.

Suppose that ϕ is primitive. The proof of Main Theorem in this case is
treated in Section 4. If X is minimal, then ϕ is a Seifert abelian fibration by
Corollary 2.11; Thus there exists a finite étale Galois covering X̃ → X such
that the Stein factorization of X̃ → X → C induces an abelian scheme X̃ → C̃
over a smooth curve C̃ (cf. Lemma 2.4). In particular, Main Theorem holds
in this case. If a fiber of ϕ is a simple abelian surface, then X is minimal and
Main Theorem holds in this case, by Theorem 4.1. If any smooth fiber of ϕ
is not simple and if X is not minimal, then ϕ is factored by elliptic fibrations
X → S and S → C in which X → S is an elliptic bundle (cf. Proposition 4.2).
This essentially follows from the argument on H-factorization in Section 2.3
based on an idea of Ueno in [24]. From the elliptic bundle X → S, we can find
an expected finite étale Galois covering of X.

Suppose that ϕ is imprimitive. The proof of Main Theorem in this case is
treated in Section 5. We apply the argument on H-factorization to a nonzero
proper Hodge substructure of H1(Xt,Z) contained in the kernel of H1(Xt,Z) �
π1(Xt) → π1(X) and perform a finite succession of flops to X as in [6] (cf.
[19, Appendix]). Then we infer that the Iitaka fibration of the minimal model
Y = Xmin is factored as Y → T → C, where Y → T is an equi-dimensional
elliptic fibration over a normal projective surface T with only quotient singu-
larities. Moreover, the endomorphism f of X induces a nontrivial surjective
endomorphism T → T , and the fibers of Y → T over a certain prime divisor
of T consist of rational curves. We can find a suitable finite ramified covering
C̃ → C such that the normalization T̃ of T ×C C̃ is étale in codimension one
over T and T̃ � E × C̃ for an elliptic curve E. Here, the normalization Ỹ of
Y ×C C̃ is also étale over Y . By the ∂-étale cohomological description [20] of
the elliptic fibration Ỹ → T̃ , we have a finite étale covering E′ → E such that
E′ ×E Ỹ � E′ × S for an elliptic surface S → C̃ (cf. Theorem 5.10). This part
is a core of our proof in the imprimitive case.

This article is organized as follows: In Section 2, we study abelian fibrations
in a general setting from the viewpoint of variation of Hodge structures. Espe-
cially, we analyze Seifert abelian fibrations, primitive and imprimitive abelian
fibrations, simple and non-simple abelian fibrations, the construction of H-
factorization, and abelian fibrations admitting endomorphisms. In Section 3,
we summarize known results on smooth projective 3-folds X of κ(X) ≥ 0 ad-
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mitting nontrivial surjective endomorphisms f , recall the construction of the
minimal reduction of f , and note special properties in the case where the Iitaka
fibration of X is an abelian fibration over a curve. Sections 4, 5 are devoted to
the proof of Main Theorem for the case not treated in our previous paper [6].

Notation and Terminology
In this article, we work over the complex number field C.

Varieties : A variety means a reduced and irreducible complex algebraic
scheme, or a reduced and irreducible complex analytic space. A projective
variety is a complex variety embedded in a projective space Pn, and a quasi-
projective variety is a Zariski open subset of a projective variety. A smooth
projective n-fold means a nonsingular projective variety of dimension n. The
following symbols are used for a variety X as usual:

KX : the canonical divisor of X (when X is normal).
κ(X) : the Kodaira dimension of X.
pg(X) : the (geometric) genus of X.
χ(OX) : the Euler–Poincaré characteristic of the structure sheaf OX .
χtop(X) : the topological Euler characteristic of X.
bi(X) : the i-th Betti number of X.

Sing(X) : the singular locus of X.
Aut(X) : the space of holomorphic automorphisms of X.

Aut0(X) : the identity component of Aut(X).

For a scheme Y , the reduced part is denoted by Yred, which is a reduced scheme
with the same support as Y .

Minimal models: A normal projective variety X is called a minimal model
if X has only terminal singularities and KX is nef. Let π : Y → Z be a pro-
jective morphism from a normal quasi-projective variety. A Cartier divisor D
on Y is called π-nef (or relatively nef over Z) if DΓ ≥ 0 for any irreducible
curve Γ with π(Γ) being a point. If Y has only terminal singularities and KY

is relatively nef over Z, then Y is called a relative minimal model over Z.

Fibrations : A proper surjective morphism π : V → S is called a fibration
or a fiber space if V and S are normal complex varieties and f has a connected
fiber. Then all the fibers of a fibration are connected. A fibration is called
projective if it is a projective morphism. The closed subset

∆π = {s ∈ S | π is not smooth at some point of π−1(s)}
is called the discriminant locus of π. The restriction V � → S� of π to S� =
S \ ∆π and V � = π−1(S�) is called the smooth part of π. The smooth part is
a topological fiber bundle.

Abelian fiber spaces : If a general fiber of a fiber space π : V → S is an
abelian variety, then π is called an abelian fibration or an abelian fiber space.
If a general fiber of π is an elliptic curve, then π is called an elliptic fibration
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or an elliptic fiber space. If π is a holomorphic fiber bundle of an elliptic curve,
then it is called an elliptic bundle. If π is a smooth abelian fibration, then the
local constant system R1π∗ZV forms a variation of Hodge structure H(π) of
weight −1 on S. Conversely, if H is a polarized variation of Hodge structure of
weight −1 on S, then there exists uniquely up to isomorphism a smooth abelian
fiber space p : B(H) → S such that p admits a global section and H(p) � H.
This is called the smooth basic abelian fibration associated with H. An abelian
scheme is a proper smooth morphism π : X → S of schemes such that π has a
structure of S-group scheme. In this case, any fiber of π is an abelian variety.

Relative settings : Let u : X → S and v : Y → S be two morphisms into
the same variety S. A morphism h : X → Y is called a morphism over S if
u = v ◦ h. If there is an isomorphism X

∼−→ Y over S, then X and Y are
called isomorphic to each other over S. Similarly, if X and Y are algebraic
varieties and there is a birational map X ···→Y over S, then X and Y are
called birational to each other over S.

Endomorphisms : A nontrivial endomorphism f : X → X of a complex
variety X is, by definition, a nonconstant non-isomorphic morphism from X to
itself. The subset

Fix(f) := {x ∈ X | f(x) = x}
is called the fixed point set by f . For a positive integer k, the power fk stands
for the k-times composite f ◦ · · · ◦ f of f .

Hilbert schemes : Let V be a quasi-projective variety and let V → T be a
projective morphism into another variety. We set:

Hilb(V ) : the Hilbert scheme of V .
Z(V ) : the universal family ⊂ V × Hilb(V ).

Hilb(V/T ) : the relative Hilbert scheme of V/T .
Z(V/T ) : the universal family ⊂ V ×T Hilb(V/T ).

For a scheme S over T and for a proper flat morphism ϕ : U → S over T from a
subscheme U of V , the graph Γϕ of ϕ is a subscheme of V ×T S which is proper
and flat over S. Hence Γϕ coincides with the pullback of Z(V/T ) by a morphism
u : S → Hilb(V/T ), which is called the universal morphism associated with ϕ.

Rigidity Lemma: The following is referred as the rigidity lemma (cf. [15,
Proposition 6.1]): Let f : X → Y and q : Y → S be morphisms of varieties
such that the composite p = q ◦ f : X → S is a proper smooth morphism with
connected fibers. Suppose that f(p−1(s)) is set-theoretically a single point for
one point s ∈ S, then there exists a section η : S → Y of q such that f = η ◦ p.

2. Abelian fiber spaces

2.1. Seifert abelian fibrations
We recall some facts on abelian fibrations which are almost smooth in a

certain sense. To begin with, we recall the following result on smooth abelian
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fibration by Kollár [11, Proposition 5.9], which is generalized to smooth torus
fibrations between compact Kähler manifolds in [18, Lemma 2.20]:

Lemma 2.1. Let π : M → S be a smooth abelian fibration between
smooth projective varieties. Then κ(M) = κ(S).

Lemma 2.2. Let ϕ : M → S be a smooth abelian fibration between
smooth quasi-projective varieties. Then there is a finite étale morphism S̃ → S

such that M ×S S̃ → S̃ is an abelian scheme.

Proof. Let H = H(ϕ) be the variation of Hodge structure R1ϕ∗ZM . Let
p : B = B(H) → S be the associated basic smooth abelian fibration. Then p is
an abelian scheme and ϕ is regarded as a torsor associated with an element η
of H1(S,SH), where SH is the sheaf of germs of sections of p (cf. [18, Section
2]). Since ϕ is projective, there is a subvariety S̃ ⊂M such that S̃ → S is finite
étale by [18, Corollary 2.13]. Then ϕ×S ideS : M ×S S̃ → S̃ has a section, thus
M ×S S̃ is isomorphic to the abelian scheme B ×S S̃ over S̃.

Definition 2.3 (cf. [18]). Let V → S be a projective fiber space from
a smooth variety V onto a normal variety S whose general fibers are abelian
varieties. It is called a Seifert abelian fiber space if there exist finite surjective
morphisms W → V and T → S satisfying the following conditions:

(1) W and T are smooth varieties;
(2) W is isomorphic to the normalization of V ×S T over V ;
(3) W → V is étale;
(4) W → T is smooth.

If V → S is a Seifert abelian fiber space, then V is a unique relative
minimal model over S, since KV is relatively numerically trivial and there are
no rational curves contained in fibers. If S is compact and dimV = dimS + 1,
then we may replace the condition (4) with that W � E × T over T for an
elliptic curve E. The notion of Seifert abelian fiber space is introduced in [18]
as the name of Q-smooth abelian fibration.

Lemma 2.4. Let V → S be a Seifert abelian fiber space. Then there
exists a finite Galois covering T → S such that the normalization W of V ×S T
is étale over V and W is an abelian scheme over T .

Proof. By Definition 2.3 and by Lemma 2.2, we have a finite surjective
morphism T → S satisfying the required properties except for that T → S is
Galois. Taking the Galois closure T̂ → S of T → S is equivalent to taking
the Galois closure Ŵ → V of the finite étale covering W → V . Hence, Ŵ
is isomorphic to the normalization of V ×S T̂ and also to the fiber product
W ×T T̂ . Therefore, T̂ → S satisfies the required condition.

The following gives a sufficient condition on elliptic fibrations to be Seifert:
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Theorem 2.5 (cf. [16], [17]). Let π : V → S be an elliptic fibration from
a smooth projective n-fold V into a normal projective variety S. Suppose that

(a) no prime divisor Θ of V with codimπ(Θ) ≥ 2 is uniruled,
(b) no prime divisor Θ of V with codimπ(Θ) = 1 is covered by a family of

rational curves contained in fibers of π,
(c) KV is π-numerically trivial.
Then there exists a generically finite surjective morphism T → S satisfying

the following conditions:
(1) T is a smooth projective variety.
(2) For the normalization W of the main component of V ×ST , the induced

morphism W → V is a finite étale covering.
(3) W is isomorphic to the product E × T over T for an elliptic curve E.

Corollary 2.6. Let π : V → S be an elliptic fibration from a smooth
projective n-fold V onto a normal projective variety S. If the following condi-
tions are satisfied, then π is a Seifert elliptic fibration:

(1) π is equi-dimensional;
(2) KV is π-numerically trivial;
(3) For any irreducible divisor Γ contained in the discriminant locus ∆ of

π, the singular fiber type of π along Γ is mI0 for some m ≥ 1.

Here, the singular fiber type is defined as follows (cf. [19], [20]): For a
generic analytic arc C in S intersecting Γ transversally at a general point x ∈ Γ,
π−1(C) → C is a nonsingular minimal elliptic surface over C. The singular fiber
type of f along Γ is defined to be the type of singular fiber π−1(x) in the sense
of Kodaira. A singular fiber of type mI0 of an elliptic surface is expressed as a
divisor mE for an elliptic curve E.

Proposition 2.7. Let π : V → C be a projective fiber space over a
smooth curve C. If the normalization of any fiber is an abelian variety, then π
is a Seifert abelian fibration.

The following proof contains an argument used in the proof of [18, Theorem
4.3].

Proof. By localizing C, we may assume C to be the unit disc {t ∈ C ; |t| <
1}. Moreover, the scheme-theoretic fiber Vt = π−1(t) is abelian for t 	= 0. The
reduced part V0,red of the central fiber V0 is irreducible and the normalization
V ν0,red of V0,red is abelian by assumption. Let m be the multiplicity of V0, i.e.,
V0 = mV0,red and let C ′ = {t′ ∈ C ; |t′| < 1} → C be the cyclic covering given
by t′ 
→ t = t′m. Let V ′ be the normalization of V ×C C ′ and let Ṽ → V ′

be the resolution of singularities. Then V ′ → V is étale outside Sing V0,red,
and the scheme-theoretic fiber V ′

0 of π′ : V ′ → C ′ over 0 ∈ C ′ is reduced. The
scheme-theoretic fiber Ṽt′ of Ṽ → C ′ over t′ is isomorphic to Vt for t = t′m

if t′ 	= 0. Let Ṽ0 =
⋃

Γj be the irreducible decomposition. We have the
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lower semicontinuity 1 = pg(Vt) ≥
∑
pg(Γj) of the geometric genus pg for the

degeneration Ṽ → C ′ of abelian varieties. On the other hand, Γj → V0,red is
a surjective morphism if Γj is not exceptional for Ṽ → V ′. Therefore, by the
characterization [10] (cf. [23, Theorem 10.3]) of abelian varieties for varieties
finite over an abelian variety, V ′

0 is irreducible and its normalization is an
abelian variety. Since π′

∗ωV ′ → π′
∗ωV ′(V ′

0) is not isomorphic, π′∗π′
∗ωV ′ → ωV ′

is an isomorphism. In particular, V ′ and V ′
0 are Gorenstein, and ωV ′

0
� OV ′

0
.

Hence, the conductor of the normalization of V ′
0 is zero. Thus V ′

0 is an abelian
variety and π′ : V ′ → C ′ is a smooth abelian fibration.

The variety V is regarded as the quotient space of V ′ by an action of the
Galois group Gal(C ′/C) � Z/mZ. Similarly, the normalization V ν0,red of V0,red

is regarded as the quotient space of V ′
0 . Here, V ′

0 → V ν0,red is étale since both

are abelian varieties. Thus the action of Gal(C ′/C) on V ′
0 is free and that on

V ′ is also free. Hence, V is nonsingular, V ′ → V is étale, and V0,red is abelian.
Therefore, V → C is a Seifert abelian fibration.

Proposition 2.8. Let π : M → C be a smooth projective abelian fibra-
tion over a smooth curve C. Suppose that a subvariety Y ⊂M defines a proper
surjective morphism Y → C whose general fiber is an abelian variety. Then
Y → C is a smooth abelian fibration.

Proof. By localizing C, we may assume C to be a unit disc {t ∈ C ; |t| <
1} and Y → C to be smooth outside 0 ∈ C. Let Mt be the scheme-theoretic
fiber of π over t ∈ C and let Yt be the scheme-theoretic intersection Mt ∩ Y .
Let ν : V → Y be the normalization and let Vt be the scheme-theoretic fiber of
π|Y ◦ ν : V → C over t. For the irreducible decomposition V0 =

⋃
Γj , we have

pg(Γj) ≤ 1 by the lower semi-continuity pg(Vt) ≥
∑
pg(Γj) for t 	= 0. By [10],

we infer that V0 is irreducible and that Y0,red and the normalization of V0,red

are abelian varieties. By Proposition 2.7, V → C is a Seifert abelian fibration
and V0,red is also abelian.

Let m be the multiplicity of V0 and let C ′ = {t′ ∈ C ; |t′| < 1} → C
be the cyclic covering given by t′ 
→ t′m. Then the normalization V ′ of
V ×C C ′ is smooth over C ′ by the proof of Proposition 2.7. For the morphism
V ′ → M ′ = M ×C C ′, the induced homomorphism H1(V ′

0 ,Z) → H1(M0,Z)
between the first homology groups of central fibers are isomorphic to the ho-
momorphism H1(Yt,Z) → H1(Mt,Z) for t 	= 0 induced from Yt ⊂ Mt. In
particular, H1(V ′

0 ,Z) → H1(M0,Z) is injective and its cokernel is torsion free.
Hence, the composite H1(V ′

0 ,Z) → H1(V0,red,Z) → H1(Y0,red,Z) is an isomor-
phism. Therefore, m = 1, V0 is reduced, and V0 � Y0. Hence, V � Y , and
Y → C is smooth.

2.2. Primitive and imprimitive abelian fibrations
The following result of Kollár [11] plays a key role in our argument below

(the result itself is generalized to the compact Kähler situation in [18]):

Theorem 2.9 (cf. [11, 6.5–6.8], [18, Proposition 8.5]). Let ϕ : M → S
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be a proper surjective morphism between smooth projective varieties which is
smooth outside a normal crossing divisor D ⊂ S. Suppose that

• Ms is birationally equivalent to an abelian variety,
• the kernel of π1(Ms) → π1(M) contains no nonzero proper Hodge sub-

structure of H1(Ms,Z) � π1(Ms),
for a general smooth fiber Ms = ϕ−1(s). Then the following properties hold:

(1) The local monodromies of (R1ϕ∗ZM )|S� around D are finite, where
S� := S \D.

(2) There is a finite étale morphism M ′ → M such that, for the Stein
factorization M ′ → S′ → S, the local monodromies of the associated variation
of Hodge structure on S′� = S′ ×S S� around S′ \ S′� are trivial.

(3) ϕ is birationally equivalent over S to a Seifert abelian fibration.

The assertion (3) above is derived from an idea used in the proof of the
following:

Lemma 2.10. Let ϕ : M → S be an abelian fiber space between smooth
quasi-projective varieties. Let S� be the complement of the discriminant locus
∆ϕ. Suppose that

(1) the variation of Hodge structure H(ϕ) = R1ϕ∗ZM |S� of weight −1
extends to S,

(2) for any point s ∈ ∆ϕ, there exists a holomorphic section of ϕ over an
open neighborhood of s.
Then ϕ is birational to a smooth abelian fibration over S.

Proof. Let H be the variation of Hodge structure extended to S and let
p : B = B(H) → S be the smooth basic abelian fibration associated withH, i.e.,
an abelian scheme with an isomorphism R1p∗ZB � H. There exist an analytic
open covering {Uλ} and analytic sections σλ : Uλ → M of ϕ by assumption.
If ϕ is smooth, then σλ induces a bimeromorphic morphism φλ : ϕ−1(Uλ) →
p−1(Uλ) as the relative Albanese map over Uλ (cf. [18]). Even if ϕ is not
smooth, we have the bimeromorphic morphism φλ by [18, Proposition 1.6].
The difference φλ ◦φ−1

ν is described as the translation map of B/S by a section
ηλ,ν : Uλ ∩ Uν → M . Gluing {p−1(Uλ)} by the translation maps, we have a
new smooth torus fibration Bη → S, which depends on the cohomology class
η ∈ H1(S,SH) of the collection {ηλ,µ}, where SH denotes the sheaf of germs of
holomorphic sections of B → S. In other words, Bη → S is an analytic torsor
of B → S associated with η. It is known that η is of finite order if and only if
ϕ is a projective morphism. For the bimeromorphic morphism M → Bη over
S, the image of an intersection of general ample divisors of M in Bη dominates
S and has the same dimension as dimS. Thus η is of finite order and Bη → S
is a projective morphism by [18, Corollary 2.13].

Corollary 2.11. Let π : X → C be an abelian fiber space from a smooth
projective variety X onto a smooth projective curve C such that KX is π-nef.
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Suppose that the kernel of π1(Xt) → π1(X) contains no nonzero proper Hodge
substructure of H1(Xt,Z) � π1(Xt). Then π is a Seifert abelian fiber space.

Proof. By Theorem 2.9, there exists a finite covering Ĉ → C such that
the normalization X̂ of X ×C Ĉ is étale over X and X̂ → Ĉ is birationally
equivalent to a smooth abelian fibration Ŷ → Ĉ over Ĉ. Since KX is nef,
X̂ → Ĉ is also a relative minimal model. Thus Ŷ and X̂ are isomorphic in
codimension one. Since any fiber of Ŷ → Ĉ contains no rational curves, the
rational map X̂ → Ŷ is holomorphic, and hence isomorphic. Thus X → C is a
Seifert abelian fibration.

Corollary 2.12. Let ϕ : M → C be an abelian fibration from a smooth
projective variety M onto a smooth rational curve C. If ϕ is smooth outside
two points of C, then κ(M) = −∞.

Proof. Let U ⊂ C be the complement of the two points. Then U � C�.
Hence the period map of the variation of Hodge structure H := R1ϕ∗ZM |U
is constant by the hyperbolicity of the Siegel upper half spaces. In particular,
the image of the monodromy representation Z � π1(U, u) → Aut(Hu) is finite.
Let C ′ � P1 → C be the finite cyclic covering extending C \ {0}  z → zm ∈
C \ {0} � U for suitable m. Let M ′ be a nonsingular model of M ×C C ′. Then
we may assume that the following conditions are satisfied:

• The pullback of H to C ′ is a trivial variation of Hodge structure;
• M ′ → C ′ admits a local section over any point of C.

Then there exist a smooth abelian fibration Y → C ′ and a birational morphism
M ′ → Y over C ′ by Lemma 2.10. In particular,

κ(M) ≤ κ(M ′) = κ(Y ) = κ(C ′) = −∞.

Definition 2.13. Let ϕ : M → S be an abelian fiber space between
smooth varieties and let Ms denote the fiber ϕ−1(s) for a point s ∈ S. Let
M� → S� = S \ ∆ϕ be the smooth part of ϕ. If π1(Ms) → π1(M) is injective
for a point s ∈ S�, then it is so for any other point of S�. In this case, ϕ is
called a primitive abelian fiber space. If ϕ is not primitive, then it is called
imprimitive.

Remark 2.14. A primitive abelian fibration is called a homotopically
Q-smooth abelian fibration in [18, Section 7]. A smooth abelian fiber space is
primitive if it is a projective morphism. In fact, the homomorphism π2(S) →
π1(Ms) appearing in the homotopy exact sequence

π2(S) → π1(Ms) → π1(M) → π1(S) → 1

is zero by [18, Corollary 2.18]. If S is a smooth curve, then this is shown
as follows: If S is not isomorphic to P1, then it follows from the vanishing
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π2(S) = 0. Suppose that S � P1. Then a smooth projective abelian fibration
ϕ : M → S has a constant variation of Hodge structure H = R1ϕ∗ZM and
B � A × S for the basic abelian fibration B = B(H) → S associated with H
and for an abelian variety A. The sheaf SH of germs of holomorphic sections of
B → S is represented by an exact sequence 0 → H = Z

⊕2g
S → O⊕g

S → SH → 0
for g = dimM − dimS. Thus H1(S,SH) � H2(S,Z⊕2g) � Z⊕2g is torsion free.
Thus M � B � A×S, since M is isomorphic to the torsor of B associated with
a torsion element of H1(S,SH). Therefore, π2(S) → π1(Ms) is zero. We infer
also that a Seifert abelian fibration is primitive, since it has an étale covering
from an abelian scheme.

As a corollary of Theorem 2.9, we have:

Corollary 2.15. If ϕ : M → S is an imprimitive abelian fiber space,
then the kernel of π1(Ms) → π1(M) contains a nonzero proper Hodge substruc-
ture of H1(Ms,Z) � π1(Ms) for any s ∈ S�.

Proof. Assume the contrary. Then, by Theorem 2.9, there exist a finite
covering S′ → S, a finite étale covering M ′ →M , a smooth abelian fiber space
Y → S′, a birational morphism M ′ → M ×S S′ over M , and a birational
morphism M ′ → Y over S′. Let s be a point of S� over which S′ → S is étale
and let s′ ∈ S′ be a point lying over s. Then we have a contradiction by

π1(Ms) � π1(M ′
s′) � π1(Ys′) ⊂ π1(Y ) � π1(M ′) ⊂ π1(M).

2.3. Non-simple abelian fibrations
We shall study abelian fibrations whose very general fiber is a non-simple

abelian variety. We follow several arguments by Ueno in [24] which deal with
Hilbert schemes.

Lemma 2.16. Let ψ : M → T be a proper flat surjective morphism of
smooth projective varieties. Suppose that dim H0(Mt,OMt

) = 1 for the scheme-
theoretic fiber Mt = ψ−1(t) over a point t ∈ T . Then the universal morphism
u : T → Hilb(M) associated with ψ is a local isomorphism at t, and u(T ) is an
irreducible component of Hilb(M).

Proof. We have dim H0(Mt, NMt/M ) = n for n = dimT since the normal
sheaf NMt/M is a free sheaf of rank n. In particular, the Zariski tangent space
of Hilb(M) at the point [Mt] corresponding to Mt is n-dimensional. Hence,
Hilb(M) is nonsingular of dimension n at [Mt], since the morphism u is injective
by construction. Thus the assertion holds.

Let ϕ : M → T be a projective flat surjective morphism of smooth quasi-
projective varieties and let M� → T � be the smooth part of ϕ. Suppose that ϕ
is an abelian fibration and that there is a proper positive-dimensional abelian
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subvariety At of the fiberMt = ϕ−1(t) over a fixed point t ∈ T �. Let [At] denote
the point of Hilb(M/T ) corresponding to the subscheme At ⊂ Mt. Then, by
Lemma 2.16, [At] is a nonsingular point of Hilb(M/T )×T {t} = Hilb(Mt) and
the connected component Lt of Hilb(Mt) containing [At] is isomorphic to an
abelian variety. In fact, At is a fiber of a surjective morphism Mt → Lt. Let
S be an irreducible component of Hilb(M/T ) containing Lt and let q : S → T
be the induced morphism. If s is a point of an open neighborhood of [At] in
S, then s defines an abelian subvariety A(s) of the fiber Mq(s) of M → T over
q(s) with dimAt = dimA(s). Moreover, any point s of S×T T � defines also an
abelian subvariety A(s) ⊂Mq(s) with dimAt = dimA(s) by Proposition 2.8.

Lemma 2.17. Suppose that q : S → T is surjective. Then q is smooth
over T �.

Proof. The scheme-theoretic fiber of S → T over t is smooth at the point
s0 = [At]. Hence, the dimension of the Zariski tangent space of S at s0 is at
most dimT + dimLt. For a point s of an open neighborhood of s0 ∈ S with
q(s) 	= t, the connected component L(s) of Hilb(M/T )×T {q(s)} = Hilb(Mq(s))
containing s is an abelian variety and A(s) is a fiber of a surjective morphism
Mq(s) → L(s). In particular, L(s) contains any irreducible component of the
fiber S ×T {q(s)} containing s. Since Hilb(M/T ) has at most countably many
irreducible components, there exist an irreducible component S′ of Hilb(M/T )
and a dense subset U ⊂ S ×T T � such that L(s) ⊂ S′ for s ∈ U . Hence, S = S′

by U ⊂ S ∩S′. Therefore, dimS = dimT + dimLt. Consequently, q : S → T is
smooth at s0. For any other point s ∈ S ×T T �, we have

dimL(s) = dimsHilb(Mq(s)) ≥ dims S ×T {q(s)} ≥ dimL(s0) = dimL(s).

Hence S is an irreducible component of Hilb(M/T ) containing L(s). Therefore,
q : S → T is smooth over T �.

Since Hilb(M/T ) has only countably many irreducible components, the
following conditions are equivalent to each other:

• One smooth fiber of M → T is a simple abelian variety;
• A very general fiber of M → T is a simple abelian variety;
• If At ⊂ Mt is a positive-dimensional proper abelian subvariety of a

smooth fiber Mt, then an irreducible component S of Hilb(M/T ) containing
[At] does not dominate T .

Definition 2.18. If one of these conditions above is satisfied, thenM →
T is called a simple abelian fibration; If not, it is called a non-simple abelian
fibration.

Theorem 2.19. Let ϕ : M → T be a non-simple abelian fibration be-
tween smooth quasi-projective varieties and let T � be the complement of the dis-
criminant locus ∆ϕ of ϕ. Then there exist a finite morphism T̂ → T étale over
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T � and a birational morphism M̂ → M ×T T̂ from a smooth quasi-projective
variety M̂ such that the induced morphism ϕ̂ : M̂ → T̂ is the composite β ◦ α
for abelian fibrations α : M̂ → Ŝ and β : Ŝ → T̂ , where α and β are smooth
over the inverse image of T �, and dimM > dim Ŝ > dimT .

Proof. Let S be an irreducible component of Hilb(M/T ) discussed in
Lemma 2.17. Here, q : S → T is proper surjective, the restriction S� = q−1(T �)
→ T � is smooth, and any irreducible component of the fiber over a point of
T � is an abelian variety. Let Ŝ be the normalization of S and let Ŝ → T̂ →
T be the Stein factorization. Then the induced morphism β : Ŝ → T̂ is an
abelian fibration, and T̂ → T is a finite morphism étale over T �. We set
Z = Z(M/T )∩(M×T S) for the universal family Z(M/T ) ⊂M×T Hilb(M/T ).
Then the second projection Z → S is an abelian fibration smooth over S� and
any connected component of Z ×T {t} is isomorphic to Mt for t ∈ T �. Thus
the composite

Z ↪→M ×T S ···→M ×T Ŝ →M ′ := M ×T T̂
is an isomorphism over T �. Hence we have the factorizationM ′ ···→Z ···→ Ŝ →
T̂ of ϕ×T idbT : M ′ → T̂ . By taking a suitable birational morphism M̂ → M ′,
we have a desired factorization.

Proposition 2.20. Let ϕ : M → T be an abelian fibration between
smooth quasi-projective varieties. Let M� → T � be the smooth part of ϕ and let
H̃ be the induced variation of Hodge structure R1ϕ∗ZM |T� of weight −1 defined

over T �. For a variation of Hodge substructure H ⊂ H̃, there exist a rational
map α : M ···→S and an abelian fibration β : S → T with ϕ = β ◦ α such that

(1) α : M ···→S is holomorphic over S� = β−1(T �) and α : M� → S� is a
smooth abelian fibration,

(2) β : S → T is smooth over T �,

(3) H1(α−1(s),Z) = Hβ(s) ⊂ H̃β(s) = H1(ϕ−1(β(s)),Z) for any s ∈ S�.

Proof. Let B(H̃) → T � and B(H) → T � be the basic abelian fibrations
associated with H̃ and with H, respectively. Then B(H̃) → T � is an abelian
scheme and B(H) → T � is an abelian subscheme. The smooth abelian fibration
M� → T � is regarded as a torsor of B(H̃) → T �. Thus we have the quotient
torsor β : S� → T � of M� → T � by the relative action of B(H) → T �. Let
α : M� → S� be the induced morphism. Then the condition (3) is satisfied
for any s ∈ S�, i.e., H1(α−1(s),Z) = Hβ(s) ⊂ H̃β(s) = H1(ϕ−1(β(s)),Z).
Therefore, it suffices to extend α and β to a rational map and a morphism
defined over T , respectively.

Let u : S� → Hilb(M/T ) be the universal morphism associated with M� →
S�. Then the graph of M� → S� is isomorphic to the pullback of the univer-
sal family Z(M/T ) ⊂ M ×T Hilb(M/T ) by u. By Lemma 2.16, u(S�) is a
connected component of Hilb(M�/T �) = Hilb(M/T )|T� and S� → u(S�) is an
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isomorphism. Thus there is an irreducible component S ⊂ Hilb(M/T ) contain-
ing u(S�). For the scheme-theoretic intersection Z = Z(M/T ) ∩ (M ×T S),
the first projection Z →M is an isomorphism over T �. Thus the morphism α
extends to the rational map M ···→Z → S and the other morphism β extends
to the natural morphism S → T .

The factorization M
α···−→ S

β−→ T is called an H-factorization of ϕ : M → T .

Lemma 2.21. Let ϕ : M → T be a smooth non-simple abelian fiber
space between smooth projective varieties with dimM = dimT + 2. Then there
exist a finite étale covering T̃ → T and a non-simple abelian surface A such
that M ×T T̃ � A× T̃ over T̃ .

Proof. We may assume that ϕ is factorized as M → S → T for two
smooth elliptic fibrations M → S and S → T , by Theorem 2.19. Since T is
compact, any fiber of S → T is isomorphic to a constant elliptic curve F . By
replacing T with a suitable étale covering of T , we may assume that S � F ×T
over T . The fibers of M → S are also constant. Let F ′ be the fiber. Then
the fiber Mt over a point t ∈ T is an abelian surface which gives an extension
of F by F ′. In particular, Mt is isogenous to F × F ′. Therefore, the period
map associated with the abelian fibration M → T is also constant. Hence,
M ×T T̃ � A× T̃ over a finite étale covering T̃ of T .

2.4. Abelian fibration with endomorphisms

Lemma 2.22. Let f : A→ A be a non-isomorphic surjective morphism
for an abelian variety A, i.e., a nontrivial surjective endomorphism of A.

(1) If A is simple, then the fixed point locus Fix(f) is a non-empty finite
set.

(2) Suppose that there is a simple abelian subvariety B ⊂ A of codimen-
sion one satisfying f−1(B) = B. Then there is a positive integer k such that
dim Fix(fk) = 1 and the subgroup H1(B,Z) ⊂ H1(A,Z) is just the primitive
hull of the image of

fk∗ − id : H1(A,Z) → H1(A,Z).

Proof. Let us consider A to be a commutative group scheme and let 0
be the zero element. For the point a = f(0) ∈ A and for the translation map
T−a : A→ A, the composite g := T−a ◦ f : A→ A is a group homomorphism of
A. Moreover h := g − idA : A → A is a non-zero group homomorphism of A,
since g : A → A is a nontrivial surjective endomorphism. Here, Fix(f) 	= ∅ if
and only if −a is contained in the image of h. Furthermore, in case Fix(f) 	= ∅,
Fix(f) is a translate of Ker(h) since, for a closed point x ∈ Fix(f) and for a
closed point x′ ∈ A, x′ ∈ Fix(f) if and only if x− x′ ∈ Ker(h).

If A is simple, then h is surjective and Ker(h) is finite; thus the assertion
(1) follows.

For the abelian subvariety B in (2), the restriction f |B : B → B is a
nontrivial surjective endomorphism since deg(f |B) = deg(f) > 1. In particular,
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f has a fixed point in B by (1). Hence, we may assume 0 ∈ Fix(f), i.e.,
a = 0. Then f = g and Fix(f) = Ker(h). Let p : A → E be the projection
to the quotient space E = A/B, which is an elliptic curve. There is a group
automorphism u : E → E with p ◦ f = u ◦ p. Here uk = idE for some k ≥
1, since E is an elliptic curve. The fiber p−1(b) over any point b ∈ B is a
translate of B. Thus the restriction of fk to p−1(b) has a fixed point by (1).
Therefore, Fix(fk) dominates E and dim Fix(fk) = 1. The homomorphism
fk∗ − id : H1(B,Z) → H1(B,Z) is not zero since deg(f |B) > 1. The kernel of
fk∗ −id defines a proper Hodge substructure of H1(B,Z), which is zero since B is
simple. Hence, fk∗ − id : H1(B,Z) → H1(B,Z) is injective. On the other hand,
uk∗− id : H1(E,Z) → H1(E,Z) is zero. Hence, the primitive hull of the image of
fk∗ − id : H1(A,Z) → H1(A,Z) is just the subgroup H1(B,Z) ⊂ H1(A,Z).

Theorem 2.23. Let ϕ : M → T be a smooth abelian fibration between
smooth quasi-projective varieties and f : M → M a nontrivial surjective endo-
morphism with ϕ ◦ f = ϕ. Suppose that there is a simple abelian subvariety
A of codimension one in a fiber Mo = ϕ−1(o) satisfying f−1A = A. Then
there exist a smooth abelian fibration α : M → S and a smooth elliptic fibration
β : S → T such that ϕ = β ◦ α, A is a fiber of α, and that α ◦ f = v ◦ α for an
automorphism v ∈ Aut(S). In particular, ϕ is a non-simple abelian fibration.

Proof. Let H̃ be the variation of Hodge structure R1ϕ∗ZM and let f∗ : H̃
→ H̃ be the homomorphism induced by f . Let H ⊂ H̃ be the primitive hull
of the image of fk∗ − id : H̃ → H̃ . Then Ho = H1(A,Z) ⊂ H̃o = H1(Mo,Z) for
some k by Lemma 2.22. Applying Proposition 2.20, we have theH-factorization
M → S → T . Then A is a fiber of α : M → S. We set P = α(A). Since
α ◦ f(α−1(P )) = P , we have a morphism v : S → S satisfying α ◦ f = v ◦ α by
the rigidity lemma. Here, v is a finite étale morphism with β ◦ v = β, since ϕ is
smooth and α is surjective. Since v−1(P ) = P , we have deg v = 1, and hence,
v ∈ Aut(S).

Theorem 2.24. Let ϕ : M → T be a smooth simple abelian fibration
between smooth quasi-projective varieties. Suppose that there is a nontrivial
surjective endomorphism f : M → M with ϕ ◦ f = ϕ. Then Fix(f) → T is a
finite étale surjective morphism. In particular, for any point t ∈ T , the fiber
Mt = ϕ−1(t) does not contain any simple abelian subvariety A of codimension
one with f−1(A) = A.

Proof. By Lemma 2.22, Fix(f) ∩Mo is a non-empty finite set for a very
general point o ∈ T . Hence, ϕ : T̃ → T is generically finite and surjective for an
irreducible component T̃ of Fix(f). The pullback ϕ̃ : M̃ := M×T T̃ → T̃ of ϕ is
a smooth abelian fibration with a section. The pullback f̃ := f×T id eT : M̃ → M̃

of f is also a nontrivial surjective endomorphism defined over T̃ . Therefore,
for the proof, we may assume ϕ : M → T to admit a section σ : T → M
satisfying f ◦ σ = σ. Thus ϕ : M → T has an abelian scheme structure whose
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zero section is σ, and f : M → M is a relative group homomorphism. Since
f is not an isomorphism, h := f − idM : M → M is a non-zero relative group
homomorphism over T . Since the fiber Mo over a very general point o ∈ T
is a simple abelian variety, the restriction of h to Mo is surjective. Hence
h : M →M is surjective. In particular, the restriction of h to the fiber Mt over
any point t ∈ T is a finite étale surjective morphism. Therefore, Fix(f) ∩Mt

is a finite set isomorphic to Ker(h) ∩Mt by the proof of Lemma 2.22. Hence,
Fix(f) → T is finite, étale, and surjective.

If f−1(A) = A for a simple abelian subvariety A of codimension one of a
fiber Mt, then dim Fix(fk) ∩Mt = 1 for some k ≥ 1 by Lemma 2.22. This is a
contradiction.

Lemma 2.25. Let f be a nontrivial surjective endomorphism of the
product A×T for a simple abelian variety A and a smooth projective variety T
such that p2 ◦ f = p2 for the second projection p2. Then there is a finite étale
Galois covering T̃ → T such that the lift f̃ of f to A× T̃ is written as φ× id eT
for an endomorphism φ of A with respect to a given group structure.

Proof. An irreducible component T̃ of the fixed point locus Fix(f) is finite
and étale over T by Theorem 2.24. By replacing T with T̃ and by considering a
suitable automorphism of A×T , we may assume that f preserves {0}×T for the
zero element 0 ∈ A. Then f(a, t) = (φt(a), t) for holomorphic maps φt : A →
A for t ∈ T , a ∈ A. Here, the induced homomorphism φt∗ : H1(A,Z) →
H1(A,Z) is independent of the choice of t ∈ T . Since φt(0) = 0, there exists an
endomorphism φ : A→ A with φ(0) = 0 and φt = φ for any t ∈ T .

2.5. A part of the proof of Main Theorem
The implication (B) ⇒ (A) of Main Theorem follows from:

Theorem 2.26. Let X be a smooth projective n-fold. Suppose that there
exist a finite Galois étale covering τ : M → X and an abelian scheme structure
ϕ : M → T such that the Galois group G of τ acts also on T with ϕ ◦ σ = σ ◦ϕ
for σ ∈ G. Then there is a nontrivial surjective endomorphism Φ of M such
that ϕ ◦ Φ = ϕ and σ ◦ Φ = Φ ◦ σ for any σ ∈ G. In particular, X admits a
nontrivial surjective endomorphism.

Proof. The action of σ ∈ G on M is written as the composite Tr(hσ)◦ψσ
for an automorphism ψσ of M over T preserving the zero section and for the
translation map Tr(hσ) by a section hσ : T →M . Then ψσ is a homomorphism
between two abelian schemes σ ◦ ϕ : M → T and ϕ : M → T . The set F of
sections of ϕ over T has a natural structure of abelian group, and furthermore,
a structure of left G-module by

h 
→ σ · h = ψσ ◦ h ◦ σ−1

for h ∈ F and σ ∈ G. Then σ 
→ hσ gives a 1-cocycle and defines an element
η ∈ H1(G,F ). Since the order m of η is finite, we have a section a ∈ F such
that mhσ = σ · a− a.



96 Yoshio Fujimoto and Noboru Nakayama

Let µm+1 : M →M be the multiplication map by m+1 with respect to the
group structure of M over T and let Φ: M →M be the composite Tr(a)◦µm+1.
Then σ ◦ Φ = Φ ◦ σ for any σ ∈ G.

Combining with Lemma 2.4, we have:

Corollary 2.27. Let X → S be a Seifert abelian fiber space from a
smooth projective n-fold X onto a normal projective variety S. Then X admits
a nontrivial surjective endomorphism.

Lemma 2.28. Let ϕ : M → T be a smooth abelian fiber space from
smooth projective n-fold M to a smooth projective variety T , and f : M → M
a nontrivial surjective endomorphism with ϕ ◦ f = v ◦ ϕ for an automorphism
v ∈ Aut(T ). Suppose that a finite group G acts on M and that σ ◦ f = f ◦ σ
for any σ ∈ G. If dimT = n − 1, then the condition (1) below is satisfied;
If dimT = n − 2 and v = idT , then either of the conditions (1), (2) below is
satisfied:

(1) G acts on T and ϕ is G-equivariant.
(2) There exists a smooth elliptic fibration α : M → S over T such that

α ◦ fk = α for a power fk, G acts on S, and that α is G-equivariant.

Proof. We set Mt = ϕ−1(t) for t ∈ T . Then we have f−1Mv(t) = Mt.
Hence,

f−1(σ(Mv(t))) = σ(f−1(Mv(t))) = σ(Mt)

for any σ ∈ G. In particular,

f |σ(Mt) : σ(Mt) → σ(Mv(t))

is an étale surjective morphism of degree deg(f) > 1. If ϕ(σ(Mt)) is a point for
a point t ∈ T , then there is an automorphism σT ∈ Aut(T ) with ϕ◦σ = σT ◦ϕ,
by the rigidity lemma. In particular, ϕ(σ(Mt)) is a point for any t ∈ T . Hence,
if, for a point t ∈ T , ϕ(σ(Mt)) is a point for any σ ∈ G, then (1) is satisfied.
By the commutative diagram

σ(Mt)
f−−−−→ σ(Mv(t))

ϕ

�
�ϕ

ϕ(σ(Mt))
v−−−−→ ϕ(σ(Mv(t))),

we have dimσ(Mt) > dimϕ(σ(Mt)) by considering the mapping degree. Hence,
if dimT = n − 1, then dimϕ(σ(Mt)) = 0 and thus (1) is satisfied. We may
assume dimT = n − 2, v = idT , and dimϕ(σ(Mt)) = 1 for any t ∈ T . Let
σ(Mt) → C → ϕ(σ(Mt)) be the Stein factorization. Since Mt is an abelian
surface, C is an elliptic curve and Mt is not simple. For a fiber E of σ(Mt) → C,
we have f−1E = E. Hence, the elliptic curve E′ = σ−1(E) ⊂ Mt also satisfies
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f−1E′ = E′. By Theorem 2.23, we have a factorization M → S → T of ϕ into
smooth elliptic fibrations α : M → S and β : S → T , and α ◦ f = u ◦ α for an
automorphism u of S over T . Here, u fixes the point α(E′) ∈ β−1(t). Since
this property holds for any point t ∈ T and since β is an elliptic fibration, we
infer that the order of u is finite. Thus α ◦ fk = α for suitable k > 0. Since
dimS = n− 1, M → S is G-equivariant by the argument above.

The following is useful in order to show the other implication (A) ⇒ (B)
in Main Theorem:

Proposition 2.29. Let X be a smooth projective 3-fold of κ(X) ≥ 0.
If either of the following conditions is satisfied, then the condition (B) of Main
Theorem is satisfied:

(1) There is a finite étale covering X̃ → X from an abelian 3-fold X̃.

(2) There exist a finite étale Galois covering X̃ → X, a smooth abelian
fibration ϕ : X̃ → T over a variety T of dimension ≤ 2, and a nontrivial
surjective endomorphism f̃ of X̃ such that

(a) σ ◦ f̃ = f̃ ◦ σ for any element σ of the Galois group of X̃ → X,
(b) ϕ ◦ f̃ = v ◦ ϕ for an automorphism v ∈ Aut(T ) if dimT = 2,
(c) ϕ ◦ f̃ = ϕ if dimT = 1.

Proof. (1) ⇒ (B): By Bogomolov’s decomposition theorem, we may as-
sume X̃ → X to be Galois. Thus (B) is satisfied.

(2) ⇒ (B): Let G be the Galois group of X̃ → X. By Lemma 2.28, we
may assume that ϕ is G-equivariant. Let G0 be the kernel of G→ Aut(T ) and
let X be the quotient space of X̃ by G0. Then X → T is a G/G0-equivariant
smooth abelian fibration and the induced nontrivial surjective endomorphism
f̄ of X from f̃ commutes with any element of G/G0. By replacing X̃ with X,
we may assume that G→ Aut(T ) is injective. Thus, we have a Seifert abelian
fibration X → G\T . Hence, the condition (B) is satisfied by Lemma 2.4.

3. Threefolds admitting nontrivial surjective endomorphisms

3.1. Basic properties on varieties with nontrivial surjective endo-
morphisms

We recall some basic properties of nontrivial surjective endomorphisms
from [6].

Proposition 3.1. Let f : X → X be a surjective endomorphism of a
smooth projective n-fold X. Then f is a finite morphism. Moreover, the fol-
lowing properties hold:

(1) If X is not uniruled or KX is pseudo-effective, then f is étale;
(2) Suppose that κ(X) ≥ 0 and let φ : X ···→Z be the Iitaka fibration of

X. Then there exists a biregular automorphism h of Z with φ ◦ f = h ◦ φ;
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(3) If X is of general type, then f is an automorphism;
(4) If f is not an automorphism and κ(X) ≥ 0, then χ(OX) = χtop(X) =

0.

For a smooth projective n-fold X, let NS(X) be the Néron–Severi group.
The Picard number ρ(X) is the rank of NS(X). We set

N1(X) := NS(X) ⊗ R, N1(X) := Hom(NS(X),R).

For an algebraic 1-cycle Z =
∑
niZi, the numerical equivalence class cl(Z) ∈

N1(X) is defined by D 
→ DZ =
∑
niDZi for divisors D. Let NE(X) ⊂ N1(X)

be the cone generated by cl(Z) for all the effective 1-cycles Z, and let NE(X)
denote the closure of NE(X). The cone NE(X) is often called the Kleiman–
Mori cone. An extremal ray (more precisely, a KX -negative extremal ray) is
a 1-dimensional face R of NE(X) with KXR < 0. An extremal ray R defines
a nontrivial proper surjective morphism ContR : X → Y with connected fibers
into a normal variety such that, for an irreducible curve C ⊂ X, ContR(C) is
a point if and only if cl(C) ∈ R. This is called the contraction morphism of R.
We have proved the following results related to the extremal rays in [6]:

Proposition 3.2 (cf. [6, Propositions 4.2 and 4.12]). Let f : Y → X be
a finite surjective morphism between smooth projective n-folds with ρ(X) =
ρ(Y ). Then, the following assertions hold:

(1) The push-forward map f∗ : N1(Y ) → N1(X) is an isomorphism and
f∗ NE(Y ) = NE(X).

(2) Let f∗ : N1(Y ) → N1(X) be the map induced from the push-forward
map D 
→ f∗D of divisors D. Then the dual f∗ : N1(X) → N1(Y ) (called the
pullback map) is an isomorphism and f∗ NE(X) = NE(Y ).

(3) If f is étale and the canonical divisor KX is not nef, then there is a
one-to-one correspondence between the set of extremal rays of X and the set of
extremal rays of Y .

(4) Under the same assumption as in (3), let φ : X → X ′ be the contraction
morphism ContR associated to an extremal ray R ⊂ NE(X) and let ψ : Y → Y ′

be the contraction morphism associated to the extremal ray f∗R. Then there
exists a finite surjective morphism f ′ : Y ′ → X ′ such that φ ◦ f = f ′ ◦ ψ.

Theorem 3.3 (cf. [6, Theorem 4.8]). Let X be a smooth projective 3-
fold with κ(X) ≥ 0 admitting a nontrivial surjective endomorphism. If KX

is not nef, then the extremal contraction ContR : X → X ′ associated to any
extremal ray R of NE(X) is a divisorial contraction which is (the inverse of)
the blowing up along an elliptic curve on X ′.

3.2. Construction of minimal reduction of an endomorphism
Let us recall a construction of the minimal reduction of a nontrivial surjec-

tive endomorphism f : X → X of a smooth projective 3-fold X with κ(X) ≥ 0.
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We apply the minimal model program to X. Assume that KX is not nef. Then
there exist only finitely many extremal rays of NE(X) (cf. [6, Proposition 4.6]).
Hence, by replacing f with a suitable power fk (k > 0), we may assume from
the beginning that f∗R = R for any extremal ray R ⊂ NE(X). Theorem 3.3
and Proposition 3.2 imply that the contraction morphism µ := ContR : X → X1

associated with any extremal ray R is the blowing up along an elliptic curve of
X1, where a nontrivial surjective endomorphism f1 : X1 → X1 with f1◦µ = µ◦f
is induced. If KX1 is not nef, then, by the same way as above, we replace f1
with a suitable power of f1 so that (f1)∗R1 = R1 for any extremal ray R1

of X1, and we take the contraction morphism ContR1 associated with an ex-
tremal ray R1. In this way, we have successive contractions of extremal rays
X → X1 → X2 → · · · with a strictly decreasing sequence ρ(X) > ρ(X1) > · · ·
of Picard numbers. Thus, after a finite number of steps, we obtain a smooth
minimal model Xn of X and a nontrivial surjective endomorphism fn of Xn.
To sum up, after replacing f by a suitable power fk, we have a sequence of
extremal contractions

X = X0
µ0−→ X1

µ1−→ · · · µn−1−−−→ Xn

and nontrivial surjective endomorphisms fi : Xi → Xi for 0 ≤ i ≤ n such that
(1) µ0 = µ, f0 = f , µi ◦ fi = fi+1 ◦ µi for 0 ≤ i ≤ n,
(2) µi−1 : Xi−1 → Xi is (the inverse of) the blowing up along an elliptic

curve Ci on Xi with f−1
i (Ci) = Ci for 1 ≤ i ≤ n,

(3) Xn is a smooth minimal model.

Definition 3.4. The final endomorphism fn : Xn → Xn is called a min-
imal reduction of f : X → X.

Lemma 3.5. Let X be a smooth non-minimal projective 3-fold with
κ(X) ≥ 0 admitting a nontrivial surjective endomorphism f : X → X. Then
Fix(fk) 	= ∅ for a suitable power fk.

Proof. Let µ = µ0 : X = X0 → X1 be the blowing up and f1 : X1 → X1

be the endomorphism above. Then f1|C1 : C1 → C1 is a nontrivial surjective
endomorphism of the elliptic curve C1. In particular, Fix(f1) ∩ C1 	= ∅. For a
point x ∈ Fix(f1)∩C1, f |µ−1(x) : µ−1(x) → µ−1(x) is a surjective endomorphism

of µ−1(x) � P1. Hence Fix(f) ∩ µ−1(x) 	= ∅.
The abundance theorem for 3-folds (cf. [12], [13], [9]) says that KXn

is
semi-ample. In particular, the Iitaka fibration ϕ : X → W is holomorphic for
the canonical model

W = Proj
⊕

m≥0
H0(X,OX(mKX)),

where ϕ = ϕn ◦ µn−1 ◦ · · · ◦ µ0 for the Iitaka fibration ϕn : Xn → W . There is
an automorphism h ∈ Aut(W ) with ϕ ◦ f = h ◦ ϕ, since

f∗ : H0(X,OX(mKX)) → H0(X,OX(mKX))
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is isomorphic for any m. The canonical model W is denoted by C when it is
one-dimensional, i.e., κ(X) = 1.

Lemma 3.6. Suppose that κ(X) = 1. Let Γ ⊂ X be a smooth curve
such that f−1Γ = Γ for the endomorphism f of X. Let µ : X̂ → X be the
blowing up along Γ. Then Γ is an elliptic curve contained in a fiber of the Iitaka
fibration of X and f induces an endomorphism f̂ of X̂ with µ ◦ f̂ = f ◦ µ.

Proof. If Γ dominates C, then we have deg(f−1Γ/C) = (deg f) deg(Γ/C)
by ϕ ◦ f = h ◦ϕ; this contradicts f−1(Γ) = Γ and deg f > 1. Moreover, Γ is an
elliptic curve, since f induces a nontrivial surjective endomorphism of Γ. Let
I be the defining ideal of Γ in X. Then f∗I is the defining ideal of f−1Γ = Γ.
Hence, we have a morphism f̂ : X̂ → X̂ with µ ◦ f̂ = f ◦ µ by the universality
of the blowing up.

In particular, the center Ci of the i-th blowing-up µi−1 : Xi−1 → Xi, which
appears in the sequence X → X1 → · · · → Xn connecting X and the minimal
reduction Xn, is contained in a fiber of the Iitaka fibration Xi → C.

3.3. The class of smooth projective 3-folds of our interest
In order to prove Main Theorem, it is enough to show the implication (A)

⇒ (B), by Theorem 2.26. To begin with, we shall show it for smooth projective
3-folds classified in our previous paper [6]. Let X be a smooth projective 3-fold
with κ(X) ≥ 0 admitting a nontrivial surjective endomorphism. In [6], the
following cases are treated:

(1) κ(X) = 0.
(2) κ(X) = 1 and the general fiber of the Iitaka fibration of X is a hyper-

elliptic surface.
(3) κ(X) = 2.

If X belongs to one of the cases, then, by [6, MAIN THEOREM (A)],
• X has an abelian 3-fold as a finite étale covering, or
• X has a structure of Seifert elliptic fibration over a surface.

Hence, X satisfies the condition (B) by Lemma 2.4.
Thus, in what follows, we consider smooth projective 3-folds X satisfying

the following three conditions:
(*1) There is a nontrivial surjective endomorphism f : X → X;
(*2) κ(X) = 1;
(*3) A general fiber of the Iitaka fibration ϕ : X → C is an abelian surface.
As is explained in Section 3.2, there is a birational morphism X → Xmin

to a smooth minimal model Xmin which is described as a succession of blowups
along elliptic curves contained in fibers of the Iitaka fibrations. Therefore,
the Iitaka fibration ϕ : X → C is holomorphic and is isomorphic to the Iitaka
fibration Xmin → C over C outside finitely many points of C.

Let Xt be the fiber ϕ−1(t) over a point t ∈ C. Let h ∈ Aut(C) be the
automorphism determined by ϕ ◦ f = h ◦ ϕ (cf. Proposition 3.1).
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Proposition 3.7. The automorphism h is of finite order.

Proof. If κ(C) = 1, then the automorphism group of C is finite. If ϕ is
smooth, then κ(X) = κ(C) = 1 by Lemma 2.1. Thus we may assume that ϕ
admits at least one singular fiber. Thus the discriminant locus ∆ = ∆ϕ is not
empty. If C is an elliptic curve, then h preserves the finite set ∆ 	= ∅, and
hence h is of finite order. If C is a smooth rational curve, then ∆ consists of
at least three points by Corollary 2.12; thus h is of finite order.

By Proposition 3.7, by taking a power of f , we may replace the condition
(*1) with the following stronger condition:

(*1′) There exists a nontrivial surjective endomorphism f : X → X over the
curve C, i.e., ϕ ◦ f = ϕ.
Thus it is enough to consider only the endomorphisms f defined over C. For
such an f , let ft : Xt → Xt denote the restriction of f to the fiber Xt = ϕ−1(t)
for t ∈ C.

Lemma 3.8. The image of the natural homomorphism π1(Xt) → π1(X)
of fundamental groups is not finite for a general fiber Xt.

Proof. Assume the contrary. Let Ut → Xt be the finite étale covering
associated with the kernel of π1(Xt) → π1(X). Since π1(Ut) → π1(X) is the
zero map, the fiber product Ut×X,fk X by any power fk : X → X for k ≥ 1 is a

disjoint union of copies of Ut. Since f−1(Xt) = Xt is connected, we have natural
inclusions π1(Ut) ⊂ ft∗π1(Xt) ⊂ π1(Xt). Iterating f , we have a sequence of
inclusions

π1(Ut) ⊂ ft
k
∗π1(Xt) ⊂ · · · ⊂ ft∗π1(Xt) ⊂ π1(Xt).

However, the mapping degree of the power fkt : Xt → Xt and the index of the
subgroup fkt ∗π1(Xt) ⊂ π1(Xt) coincide with k deg f > 1. Since the index of
the subgroup π1(Ut) in π1(Xt) is finite, we have a contradiction.

Corollary 3.9. Suppose that the Iitaka fibration ϕ : X → C is an im-
primitiveabelian fibration. Let H̃ be the variation of Hodge structureR1ϕ∗ZX |C�

defined on C� = C \∆ϕ. Then there is uniquely a variation of Hodge substruc-
ture H ⊂ H̃ of rank two such that the stalk Ht is contained in the kernel of
H1(Xt,Z) = π1(Xt) → π1(X) and f−1

t∗ Ht = Ht for any t ∈ C�.

Proof. Lemma 3.8 implies that the Hodge substructure Ht of H1(Xt,Z)
contained in the kernel of π1(Xt) → π1(X) is uniquely determined. In particu-
lar, f−1

t∗ Ht = Ht for the endomorphism f over C. Since the Hodge substructure
is preserved by the action of monodromy, it defines a variation of Hodge sub-
structure H ⊂ H̃ over C�.

4. The primitive case

In this section, we shall prove Main Theorem in the primitive case, i.e.,
the case where X is a smooth projective 3-fold admitting a nontrivial surjective
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endomorphism with κ(X) = 1 such that the Iitaka fibration X → C is a
primitive abelian fiber space. We fix a smooth minimal model Y = Xmin of
X with a minimal reduction g = fmin : Y → Y of powers of f . For the Iitaka
fibration ϕY : Y → C, we assume that ϕY ◦ g = ϕY (cf. Section 3.3).

4.1. The case of simple abelian fibration
Suppose that the Iitaka fibration ϕ : X → C is a simple abelian fibration.

Then (A) ⇒ (B) in Main Theorem in this case is derived from Lemma 2.4 and:

Theorem 4.1. Let X be a smooth projective 3-folds of κ(X) = 1 ad-
mitting a nontrivial surjective endomorphism. If the Iitaka fibration ϕ : X → C
is a simple abelian fibration, then X is minimal and ϕ is a Seifert fibration.

Proof. By Corollary 2.11 and Lemma 2.4, we infer that ϕY is a Seifert
fibration. In particular, for a finite ramified covering C̃ → C, the normalization
Ỹ of Y ×C C̃ is smooth over C̃ and is étale over Y . Here, Ỹ → C̃ is a smooth
abelian fibration whose very general fiber is a simple abelian surface. Since
ϕY ◦g = ϕY , there exists a nontrivial surjective endomorphism g̃ : Ỹ → Ỹ with
g ◦ τ = τ ◦ g̃ for the étale covering τ : Ỹ → Y . Therefore, any fiber of Ỹ → C̃

does not contain any elliptic curve Ẽ with g̃−1(Ẽ) = Ẽ by Theorem 2.24.
The birational morphism Ψ: X = X0 → X1 → · · · → Xn = Y explained in
Section 3.2 is a succession of blowups along elliptic curves contained in fibers
over C. However, every fiber of Y → C does not contain any elliptic curve
E with g−1E = E. In fact, the pullback of the elliptic curve by the étale
morphism τ is a union of elliptic curves which are preserved by a power of g̃.
Therefore, X � Y .

4.2. The case of non-simple abelian fibration
Suppose next that the Iitaka fibration ϕ : X → C is a non-simple abelian

fibration.

Proposition 4.2. Suppose that ϕY is a smooth non-simple abelian fiber
space. If X is not minimal, then ϕ = β ◦ α for elliptic fibrations α : X → S
and β : S → C satisfying the following properties:

(1) α : X → S is an elliptic bundle over a smooth projective surface with
κ(S) = 1;

(2) β : S → C is an elliptic fibration whose relative minimal model is an
elliptic bundle over C;

(3) α◦fk = v ◦α for an automorphism v of S and for a positive integer k.

Proof. We replace f freely with a power fk of f . Let µi : Xi → Xi+1 for
0 ≤ i ≤ n−1 and fi : Xi → Xi for 0 ≤ i ≤ n be the blowups and endomorphisms
explained in Section 3.2 for the minimal reduction of f . Note that the center
Ci of µi−1 is an elliptic curve contained in a fiber of Xi → C by Lemma 3.6.
Applying Theorem 2.23 to Xn = Y → C, fn = g, and to the elliptic curve
Cn ⊂ Xn, we have a factorization Xn → Sn → C such that αn : Xn → Sn
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and βn : Sn → C are smooth elliptic fibrations, and that Cn is a fiber of αn.
Moreover αn ◦fn = vn ◦αn for an automorphism vn ∈ Aut(Sn) fixing the point
bn = αn(Cn).

For the blowing up Sn−1 → Sn at bn, the induced rational map αn−1 : Xn−1

→ Sn−1 is also a smooth elliptic fibration and the induced birational map
vn−1 : Sn−1 → Sn−1 by vn is also holomorphic. Then αn−1◦fn−1 = vn−1◦αn−1.
If Cn−1 is not contained in a fiber of αn−1, then we have a contradiction con-
cerning with the degree of Cn−1 → αn−1(Cn−1) as in the proof of Lemma 3.6.
Thus Cn−1 is a fiber of αn−1 and the point bn−1 = αn−1(Cn−1) is fixed by
vn−1. By continuing the same argument, we have a smooth elliptic fibration
α : X = X0 → S, a birational morphism S → Sn, and an automorphism
v ∈ Aut(S) such that α ◦ f = v ◦ α.

In the primitive non-simple case, Main Theorem is derived from:

Theorem 4.3. Let X be a smooth projective 3-fold of κ(X) = 1 ad-
mitting a nontrivial surjective endomorphism. Suppose that the Iitaka fibration
ϕ : X → C is a primitive non-simple abelian fiber space.

(1) If X is minimal, then ϕ : X → C is a Seifert abelian fibration. Further-
more, there exist a non-simple abelian surface A and a finite ramified Galois
covering C̃ → C such that the normalization of X ×C C̃ is étale over X and is
isomorphic to A× C̃ over C̃.

(2) If X is not minimal, then there exist a smooth projective surface S of
κ(S) = 1, an elliptic curve E, and a finite étale Galois covering τ : S×E → X
such that the action of the Galois group of τ on S × E is compatible with the
projection S × E → S.

Proof. (1) follows from Lemma 2.4, Corollary 2.11 and Lemma 2.21.
(2): Let Ψ: X → Y be the birational morphism giving the minimal re-

duction g : Y → Y of a nontrivial surjective endomorphism f of X. Here,
ϕY ◦ g = ϕY . By (1), there is a finite Galois covering C̃ → C such that the
normalization Ỹ of Y ×C C̃ is smooth over C̃ and is étale over Y . Note that
the Galois group G = Gal(Ỹ /Y ) is isomorphic to Gal(C̃/C). Thus, for the
abelian fibration ϕ̃ : Ỹ → C̃, we have σ ◦ ϕ̃ = ϕ̃ ◦ σ for σ ∈ G. Let g̃ be the
induced endomorphism of Ỹ from g ×C id eC . Then σ ◦ g̃ = g̃ ◦ σ for any σ ∈ G.
Let X̃ → X be the pullback of the étale Galois covering Ỹ → Y by Ψ: X → Y .
Then g̃ induces a nontrivial surjective endomorphism f̃ of X̃, and g̃ is regarded
as the minimal reduction of f̃ . By Proposition 4.2, there exist a smooth elliptic
fibration α : X̃ → S and an automorphism v ∈ Aut(S) such that α ◦ f̃ = v ◦ α.
Since σ ◦ f̃ = f̃ ◦ σ for σ ∈ G, the condition (B) of Main Theorem is satisfied
by Proposition 2.29.

5. The imprimitive case

In this section, we treat the imprimitive case. Before proving Main Theo-
rem, we prepare some results on non-Seifert elliptic surfaces in Section 5.1.
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5.1. Remarks on non-Seifert elliptic surfaces
Let S → C be a minimal elliptic fibration over a smooth projective curve.

Suppose that S → C is not a Seifert elliptic fibration. Then any surjective
étale endomorphism of S is an automorphism (cf. [6]). In fact, the existence
of a nontrivial surjective étale endomorphism implies that χtop(S) = 0, but
χtop(S) 	= 0 for any non-Seifert elliptic surface S. We also have the following
results on the automorphism group of the non-Seifert elliptic surface.

Theorem 5.1. Let f : S → C be a non-Seifert projective elliptic surface
with κ(S) ≥ 0. Then Aut0(S) is trivial.

For the proof, we recall the following:

Proposition 5.2 (cf. [8]). Let X be a normal compact complex space.
Suppose that there exists a compact complex Lie subgroup G of Aut0X. Then,
for every x ∈ X, the orbit map ϕx : G → X defined by σ 
→ σ · x for σ ∈ G is
a finite morphism.

Proof. Assume the contrary. Then there exists a point x0 ∈ X such
that the isotropy subgroup T := Gx0 of G at x0 is positive-dimensional. Let
ψ : T × X → X be the evaluation map defined by (t, x) 
→ t · x for t ∈ T ,
x ∈ X. Then ψ(p−1(x0)) = {x0} for the second projection p : T × X → X.
Since T is compact, the rigidity lemma implies that ψ(p−1(x)) is a point for
any x ∈ X. Hence ψ factors through X, and T is zero-dimensional. This is a
contradiction.

Corollary 5.3. dim Aut0(X) ≤ dimX for any normal compact com-
plex space X in the class C with κ(X) ≥ 0. If the equality holds, then X has a
complex torus as its finite unramified covering.

Proof. By [3], Aut0(X) is a complex torus and hence is compact.

Proof of Theorem 5.1. Assume the contrary. By Corollary 5.3, E :=
Aut0(S) is at most 2-dimensional. Moreover, if dimE = 2, then S is covered
by a 2-dimensional complex torus and contains no rational curves. This is a
contradiction. Hence E is an elliptic curve. By [3, (5.1)], there exists a natural
complex space structure on the orbit space V := S/E such that the natural
projection p : S → V gives a Seifert elliptic fibration. Thus χtop(S) = 0. This
is a contradiction.

Lemma 5.4. Let X1 and X2 be smooth projective varieties and let f be
a surjective endomorphism of X1 ×X2. Assume that the following conditions
are satisfied:

(1) p1 ◦ f = f1 ◦ p1 for the first projection p1 and for an endomorphism f1
of X1.

(2) Any surjective endomorphism of X2 is an automorphism.
(3) Aut0(X2) is trivial.
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Then f = f1 × f2 for an automorphism f2 of X2.

Proof. By (1), f is written as

X1 ×X2  (x, y) 
→ (f1(x),Φx(y)),

where Φx is a surjective endomorphism of X2. Then Φx is an automorphism by
(2). The map x 
→ Φx gives rise to a holomorphic map X1 → Aut(X2), which
is constant by (3). Thus f = f1 × f2 for an automorphism f2 ∈ Aut(X2).

Corollary 5.5. Let S → C be a non-Seifert elliptic surface with κ(S) ≥
0. Let f be a surjective endomorphism of Z×S for a smooth projective variety
Z such that p1 ◦f = f1 ◦p1 for the first projection p1 and for an endomorphism
f1 of Z. Then f = f1 × f2 for an automorphism f2 ∈ Aut(S).

5.2. Structure of an H-factorization
The following result is not related to the existence of nontrivial surjective

endomorphisms:

Theorem 5.6. Let X be a smooth minimal projective 3-fold of κ(X) =
1 whose Iitaka fibration ϕ : X → C is an imprimitive abelian fibration. Let C�

be the complement of the discriminant locus ∆ϕ ⊂ C of ϕ and let H be the
variation of Hodge substructure of R1ϕ∗ZX |C� defined in Corollary 3.9. Then
there exist equi-dimensional elliptic fibrations π : Y → T and q : T → C for
a smooth minimal projective 3-fold Y and for a normal projective surface T
satisfying the following conditions:

(1) KY ∼Q π∗(KT + Λ) for a Q-divisor Λ with (T,Λ) log-terminal.
(2) π is a non-Seifert elliptic fibration.
(3) ϕ : X → C and q ◦ π : Y → C are birationally equivalent to each other

over C. Moreover, these are isomorphic to each other over C�.
(4) Y → T → C gives an H-factorization of ϕ (cf. Proposition 2.20).

Here, the surface T above is uniquely determined up to isomorphism.

Proof. Let us take an H-factorization X ···→S → C of ϕ. Note that
X ···→S and S → C are smooth elliptic fibrations over the open subset C�.
Thus X̂ → S is an elliptic fibration for a certain blowing up X̂ → X. Let us
consider the equi-dimensional model of a relative minimal model of X̂ → S
(cf. [19, Appendix A, Proposition A.6]). Then we have a birational morphism
S′ → S from a normal variety and a birational map X ′ ···→ X̂ such that

• X ′ is Q-factorial with only terminal singularities,
• the induced map h′ : X ′ → S′ is an equi-dimensional elliptic fibration,
• KX′ ∼Q h′∗(KS′ +D′) for a Q-divisor with (S′, D′) log-terminal.

By the same argument as in Step 2 of the proof of [19, Theorem B2], we have
a birational morphism S′ → T into a normal surface and a birational map
X ′ ···→Y such that
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• Y is Q-factorial with only terminal singularities,
• the induced map π : Y → T is an equi-dimensional elliptic fibration,
• KY ∼Q π∗(KT + Λ) for a Q-divisor Λ with (T,Λ) log-terminal,
• KY is nef.

Since X and Y are connected by a finite sequence of flops, Y is also smooth.
The Iitaka fibration of Y is the composite q◦π for a morphism q : T → C. Since
X ×C C� � Y ×C C� and S ×C C� � T ×C C�, the required conditions except
for (2) are satisfied for Y → T and T → C. By a property of H-factorization,
π1(Yt) → π1(Y ) � π1(X) is zero for the fiber Yt over any point t ∈ T ×C C�.
In particular, π : Y → T is non-Seifert, and the condition (2) is also satisfied.
It remains to show the uniqueness of T . Let π′ : Y ′ → T ′ and q′ : T ′ → C
be equi-dimensional elliptic fibrations satisfying the same conditions. By the
construction of H-factorization, there is a birational map T ···→T ′ over C,
which commutes with the birational map Y ···→X ···→Y ′. Since the birational
map Y ···→Y ′ is an isomorphism in codimension one, and since π and π′ are
equi-dimensional, T ···→T ′ is also an isomorphism in codimension one. Thus
T � T ′ by the Zariski main theorem (cf. [19, Appendix A. Remark A.7]).

In the rest of Section 5.2, we fix a smooth minimal projective 3-fold X
admitting a nontrivial surjective endomorphism f such that the Iitaka fibration
ϕ : X → C ofX is an imprimitive abelian fibration over a curve C. By replacing
f with its power, we assume that ϕ ◦ f = ϕ. Let π : Y → T and q : T → C be
the elliptic fibrations satisfying the conditions of Theorem 5.6 for X.

Proposition 5.7. There is a nontrivial surjective endomorphism β of
T over C such that β is étale in codimension one and π ◦ f = β ◦ π. Moreover,
there is a finite Galois covering C̃ → C satisfying the following properties:

(1) The normalization T̃ of T ×C C̃ is isomorphic over C̃ to the product
E × C̃ for an elliptic curve E, and T̃ → T is étale in codimension one.

(2) Let Ỹ be the normalization of Y ×C C̃. Then Ỹ → Y is étale. Further-
more, the induced elliptic fibration π̃ : Ỹ → T̃ is relatively minimal, the discrim-
inant locus ∆π̃ is a non-empty subset of E × (C̃ \ C̃�), where C̃� = C̃ ×C C�,
and the singular fiber type of π̃ over any component of ∆π̃ is not of type mI0.

(3) The lift β̃ of β to T̃ is written as φ× id eC as an endomorphism of E×C̃
for an endomorphism φ of E.

Proof. Step 1: Existence of β : T → T .
Let φ : X ···→Y be the birational map over C. Then an isomorphism

φ∗ : π1(X) � π1(Y ) is induced. Let f (1) : Y (1) → Y be the finite étale covering
corresponding the image of φ∗ ◦ f∗ : π1(X) → π1(X) � π1(Y ). Then φ ◦ f =
f (1) ◦ φ(1) for a birational map φ(1) : X ···→Y (1). Let us consider the Stein
factorization

Y (1) π(1)−−→ T (1) β(1)

−−→ T
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of π◦f (1). Then π(1) is an elliptic fibration birational to π by φ(1)◦φ−1 : Y ···→
Y (1), since the variation of Hodge substructure H is preserved by the induced
homomorphism f∗ : H̃ → H̃. Let ψ(1) : T ···→T (1) be the birational map. Since
π and π(1) are equi-dimensional and since φ(1)◦φ−1 is isomorphic in codimension
one, ψ(1) is an isomorphism by the Zariski main theorem. Therefore, we have
the following commutative diagram of rational maps:

X
φ−−−−→ Y

π−−−−→ T
q−−−−→ C∥∥∥

�
�ψ(1)

∥∥∥
X

φ(1)

−−−−→ Y (1) π(1)

−−−−→ T (1) q(1)−−−−→ C

f

�
�f(1)

�β(1)

∥∥∥
X

φ−−−−→ Y
π−−−−→ T

q−−−−→ C.

Thus we have a surjective endomorphism β = β(1) ◦ψ(1) : T → T . Assume that
β is an isomorphism. Let γ be a rational curve contained in the fiber of π over a
general point of ∆π. Such a rational curve γ exists since π is non-Seifert. Then
(f (1))−1γ is a reducible curve consisting of rational components by deg f > 1.
Since ∆π has finitely many components, we have a contradiction. Hence, β is
not an isomorphism.

Step 2: Any fiber of q : T → C is irreducible and β is étale in codimension
one.

Let F be a fiber of q. By replacing β with a power of β, we may assume
that β∗γ = γ for any irreducible component γ of F . Hence (deg β − 1)γ2 = 0.
Therefore, γ2 = 0 and F is irreducible. As a consequence, we infer that the
canonical divisor KT is Q-linearly equivalent to q∗B for a Q-divisor B on T .
On the other hand, KT ∼Q β∗KT +R for the ramification divisor R of β. Then
R = 0 since β∗q∗B = q∗B. Therefore, β is étale in codimension one.

Step 3: T is the quotient surface of a smooth elliptic surface by a finite
group along any singular fiber.

For the fiber F = q−1(o) over a point o ∈ C, let m be the multiplicity, i.e.,
F = mFred. Let U ⊂ C be an analytic open neighborhood biholomorphic to a
unit disc ∆ = {z ∈ C; |z| < 1}, where o corresponds to the origin z = 0. Let
U ′ � ∆ → U be the cyclic covering given by z′ 
→ z = z′m and let V ′ be the
normalization of q−1(U)×U U ′. Then V ′ → q−1(U) is étale in codimension one
and the fiber F ′ of V ′ → U ′ over the origin is reduced. In particular, V ′ has only
quotient singularities, since so does T . A nontrivial surjective endomorphism
β′ of V ′ over U ′ is induced from β. By the same argument as in Step 2, we
infer that F ′ is irreducible and reduced.

Suppose that F ′ is singular. Then F ′ is a rational curve of arithmetic genus
one. Since V ′ is nonsingular outside SingF ′, β′−1(F ′\SingF ′) → F ′\SingF ′ is
étale. Hence, F ′ has no cusp but a node P = SingF ′. Here, β′−1(P ) = P , since
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π1(F ′ \{P}) � Z. Let {Vα} be a fundamental system of open neighborhoods of
P in V ′. Then {β′−1(Vα)} is also a fundamental system of open neighborhoods
of β′−1(P ) = P . The natural injection

β′
∗ : π1(β′−1(Vα) \ {P}) ↪→ π1(Vα \ {P})

is not an isomorphism since deg β′ = deg β > 1. However, the both sides of
the injection β′

∗ is isomorphic to the local fundamental group at P for some α.
Since (V , P ) is a quotient singularity, the local fundamental group is finite, and
hence, β′

∗ is isomorphic. This is a contradiction.
Therefore, F ′ is nonsingular. Thus V ′ is also nonsingular and V ′ → U ′ is a

smooth elliptic surface; thus T is the quotient of a smooth elliptic surface along
F .

Step 4: There is a finite covering C̃ → C satisfying the property (1).
For a point o ∈ C\C�, the local monodromy of R1q∗ZT |C� around o is finite

by Step 3. In particular, the J-function associated with the elliptic surface q is
constant and the image of the monodromy representation ρ : π1(C�) → SL(2,Z)
is finite. Let τ�1 : C�1 → C� be the finite étale Galois covering associated with the
kernel of ρ, and let the finite Galois covering τ : C1 → C of smooth projective
curves be the natural extension of τ�. For the normalization T1 of T ×C C1,
the projection q1 : T1 → C1 is an elliptic surface with trivial local monodromies
and with constant period. Thus the relative minimal model of q1 has only
singular fibers of type mI0. By the local description of singular fibers of q in
Step 3, we infer that T1 is nonsingular and q1 is the relative minimal model. By
Corollary 2.6, q1 is a Seifert elliptic surface. Thus we have an expected finite
covering C̃ → C.

Step 5: The rest of the proof.
The property (2) for C̃ → C in Step 4 is derived from Theorem 5.6, (2), and

Corollary 2.6. If we do not consider the Galois property, then, by Lemma 2.25,
we can find such a finite covering C̃ → C satisfying also the property (3) by
taking a further finite étale covering. Even in case C̃ → C is not Galois, the
Galois closure satisfies all the required properties (1)–(3).

Corollary 5.8. X � Y .

Proof. The elliptic fibration π̃ : Ỹ → T̃ is a unique relative minimal model
by [19, §5.3], since the discriminant locus of π̃ is nonsingular. In particular,
there is no irreducible curve in Ỹ giving a flop. Let X̃ → X be the étale
covering corresponding to the subgroup π1(Ỹ ) ⊂ π1(Y ) � π1(X). Then X̃ and
Ỹ are nonsingular relative minimal model over C̃, which are connected by a
sequence of flops. Thus X̃ � Ỹ and X � Y .

Lemma 5.9. In the situation of Proposition 5.7, let G be the Galois
group of the covering C̃ → C. Then the induced action of G on T̃ � E × C̃ is
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expressed as a diagonal action, i.e., σ ∈ G acts on E × C̃ as

(x, y) 
→ (σ · x, σ · y)
for a suitable action of G on E.

Proof. We fix an abelian group structure of E. Then σ ∈ G acts as

(x, y) 
→ (
aσ(x+ fσ(y)), σ · y)

for a root aσ of unity and a holomorphic map fσ : C̃ → E, since the action of
G on E × C̃ is compatible with the second projection. Here, σ 
→ aσ gives rise
to a homomorphism G→ C�. By Proposition 5.7, (3), the action of any σ ∈ G
commutes with φ× id eC . It implies that

φ(fσ(y)) = fσ(y).

Hence, fσ is a constant map for any σ. Thus G acts diagonally on E × C̃.

Theorem 5.10. Let π̃ : X̃ � Ỹ → T̃ be the elliptic fibration in Proposi-
tion 5.7. Then the composite of π̃ and the first projection T̃ � E× C̃ → E is a
holomorphic fiber bundle. Moreover, there exist a non-Seifert minimal elliptic
fibration S → C̃ and a finite étale covering ν : E′ → E satisfying the following
conditions:

(1) The fiber product X̃ ′ = E′ ×E X̃ is isomorphic to E′ × S over E′.
(2) The endomorphism φ of E lifts to an endomorphism φ′ of E′ with

ν ◦ φ′ = φ ◦ ν.
(3) The composite X̃ ′ → X̃ → X is a Galois covering.

(4) The endomorphism f lifts to an endomorphism of X̃ ′ � E′ × S which
is written as φ′ × v for an automorphism v of S.

(5) The Galois group Gal(X̃ ′/X) acts on S and the projection X̃ ′ → S is
equivariant.
In particular, X satisfies the condition (B) of Main Theorem.

Proof. In Step 2 below, we shall prove (1)–(4), while in Step 1, we consider
a special case where C̃ → C is isomorphic. The remaining (5) is proved in
Step 3.

Step 1. The case where the identity mapping C̃ = C → C satisfies all the
properties of Proposition 5.7:

The variation of Hodge structure H(π) = R1π∗ZY |T� defined over T � =
q−1(C�) � E × C� is isomorphic to the pullback q∗H. Here, the local system
H is not trivial on C� by Proposition 5.7, (2). Thus, H0(C�, H) = 0 by [20,
Corollary 4.2.5]. The subgroups µm := m−1Z/Z ⊂ Q/Z form an inductive
system, and we have

lim−→m→∞ H0(C�, H ⊗ µm) � H1(C�, H)tor,
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where the right hand side is a finite abelian group. We have an isomorphism

H1(T �, H(π) ⊗ µm) � (
H1(C�, H ⊗ µm) ⊗ H0(E,Z)

)
⊕ (

H0(C�, H ⊗ µm) ⊗ H1(E,Z)
)
.

Let E′ be a copy of E and let ν : E′ → E be the multiplication map by an
integer N which is divisible by the order of H1(C�, H)tor. Then the natural
homomorphism

id⊗ν∗ : H1(C�, H)tor ⊗ H1(E,Z) → H1(C�, H)tor ⊗ H1(E′,Z)

is zero. Therefore, by [20, Theorem 6.2.9] and by [20, Theorem 6.3.8], there is
a minimal elliptic surface S over C such that E′ ×E X is birational to E′ × S
over E′ × C. Here, S → C is not Seifert since H is not trivial. There is
an isomorphism E′ ×E X � E′ × S since both are relatively minimal over
E′ × C. Thus the condition (1) is satisfied. The condition (2) is satisfied
for the copy φ′ of φ. In fact, φ is an endomorphism preserving the group
scheme structure of E, hence φ commutes with the multiplication maps. The
condition (3) is trivial now, and Gal(X̃ ′/X) � Gal(E′/E) � (Z/NZ)⊕2. A
nontrivial surjective endomorphism of E′ ×E X is induced from φ′ × f . Thus,
the condition (4) follows from Corollary 5.5.

Step 2. General case:
Applying Step 1 to the situation X̃ → T̃ → C̃, we can prove all the

properties except for (3) and (5). We note the following exact sequence for the
multiplication map ν : E′ = E → E by N :

1 → Gal(E′/E) → Aut(E′) → Aut(E) → 1.

Here, Aut(E) � Aut(E, 0) � E for the finite group Aut(E, 0) preserving the
zero element 0 ∈ E, and Aut(E′) → Aut(E) is expressed as

Aut(E, 0) � E  (a, x) 
→ (a,Nx).

The Galois group G of C̃ → C acts on E by Lemma 5.9, and hence, the fiber
bundle X̃ → E is G-equivariant. For the induced homomorphism G→ Aut(E),
let G′ → Aut(E′) be the pullback by Aut(E′) → Aut(E). Hence, we have a
commutative diagram

1 −−−−→ Gal(E′/E) −−−−→ G′ −−−−→ G −−−−→ 1∥∥∥
�

�
1 −−−−→ Gal(E′/E) −−−−→ Aut(E′) −−−−→ Aut(E) −−−−→ 1

of exact sequences. Then G′ acts on E′ × X̃ and also on X̃ ′ = E′ ×E X̃.
Moreover, the quotient space of X̃ ′ by G′ is just X; hence, X̃ ′ → X is Galois.

Step 3. Proof of (5):
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The first projection E′ × S → E′ is equivariant with respect to the action
of G′ = Gal(X̃ ′/X) on E′ × S and on E′. Thus G′ acts diagonally on E′ × S
by Corollary 5.5. Thus we are done.

5.3. The proof of Main Theorem

Lemma 5.11. Let E be an elliptic curve and S a smooth projective
surface. Let φ be a nontrivial surjective endomorphism of E and v an auto-
morphism of S. If C ⊂ E × S is an irreducible curve with f−1C = C for the
endomorphism f = φ × v, then C is an elliptic curve written as C = E × {s}
for a point s ∈ S with v(s) = s.

Proof. For the projection p : E × S → S, we have p(C) = p(f(C)) =
v(p(C)). Thus it suffices to show that p(C) is a point. Assume the contrary.
Then, p(C) is a curve and

deg(C/p(C)) = deg(C/f(C)) deg(f(C)/p(C)) = deg(C/f(C)) deg(C/p(C)).

Since deg(C/f(C)) = deg f > 1, we have a contradiction.

The proof of Main Theorem is completed by showing:

Theorem 5.12. Let X be a smooth projective 3-fold with κ(X) = 1
admitting a nontrivial surjective endomorphism f : X → X. Suppose that the
Iitaka fibration X → C is an imprimitive abelian fiber space over a curve. Then
a suitable finite étale Galois covering X̃ of X is isomorphic to the product E×S
of an elliptic curve E and a smooth projective surface S such that

(1) a power fk lifts to the endomorphism φ × v of E × S for a nontrivial
surjective endomorphism φ of E and an automorphism v of S,

(2) the second projection X̃ → S is equivariant with respect to the action
of the Galois group Gal(X̃/X) on X̃.
In particular, X satisfies the condition (B) of Main Theorem.

Proof. By replacing f with a power fk, we may assume that f is an
endomorphism over C. Let fn : Xn → Xn be the minimal reduction of f : X →
X (cf. Section 3.2). By Theorem 5.10, there exist a finite étale Galois covering
X̃n → Xn, a lift f̃n of fn as an endomorphism of X̃n, an elliptic curve E, and
a minimal projective surface Sn such that

• X̃n � E × Sn,
• f̃n � φ × vn for a nontrivial surjective endomorphism φ of E and an

automorphism vn of Sn,
• the second projection X̃n → Sn is G-equivariant for the Galois group

G = Gal(X̃n/Xn).
For the sequence X = X0 → X1 → · · · → Xn of blowups in Section 3.2, we
set X̃i := Xi ×Xn

X̃n for 0 ≤ i ≤ n. Then X̃0 → X is étale. By Lemma 5.11,
the center of the blowing up X̃n−1 → X̃n is E × Zn for a finite set Zn ⊂ Sn
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fixed by vn. Thus X̃n−1 � E × Sn−1 for the blowing up Sn−1 → Sn along Zn,
and the endomorphism fn−1 of Xn−1 lifts to an endomorphism of X̃n−1 which
is written as φ × vn−1 for an automorphism vn−1 of Sn−1. By continuing the
same argument above, we have a smooth projective surface S birational to Sn
and an automorphism v of S such that X̃ = X̃0 is isomorphic to E × S, and f
lifts to an endomorphism of X̃ written as φ× v. The G-equivariance of X̃ → S
follows from Corollary 5.5.
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