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Characteristic cycles of standard modules for
the rational Cherednik algebra of type Z/IZ
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Abstract

We study the representation theory of the rational Cherednik alge-
bra H. = H.(Z;) for the cyclic group Z; = Z/IZ and its connection with
the geometry of the quiver variety 9t () of type Al(i)l.

We consider a functor between the categories of H,-modules with
different parameters, called the shift functor, and give the condition when
it is an equivalence of categories.

We also consider a functor from the category of H,-modules with
good filtration to the category of coherent sheaves on My (d). We prove
that the image of the regular representation of H, by this functor is
the tautological bundle on 94(d). As a corollary, we determine the
characteristic cycles of the standard modules. It gives an affirmative
answer to a conjecture given in [Go] in the case of Z;.

1. Introduction

1.1. Background

The rational Cherednik algebra for the wreath product Z;1S,, of the cyclic
group Z; = Z/1Z and the symmetric group &,, is defined by [EG]. Let D(Cy.,)
be the algebra of algebraic differential operators on Cy.,, = {(z1,...,2n) | z; #
0,2t # xé} The rational Cherednik algebra is a subalgebra of the smash prod-
uct D(C7. )#(Zi 1 &,) which is generated by the multiplication of functions,
Z; 1 S, and the Dunkl operators. The category of modules over the rational
Cherednik algebra contains an interesting subcategory called the category O.
The category O is the subcategory of modules on which the Dunkl operators
act locally nilpotently. The category O is a highest weight category in the sense
of [CPS].

In this paper, we consider the case of n = 1. Our work is motivated by
the papers [GS1] and [GS2], in which the case [ = 1 was considered. We first
review this case.

The rational Cherednik algebra H.(S,,) is the algebra with a parameter

¢ € R. We denote the category O of H.(G,,) by O.(6,). By results of [Op],
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[He] and [BEG], we have a functor called a shift functor (or a Heckman-Opdam
shift functor),

~

(1.1) S : Ho(&,)-Mod — H,41(6,)-Mod.

If the shift functor §c is an equivalence of categories, we can construct a functor
from the category of filtered modules H.(&,,)-filt to the category of coherent
sheaves Coh(Hilb"(C?)) on the Hilbert scheme of n points on C2,

(1.2) d, : H,(S,)-filt — Coh(Hilb™(C?)).
We recall that Hilb™(C?) is a symplectic resolution of the singularity C?"*/&,,
7 : Hilb"(C?) — C*"/6,,.

These functors S, and ®, are generalized to the other cases by [Mu], [Bo] and
[Val.

In [GS1] and [GS2], Gordon and Stafford also considered the images of
certain modules by ®,. Consider the rational Cherednik algebra H.(6&,,) itself
as a left H,(&,)-module. Then the corresponding coherent sheaf ®.(H.(S,))
coincides with the Procesi bundle on Hilb"(C?). The Procesi bundle, which
was defined in [Hal], is a vector bundle whose fiber is isomorphic to the regular
representation of &,. As a corollary of the above result, they described the
images of the standard modules by the functor ®. and determined their char-
acteristic cycles. The characteristic cycle Ch(M) is an invariant of a module
M in O.(6&,,), which is the sum of irreducible components of Supp&;c(M) with
multiplicities. The standard modules of H.(&,,) are indexed by partitions A of
n. Denote them by A.(\). Let (z1,...,%n,91,...,Yn) be a coordinate system
of C?". The irreducible components of 771({y; = --- = y, = 0}) are indexed
by partitions g of n. Denote them by Z,. Let [ Z, ] be the homology class
given by Z,. One of the main results in [GS2] is

(1.3) Ch(Ac(N) =D K[ 2]

for each partition A of n. Here K, € Z>¢ is the Kostka number.

In the general case, the rational Cherednik algebra Hp(Z; ! &,) has an
I-dimensional parameter h € R!. The [-multipartitions of n parametrize the
standard modules of the category O, (Z; 1 &,,). We have the partial ordering
D> ,ep,n ON the set of [-multipartitions of n, which arises from the structure of
the highest weight category Op(Z;1&,,). This ordering >, 5, depends on h.

Let 9y (nd) be the quiver variety of type Al(i)l with the stability parameter
h € Q' and the dimension vector né = (n,...,n). Similarly to the case of &,,
the [-multipartitions of n parametrize the components of a certain subvariety of
9, (nd). The action of T = (C*)? on My, (nd) induces a partial ordering > eom 1
on the set of [-multipartitions of n. The ordering > gcom,n also depends on h.
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Consider an analogue of the functor (1.2) in the general case. It has been
conjectured that the representation theory of Hj(Z;! &,,) is deeply connected
with the geometry of 9, (nd) ([Go], [Va]). The functor

&), : Hy(Z1 &,,)-flt — Coh (M), (nd))

is defined for generic h in [Va]. In [Go], Gordon compared the ordering £,
and the ordering >geom,n, and proved that > geom,n refines >,.cp 5. He conjec-
tured an analogue of the identity (1.3) in the general case (Question 10.2 in

[Go)).

1.2. Shift functors and their equivalences

In this paper, we consider the rational Cherednik algebra H, = H,(Z;) in
the case of n = 1. Here £ is an ({—1)-dimensional parameter x = (K;)i=1,...1—1 €
R!=1. Let 7 be the element of Z; which acts on C* by the multiplication of
¢ = exp(2mv/—1/1). The algebra H, is the subalgebra of D(C*)#Z; generated
by the coordinate function z, v € Z; and the Dunkl operator y = (d/dz) +

(I/x) Zi;é ki€; where &; = (1/1) Zé;%) (Y~ € CZ;. As a vector space, we have
H, = C[z] ®c CZ; ®c Cly].

The algebra H,, is isomorphic to another algebra called the deformed prepro-
jective algebra defined by Crawley-Boevey and Holland in [CBH] and [Ho|. Let
Q = (I, F) be the Dynkin quiver of type Al(i)l such that I = {Ip,..., I;_1}
is the set of vertices and E = {F; : I[,_1 — I;, i = 0,...,1l — 1} is the set of
arrows. We regard indices for vertices and arrows as integers modulo [. For
A= (Ni)i=o0,..1-1 € R! (or Z!), we regard the sum \; + A\iyq + - + Aj_1 as
cyclic, i.e.,

AiFAipr+F A=A+ Ao Ao A+ A

if j < i. Let Rep(Q,d) ~ C! be the space of representations with the dimension
vector 6 = (1,...,1). Set GL(d) = Hi;(l) C* and set gl(d) = @i;é Cel =
Lie(GL(9)). Let to, ..., ti—1 € C[Rep(Q, d)] be the coordinate functions, and

let Qg ..., 0,1 € D(Rep(Q,d)) be the corresponding differential operators.
Let R} be the set of A = (A\;)i=o,...1—1 € R’ such that A\g +--- 4+ \_1 = 1. For
a parameter A = (\;)i=o,... -1 € R!, an algebra 7, is

-1
T, = Mi(D(Rep(@.5)%H® / 3~ M(D(Rep(@. 8)) %4 (r(e?) ~ 1),
i=0
where T(e(i)) = Ez‘i RI+1I® (ti+1<9¢+1 - tzaz) € Ml(D(Rep(Q, 5)))GL(5) By
[Ho, Cor 4.6], this algebra is isomorphic to the deformed preprojective algebra
IT, defined by [CBH]. Moreover, the algebra 7, is isomorphic to H, for A\; =
kiy1 — ki + (1/1). Set e; = E;;. Denote the spherical subalgebra of H, by
U, = égHéy. The algebra U, is isomorphic to the following subalgebra of 7
-1

Ay = eaTieo = D(Rep(Q.6))%H®) /3~ D(Rep(Q. 8)) D (u(e?) — Xy)

=0
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where L(e(i)) = tip10;41 — t;0; and \; = \; — 0;0. A Dynkin root is a root
B = (Bi)i=o...1-1 € Z! such that By = 0. Then, the (Ay,7x)-bimodule ey7Ty
yields a Morita equivalence between 7y and Ay if A = (\;)i=0,...;—1 satisfies

(A, B) = Y"i—g Aifl; # 0 for all Dynkin roots 8 = (83;)i=o....1—1 € ZL.
Fori=0,...,1—1, the standard module A, (7) is the following 7,-module:

AN(E) = (Th/ThA")e;
where A* = Zé;é E;_1,;® 0; € T\. We have the isomorphism of vector spaces
Ax(i) = C[A]L;
where A = Zé;é E;;—1®t; € Ty and 1; is the image of e;.

Let ZL be the set of § = (0:)i=o0,..1-1 € 7! such that 6y + --- + 6;_1 = 0.
For 6§ € Z, let xy be the character of GL(6)

-1

xo(g) = [ J(9:)"

i=0
for ¢ = (gi)i=0,...1—1 € GL(6). We define the shift functor Sg for A =
(Ni)izo,....i—1 € R} and 0 = (0;)i—0,... 11 € Z,
S : Ay-mod — Ay -mod
N — B @4, N
where Bf\ is the following (Axtg,.Ax)-bimodule of semi-invariants

GL(8),xe
B =

-1
D(Rep(Q.)) />~ D(Rep(Q, ) () = Xi)
=0

We also define the functor,
g’i : Th-mod — Ty 4p-mod,
M lnd 7—)\60 ®_A>\+9 Bg ®_A>\ 60M.
Since the algebra 7, has (I — 1)-dimensional parameter, we have the (I — 1)-
dimensional parameter § € Z!' for shifting the parameter . Thus we have
many shift functors for the same 7, while we have only one shift functor S, for
H.(6,). N
We study the case when the shift functors Sf and Sf are equivalences

of categories. The main difficulty of this question is that we must consider

complicated combinatorics which depends on the (I—1)-dimensional parameters
A and 6.
Define the following sets of parameters

Rloy ={A=(M)iz0,.i—1 €RY [N+ + X1 #£0 for all i # j},
Zhoy={0€ZH|0;+ - +0;_1#0 forallisj},
Zl)\ = {9 = (ei)izo’m,l_l S ereg | 0; +---+ 9j_1 <0 ifXN+---4+ )\j—l S Zgo}.
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The set of parameters ereg is decomposed into (I — 1)! alcoves. If A € aneg is

generic, we have Z4 = Zl_,. If X belongs to R, NZ!, Z! is one of (I —1)!
alcoves in ZL,,.

Then the following theorem is the first main result of this paper.

Theorem 1.1.  For A € R.,  and 0 € Z\, the shift functors S5 and §§
are equivalences of categories.

Moreover, we explicitly determine the images of the standard modules by
st.

The parameter 6 = (6;);=0,...;—1 defines a total ordering >4 on the set of
indices A = {0,1,...,1 — 1},

il>9j<:>9i+"'+9j_1 < 0.
If 6 and 6’ belong to the same alcove in Zieg, then [>¢ is equal to >¢/. Let Dy.cp 2
be the partial ordering on A defined as i Dy j if and only if
Homy, (Ax(4), Ax(i)) # 0. Our total ordering >4 refines the partial order-
ing >yep,x when 0 € Zl)\, i.e., Homy, (Ax(j), Ax(i)) # 0 implies i B¢ j. Let ny,
.., m be the elements of A such that

(1.4) mBen-1B6---Bon.

Proposition 1.2. Fori=1, ..., 1, we have an isomorphism of Axyg-
modules

eoAxro(mi) — SeaAx(m:)) = BY @, eoAx(m:),

eototi_1 -ty 1, — fi @ eoloti_1 -ty 1.

where
-1 i1
fi = H (tﬂjﬂ e tm)0"j+0"7+1+"'+0"1+1—1 H(am co 877]-)0"1' +0nj+1+...+0n]_+1_1.
J=i+1 =1

1.3. Construction of a tautological bundle

Next, we consider analogues of the functor (1.2) and determine the image
of the regular representation H, by this functor.
For 0 € ZL.,, the quiver variety My (6) with the stability parameter  can
be described as follows.

93?9(5) = Proj S,
S= @ Su Sw=CluHO)FHON.

where 11 : Rep(Q, §) = T*Rep(Q, §) — gl(6)* is the moment map. The variety
My(6) gives a minimal resolution of the Kleinian singularity C2/Z;,

g : f)ﬁe((s) — (C2/Zl.
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For any 0 € Ziem My(0) is isomorphic to the toric variety X (A) defined in
Section 3.2.
For A € R.,, and 6 € Z!, we define the functor

®Y : Ty-filt —> Coh(My(5))
(1.5) M — ( @ gr(Bg\"o ®A, eoM))N.

mEZzo

as in [Bo.
We define a locally free sheaf Py on My(9) as follows

Po=( D oMl @) HON)”

WEZZO

Then 759 is a tautological bundle of the quiver variety My(d). It is an analogue
of the Procesi bundle on Hilb™(C?). Although the structure as an algebraic
variety of 9y () is independent of 0, the tautological bundle Py depends on 6.
We have a construction of the minimal resolution of C2/Z; by the toric
variety X (A) (Section 3.2). We prove the following proposition using this
construction. This is an analogue of a result of [Ha2] for the Procesi bundle.

Proposition 1.3.  For m € Z~q, we have

eo My (Clu=H (0))) 9O (p = 0),
0 (p#0).

where O(1) is the twisting sheaf of of My(d) associated to the homogeneous
coordinate ring S (see [Har, p.117]).

HP(My(8), Py @ O(m)) = {

We make use of this proposition to calculate the (g,t)-dimension of the
module egM;(Clp=1(0)])¢H)Xa" | ie., the character with respect to the T-
action.

Using this result, we obtain the following second main result. Set

I’éfneg = {()\i)i:()’m’lfl € Rf"eg | XN+ + )\j,1 7é 0 for all 4 7& j}

Theorem 1.4. For A € RL,
coherent sheaves on My(0)

g and 0 € Zl)\, we have an isomorphism of

®4(73) = Po.
As a corollary of Theorem 1.4, we have

Corollary 1.5.  For A € R!

regs 0 € 7k , we have the isomorphism

4 (AN(i)) =~ (Po/PoA* e,

where A” = Zi;(l) Bi1i®8& € Ml(c[ﬂ_l(o)]) and & = 0; is the image of 0; in
gr D(Rep(Q, 5))GL(5) ~ (C[M—l(o)]GL(é)_
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1.4. The characteristic cycles of the standard modules
Finally, we determine the characteristic cycles of the standard modules.
The structure of the subvariety 7, ' ({y = 0}) is well-known: we have

-1
m (fy=0p) = |uf
i=0

where U is one-dimensional affine subvariety depending on 6 defined by (3.6)
in Section 3.1. We denote by U; the closure of U?. Then, the irreducible
components of 7, ' ({y = 0}) are Uy, ..., U_1.

The following proposition is the third main result.

Proposition 1.6. Fori=1, ..., 1, we have

Ch(Ax(m)) = YUy, ).

j=1
where n; is the index defined on (1.4).

This proposition answers a conjecture in [Go] in the case of Z;. Consider
the geometric ordering defined in Section 5.4 of [Go],

{ [>geom,0j 1f'L 7é _] and Z/[Z ﬂujo 75 @

By the general theory of quiver varieties, if # and 6’ belong to the same alcove
in ereg, D> geom,o 1 equal to D> geom,er. Moreover, we show that the geometric
ordering [>geom,0 is equal to the ordering >¢. Thus, we have

m Dgemn,@ -1 Dgemn,@ e ‘>geom,,0 -

Therefore, Proposition 1.6 is written as

Ch(Aax@) = Y (Y]

Fgeom, 0t

This is an affirmative answer to Question 10.2 of [Go].

The functor E)i of (1.5) confirms a deep connection between the represen-
tation theory of 7, and the geometry of My(d). In fact, to prove Theorem 1.1
and Theorem 1.4, we make use of this connection. Although Proposition 1.2 is
purely representation theoretical, the elements ﬂ are obtained from the infor-
mation on the geometry of My (J).

1.5. Plan of paper

The paper is organized as follows. In Section 3.1, we recall the definition
and basic facts about the quiver variety My (d). In Section 3.2, we recall the
construction of the minimal resolution of the singularity C?/Z; as a toric variety,
and compare it with 9t (5). In Section 3.3, we construct the tautological bundle
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ﬁo. In Section 3.4, we prove Proposition 1.3 by using well-known facts about
line bundles on toric varieties. In Section 3.5 and Section 3.6, we calculate the
(g, t)-dimension of C ®c(yy..t, ] eoMi(C[p=1(0)])FL@xo " This result is used
when we prove Theorem 1.4. In Section 4.1 and Section 4.2, we define the
rational Cherednik algebra H, and the deformed preprojective algebra 7, and
recall their fundamental properties. In Section 4.3, we prepare some conditions
for the parameters A and 6, and define the ordering >4. In Section 4.4, we
define the shift functor S{ and prove Theorem 1.1. In Section 4.5, we calculate
the g-dimension of C ®cjy,...t, Bf\ ®4, eoZn. We use this result to prove

Theorem 1.4. In Section 5, we recall the definition of the functor &)‘2\ In
Section 6.2, we prove Theorem 1.4. In Section 6.3, we prove Corollary 1.5 and
Proposition 1.6.
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2. Preliminaries

2.1. Basic notations

Fix an integer | € Z~o. We define two sets of parameters. Let Z} be the
set of 0 = (6;)i=0,....1-1 € 7! such that 0+ ---+6;_; = 0. Let R} be the set of
A= ()\i)izo’m’lfl € R’ such that M+ -+ N1 =1.

Set v = <g Cgl) to be the element of SLy(C) where ¢ = exp(2m/—1/1).
Let Z; = Z/IZ be the finite subgroup of SLy(C) generated by the element .
Denote the group ring of Z; over the ﬁe_)ld _(C by CZ;. Fori =0, ..., 1 —1, let
€; be the idempotent &; = (1/1) Zé;% ("~7 € CZ;. Then we have €;€; = §;;€;,
and CZ; = @i;(l) Ce;. Fori=0,...,1—1, let L; = C1; be the one-dimensional
irreducible representation of Z; on which é; acts by e;1; = d;;1;.

For a group G and a G-module M, we denote by M& the G-invariant
subspace of M. For a character x of the group G, we denote by MX the
semi-invariant subspace of M belonging to the character y, i.e.,

MEX ={veM|gv=x(gv (9€G)}.

For a C-algebra R, let M;(R) be the [ x | matrix algebra whose elements
have coefficients in R, i.e.

Ml(R) ~ Ml((C) ®c R.
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Let E;; be the matrix in M;(R) such that the (¢, j')-entry of Ej; is given by
Ot (Sjj/.

For an algebra R, denote by R-Mod the category of R-modules. Let R-mod
be the full subcategory of R-Mod whose objects are finitely generated over R.

Fix an affine variety X. Let C[X] be the ring of polynomial functions on
X. Let D(X) be the ring of algebraic differential operators on X. For an Ox-
module F and a point x € X, we denote the stalk of F at = by F,. We define
its fiber at x by F(z) = F, ®oy., C where C = Ox ,/m, and m, is a unique
maximal ideal of Ox ,. We denote by Qcoh(X) the category of quasi-coherent
sheaves on X and by Coh(X) the category of coherent sheaves on X.

2.2. Quivers

A quiver Q = (I, E) is a pair of a set of vertices I and a set of arrows E
equipped with two maps in, out : E — I. We assume [ and E are finite sets.
Let Q* = (I, E*) be the quiver with the same set of vertices I and the set of
arrows E* = {a* | « € E} where o* is an arrow such that in(a*) = out(«) and
out(a*) = in(a). Let Q be the quiver (I, EL E*).

A representation of a quiver Q@ = (I, E) is a pair (V, (dq)acr) of an I-
graded vector space V = @,; Vi and a set of linear maps ¢o : Vour(a) —
Vin(a)- For an I-graded vector space V = ,.; V;, its dimension vector is
dimV = (dim V;)ier € (Zs0)!. For a dimension vector v = (v;);er, the space
of representation Rep(Q,v) is the following space:

Rep(Q, 'U) = @ HOm((CUOM(a) , CVin(e )

aclE

We identify a point (¢a)acr of Rep(Q,v) and a representation (€0,.; C",
(¢a)a6E)-

Fix a dimension vector v = (v;)ic;. Let GL(v) be the Lie group
[l;c; GL.,(C) and let gl(v) be the Lie algebra of GL(v): gl(v) = @,.; al,, (C).
The group GL(v) acts naturally on Rep(Q, v).

Let (, ) : RT x RI — R be the bilinear form (A, u) = Y

A= (Noier, = (pi)ier-

iel )\i,ui for

2.3. Quiver of type Al(i)l

In this paper, we consider the McKay quiver associated to a group Z; =
7. /1Z with cyclic orientation. In other words, it is a Dynkin quiver of type Al(i)l
with cyclic orientation. Let @ = (I, E) be a quiver with I = {Iy,...,[;_1} as
the set of vertices and F = {F; : I,_; — I;|i = 0,...,1 — 1} as the set of
arrows. We regard indices for vertices and arrows as integers modulo [, i.e., we
consider I_y = I;_1, F; = Fy and so on.

Iy
/ Yx
I T Iy i 1

Fy
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We identify Z! = Z! and the root lattice of type Al 1, and identify R! =R

and the dual of the Cartan subalgebra. For i =0, ..., 1 — 1, let ¢; € Z! be the
standard coordinate vector corresponding to the vertex I;. Under the above
identification, we regard €, ..., €,_1 as simple roots. Let § = (1,...,1) be the

minimal positive imaginary root. A root 3 € Z'! is called a Dynkin root when

(B,e0) = 0. When a positive root 8 = (8;)i—o,..1—1 € Z! satisfies 8 # ¢ and

Bi <dé;=1foralli=0,...,1—1, we write 8 < 6. For A = (\;)i=0,...1—1 €

R = R! (or Z! = 7'), we regard the sum \; + A\j41 + -+ + Aj_1 as cyclic, i.e.,
AiF A1+ F N =N R o A

if j <.
3. Quiver varieties

3.1. Definition of quiver varieties

In this subsection we review the definition and fundamental properties of
quiver varieties which were introduced by Nakajima in [Na).

Define the quiver Q = (I, E) as in Section 2.2. The space of representations

Rep(Q, ) = {(ai, b;)i—o,...1-1 | a;,b; € C} ~C*

is a symplectic manifold with the symplectic form Zi;é db; N\ da;. We have the
symplectic action of GL(d) on Rep(Q, d), and the corresponding moment map
is
p: Rep(Q, 6) — gi(8)" =~ C',
(@i, bi)i=0,...1-1 — (aib; — @it1bix1)i=0,...1-1

Let to, ..., ;1 and &, ..., &_1 € C[Rep(Q,§)] be the coordinate func-
tions such that ti((aj,b_j)jzow’l,l) = a; and &((aj,b5)j=0,..1-1) = b; for
(aj,b5)j=0,....1—1 € Rep(Q, d). Then we have

Clu1(0)] = Clto, - - -, ti—1, €05 - - - &121) / (ti&i — tiz1&i1)imo,..0—1-

The group GL(J) acts on C[u~1(0)] as follows.

g-ti=g; ' girti,
9-& = 9i9; 6
fori=0,...,1—1and g = (gk)k=o0,.. - 16GL(5)
Fix a parameter 0 = (0i)i=0,...1-1 € Zk called a stability parameter. For
=0,

a representation (V, (a;, b;)i=o, .. i— ) of Q with the dimension vector §, we call
it f-semistable if (dimW, ) S for any subrepresentation W of V. Deﬁne the

subset ©=1(0)g of p=1(0) C Rep(Q, 9):

pH(0)p = {(ai,bi)i=o,... 11 € p~(0) |
(@i,bi)i=0,...1—1 is a f-semistable representation.}.
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It is a Zariski open subset of ©=1(0). For p, ¢ € u=1(0)y, we denote p ~ g when
the closures of GL(§)-orbits intersect in u=%(0)g. Then ~ is an equivalence
relation. Then we define the quiver variety 9y(0) as follows:

Mp(0) = p~(0)g/ ~ .

For a point (a;,b;)i=0,....1—1 € 1= 1(0)g, we denote by [a;, bili=0,...1—1 the corre-
sponding point of My (9).

Remark 3.1.  Although our definition of the quiver variety is different
from one in [Na], My (5) coincides with M ¢ ¢ (v, w) with (¢ = 0, g = 0,
v = § and w = ey. This definition is the same as one of [Na2, Section 4].

For § =0=(0,...,0), we have
My (8) =~ C?/Z,
(see [CS)]).

Proposition 3.2 ([Kr|, [Na2]). If a stability parameter 8 = (6;)i=o,... 1—1
€ Zk satisfies (0, 3) # 0 for all positive roots 3 which satisfy 3 < §, Mg(J) is
nonsingular and we have a minimal resolution of Kleinian singularities of type
Al_lt

g : My (8) — Mo(8) =~ C?/7Z.
In this paper, we always consider the case when the stability parameter
0 € Z satisfies (0, 3) # 0 for all positive roots 3 which satisfy 8 < J. Set

(3.1)
Zieg = {0 € Zé | (0,8) #0 for all positive roots 3 which satisty § < 6} .

For a stability parameter 8 = (6;);=0,... -1 € Zlmg, define the following
graded commutative algebra

Sin = Clu™ OO

where yg is the character of GL(S) given by xo(g) = Hé;é(gi)ai for g =
(9i)i=0,...1—1 € GL(9). The injective homomorphism Sy — S induces the mor-
phism of schemes

Proj S — Spec .Sy ~ (C2/Zl.

We have the following construction of quiver varieties.

Proposition 3.3 ([CS], [Na2]).  As schemes over C?/Z;, we have the
following isomorphism:

My (5) ~ Proj S.
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The above construction induces the twisting sheaf on the scheme 9t (J) ~
Proj S which we denote by O(1) (see [Har, p.117]).

Fix a stability parameter 6 = (6;)i=0,..1-1 € Zﬁneg. The two-dimensional
torus T = (C*)? acts on the quiver variety My (9) as follows: for [a;, bili=0,...1-1

€ My(d) and (mq,mg) € T,
(m1,ma)[ai, bili=o,...1—1 = [m1a;, mab;li=o,.. 1-1.

The group T acts on C2 by (my,msa)(a,b) — (mia,meb) and it induces the
T-action on C2/Z;. Moreover my is T-equivariant. The variety 9y(d) has I

T-fixed points po, ..., pi—1 where p; = [a;,b;]j=0,...1—1 is given as follows:
a; = 0, bl = 0,
(32) aj:(), bj;éO if9i+9i+1+"'+0j_1<0,

aj#O, ijO if9i+9i+1+~'~+9j_1>0.

Note that we have 0; 4+ 0;41--- 4+ 6;_1 # 0 for all i # j by the assumption

o€,
Define the ordering >geom, ¢ on the set A ={0,...01—1} by
(3.3) 1 l>geom79j <~ 0;+ -+ ej—l < 0.
Since we take 6 € aneg, the ordering > gcom ¢ is a total ordering.
Set 11, ..., m be the indices in A such that

(34) m Dgeon@,@ -1 Dgeon@,@ cee |>geom,9 m-

By (3.2) and (3.3), for p,, = [a;, bj]j=0,...1—1, We have
(3.5) #{jeA|b;#0}=i—1.
Proposition 3.4.  Fori=1, ..., 1, the fired point p,, = [a;,b;]j=0,...1-1
18 given by
an, =0, by, =0,
ap; =0, by, #0 for j <1,
anp, #0, by, =0 forj >

Proof. By (3.3) and (3.4), we have
Op, +-+0,,-1<0 forj=1,...,71—1.
Thus we have
an; =0, by, #0 for j <.
By (3.5), we have
an; #0, by, =0 for j > i.

J
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For i =0, ..., 1 —1, we define the following one-dimensional affine subva-
riety of Mg (J)
(3.6)
bi =Y
Uy = < lag, blj=o, i1 | a;=0,b; #0

if0; +---4+0;_1 <0, » CMy(9).
if92‘+"'+9]’_1>0.

Clearly p; € U? for all i =0, ..., [ — 1. We denote by U; the closure of U?. By
Proposition 3.4, U, is given as follows.

bm = 07
(3.7) Uy, = 1 laj, bjlj=o an; =0, by, #0
an; # 0, by; =0

yl—1

for j < i,

for j > i.
The ordering > 4eom ¢ is related with the T-action on My () as follows. We
denote p; — p; when there is a point [ag, bk|k=0,..1—1 € 7r9_1(0) such that

lim (m ™", m)[ag, brlk=o,..1-1 = Di
m—0
and

lim (m, m ™) [a, bilk=o... 11 = Dj-
m—0

By Proposition 3.4 and (3.7), taking [ag,bx|k=0,..1—1 on U,,, we have p,, —
D, foreachi=2,...,1

The structure of the subvariety 7, ' ({y = 0}) is well-known (see [SI, Lec-
ture 1]). The subvariety 7, ' ({y = 0}) is the disjoint union of ¢?:

-1
w5 ({y=0p) = | |u?

i=0
The irreducible components of 7, 1({y

=0}) are Uy, ..., U_1.
Fori=1,...,1—1, we have

u7711+1 mug,; = {pm}
and Uy, does not intersect with U, unless j =i+ 1, 4,7 — 1.
3.2.

Quiver varieties vs. toric varieties

In this subsection, we compare two constructions of the minimal resolution
of Kleinian singularity C2/Z,: i.e. as a quiver variety and as a toric variety.
Let N =Z? M = Hom(N,Z) ~ Z? and let

()t MxN-—1Z
be the natural pairing. Set v; = (1,4) € N for 0 < i < [I. Let 0; = Ryov; +
R>ov;—1 be a 2-dimensional cone for ¢ = 1, ..., [. Let A be the fan with the

2-dimensional cones o; for ¢ =1, ..., [ and the 1-dimensional cones R>qv; for
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i =20, ..., 1. Then the toric variety X (A) associated to the fan A gives the
minimal resolution of C2?/Z;:

(3.8) X(A) — C?/7.

Fori=1,...,1, et M; = MN3g; be the semigroup where &; = R>¢(4, —1)+
R>o(1—¢, 1) is the dual cone of ¢;. Let R; = CM; be the group ring of M, and let
X; = Spec R;. The toric variety X (A) has the open covering X (A) = Ui:l X;.

Let u = (1,0), v = (0,1) be the basis of the lattice M. Then, R; =
Clutv™, u'~%]. Let 2y = u, y' = v. Then we have

R; = Clatyi—!, 1=ty 171,

The natural embedding C|[z,y]% — R; induces the morphism X; — C2/Z; of
(3.8).

Let m; = (2%y~L, 21 ~iy!*1-%) C R; be the maximal ideal of R;. It is the
maximal ideal corresponding to the unique T-fixed point in Xj.

Fix a stability parameter 8 = (6;)i=0,...1-1 € aneg. We consider the quiver
variety 9My(d) defined in Section 3.1. By Proposition 3.2, we also have the
minimal resolution

9)29(6) — (CQ/ZI.

Thus we have an isomorphism of algebraic varieties

We construct this isomorphism explicitly.
Fori=1,...,1, let

)

R =C |:tnl_7i+1 sty 5771 o 'gm—i+1
— b
Em &y bty

where 71, ..., m; are the indices defined on (3.4). Note that the polynomials in
R} have no poles at the fixed point p,,_,,, by Proposition 3.4.
Then we have an open covering

l
My(6) = | J X/,  X]=SpecR,.
=1

Thus, for : =1, ..., [, we define an isomorphism,
R; —>Ri,
tj—x (j=0,...,1-1),
& —y (j=0,...,1-1).

This induces the isomorphism of algebraic varieties

(3.9) Mo (5) — X (A).
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Set

[ PUPITIRY Uy S
(3.10) m;:<m +1 m Sm m +1).

b
6711 T .£77l—7‘, tm-¢+2 T tm

This is a maximal ideal of R]. This ideal corresponds to the T-fixed point
p7]l—i+1 € Xz/ .

3.3. Tautological bundles

In this subsection, we define tautological bundles on the quiver variety
My (5) and give their explicit construction.

A tautological bundle is defined as follows. Consider a vector bundle of
rank [ on ;1 ~1(0)s whose fiber is isomorphic to the representation of Q given by
(@i, b;)izo,...1—1 for each point (a;,b;)io,.. -1 € p~'(0)g. If the vector bundle
descends to a vector bundle Py on My (6), we call Py a tautological bundle.

To construct a tautological bundle, consider the matrix algebra

Mi(C[u™(0)]) = My(C) @c Clu™" (0)].
The group GL(4) acts on M;(C) by
(3.11) g-E;ij = gig;IEi'

for g = (gk)k=0,...1—1 € GL(9) and 0 <4, j <1 —1. The group GL(J) acts on
Clu~1(0)]. Thus GL(8) acts on M;(C[=1(0)]). We define a graded S-module

(3.12) Po= D eodMi(Clu (0))FHO

WEZZO

where ey = Egg. Let 759 be the sheaf associated to Py. We show that 759 is a
direct sum of [ line bundles. For ¢ =0, ..., I — 1 let £; be the sheaf associated
to the following graded S-module £;,

(313) El = @ (C[uil(o)]GL(é)fX;nXTi

mEZZO

where 7; = ¢; — €9 € Z!. Consider the i-th column of Py. The group GL(J) acts
on Ey; € M;(C) by the character x;' by (3.11). Thus the coefficients of the

i-th column of Py coincide with £;. Then, each LNZ is a line bundle on My ()
and we have

Note that Py is a right module of the matrix algebra M;(C[u~1(0)])¢% (),
Let A; and A? be the following elements of M;(C[u~1(0)])¢10): A; = E; ;1 &t;
and A} = E;_1,; ®&;. Then the collection of maps (A;, flz‘)izoymyl_l gives an
action of Q on Py. Thus we have the following proposition.
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Proposition 3.5.  The vector bundle 759 is a tautological bundle on
My (6).

Lemma 3.6.  The module Clu~1(0)]9L0)X6" X7 s a Cltg---t;_1]-free
module.

Proof. Consider the grading of the C[tg- - - t;_1]-module C[p~1(0)]¢F(9):x6" X~
defined by the degree

degty =0, degé&r = 1.

Since p~1(0) ¢ Ui;é{tl = 0}, the C[tg---#;_1]-module C[z~1(0)] is torsion
free. Thus, each component with respect to the above grading is a finitely
generated torsion free C[tg - - - t;—1]-module. The algebra Cltg---t;—1] is a one-
dimensional polynomial algebra. Therefore a finitely generated Cltg - --t;—1]-
torsion-free module is automatically C[tg - - - t;_1]-free. O

3.4. Vanishing of higher cohomologies B

In the previous subsection, we constructed the tautological bundle Py. To
calculate the higher cohomologies of Py, we recall well-known facts about line
bundles on the toric variety X (A) ~ My (d). Let Pic(X(A)) be the Picard
group of X(A). Let D; be the divisor of X(A) corresponding to v; € N for
i=0, ..., asin [Fu, Sec 3.3]. Under the isomorphism (3.9), D; corresponds
to U,, defined by (3.6) for i =1, ..., . By the general theory of toric varieties,
we have the following lemma.

Lemma 3.7 ([Mu] (2.3), [Fu] Prop 3.4).  The Picard group Pic(X(A))
is generated by the divisors Dy, ..., D;. Moreover their relations in Pic(X (A))
are given by:

D0+D1+"‘+Dl:0,
l
> iD; =0.
i=1

For i = 1, ..., Il — 1, we define the cycle D(i) = Z;;B(z —J)Di—; €
Pic(X (A)). We have Pic(X (A)) = @1 ZD(i).

For b = (b;)i=1..1-1 € Z71, let D(b) = 2121 0:D(i) € Pic(X(A)) as in
[Mu]. For each divisor D € Pic(X(A)), we have the T-invariant line bundle
O(D) on X(A). The following two lemmas are proved in [Mu].

Lemma 3.8 ([Mu], Lemma 2.4).  When b = (bg)r=1,..1-1 € Zlgol, the
space of local sections H°(X;,O(D(b))) is a free R;-module generated by the

-1 -1
element xzk:l—ﬁl(l_k)b’“y_ k=i ROk

Proposition 3.9 ([Mu], Lemma 2.1). If b = (bp)g=1,.11 € Z55,
then we have -

HP(X(A),0(D(b))) =0
for p#0.
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For b = (bg)k=1...1-1 € (Z>0)' "1, let O'(D(b)) be the line bundle on X (A)
such that HY(X;,0'(D(b))) is the free Rj-module generated by the element

g2kt (R yzic;jl kbi Namely, as a T-equivariant line bundle
/ ~
O'(D(b)) = O(D(b)) @c C(g 5211 k)

where C, ) is the one-dimensional vector space with the T-action of weight

(a,b).

Fix a stability parameter 6 = (0;)i—o,....;-1 € Z.,. In Section 3.3, we
defined the line bundle £; on the quiver variety My(0) for i =0,...,1—1by
(3.13).

Fori=0,...,1—1and m € Z>, set
(3.14) bz/ = 94}1@ + 9;71@+1 +eo 07/7k+1*1'

where 6/ = (0}, )k=0,...1—1 = mb +7; € 7}. Note that we have bz/ € Z>o for all
k.

For ¢’ = (0},)k=o0,...1—1 = mO+7; € Z! where m € Zsgand i =0, ..., [ —1,
set
-1 i1 ”
(3.15) £ = T ta)™ T €0
k=j k=1

Note that ff/ does not vanish at the fixed point p,, by Proposition 3.4.

We show that fj‘-gl belongs to C[u~1(0)]9%(¥)xe' . We calculate the weight
of the function ff,. Because the weight of &, ---&,, is equal to the weight of
oy - by, for all k, the weight of fjol is independent of j. By §j+---+6;_, =0,
we have
B+ b+ b

= (0, +---+0, )+ O, +-+0, YA (O, A0, )

Nk+1—1 Me+1 Ni+2—1 N—1
_ / / - /
*0% +07]1«0-17L +0m—1
Thus, we have
, b0’ 05,40, 440!
o S ETV%41 ny—1
f=11Cn &) = 11 & :
k=1 k=0,...,1—1

Thus the weight of fﬁ' is
-1
D AO 40, Der — (O 4+ 0, _ena}
k=0

-1 -1
= LG+ 0, 1) = O+ + 0, D= > Oher.
k=0 k=0

Therefore, fj‘-gl belongs to C[u~1(0)]“4):Xe’ for all j.
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Lerr~1ma3.10. For1 < j <land 0 < i <[1l—1and m € Zxo,
H°(X},Li ® O(m)) is the free Rj-module with the generator fl9+1—j with 6" =
ml + 7; € Z.

Proof. By the definition of L; (3.13), Laurent monomials of ¢g, ..., t;—1,

§o, -+, &1 with the GL(6)-character xo span H(X}, L; ® O(m)) over C.
Since the unique fixed point p,, ., € X j’ corresponds to the maximal ideal

m; C R} defined by (3.10), the generators of HY(X}, L; ® O(m)) must have no
zero at pp, ;.-

The Laurent monomial fj‘-g/ has no zero and no pole at p,, .., by Propo-
sition 3.4. On the other hand, let g be a Laurent monomial with the GL(J)-
character yg.. Then, g/ f;) is a product of the following Laurent monomials:

(to---tic)™,  (So---&-1)*, (&)™,
+1
tptpt1 - tg—1 )
— for p # q.
<£q€q+l e fp—l
Therefore, g has either zeros or poles at p,, .., by Proposition 3.4.

Therefore, the Laurent monomials other than f]‘-9 " have either zeros or poles
at py,_,,,, and ff/ is the generator of H%(XJ, L; ® O(m)) over R;. O

We identify My (d) and X (A) by the isomorphism (3.9).

Proposition 3.11. Fori =10, ..., Il —1 and m € Z-q, we have an
isomorphism of T-equivariant line bundles on My(d) ~ X(A): L; ® O(m) ~
O'(D(b)) where b= (b? )j=1,...1—1 and 8’ =m0 + T;.

Proof. Forj=1,...,1, HO(X]’»,Zi ® O(m)) is a free R;-module with the
generator fle—/j+1' On the other hand H°(X;,O'(D(b))) is a free R;-module

. PO (R 51 s Y .
with the generator x%#r=t-i+1 k y2ek=1 "% . Thus the map given by ¢, — =,
& — y is a T-equivariant isomorphism £; ® O(m) ~ O'(D(b)). O

By the general theory of toric varieties, we have the following C-basis of

HO(X(A),0(D(b))) for b= (bi)i=1,...—1 € Z5;'. As in [Fu, page 66], st

Pppy ={m e M | (m,v;) > —a; fori=0,..., 1}

where a; = bj_j11 + 2bj—i42 + -+ + (¢ — 1)bj—1. Then we have

HY(X(A),0(D0) = @  Camymtim
mEPD(b)ﬂM
The following lemma is an immediate consequence of this fact.
Lemma 3.12.  As a C[z!, zy]-module, we have
H°(X(A),0'(D(b)))
bi—1

l .
=3y Clz!, wylaZimisr (Db +=i)(bimm) 5321 jbj+im

i=1 m=0
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where we set by = oco.

Now we have the following proposition.

Proposition 3.13. Fori=0,...,1—1 and m € Z~q, we have
Clu= " (0)) T+ XX (p = 0)
HP (O, L;®O ’
(0(6).Es 0 0m)) = { § vy

Proof. Set b = (b )J 1,..1—1 with 8’ = mé + 7,. By Proposition 3.11,

we have an isomorphism of hne bundles L; ® O(m) ~ O'(D(b)). Therefore, by
Proposition 3.9, we have the vanishing of the higher cohomologies

H?(My(6), Li © O(m)) =0

for p # 0. By the definition of L; at (3.13), it is clear that

Clu™ ! (0)] 9O X € HO(My(5), L5 @ O(m)).
We show the opposite inclusion. By Lemma 3.12, we have

H°(X(A),0'(D(b)))
o

(3.16) _ zl:bkz—:lC[xl,xy]ng_:kﬁ(lfj)b;zur(lfk)(bﬁ'7n)y2§;11 3by +hn.

k=1 n=0

On the other hand, we consider the elements g (n) € C[u~"(0)]FHO) x5 x~,

-1 -
el—n QI
gk ( ) (tnk+1 o 'tm)bk H (tm+1 o ) 5771 : gnk H 5771 o 'gﬁj)bj
j=k+1 j=1
for k =1, ..., landn =0, ..., bz/ — 1. Here we set ble/ = oo. The

homomorphism given by ¢; — =z, § +— y maps the elements gz/ (n) to the
generators in (3.16). The isomorphism £; ® O(m) ~ O'(D(b)) implies that
H°(My(d), L; ® O(m)) is isomorphic to H*(X (A), O'(D(b))). Thus we have

C[M_l(O)}GL(é)’XanTi — Ho(mg(é),zl ®O(m))

Corollary 3.14.  For m € Z~q, we have

HP(My(8), Py @ O(m)) = { (e)OMl(C[M_I(O)])GL((S),XQL g 7:5 8;?
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3.5. (g,t)-dimension

Let V' be a possibly infinite-dimensional vector space equipped with an
action of the torus T = (C*)2. Then, we have the weight space decomposition
of V: V = @m Vrs where V. ; is the weight space which belongs to the weight

prs: T —C

(m1,ma) — mim3

The (g, t)-dimension of V is the following formal series:

dimg,V = (dimV;,)q"t*
The torus T acts on Rep(Q, §). The action induces an action of T on C[p~1(0)].

The weight spaces with respect to this action are equal to the homogeneous
spaces with respect to the following bi-grading on C[u~1(0)].

degtz = (LO)) deggz = (Oa 1)7

fori =0, ...,1—1. We consider the (g, t)-dimensions of eq M (C[u~1(0)]) &= (03"
for m € Z>( with respect to this action.

To calculate the (g, t)-dimension of eqM;(C[u=*(0)])F*X6" for m € Zs,
we use the following Atiyah-Bott-Lefschetz formula together with Corollary
3.14.

Theorem 3.15 ([Hal] Theorem 3.1). Let X be a smooth surface
equipped with an action of T, and assume the fived point set X' is finite. Let F
be a T-equivariant locally free sheaf on X. For x € XT, T acts on F(x). Sup-
pose that T acts on the cotangent space at x with weights (v1,v2) and (w1, w2).
Then we have,

> (—1)Pdimg HP(X, F) = > a

p2>0 zeXT

dimq)t .7:(.%')
—gr) (= )

We will apply the above theorem for X = My (d) and F = Py @ O(m).
Then we have the following theorem.

Theorem 3.16. Form > 0,7 =0, ..., l — 1, we have the following
identity
(3-17) dimq,t(c QC[to-t1_1] €0Ml(C[M_1(0)])GL(6)7Xén tmg1
1
_ amy—iy 1L
- Z q 1— g1
i=1 q
where
(3.18) d)=—0p—20) — - — i1+ (1 —i—1)0;+- +6_s.

fori=0,...,1—1. Here wesetd?:dg.
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This will be proved in the next subsection.

3.6. The proof of the theorem

In this subsection, we prove Theorem 3.16. To prove the theorem, we apply
Theorem 3.15 for F = Py ®@O(m) together with Corollary 3.14 for m > 1. Since
we did not prove the vanishing of the cohomologies Corollary 3.14 for m = 0,
we cannot make use of Theorem 3.15 in this case. On the other hand, in the
case of m = 0, the space C ®c(yy.., ,] €oMi(Clu(0)])9L(®) is independent of
the stability parameter § = (0;)i=o,...1—1 € Zﬁ,eg. Therefore we can easily show
(3.17) by a direct calculation.

Set A* = A¥ + Af +--- + Al ;- By the right action on Py given in
Section 3.3, eq M;(Clu~ (0)])GL(5) is a right C[A*]-module. As the right C[A*]-
module, we have

C ®C[t0"'t171] GOMZ(C[/“Lil(O)])GL(é) = @EOi Qtig1 - tl_ltoC[[l*].

Therefore, we have

dim,; C QC[to-t;_1] eoMl(C[ﬂil(O)])

l
L=
i=1

Consider the case of m € Zsg. Since, at the fixed point p; € My(d) for
i=0, ..., 11,

dimy.q (Py © O(m)) (pi) = dimg, Po(pi) - (dimg,c O(1)(p:)"

we need to calculate dim,; O(1)(p;) and dim, , Po(ps)-
First we consider the fibers of O(1) at the fixed points py,, ..., py,.

Lemma 3.17.  We have O(1),, = Opniff where f? is the function
defined on (3.15) with ' =0, i.e.,

-1

fzg = H( Mi+1 H 5771 5771

Jj=t

Proof. Apply Lemma 3.10 for i = 0 and m = 1, we have Lo00O(1) = O(1),
thus we have
H°(X{,0(1)) = Rif}.

The fixed point p,,_,,, € X; corresponds to the maximal ideal mj C R;. There-
fore we have

O)p,, = O0p, f.
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Corollary 3.18. Fori=1, ..., 1, we have

d?
P =q M.

dimg,: O(1)(py,)

Proof. First we calculate the case of ¢ = 1, then we have

-1
0 b9
fi = H(tn]‘+1 o 'tm) /
j=1
o t9n1 t‘gnl +0n+1 . ~t0"1 +O0ny 41+ +0n 412
 'miA1tm 42 m+i—1 .
Consider the degree given by degt; = 1 and deg&; = —1 fori =0, ..., [ — 1.

The degree of f{ is
deg f{ = (1= 1)0n, + (1 = 2)0p 11+ +Opp12 =dj) .

Thus the statement of the corollary is valid for ¢ = 1. On the other hand,

we have dzi — dfh_+1 = b and deg f — deg f?,; = 1b!. Therefore we have
deg ¥ = dzi fori=2,...,1— 1 by induction on 1. a

Next we consider the fibers of Py at the fixed points. At the fixed point p; =
[a~j, bj]j=o,...1—1 defined by (3.2), we consider the sta}}{ (Po)p, = @2_:10 CEor ®
(Lk)p;- For k=0, ..., 1 —1, let vy be the germ of (Py),, defined as follows.

v = FEor Quy -1 ifk<i-—1,
'Uk:EOk®V]/€+1"'Vl,_1V6 iszl

where
V:{ o1 (if a; #0)
TG Gy #0)
1/'»:{ tj (if a; # 0)
7 &' (if b #£0)

Note that the group GL(J) acts on vy by the character x,, and vy is not zero
at Di- _

The stalk (Pp),, is a free Op,-module of rank I. As the vy above for k =0,
..., Il — 1 are clearly linearly independent, we have the following lemma.

Lemma 3.19. Fori=0, ...,1—1, the stalk 759 ~ has the O, -basis
Pi Di
{ve}ib-
Corollary 3.20. Fori=0,...,1—1, we have
~ 1 — q_l
di Po(p; S .
mgy ¢ o(p ) A q 1—g1

Finally, the cotangent space of 9ty(d) at the fixed points has the following
well-known structure.
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Lemma 3.21 ([Mu]). Fori =1, ..., 1, the cotangent space of My(d)
at py, has T-action with weights

(v1,v9) = (I — 4, —1),
(wi,wa) = (=l+i+ 1,1+ 1).
Now we apply Theorem 3.15 for F = Py @ O(m) with m € Z~( to prove
Theorem 3.16.

By Lemma 3.6 and Corollary 3.14, we have the modules HP (9%(0), Py ®
O(m)) are Cltg - - - t;—1]-free. Thus we have

(319) dimg,¢ C ®cr..t,_y) HP (Mg (6), P @ O(m))
= (1 —¢") dim, ; H?(9M4(5), Py @ O(m)).
By Corollary 3.14,
dimg ¢ C @cjrg..t,_,] oM (Cl~"(0)]) FHOAE
= Z(—l)p dim, . C ®C[to-t;_1] Hp(mg(é),ﬁg ® O(m)).
P

By Theorem 3.15 together with Corollary 3.18, Corollary 3.20, Lemma 3.21
and (3.19), we have

(1) dimg, € gy iy, H(Ma(6), Py @ O(m)|

p

t=q—1

dimg ¢ Py (pn,) dimg ¢ O(m) (py,) ‘
(1 - Upni (q7 t))(l - wpni (q7 t)) t=q~!

(1—¢")

|
VM“

i=1
1 me . _ _
Bt il (et V(LR )
- (T—a)(T—q)
l
_ quﬁg"e-i-l—i 1 .
; 1—qgt

s
Il
—

Thus we have (3.17) of Theorem 3.16.

4. Rational Cherednik algebras

4.1. Rational Cherednik algebras

First we introduce the rational Cherednik algebra H, = H,(Z;) for the
group Z; = Z/1Z with a parameter k = (ko, ..., k;—1) € Rl. As a vector space,
H, is given by

H, = Clz] ® CZ; ® Cly].
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The relations of H,. are as follows:

vyt = (e,
vyt = Cy,

-1
[y, 2] =1+ ZZ("%’H — ;)€
=0

Here we set k; = kg and €; is an idempotent defined in Section 2.1. Note that
H,; depends only on k;41 — k; for i =0, ..., —1. We have

Te; = €;4+1%, Y€ = €;—1Y.

The polynomial algebras Clz] and C[y] are subalgebras of H,. Moreover,
the smash products Clz]|#7Z; and C[y|#Z; are subalgebras of H,. We also
define the spherical subalgebra U, of H, as U, = éyHéy.-

In [DO], the following homomorphism of algebras from H, into the algebra
D(C*)#Z; was defined,

H/-c — D(C*)#Zla
T,

Y=
-1
d ZZ _
yHDy:%—FEiiOKZ‘eZ‘.

This homomorphism is injective. This map is called the Dunkl-Cherednik em-
bedding, and the operator D, is called the Dunkl operator. Let O, be the
subcategory of H,-mod such that y € H,; acts locally nilpotently on objects of
O,. By [DO] and [GGOR/], O, is a highest weight category with index poset
A=1{0,1,...,1 — 1} in the sense of [CPS].

We define the standard modules of O,. For i =0, ..., [ — 1, we have the
irreducible Z;-modules L; = C1;. Let y act trivially on L;, so this induces an
action of the algebra Cly]#Z;. The algebra Cly|#Z; is a subalgebra of H,,
thus we define the standard module A, (%) as the induced module

A(i) = Hy Scpygn, Li-
The following proposition is due to [DO] and [GGOR].

Proposition 4.1. (1) For each i =0, ..., | — 1, the standard module
A, (1) has a unique simple quotient which we denote by L(2).

(2) For any simple object L € O, we have an isomorphism L ~ L (i) for
somei=0,...,1—1.

4.2. Deformed preprojective algebras
Deformed preprojective algebras were first introduced by [CBH]. We use
another equivalent definition which was defined by [Ho].
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As in Section 2.2 and Section 3.1, let @ = (I, E) be the quiver of type
)
A
We consider the space of representations

Rep(@Q, ) = {(a;)i=0,...1-1 | a; € C} ~ C'

with the dimension vector 6 = (1,...,1). Consider the algebra D(Rep(Q,J))
of algebraic differential operators. Let tg, ..., t;—1 € C[Rep(Q,9d)] be the
coordinate functions such that t;((a;);=o0,...1—1) = a;. Set 0; = 0/0t;. The
algebra D(Rep(Q, d)) is generated by tq, ..., t;—1, Oo, - .., Oj—1.
The group GL(J) acts on D(Rep(Q, d)) by

g-ti=g; g1t

9-0i = 9ig; 10
fori=0,...,1—1and g = (gk)k=0,...1—1 € GL(J). The action of GL(J) on
Rep(Q, ¢) induces a homomorphism of Lie algebras

v gl(6) — D(Rep(Q, 8)) 7).

As a Lie algebra, gl(d) = @ﬁ;ég[l((C) o~ @i;z‘) Ce® where e is a natural
basis of the i-th component. Then, we have

WD) = t;410i41 — t:0;.
Consider the [ x [ matrix algebra M;(D(Rep(Q,d))). We have an isomor-
phism
(4.1) Mi(D(Rep(Q, 9))) = M, (C) @c D(Rep(Q, 9)).

The group GL(d) acts on M;(C) by (3.11). It also acts on D(Rep(Q,d)). Thus
GL(9) acts diagonally on M;(D(Rep(Q,d))) through the isomorphism (4.1).
We have the following homomorphism of Lie algebras:

7+ gl(0) — Mi(D(Rep(Q, 6))“*),
T=wR1+1®.,
where @ : gl(6) — M;(C) is given by w(e)) = Ej;.

For a parameter A = (\;)i=0,...1—1 € Rll, we define the deformed prepro-
jective algebra 7 as

-1
Ty = Mi(D(Rep(@Q,9))) V) /3~ Mi(D(Rep(Q.6))*F O (7(e?) ~ X0,

i=0
and define the spherical subalgebra Ay of 7, as A) = eqg7Zreg where e¢; = Ej;
fori=0,...,1—1. It is clear that

-1

(42) A= DRep(@,9) D /3" D(Rep(Q, ) o) ~ X))

=0
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where A\g = A\g — 1 and \; = \; for i # 0.
By the proposition of [Ho] together with [CBH], we have the following
isomorphisms of algebras.

Proposition 4.2 ([CBH], [Ho|). For A = (\)i=0,....1-1, Ai = Ki+1 —
ki + 1/1, we have isomorphisms of algebras:

(4.3) H, ~T,, U, ~ A,.
This isomorphisms are given by

73\ — Hfm
Ai=E;;_1Qt; — e;xe;_q,
AT =E;_1,®0; — &_1Yé;,

e; — €;.

Set A =Ag+ A1 +---+ A1, and A" = A5+ AT +---+ A ;. They
correspond to z, y € H, under the above isomorphism. We have the following
triangular decomposition of 7.

-1

(4.4) T, = C[4] ®c¢ (EB (Cei> ®c C[A*].

=0

By the isomorphism (4.3), we identify the rational Cherednik algebra H,
and the deformed preprojective algebra 7y with \; = ;41 —k;+(1/1). Thus we
regard category O, as a subcategory of 7)-mod, and denote it by O,. Then the
category Q) is the subcategory of 7)-mod such that the operator A* acts locally
nilpotently on each object of O,. We also regard the standard modules of H,
as Ty-modules. Denote them by Ay (i) for i =0, ..., — 1. As Ty-modules, we
have the natural description of the standard modules

(4.5) AN(i) = (TN /ThA")e;.

By (4.4), we have
A (i) = C[A]1,

as a vector space. By Proposition 4.1, A (¢) has a unique simple quotient which
we denote by Ly (1).

Lemma 4.3.  We have Homz, (Ax(j), Ax(i)) # 0 if and only if \i+-- -+
Aj—1 € Z<o. Moreover in this case, Homy, (Ax(j), Ax(7)) is one-dimensional
and any non-zero homomorphism from Ax(j) to Ax(3) is injective.

Proof. To construct a homomorphism from Ay(j) to Ax(7), it is enough
to find a vector v € Ax(4) such that A*v = 0 and eyv = dyjv for k =0, ...,
[ — 1. Indeed, if we have a non-zero homomorphism ¢ € Hom(Ay(j), Ax(4)),
the vector v = ¢(1;) satisfies A*v = 0 and eyv = di;v. Conversely, assume
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there is a vector v such that A*v = 0 and eyv = v for k =0, ..., [ — 1.
Then we can define a homomorphism ¢ : Ay(j) — Ax(7) as ¢(A™1;) = A™v
for m € Z>o. Moreover, v is equal to AP1; and i+ p is equivalent to j modulo
l.

Assume the above v = AP1; € Ay (i) exists. By the relation [A*, A] =

-1
> w—o Ak€k, we have
p—1

(4.6) 0=A%v = A"(AP1;) = [A", AP]1; = 1) il
k=0

By Ao+ -+ X_-1=1and i+ p=j modulo [, we have
p—1
Dk =i+ )+ N ) = (N A ).
k=0

where n = (p — j +14)/l € Z>o. Then, we have \; +---+ X\j_1 = —n € Z<o.
Conversely, when —n = \;+- -+ \j_1 € Z<o, the vector v = AMTI~71; satisfies
A*v =0 and exv = J;,v. Moreover, since such v is uniquely determined by 1,
j and n, we have Homz, (Ax(j), Ax(7)) = C. Obviously we have Tyv = C[A]v,
thus this map is injective. O

For i # j such that Homz, (A(j), A(2)) # 0. Let Lx(%, ) be the quotient
0 — Ax(j)—=Ax(E) — La(i, ) — 0.

By the above lemma Lj(i,7) is uniquely determined. By the proof of Lemma
4.3, we have Ly (i,7) ~ C[A]1,/C[A]A™+i~i1; for some n € Z>o. Therefore,
we have (dimLy (i, 5),\) = 375971 A = 0 by (4.6).

Consider the following functors between the categories of modules:

E) : T\-Mod — A,-Mod,
M — egM,

F : Ay-Mod — 7,-Mod,
N — Tyeg ®a, N.

Restricting the functors E) and F), we have functors between 7)-mod and
Ax-mod. We also denote it by the same symbols E)y and F).

Proposition 4.4.  If (\,3) # 0 for all Dynkin roots 3 € Z', Ey is an
equivalence of categories with quasi-inverse F,.

Proof. The following proof is essentially the same as the argument in the
proof of Theorem 3.3 of [GS1].

To prove the equivalence, we show that Tyeg ® .4, €,7\ ~ TheoT) = 7T, and
eo\ @1, Theo ~ Ay. It is clear that eg7\ ®7, Thep =~ egTreg = Ax. Assume
that Tyeq7) # 7,, so then Tyey7) is proper two-sided ideal. By the generalized
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Duflo theorem proved by [Gi], 7yeo7, annihilates the irreducible module Ly (%)
for some ¢ = 0, ..., [ — 1. Namely, there is an ¢ = 0, ..., [ — 1 such that
eoLx(i) = 0. If Ax(i) = Lx(7), then egLx(i) = egAx (i) # 0 because we have
Ax(i) = Clz]1;. Thus, it contradicts the assumption egLy (i) = 0. Assume
Ax(i) # Lx(i), then there is an exact sequence

0— Ax(j) = Ax(@) = La(i) — 0

for some j # i. Let a = dimL, (), then we have (A\,a) = 0 and o € Z! is a
root. Moreover, by the assumption eyLy = 0, « is a Dynkin root. This is a
contradiction. |

4.3. Parameters and orderings

In the next subsection, we define a functor Sf s Ax-Mod — Ajxy¢9-Mod
called the shift functor. The shift functor Sg depends on the parameter A € R}
and 0 € Zé. In this paper, we concentrate our attention on the case where S§ is
an equivalences of categories. In this section we define our space of parameters.

For A = (\i)i=o0,..1—1 € R}, we have the highest weight category O). We
have the ordering I>,.p » on the index set A = {0,...,! — 1} which arises from
the structure of the highest weight category O,. Namely,

(47) 7 Erap,)\j < HOHIT)\ (A)\(]), A)\(Z)) 75 0< )\z + -+ )\];1 S ZSO

as we proved in Lemma 4.3.
Define

(4.8) RlL,={A=(N)iz0,. -1 ERY | N+ + X1 #0 forall i # j}.

where 5\1 = )\1' — 510.

Fix A = ()\i)izow.’l_l € Rieg' Then we have /_\z + -+ /_\j—l < 0 for all
il>rep,)x .7

The set of parameters ereg defined in (3.1) is separated into (I —1)! alcoves
by the hyperplanes 0; +--- 4 0;_1 = 0 for 7 # j. Set
(4.9)
74 = {9 = (ei)i=07,__,l_1 € Zieg | 0;+-- '—|—9j_1 <0 ifN+---4 /\j_1 € ZSO}.

The set Z! is a union of alcoves in Z., , depending on A. If A € RL, o 1s generic,

we have Z} = ereg. If A belongs to Rieg NZ!, Z! is one of (I —1)! alcoves in
aneg. For A\ € leg, 0 e Zl/\ and m € Z>q, we have Zl)\+m9 = Zl/\ and >yep A4+mo

is equal to B>yep a.
By the result of [Ro], we have the following theorem and corollary.

Theorem 4.5 ([Ro]).  If Ox and Oy have the same ordering defined by
(4.7), then there exists an equivalence of categories Oy ~ Oy .

Corollary 4.6. For )\ € ereg and 0 € Zl)\, there is an equivalence of
categories between Oy and Oxyg.
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Fix A = (M\j)i=0,...1-1 € ereg and 0 = (0;)i=o0,...1-1 € Zl)\. Define a new
ordering >4 of A by

(4.10) ZEQ]<:>91++QJ_1SO

It is a total ordering and it refines the ordering >,cp z, i.€., @ D>yep x J implies
i>g 4. If 6 and 0’ belong to the same alcove, >4 is equal to >g/. If we take 6
and ¢’ from different alcoves, I>¢ is different from >g.

By (3.3), the ordering >y is exactly same as the ordering ™ gcom ¢ defined
in Section 3.1. Therefore we have

(4.11) Mo Mm—1Dg: g
The following lemma will be repeatedly used in the next subsection.

Lemma 4.7.  For any i > j, we have 5\771. 4+ 4+ ;\,71._1 >0 or ;\nj +
..._|_/\m_1 §§Z.

Proof. Assume 5\,7]. + -+ A1 € Z. By (4.7), we have 1; Dyeps 17 OF
1 Drep,a Mi- Since ¢ refines >,.¢p » and we have 1; ¢ 15, the case 1 >rep 7
cannot occur. Thus we have 1;>.cp 17;. Therefore we have 5\771. ~+-- '+5‘m*1 >0
by (4.8). O

4.4. Shift functors

As in [Bo], we define a functor called the shift functor between the two
categories of modules of the rational Cherednik algebras with different param-
eters. Moreover we prove that it gives the equivalence of categories that we
discussed in Theorem 4.5 and Corollary 4.6.

Fix a parameter A = (\;);=0,... ;-1 € R! of the rational Cherednik algebra.
We take another parameter § = (6;);=0,... -1 € Z}. Define

GL(6)7X9
(4.12)  BS=

-1
D(Rep(Q,9)) / 3 D(Rep(@Q,9)(u(e?) = Ay)
=0

where yy is the character of GL(J) defined in Section 3.1. It is easy to see that
B has an (Axig, Ay )-bimodule structure.

Definition 4.8. We define the functor

Sg : .A,\—Mod — A)\+9—M0d,
M — B @4, M.

The functor SY is called a shift functor. Restricting SY to the subcategory
Ax-mod, we have the functor

Sf s Ay-mod — Ay p-mod.
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In Section 4.2, we defined the functors E\, F)\ between 7)-Mod and Ajy-
Mod. Using E) : 7\-Mod — Ax-Mod and Fyg : Ax+9-Mod — Ty 19-Mod, we
define the shift functor

8% = Fy1908% 0 Ey : Tx-Mod — T 49-Mod.
We also denote the restricted functor
g’i : Ty-mod — T y9-mod
by the same symbol S?.
Lemma 4.9.  The functor §§ restricts to a functor
§§ 1 Ox — Oxgo.

Proof. Fix M € O,. Since we have (A*)! = (eg+---+e;_1)®0g---O_1,
to prove the lemma, we only need to show Jy - - - ;1 acts locally nilpotently on
Sf(eOM) = Bg ®a,e0M. Fixb e B?\ and m € egM. We have (g - -+ 0j—1)Pm =
0 for a sufficiently large p € Zs¢. Consider a filtration {FyB% }1. defined by the
degree

degtizl, deg@i:O (i:O,...,l—l).
For b € Fka\\Fk_lBg, let ¢ be an integer greater than k& + p. Then, we have

[(30 ce 3171)(1, b] — b'(ao R 8171)17
Here b’ = Y25 ad(d -+ 0—1)7 (') - (3o -+ Bi—1)97P~7 € BY. Thus, we have

(80 .- '81_1)qb® m = b(ao .- -81_1)’1 ®Xm + [(80 . ~-8l_1)‘1,b} Xm
=b® (80 .. ~(3;,1)qm + b ® (80 .. 'alfl)pm = 0.

Therefore Jy - - - 0;_1 acts locally nilpotently on Sf (egM). O

Let A, be the subalgebra of A, generated by the elements tq0, and
to-ti_1.

Lemma 4.10. Fork=1,...,1—1, let bg be the non-negative integer
defined by (3.14) with @ = 0. Fork=1,...,1—1,n=0, ..., b — 1, define

-1

k—1

~ o, 0 n 0

gk(n) = (tnk+1 e tm)bk H (tnj-H T tm)bj (am T aﬁk) H(am T a”]j)b]
j=k+1 j=1

and, for n € Z>o, define
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Then {gr(n)}r.n generates B as a left Ax-module.

Proof. Consider the filtration of B¢ defined by the order of differential
operators in D(Rep(Q,0)). By [Bo, (5.1)], the associated graded module is

gr B3 = Clu" (0)]H e,

Thus the statement of the lemma follows from Proposition 3.13 and Lemma
3.12. |

Proposition 4.11.  For A = (\;)i=o,...1-1 € ereg and 0 = (0;)i=0,....1-1
€ Zl/\, we have

S(egAx (i) ~ eoArgo(i) and SL(AN()) ~ Axio(i)
foralli=0,...,1—1.

Proof. We show that SY(egAx(n;)) is isomorphic to egAxyg(n;) for all
i=1,...,1. To prove this, we see the structure of S¢(egAx(7;)) with the help
of the geometric information which we studied in Section 3.4. As a result of it,
we can construct the isomorphism Sf (e0Ax(m:)) =~ egAxto(n;) explicitly.

Let wi(n) = gr(n) @ eototi—1 .. .tn,+11,, be an element of SY(egAx(ni)) =
BY @4, eoAx(n;). By Lemma 4.10, {wg(n)}k,n span the module Bf ® 4,
eoAx(n;). We show that the vector w;(0) generates Bg ®.4, eoAx(n;) and
(80 cee 81_1)wk(0) =0.

First we show wg(n) is non-zero when k < ¢ or k = ¢ and n = 0. We
identify wg(0) = wg—1(bg—1 — 1). Then, by a straightforward calculation, we
have

(to--ti—1)wi(n)
-1

o o
- (tO"'tl—l)(tnk+1 "'tm)bk " H (tm‘+1 "'tm)b]
j=k+1

k—1
0
(8771 T am-)n (am s &U)bj ® egtoty—1 -ty 1y,
Jj=1

-1

o_ 6
= (tnk+1 T tm )bk e H (tm+1 e tm)bj (tm 6?71 e t'flk 6%)
j=k+1

k—1
0
(8771 T aﬁk)n_l H(am U aﬁj)bj ® egtoti—1 - - - tmlm“
j=1
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For 1 < p < k, we have

(tn, On, ) (O, - -+ Oy )" 1H m ®€ot0tz 1ty 1y,
B B k—1
:_O%+.“+&wl+§:@+n—l)
q=p
(O -+ Oy )"~ 1H o % ® eototi—1 R 2 P

Thus we have
k k—1
(to - - ti—1)wi(n {H ( ...+/\,71._1+Zb2—|—n—1)}wk(n—1).
=1 q=p
Forany p=1,...,7—1 we have 5\,,1,+-~-—|—5\m_1 >0 or ;\np+"'+5‘m—1 &7
by Lemma 4.7. Thus the coefficient of the right hand side of this equation is

non-zero.
Therefore we have
-1
i—1 360 ]
(to -+ t1-1)>==1 % w;(0) = Cwi(0) = C [[ (b0 -+ )" @ eototior -ty 11y,

Jj=1

where C € C\{0}. Since the right hand side of this equation is non-zero,
so is w;(0). Moreover, for k < 4, wg(n) is non-zero and it belongs to
Clto - - ti—1]w;(0). Then, we have

(4.13) Clto - - - ti—1]w;(0) = Cw;(0) & @ Cuwx(n

k<in

and it is Cltg - - - t;—1]-free.
Next we show wg(n) = 0 when & > ¢ or k = ¢ and n > 1. Inserting
Hé‘:k-&-l ty; Oy, into the factors of wy(n), we have

(tn]‘+1 "'tm)bg( ﬁ tm‘am)

j=k+1

~
|

1

9_
(tnk+1 e tm)bk "

J

Il
- =
T

1

0
X (8771 T a’]k)n (8771 U aﬁj)bj ® egtoti—1 -ty +11y,
1

(4.14) -1

<.
I

bY — b
= (tnk+1 "'tm) ko H (tnj+1 o tm) (8 O 1)
j—k+1
X (8771 o "7k n ! H m " ] ® egtoti—1 - tm+11m

=0.
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On the other hand, we have

— 1
b —-n b9
(tnpsr - * H (tnyn = tmy)™ ( H tﬁjaﬂJ)
k+1 j=k+1
k—1 .
(4.15) X (8711 " '8nk)n (8771 " 'anj)bj ® egtoty—1 -ty 111y,
1

<.
Il

1
=S I -G+ A1) ws(n)
j=k+1
For j # i, we have Ay, 4+ -+ + Ay,—1 # 0. By (4.14) and (4.15), we have
(4.16) wg(n) =0

fork>iork=1iandn > 1.
By Lemma 4.10, we have

Bg\ R Ay eOAA(m) = ZC[tO e ~tl,1]wk(n).
k,n

Then, by (4.16), we have

(4.17) B ®.a, e0Ax(n;) = Clto- - ti—1]w; (0 Z Clto - - - ti—1]wi(n).

k<i,n

By (4.15), we have wi(n) € Cltg - - - t;—1]w;(0) for k < 4. Thus we have,

(418) Z C tl 1 wk( ) (C[to s -tl,ﬂwi(O).

k<in

y (4.17) and (4.18), we have
B ®.a, eoAx(n;) = Clto - ti—1]wi(0).
Therefore we have A*w;(0) = 0 and w;(0) generates the module BY ® 4,
eoAx(n;). Thus we have S{(eoAx(1:)) =~ eoAxto(1:)-

By Proposition 4.4, F1¢ is an equivalence of categories. Thus, we have
Fyio(e0Axrto(i)) ~ Ax1g(i). Therefore we have

S(AN(D)) = Fago 0 85 0 Ex(AN(i)) = Faye(eoArro(i)) = Axyo(i).
O

Next, we show that the shift functor Sg is an equivalence of categories
between .4\-Mod and Ay 4¢-Mod.
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Lemma 4.12. For A\ € R

reg’

QEZl/\ and i, 3 =0, ..., 1 —1 such that
T Drepr J, the shift functor éA’f sends the exact sequence in Oy,

0 — Ax(j) = Ax(é) = La(ij) — 0
to the exact sequence in Oxig,
0 — Axyo(j) = Axyo(i) = Latoli,j) — 0.

Proof. By Proposition 4.11, we have §§(A)\(k‘)) = Aypg(k) for k =1, j.
Then SY(p) is a homomorphism

§§(¢) tAxyo(g) — Axtol(i).

By Lemma 4.3, gg(ap) is injective and its quotient is Lx4¢(4, ). Since §f is a
right exact functor, it implies S{(Lx(4,7)) =~ Lx+o(i, ). ad
Corollary 4.13.  For A € R!

reg’

HEZIA and i =0, ...,1—1, we have

S{(La(i)) ~ Layo(i).

Proposition 4.14. For A\ € Rl and 0 € Z., the functor éA’f s an

reg
exact functor from Oy to Oxyg.

Proof. Since §f is right exact, to prove the exactness it is enough to show
that Sg sends injective homomorphisms to injective homomorphisms. Assume

there is a non-zero module M € O, such that §§(M ) = 0. Without loss of
generalities, we can suppose that M is irreducible. By Proposition 4.1, M

is isomorphic to Ly(i) for some ¢ = 0, ..., I — 1. On the other hand, we
have S{(Lx(i)) ~ Lx1q(i) by Corollary 4.13. This contradicts the assumption
SY(M) = 0. O

The following proposition is a result of the general theory of highest weight
categories. R. Rouquier suggested it to the author as an approach to proving
that Sf is an equivalence. using it to prove the equivalence of Sg. The following
proof of the proposition is given by S. Ariki.

Proposition 4.15.  Assume there are two highest weight categories
(O,N), (O',A") which are equivalent to each other. If an exact functor F :
O — O’ preserves the partial orderings of A and A’, and F sends the stan-
dard modules of O to the standard modules of O', then F is an equivalence of
categories.

Proof. We denote the partial ordering of index poset A by >. We also
denote the standard modules of O by A(7) and the simple modules of O by
L(3) for i € A. For i € A, let P(i) be the projective cover of L(i).
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Let G : O' — O be an equivalence of categories. Consider the exact
functor F/ = Go F : O — . Since G and F preserve the partial orderings
of A and A’, so does F’. Since G is the equivalence, F’ is an equivalence of
categories if and only if F' is an equivalence of categories. Therefore we assume
O'=0and F: O — O is an exact functor such that F(A(i)) ~ A(i) for any
1€ A.

First we show that F(L(i)) ~ L(4) for any ¢ € A by induction on 4. If ¢
is minimal in A, we have L(i) = A(7). Thus we have F(L(i)) ~ L(i). Assume
F(L(j)) = L(j) for all j 4. Consider the exact sequence

0— N(i) — A(i) — L(i) — 0.

In the composition factors of N (i), only L(j) with j <04 appears. Thus F(N(i))
and N (i) has the same composition factors by the hypothesis of the induction.
Therefore we have F'(L(i)) ~ L(3).

Second, we have

(4.19) Ext™(M, N) ~ Ext"(F(M), F(N))

for any M, N and n by inductions on the length of M and N. In particular,
F is fully faithful.

By (4.19), we have Ext'(F(P(i)), L(j)) = 0 for any i, j € A. Moreover,
we have

Ext'(F(P(i)), M) =0

for any ¢ € A and M by induction on the length of M. Thus F(P(i)) is
a projective object in O. Since, End(F(P(4))) ~ End(P(4)) is a local ring,
F(P(7)) is indecomposable. On the other hand, F'(P(7)) has F(L(i)) ~ L(7) as
its quotient. Therefore, we have F(P(i)) ~ P(i) for all i € A.

Let A be a finite dimensional algebra such that O ~ A-mod. Since
F(P(i)) ~ P(i) for all i € A, we have F(A) ~ A.

Therefore we have

F(M)~F(A® s M)~ F(A) &1 M ~ M.
for any M € O. Therefore F' is an equivalence of categories. O

Remark 4.16.  Since we proved §§ (L(7)) ~ Ly4g(?) in Corollary 4.13,
we actually do not need the first part of the above proof.

Theorem 4.17.  For A € R., and 0 € Z\, the shift functor gf 0\ —

reg
Ozt is an equivalence of categories.

Proof. By Corollary 4.6, we have an equivalence Oy ~ Ox,14. By Proposi-
tion 4.14 Sg is an exact functor. The assumption of Proposition 4.15 is satisfied
for F' = Sg by Proposition 4.11. Then Sg is an equivalence of categories. [
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Corollary 4.18.  The shift functor Sf is an equivalence of categories

between Ax-Mod and Axi¢-Mod, and gf is an equivalence of categories between
Tx-Mod and T\19-Mod.

Proof.  This proof is essentially same as the proof of Theorem 3.3 in [GS1].

To prove the equivalence, we show that B;ﬁe ® Axto BY ~ Ay and BS ® 4,
ByYy ~ Axio. Assume that [ := By ®.4,., B ~ BB # Ax. Then I is a
proper two-sided ideal of Ay. By the generalized Duflo theorem proved in [Gi],
I annihilates a irreducible module eqLy (%) for some i =0, ..., | — 1. However,
by Theorem 4.17, we have

TeoLx(i) = By Yy @, .4 BS @4, e0La(i) = egL(d).
Therefore I = Ay. The second isomorphism can be proved similarly. O

In the rest of this subsection, we consider the (Axi¢,7)-bimodule
S§(807—)\) = Bi ®_A/\ 607:\.
First we define a space

-1

Mi = M(D(Rep(@,9))) / 3~ Mi(D(Rep(Q. ) (r(e?) — X).

=0

Then, consider the following natural maps:

o1 :e0Ty = 60/\/15“6) — eg My,
@2 1 eo Ay = egTheg — eg My,
gf)g : Bg\ = 60M§L<5)7X€ eg — eoM)\.

The above maps ¢1, ¢2 and ¢3 are clearly injective. Then, these injective maps
induce a map

B @4, eoTy — BleoTn C eg M.

L(9)

Clearly the image of this map is inside the subspace eoMf X0 thus we have

the following map:

O: Bg @Ay 607')\ — QOMSL(‘S)J@’
b®@m — ¢3(b)p1(m).

It is a homomorphism of (A4, 7))-bimodules.

(4.20)

Lemma 4.19 ([Bo], Lemma 6.8). Let B be a left Ore domain and P
an (A, B)-bimodule which yields Morita equivalence between A and B. If P’
is torsion free A-module, then every surjective homomorphism P — P’ is
isomorphism.

Set

(421) ﬂéi‘eg = {()\i)i:O,..‘,lfl € IRf"eg | Ai e+ )‘jfl 7é 0 for alli 7é j}
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Lemma 4.20. For A € R!

regs 0 € ZL , the homomorphism © is injective.

Proof. Set Ag\i) = e;Tye; for each ¢ = 0, ..., | — 1. Each Ag\i) is a
left Ore domain. The (T)\,Ag\i))—bimodule The; yields a Morita equivalence
when A € I@lreg by the same argument as in Proposition 4.4 for the (Ay,7y)-
bimodule eg7,. Therefore lS’f\@Ak eoTre; = B§®AA eo A1, The; yields a Morita
equivalence between A1 and Ag\i). The module Bf\eo’fei is a torsion free
Ayxie-module. Applying Lemma 4.19 to P = B§®AA eoTre; and P’ = Bf\eo’f,\ei,
we have B @4, eoTne; ~ BlegThe; C eoMSL(é)’Xgei fori =0, ...,1—1.
Therefore we have B @4, eoTy ~ BieoZy C eOMfL(‘s)’X". O

4.5. ¢g-dimension of representations

In this subsection we calculate the g-dimension of the module C®c(y,...;,_,)
Bi ®.4, eo7y. This result is used in Section 6.2 to prove our main theorem,
Theorem 6.1.

Consider the Euler operator

-1 -1
euy = ZAZ-A;-k — Zci()\)ei SN
i=0 i=0

where ¢;(A) € R such that ¢;11(A) — ¢;(A) = lkip1 — lk; =1\ — 1 and co(N) +
Cl()\) + -4 lel()\) =1.
For 1; € Ax(4), euy acts as follows:

(422) euAli = _Cz()\)lz
The following lemma is proved by a straightforward calculation.

Lemma 4.21.

(1) [euA,Ai] = Az
(2). [eun, A7) = —A7.
(3). [eun, €] = 0.

A Ty-module (or Ay-module) M is called a graded module if M has a vector
space decomposition M = @, M, such that A;M,,, € My, 11, Af My, € M,y
and e; M, C M, for all i.

For a graded module M = @,, M, and k € R, let M[k] be the graded
module shifted degree by k, i.e.

(M[k})m = Mm+k-

For a module M € Oy, M has a vector space decomposition M = @, M,
where M, is the generalized eigenspace for an eigenvalue m with respect to
euy. By Lemma 4.21, this decomposition makes M a graded module. This
grading is called the canonical grading.
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For a standard module Ay(i) (i = 0, ..., [ — 1), let A5(i) be a graded
module which is isomorphic to Ay (7) as an ungraded module, and

M= @ (B@) . (B@) =cam.
mEZLso

Considering Ay (i) to be a graded 7y-module with the canonical grading, we
have

(4.23) AN(D) = Ax(D)[=ci(V)]

as a graded 7)-module by (4.22).
For a (7, 7,)-bimodule M, let yeuy be the operator on M:

veux(m) =euy -m —m-euy.

for m € M. We have the decomposition of M,
V=@,

where M, is the generalized eigenspace for an eigenvalue n with respect to the
operator yreuy. By this decomposition, M is a graded module. This grading is
called the adjoint grading.

The (7, 7))-bimodule 7, has the decomposition

7:\ = @(7&)71
neEZ

where (7)), is the eigenspace for an eigenvalue n € Z with respect to the
operator yeuy. This grading coincides with the grading given by the degree,

degEij Rt =1, degEij®8k =—1.
For an (Ay/,.Ay)-bimodule M, let y-euy be the operator on M,
aeuy(m) = egeunreg - m — m - egeuneg.

Then, the operator y.euy gives M the structure of a graded module. We also
call this grading the adjoint grading.
Consider the following decomposition of Bi,

B =D (BY),
ne”Z

where (B?\)n is the eigenspace for an eigenvalue n with respect to the operator
r+o€uy. By the above decomposition, B§ is a graded module. This grading
coincides with the grading given by the degree,

degty =1, degdy =—1.

In the rest of this subsection, we assume A € ]Iilreg and 0 € Z\.
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Lemma 4.22. Fori =0, ..., | — 1, we consider the grading of the
module

SUAN(D) = B @4, oA (i)

induced from the adjoint grading of BS and the grading of Ay (i). Then we have

B} @4, e0Ax(i) = egAx1(i)[d]]
where d¢ are the integers defined on (3.18).

Proof. We have the two gradings on the standard modules Ay (i) and
Axto(i). Let deg,,, be the degree defined by the canonical grading and let
deg, be the degree defined by the grading of ﬁk(z) For the other graded
modules, let deg be the degree of the grading of each module.

We have

B @4, e0Ax(1) = egAxso(i)

as ungraded modules by Proposition 4.11. Considering the canonical grading,
we have

deg o (b ® v) = degb + deg.qy, v

for b€ Bf and v € eoAx(i).
By (4.23), we have

degcan (U) = deg)\ (1)) - cl()‘)
degcan(v/) = deg)\+9 (U,) - CZ(/\ + 0)

for v € Ax(¢) and v € Axyg(i). Therefore we have

degy 1 p(b®@v) = deg o, (D@ v) + i (A +6)
= deg(b) + deg,,, (v) + c;i(A+6)
= deg(b) + degy (v) + ci(A +0) — ci()
=deg(b®v) 4+ c;(A+60) — c;i(N).

On the other hand, we can easily obtain

Al —dl =10; = (cix1 (A +0) — c;(A +0)

) = (cit1(A) = ei(N),
db+df+---+d_, =0.

Thus we obtain

ciA+0) —ci(\) =d.
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For a graded module M = @, M,,, define the g-dimension of M as a
formal series

dim,M =Y "(dimM,,)q™

By the above lemma, we have the g-dimension of S%(egAy(i)) = Bf @,
eOAA(i)a

~ 1
dimg BS @4, eoA (i) = C]d‘ = Z?ql
fori =0, ...,1— 1. Here we set d{ = dj.

The adjoint gradings of B?\ and 7 induce the gradings of the (Ax1g,7x)-
bimodule B ®4, 7,. They also induce the grading of the left A\ p-module
Bi @4, Th®cpa+ C and the grading of the right 7y-module C®c(,...s, ] B?\ ®A,
.

By (4.5), we have the following natural isomorphism as graded Aj4¢-
modules

-1 N
B, @4, e0Tr @cia-) C ~ @D BY @, eoAx(i)
i=0

By the above equations, we have

. J Z—
dim, Bi ®A, €07\ ®cia) C= q —t Z g" " —qv

Lemma 4.23 ([GS1], Theorem A.1).  Let R be a connected Z>q-graded
C-algebra. Let P be an R-module that is both graded and projective. Then P
is a graded-free R-module in the sense that P has a free basis of homogeneous
elements.

Lemma 4.24.

(1). The module S{(eoTn) = BS ®a, eoT\ is graded-free as a left
Clto - - - ti—1]-module and graded-free as a right C[A*]-module.

(2). BS ®ua, eoTy ®cra-) C s a finitely generated, graded-free
Clto - - - ti—1]-module.

(3). COcrg.t; 11B®a, €07 is a finitely generated, graded-free right C[A*]-
module.

Proof. The following proof is essential the same as the proof of [GS1,
Lemma 6.11].

(1) By Proposition 4.4 and Corollary 4.18, B§ ®.4, €7y is projective as
a left Ayyg-module and a right 7y-module. By the structure of the graded
module Bf\ ® .4, eoZx which is defined above, Bf\ ® .4, €07y is graded as a left
Clto - - - t;—1]-module and a right C[A*]-module. By Lemma 4.23, B?\ ®.a, €T
is graded-free as a Cltg - - - t;—1]-module and a right C[A*]-module.
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(2) By (4.5) and Proposition 4.11, we have

-1
Bf\ ®a, €T ®c[a*] C~ @EOA)\+9(i) ~ (C[to .- ~tl_1] ® CZ;.
1=0

Therefore, Bf\ @4, 0T\ ®@cpa+) C is graded-free.

(3) First, we show that B{® 4, €07, is a finitely generated right module over
R = (C[ty--t;-1])°° ®c C[A*]. By Lemma 4.20, BY ® 4, €07\ C eo./\/lfL(é)’Xe
Thus grB ®.4, eoTy C gr eOMSL(é)’XB = eoM;(C[p~1(0)])¢L@)x6 | which is
certainly a noetherian Cltg - - -#;—1] ® C[A*]-module. The C[tq - - - t;—1] ® C[A*]-
module structure of gr Bg ®4, €07y is the one induced from the R-module
structure of B ® 4, eo7y. Therefore, BS ® 4, eo7, is finitely generated.

By (2), ¥ = {A*, (to-- -t —1)} is a regular sequence for the right R-module
BY @4, eoZx. In particular, if n = A*R + (to---t;—1)R, then ¥ is a regular
sequence for the R,-module (Bi ®4, €07\)n- By the Auslander-Buchsbaum
formula [Ma, Ex. 4, p.114], (B ®.4, €07))n is free as a R,-module.

Finally, C ®c(sy...t,_,] B§ ®.4, €07, is a finitely generated, graded C[A*]-
module and so corresponds to a C*-equivariant coherent sheaf on C. Therefore,
the locus where C ®cjyg...; ) Bi ®4, €07y is not free is a C*-stable closed
subvariety of C. If this locus is non-empty, it must contain 0 € C. By the
conclusion of the last paragraph, the stalk at 0 € C of C®cyz,...¢,_,) Bf\ ® 4, €07y
is free. Therefore, C ®c(t,...t;,_,] B?\ ®4, €07\ must be free. Since C ®cy,...t,_,)
B?\ ® .4, eo7y is graded module, it is graded free by Lemma 4.23. |

By Lemma 4.24, a homogeneous C[A*]-basis of C®cy,...t, 4] @B @4, e0 Ty
is given by a homogeneous C-basis of C ®cyy,..., ) ®B§ @4, €0Tx @cpax) C.
Therefore we have the following proposition.

Proposition 4.25. We have

l
: o q—iy 1
(424) dlmq(C ®C[tg~--tz_1] ®B§ ®_A/\ 607& = qul—‘r(l Z)ﬁ
=1

5. Gordon-Stafford functors

5.1. Z-algebras R
In this section, we define the functor ®§ of (1.5) as Boyarchenko defined
it in [Bo]. First we review the definition and basic properties of Z-algebras.

Definition 5.1. A lower-triangular Z-algebra B is an algebra such that

(1). B is bigraded by Z in the following way: B = D, 50 Bij-

(2). The multiplication of B is defined in matrix fashion, i.e., B satisfies
Biijk Q Bik for ¢ Z j Z k Z 0 but BijBlk =0 lfj 7£ l.

(3). Bj; is an unital subalgebra for all i € Z>.
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We also define graded modules of lower-triangular Z-algebras. Let B be a
lower-triangular Z-algebra. A graded B-module is Zx>(-graded left B-module
M = @ieZ>o M;, such that B;jM; C M, for all i > j > 0 and B;; M, = 0
if j # k. Homomorphisms of graded B-modules are defined to be graded
homomorphisms of degree zero.

We denote the category of graded B-modules by B-Grmod, and denote
the subcategory of finitely generated graded B-modules by B-grmod.

A graded module M = €P,, ~M; € B-Grmod is bounded if M; = 0
all but finitely many i € Z>o, and torsion if it is a direct limit of bounded
modules. We denote the subcategory of torsion modules in B-Grmod by
B-Tor, and the subcategory of bounded modules in B-grmod by B-tor. The
corresponding quotient categories are written B-Qgr = B-Grmod/B-Tor and
B-qgr = B-grmod/B-tor.

For a graded commutative algebra S = € Sm, we define a lower-

mEZzo
triangular Z-module S = ®i>j>0 S;; where S;; = S;—; for i > j > 0. Define
the categories S-Grmod, ..., S-qgr in the usual manner. Then, as in Section
5.3 of [GS1], we have equivalences of categories:

S-Qgr — S-Qer,

(5.1) S-qgr — S-agr,
M= Mi—M=P M.
i1€Z>0 1€ZL>0

We define another example of Z-algebra called a Morita Z-algebra. Sup-
pose we have countably many Morita equivalent algebras {B; }icz., and B;; is
a (B, B;)-bimodule which yields Morita equivalences for ¢ > j > 0. Moreover,
suppose we have an isomorphism B;; ®p, Bji =~ By for i > j > k > 0. Set
B;; = B; and define the Morita Z-algebra B to be B = @i>j>0 B;;. Note that
our definition of Morita Z-algebras is same as one of [GS1], and it requires a
stronger condition than one of [Bo.

Lemma 5.2 (GS1, Lemma 5.5).  Assume By is noetherian, then

(1). Each finitely generated graded left B-module is noetherian.

(2). The association ¢ : M — €D,y Bio ®p, M induces an equivalence
of categories between Bg-mod and B-qgr.

5.2. Construction of the functor
For a stability parameter 6 € ereg, set

S= @D Su  Sw=Clu OO

mEZLx>q

as defined in Section 3.1. By Proposition 3.3, we have an isomorphism 9ty (0) ~
ProjS. R
Let S = @iZjZO Si; be the lower-triangular Z-algebra obtained from the
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above graded algebra S. By (5.1), we have an equivalence of categories §—qgr ~
Coh(My(9)).

Fix A € Rl , and 6 € Z!. Recall the algebra Aj of (4.2) and the bimodule

BY of (4.12). Set B; = Ayii9 for i € Z>o and set B;; = Bf\tfg)g fori > j > 0.

By Corollary 4.18, B;; is a (B;, B;)-bimodule which yields a Morita equivalence.

Proposition 5.3. For A€ R. _and € Zg\, we have the isomorphism

reg

(i—4)0 (j—k)0 _ 12(i—k)O
Biijo @i Bilire ~Biirg -

Proof. We apply Lemma 4.19 for the algebras A = Axy9, B = Axiro
and the modules P = Bg\:jge ® Ao B&J_:k]‘é)a, P = Bf\:,fg)e. It is clear that B is
a left Ore domain, P’ is torsion free and P yields an equivalence of categories
by Corollary 4.18. We have the surjective homomorphism

i—j)0 j—k)o i—k)0
P = Bg\ﬂ‘JG) O Ax g0 Bg\]-s-lce) — P' = BE\+M9)
b1 ® b2 Ld blbg

Thus, by the above lemma, it is an isomorphism. O

By the above proposition, we have the Morita Z-algebra B = @i>j>0 B;;
where B;; = B; = Ax149. By Lemma 5.2, we have an equivalence of categories

Ax-mod — B-qgr,
M—M= @ B @4, M.

meEZx>q

The algebra Ay and the bimodule B are filtered by the order of differential
operators in D(Rep(Q,9)), and we have

gr Ay ~ Clu~'(0)]9"®) = 5,
gr Bi? ~ Clu~1(0))9LOX" = g,

The filtration induces the filtration on the Morita Z-algebra B = @, ;5 Bij-
Thus we have the following theorem as in [GS1] and [Bo]. o

Theorem 5.4. For )\ € ]ereq, 0 € 7., define Z-algebras B and S as
above. Then: ‘

(1). There is an equivalence of categories Ax-mod ~ B-qgr.

(2). There is an isomorphism of lower-triangular Z-algebras gr B ~ S.

(3). We have an equivalence of categories S-qgr ~ Coh(97t9(0)).

Let 7)-Filt, Ax-Filt be categories of filtered modules. Given (M,A) €
T)\-Filt (resp. € Ay-Filt), we say A is a good filtration on M if gr, M is a finitely
generated gr 7y-module (resp. gr.Ax-module). We denote the subcategories of
good filtered modules by 7,-filt and A -filt.
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Let (M, A) € Ay-Filt. Then each module M (i) = BY¥ ® 4, M is filtered by

the tensor product filtration
AFM(i) =Y F'BY @ MM
lez

where F is the filtration of Bi. Therefore, the B-module M = @
filtered and we have the graded S-module gr M= ®iEZ>
M. For a graded B-module with filtration (M, A), we call A is a good filtration
if gry M is a finitely generated S-module. The following lemma is due to [GS2].

Lemma 5.5 ([GS2], Lemma 2.5).  If A is a good filtration of M, then
the induced filtration A on M is also good.

i€Zs0 M(i) is
, 8t M (i) associated to

As in [Bo], we define the functor
@ : Ax-Filt — Qcoh(My(9)),
(M,A) — gryp M.
By restricting <I>§ to Ax-filt, we have a functor
®Y : Ay-filt — Coh(My(0)).
We also define the functor from 7,-Filt and 7,-filt
39 = 84 o E, : Ty-Filt — Qcoh(My(¥)),
39 = @ o E,, : Ty-filt —> Coh(My(5)).

We call the above functors ®§ and </I;§ the Gordon-Stafford functors.

6. Construction of a tautological bundle

6.1. Main theorem

Now we consider our main theorem. We determine the image of the module
eoZy by the functor <I>§.

Recall the set of parameter ]Iilreg of (4.21). Fix the parameters \ =
(Ai)i=0,...1-1 € ]Iilreg and 0 = (0;)i—o,...1—1 € Z}. Consider an Ay-module e7y.
Considering the filtration by the order of differential operators in D(Rep(Q, 9)),
eoT) is a filtered A)-module with good filtration. The following theorem is the
main result of this paper.

Theorem 6.1.  For A € Hilreg, 0 € Z and m € Zso, we have the iso-
morphism

gr By @4, €Ty = egM(Clu™ ' (0)]) THONE
Therefore we have
o (eoTh) = Py

as coherent sheaves on My ().
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In the next subsection, we will give the proof of the above theorem.

6.2. Proof of the main theorem

In this subsection, we complete the proof of our main theorem, Theo-
rem 6.1.

First, we construct the homomorphism of Theorem 6.1. The module
Bi ®a, eoZy is filtered by the tensor product filtration. The module
eo/\/lfL(é)’Xe is filtered by the order of differential operators in D(Rep(Q, 9)).
Clearly, the homomorphism © of (4.20) is a homomorphism of filtered modules.
Thus we have the associated homomorphism between the associated graded
modules

grO :gr (B?\ ® A, eoT,\) — gr BOMSL((S)’XG = eoMl(C[ufl(O)])GL(é)’X".

This homomorphism was what we wanted to construct.

The (Axtg,73)-bimodule BY @4, eo7, is graded by the grading induced
from the adjoint gradings of BY and eyZy. The (Axig,7y)-bimodule
eoMfL(é)’X" is graded by the adjoint grading with respect to the operator
Af0€U.

Lemma 6.2.  The homomorphism © is homogeneous with respect to the
gradings of B @ 4, eoTn and eOMSL((S)’X".
By Lemma 4.20 we have the injective homomorphism

GL(8),xT
O : B;”" ®u, e0Ty ~ BTgeo’]} — eg M (@)x"

To complete the proof of theorem, we need to prove the equality of the inclusion

B?\eo’T)\ C GOMSL(‘S)’X?. The following proof is essentially the same as the proof

[GS1, Section 6.17].

Lemma 6.3.  The modules B;\”eeo’l}\ and eoMfL(S)’XgL are free as left
Clto - - - ti—1] modules.

Lemma 6.4. We have an equality of localized spaces
(B eoTa)[(to - 11-1) ] = coMFT X [(to - 1-0) 7).

Proof. 1Tt is clear that

(BeoT)|(to - ti—1) ] € eoMF O (8- t-1) 7).

Fix an arbitrary element Zi;é fi ® Ey; € eOMSL(é)’XgL where f; € B;mg*'”.
We show by induction that, for any f ® Ey; € FneoMfL(d)’X" e;, there exists

D € Z>o such that

(6.1) (to'- 'tl_l)pf@)EOi S BTeeoT,\.
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For n = 0, we have
FoeoMS X — o My(Clto, ..., ty—1]) FHONE

Thus we have

(to---tic1)f = (i1 -~ tiato f)(t1 - - a).

We have (t;11---t;—1tof) € BTG and (t1---t;) ® Ep; € egZyre;. Therefore we
have (6.1) for n = 0.

Assume we have (6.1) for n < ng. For f ® Ey; € FnOeOMSL(éLX?ei, we
have
(to--ti—1)f ® Eo; = f(to---ti—1) ® Eoi + [to---ti—1, f] ® Eo;.
The second term [t t ; GLO)XT o,
0 ti—1, f] ® Eo; belongs to Fy,,_1e0M; e;. By the

hypothesis of the induction, there exists p € Z> such that
(to--ti—1)P[to- - tie1, f] ® Eo; € BYeoTh.

We have (to cee tl_l)p(fti_H .- ~tl_1t0) S B;\n@ and (tl cee ti) ® FEo; € eogTye;.
Therefore, we have

(to--t1—1)"T f @ E;

= (to- - ti—1)P f(tig1 - - ti—ato)(t1 - t;) @ Ey;
+ (to- - ti—1)Plto - ti—1, /] ® Eo; € BYeoT,.

Therefore we have (6.1) for n = nyg. d

Let {agp}qp be a Cltg---t;—1]-free basis of BieyT, such that agp is a
homogeneous vector of degree g. Let {bgq}q.4 be a Cltg---t;_1]-free basis of

eo/\/lfL(é)’XgL such that by, is a homogeneous vector of degree g.
By Theorem 3.16 and Proposition 4.25, we have the equality

1
1—qt

l
dimq C ®(C[to---tl_1] BK’LG@O?’A — Z qd;'jrgl"r(l—i—l)
(6.2) i=1

= dlmq C ®C[to'--tl71] eoMfL(é)’Xg

By (6.2), we have:
(t1). For any g € R, {agp}p and {bgq}4 have finite cardinality.
(12). There is T € R such that there is no nonzero ag4y, and bgq when g > 7.
(t3). For any g € R #{agp}p is equal to #{bgq}4-
We show that we can adjust the basis {byq }4 to be equal to the basis {agp}, by
a downward induction on g. By (13), we have {agp}p = {bgq}q = 0 for g > T
Let —oo < G < T, suppose that {byq}q = {agp}p for all g > G by in-
duction. Suppose that there exists an element bgq, which does not belong to
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{agp}p. By Lemma 6.4, there exists an integer n € Z> such that we have a
homogeneous equation

(6.3) (to- - ti—1)"bGg, = Z Caplgp + Z capacp t Z

g9<G,p 9>G,q

where each ¢y, ¢, € Clto---t;—1]. Note that we use the hypothesis of the

induction {agp}, = {bgq}q for g > G. Since Bi*¥eoT, C eOMSL(J)’X;ﬂ, we can
write each ag, = Zh’q d;‘gbhq for some dgg € C[tg---t;—1]. Thus we obtain a
homogeneous equation

(64)  (tot1)"bag = D Copdilbng+ > capde brg > chybag

9<G,p,h,q p,h,q 9>G.q

The above equations (6.3), (6.4) are homogeneous of degree G + In. By (6.3),
degcgp > In for each g and p. Thus the by, in the first two terms of the right
hand side of (6.4) has degree < G. Since {byq}g.q are Cltg - -t;_1]-basis, the
third term > .o, ¢;4bgq is actually zero in (6.3), (6.4).

Now consider where bgq, appears on the right hand side of (6.4). For
g < G, (6.3) implies degcg, > In for each p, thus there is no by, in the first
term of the right hand side of (6.4). Thus bge, appears only in the second
term of the right hand side of (6.4). Since {bgq}g,q is Clto - - - t;—1]-basis, there

is nonzero podggo bag, in the second term of the right hand side of (6.4). In
this case by (6.3) we have degcgp = nl. Hence dGq" € C\{0}, and we have

agp = dggﬂ bag + Z e ! bhg.
(h,q)#(G1a0)

Thus we can replace bgq, by agp in our basis of eo/\/lGL(é) X5 . By (13), {agp}p

and {bgq }q have the same cardinality. After a finite number of steps, we have
{bcq}q € {acp}p and hence {bgq}ty = {agp}p. This completes the induction on
g. Thus, we have {by,}, = {agp}, for all g. It implies the equality By"YeqT, =
€o MGL 5 X8

6.3. Characteristic cycles

In this section, we determine the characteristic cycle of the standard mod-
ule Ax(3) in Mp(d) fori =0, ..., 1 —1.

Fix the parameters A = (A;)i=o,... -1 € ereg and 6 = (0;)i—0. 11 € Z5.
For M € Ayilt, we consider M = €D, By ® 4, M and the coherent sheaf

O (M) = (gr M)N Let the associated radical ideal N3; to be the radical ideal
N3; = \/anng gr M. The characteristic variety of M is
Char(M) = Supp(fbg(M)) =V(N3p)

where V(I) is closed subvariety associated to ideal I. Note that Char(M) C
T, '({y=0}) =UyU---UUj_y for M € O,.
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Let MinM be a set of prime ideals minimal over N7. If P € MinM. , let

n3; p be the length of the Sp-module (gr M )p. Define the characteristic cycle
Ch(M) of M to be

Ch(M)= Y ngpV(P).

PeMinM

Let Min'M be a subset of MinM consisting of those prime ideals P for which
dim V(P) = dim V(Ng;). Define the restricted characteristic cycle rCh(M) to
be

rCh(M) = Y ng pV(P).
PEMin’ M
The following lemmas are proved in [GS2].
Lemma 6.5.  The characteristic varieties, the characteristic cycles and

the restricted characteristic cycles are independent of the choice of good filtra-
tions.

Lemma 6.6. Let0 — A — B — C — 0 be a short exact sequence of
finitely generated Ax-modules. Then one of the following cases occurs:

(1). dim Char(A) < dim Char(B) = dim Char(C) and rCh(B) = rCh(C).

(2). dim Char(A) = dim Char(B) > dim Char(C') and rCh(B) = rCh(A).

(3). dim Char(A) = dim Char(B) = dim Char(C) and rCh(B) = rCh(A) +
rCh(C).

By Theorem 6.1, we have the isomorphism
34 (e0Ty) ~ Py.

By the isomorphism of Ay-modules

-1
607')\/6077)\14* ~ @EOA)\U),
i=0
we have
o -1
(6.5) Po/PoA* ~ B (egTh/eoThA™) ~ D D4 (e Ax (i)

=0

as coherent sheaves on My (). Thus we can determine the characteristic cycles
from (6.5).

Proposition 6.7. For A € R!

l . .
reg and 0 € Zy, we have an isomorphism
of coherent sheaves

0 (oA (1)) = (Po/PyA”)e;.
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Proposition 6.8.  For \ € I@lreg, 0 e Zl)\ andt =0, ..., —1, we have
Cho(eoAn()) ~ [Ui]+ D> [U]=D[U]= > [U].
9i+"'+0j—1<0 Z‘ZG] iEgerﬂnﬂj

Proof. Since the sheaf Py is the tautological bundle on My (§) defined by
(3.12), The action of A* on a fiber ﬁg([ak, bilk=0,...1-1) @i;é CEy; is given
by the right-multiplication of a matrix 22;10 by Er—1 . By the definition of
U;, we have b; = 0 if and only if 6; +--- + 6;_1 < 0 at [ak, bi|k=0,...1—1 € U;.
Therefore

(Po/PoA*)([ar, bilko,...1—1) = @ CFEy
0;+-+0;-1<0

at any point [ag, bglk=0,... -1 € U;.
By Proposition 6.7, we have

39 (g A(N)(i)) ~ (P /Py A*)e;.
Therefore we have

Che(eoAN (@) = [Us]+ Y (U]
0;+--+0;_1<0

By the definition of >4 and the definition of > gecom 0, we have
Z’DGj@Z’Dgeomﬁj@ai‘k"'"‘e]’fl < 0.
Thus we have the statement of the proposition. O

Note that Proposition 6.8 is an affirmative answer to Question 10.2 of [Go]
in the case of G = Z/IZ.

Corollary 6.9.  Taking the reduced characteristic cycle rChe(M) of a
module M € Oy induces an isomorphism of vector spaces

rChy : K(0,) ®7 C — H%(m, ' ({y = 0}),C).

Corollary 6.10.  If 1; Dyepa 1; and there is no i > k > j such that
i |>rep,)\ Mk then

rChy(eoLa(n:)) = [Un, |+ [Un,_ 1+ + [Un,_, |-
Proof. By the assumption, we have an exact sequence
0 — e Ax(n;) — eoAx(1;) — egLa(n;) — 0
of Ay-modules. By Lemma 6.6, we have
rChy(eoAx (1)) = rChg(eoAx(n;)) + rCho(eoLr(n:))-

Therefore we have the statement of the corollary. O
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