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Asymptotic expansions for functionals of a
Poisson random measure
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1. Introduction

The Malliavin calculus for functionals of a Poisson random measure has
been developed by many authors. Bismut [2] has generalized the Malliavin
calculus for Wiener-Poisson functionals by using the Girsanov theorem. As
another method, in Bichteler, Gravereaux and Jacod [1], one can find the study
of the Malliavin operator on Wiener-Poisson space and application of it to
stochastic differential equations. Both in these works, the authors have given
differential operators on Wiener-Poisson space and have proved the integration
by parts formulas. These formulation suffers some limitation on an intensity
measure, that is, the intensity measure must have a smooth density.

On the other hand, in the Malliavin calculus for Wiener functionals, Wiener
chaos expansion of the space of square integrable Wiener functionals can be
considered as a Fock space, and the differential operator is regarded as the an-
nihilation operator on a Fock space. This sort of structure can be also found in
the case of the space of square integrable functionals of Wiener-Poisson space,
see [6]. Nualart and Vives [10], [11], and Picard [13] have studied the annihi-
lation operator and its dual operator (the creation operator) on the space of
square integrable functionals of a Poisson random measure. Picard [12] has also
given a smoothness criterion by using the duality formula (see Theorem 2.1) for
functionals of a Poisson random measure under the Condition 1 (see Section
2) on the intensity measure, and has studied the solution to some stochastic
differential equation. This argument of Picard can be generalized for some
Wiener-Poisson functionals, see [5]. The Condition 1 differs from that of [1],
and allows us to take a intensity measure with some singularity. One can find
some interesting examples satisfying Condition 1, for instance, stable processes
and CGMY processes (see [3]).

The purpose of this paper is to prove the asymptotic expansion theorem
(done in the Wiener space by Watanabe [18]) for functionals of a Poisson ran-
dom measure. By using the Malliavin operator which we mentioned above,
Sakamoto and Yoshida [15] have studied asymptotic expansion formulas of some
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Wiener-Poisson functionals in the statistical view point. In particular, the in-
tegration by parts formula has played an important role in [15]. However, as
we mentioned above, the intensity measure must have a smooth density. On
the other hand, we adopt the framework of Picard [12]. Hence, we can con-
sider functionals of a Poisson random measure with an intensity measure which
may have some singularity. Let us roughly explain our main result (Theorem
5.1). We shall introduce Sobolev space Dy, with norm |- |, in Section 2,
and give a modification of smoothness criterion of Picard [12] in Section 3. If
F € Do :=NZ2y Np>2 D p satisfies the non-degenerate condition, this modi-
fication claims that

sup |E[Ge' )| < Crp(1+ €7~ 5)3,
‘G|k,p:1

where a, 3 are some positive constants with § < 3. From this inequality, one
can show that the function (&) := E[Ge'¢ F] is a rapidly decreasing func-
tion, see Remark 8. In the Malliavin calculus on Wiener space, composites
of Schwartz distributions and smooth Wiener functionals are linear continuous
functionals on the space of smooth functionals, and can be evaluated by using
the integration by parts formula. On the other hand, as we mentioned above,
we cannot use the integration by parts formula in our formulation. Hence, to
define composites of Schwatz distributions and functionals of a Poisson ran-
dom measure as linear continuous functionals on Dy, we choose the following
way; since (&) = E[Ge'¢ '] is a rapidly decreasing function, we evaluate the
composition as follows

<TOF7G>:S,<‘7:T7,¢)>S7

where T is a Schwartz distribution and F7T is the Fourier transform of 7. In
Section 4, we shall precisely discuss the definition. Now, we shall mention
our main result. We shall consider the parametrized functionals F'(€) € € (0, 1].
The asymptotic expansion F(€) ~ > 7, €" f,, can be defined similarly as that of
Watanabe [18]. If F'(¢) has the asymptotic expansion and satisfies the uniformly
non-degenerate condition, then the composition T'o F'(¢€) has also the asymptotic
expansion ZZO:O €"®,,, where ®,,’s are linear continuous functionals on D,
and are given by the formal Taylor expansion. Hence, roughly speaking, the
asymptotic expansion theorem for functionals of a Poisson random measure can
be obtained similarly as that of Watanabe [18].

As an application, we shall give the asymptotic expansion of some stochas-
tic differential equation. Our application is the analogue to the study of
Kunitomo-Takahashi [7]. Kunitomo-Takahashi [7], [8] have applied the asymp-
totic expansion of [17] and of [20], [19] to mathematical finance. In [9], they
have considered the following stochastic differential equation:

dSi(€) = rSi(€) dt + ea(St(€), t)dWr,

where Wy is a Brownian motion, and have given the asymptotic expansion
Se(€) ~ Z;io €/ A;. By using this expansion, they have estimated the option
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price such as E[(S¢(€) — K)4]. The authors have also studied jump diffusion
case:

dSi(€) = rS(€) dt + eo(Si(€), t)dW; + / Sy_(€)(e*® — 1)N(dt x dx)
R

where N is the compensated Poisson random measure whose intensity measure
is the Lebesgue measure or the normal distribution by using the formulation of
[1]. On the other hand, we shall consider the following stochastic differential
equation:

4X,(€) = b(X())dt + ¢ /R o(Xo—,y) N (dt x dy),

where the intensity measure of N satisfies the Conditionl. If the stock price
process is given by the stochastic differential equation driven by a Lévy process,
to study the asymptotic expansion of X;(e) ~ Z;’io € f; seems important to
evaluate the option price, as in [9]. However, we do not deal with numerical
simulation in this work. Financial interpretation of the application can be found
in [7]-[9]. As an example, we shall see that geometrical CGMY process satisfies
the uniformly non-degenerate condition, although we need some modification
on the tail of the density of the Lévy measure.

The reminder of the paper is organized as follows: In the next section, we
shall give general notation and introduce the Sobolev space. In section 3, we
shall exhibit the preliminary results. In particular, we shall give a modification
of the smoothness criterion of Picard for our purpose. Although the proof is
essentially due to Picard , we need to give the modification of the proof of
his main theorem, to prove the asymptotic expansion theorem. We shall give
the proof in Section 8. In Section 4, we shall formulate the composition of the
functionals of a Poisson random measure and Schwartz distributions. In section
5, we shall define the asymptotic expansion, and give its elementary properties.
The asymptotic expansion theorem will be proven in Section 6. In Section 7,
we shall prove the asymptotic expansion of the stochastic differential equation
and also give a sufficient condition that satisfies the uniformly non-degenerate
condition.

2. Notation

(1). Probability space and hypothesis. We set E = [0,1] x (R?N{0}¢). Let
€ be the Borel o-algebra on E, and A(du) a o-finite and infinite Radon measure
without atoms defined on (F,E&). We define

y(u) = |z|  foru=(s,2) € [0,1] x (R® N{0}°) = E.

Throughout this paper, we suppose that the measure space (E, &, \) satisfies
the following condition:
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Condition 1.
I-1). [, 7*(u) A1 X(du) < oo, where y(u) A1 = min{y(u),1} ;
I'-2). there exists a € (0,2) and ¢y > 0 such that for each p € (0, 1]

ro= | PN 2 o

where A(p) = {u € E; y(u) < p}. We shall use the notation a, y(u), and T'(p)
in the whole paper.

By a point measure on (E, &), we mean a measure w which has the form
w(B) =3_;6u,;(B), where u; € E, B € £ and 4y, is the Dirac point measure at
uj. Define N(w, B) = w(B) for a point measure w and for B € £. We denote
by € the space of all of point measures on (E, £) such that w({u}) <1 for each
u € E, and by Fy the smallest o-algebra such that N(-, B) is measurable for
each B € £. Then it is well-known that there is the probability measure P
on (9, Fy) such that, under P, {N(-, B); B € £} is a Poisson random measure
with the intensity measure A:

P1). for B € € with A(B) < oo, N(B) is a Poisson random variable with
mean A(B);

P2). N(B) = o0, if A(B) = o0

P3). for By,..., By € &, random variables N(By),..., N(By) are indepen-
dent, if By,..., B are pairwise disjoint.
We denote

N(B) = N(w, B), |N|(du) = N(du) + A(du), N(B)= N(B)— \B).
We write F for the P-completion of Fj.

(2). Maps e, e, and operators D, D*. We shall introduce maps ¢, ,e}
(u € E) from € to Q. They are defined as follows

e, w(A) =w(AN{u}?), etw(A) =¢c,w(A)+ 1a(u).

For a functional F'(w), we write (F o e, )(w) for F(e,w), and (F o e} )(w) for
F(efw). Remark that these maps are defined for a random parameter w, and
are not well-defined for a random variable; F' = 0 P-a.s does not always mean
that F oe = 0 P-a.s. However these maps are well-defined as a stochastic
process parametrized by v € E; F = 0 P-a.s. implies that Foer = 0 AxP-a.e..
One can check that for each w,

2.1 ETw=uw Mdu)-a.e., efw=w  N(du)-ae.,
u u
(2.2) 5211 o 522201 = 5222 o 521101, e 0eb2y =,

where 61,02 € {+,—}. In this paper, we say that the process {Z,;u € E} is

integrable, if
E {/ Zu|)\(du)} < 0.
E
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and denote by Z the class of all of integrable processes. In Section 1 in [12],
one can find the following property:

E [/Zuogj)\(du)} =E [/ZUN(du)} )
E UZ“ )\(du)} =E [/ Zyoe, N(du)} :
for 7 € Z.

Now, we introduce the operator D and its dual operator D*. For a func-
tional F', the operator D is defined by

D, F=Foegf —F.

(2.3)

For an integrable process Z,, the operator D* ( Q x E — Q) is defined by
(2.4) D*Z = / Zy o, N(du).
E

The notion “dual” follows from:

Theorem 2.1.  Let F be in L*(Q) and Z, be in Z. Suppose that

E[/E |FZu|>\(du)} +E{[E|DUFZu|>\(du)} < 0.

Then, we have
(2.5) E [/E(DUF)ZU )\(du)} = E[FD*Z].

Remark 1.  See Theorem 2 in [11].

The operators D and D* are frequently said to be the annihilation and
the creation operator, respectively. These notions follow from analysis on the
Fock space associated to the Hilbert space L2(E, B, \) (see [10]). In particular,
it follows from analysis on a Fock space that the operator D is closable.

For functionals F' and G, we shall use the following rule of D:

(2.6) D,(FG)=FD,G+GD,F+D,FD,G.
(2.7) Foct =F + D,F,
(2.8) Foel oel =Dy, Dy,F + Dy, F+ D, F+F.

By the definition of D and (2.2), we have also
(2.9) Dy(Foeg,)=0.

Frequently, we shall consider the product measure space (E*, @*&, @*)), and
use the convention E° = (), Eatw = w, and DyF = F'. For a non-negative integer

k, and for o = (uy,...,us) € E¥, we denote
_ Lt + - _ - -
_€U1O.'.O€uk7 Ea_gulo...oeuk

+
D,F =D,, - D,F.
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If we need to express the length of ¢ = (uy,...,uz), then we denote DEF =
D, F. The formula (2.6) can be generalized as follows:

(210) Dcli(FG) = Z C|T1\,|T2\(DT1F)(DT2G)7

T1,72Co
T1UTg=0

where ¢|;,| |r,| is a constant which depends on the length of 71 and 7. If F
takes values in R?, then we define D, F = (D, F}, ..., D, Fy).

(3). Spaces of random wvariables. Here, we shall introduce some spaces of
random variables. We denote by L?(Q) the LP-space on (2, F,P) and by |- ||,
the LP-norm. If a functional F' = (F}, ..., F;) values in R? then we define
1

I1El, = E[F")7,

L?(RY) = { F; R%valued random variable and || F||, < co}.
For a non-negative integer k, we extend the function v and the measure A(du)
by putting

(o) = y(ur) - y(ug), Mdo) = @A(do) = A(duy) . .. Mduyg).

In the case k = 0, we also use the convention (@) = 1. For a random variable
F which takes values in R?, for p € (0,1), for p > 2, and for a non-negative
integer k, we define

N

where the essential supremum is relative to the measure A(do).

DiF
(2.11) Flp,., &) = |E[F”] —|—ZesssupE H o
Toenip L0

Remark 2.  This norm corresponds to the condition (a) in Theorem 2.1
of Picard [12]: for each p, k, |DEF|, < Cpiry(c) A(do)-a.e

We shall use the convention

|F|D0,p,p(Rd) = ||F||p7 |F|k,p,p = |F|Dk,p,p(R1)v ‘F‘Dk,p(Rd) = ‘F‘Dk,p,l(Rd)~

Definition 2.1.  We denote by Dy ,(R?) the set of all F € LP(2;R?)
for which there is a sequence {F, : n = 1,2,...} C LP(;R?) going to
F in LP(Q;R?), such that |Fu|p, gre) < oo and |Fy — Fulp, ®e — 0
as n,m — oo. We define D,F = lim,, .o, D,F,. We denote Do (R%) =
Np>2 MNizo Di»(RY). In the case d = 1, we write Dy, for Dx,»(R), and Do

for ﬂpZQ ﬂZio Ds p-

Remark 3. We shall show the closability of D with respect to the norm
|- |py,- For this, we shall show the closability of D : L?(2) — L*(£2 x A(1)) in
the first place. Let P,, be the set of permutations of {1,2,...,n}. We define

(L2(E)®" :={f € L*(E™); f(Uo(1)s-- -+ Uo(n)) = f(U1,...,uy),Yo € Pp}.
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Recall that L?(2) can be considered as the Fock space @, Cy, where C,, is
the Wiener chaos of n-th order:

sz{L&ﬂ;hU%jA_( )_¢_HﬂﬂNw®,f€@%EW%}

As we mentioned above, D can be considered as the annihilation operator:
D, I,(f) =nl,—1(f(-,u)). Hence, we have

<u [ IDa1(OPA@]
=B [ 1t

_ ““!/n F(0)P\(do) = nn E[|T. () ]].

E

JERERATIRY
A1)

This means that the restriction of the operator D on each chaos C,, is closed.
Hence, the operator D : L*(Q) = @~ ,Cs — L*(Q x A(1)) is closed. Now,

suppose that Fj, — 0 (n — oo) in L*(2) and that esssup,,¢ 4(1) H D“f("a_)zu ,
0 (n — oo) for some process Z,,. Then, we have
3 3
E / | Dy F, — Zu|2)\(du)] < </ 72(u))\(du)> ess sup ‘M
A(1) A1) u€A(1) y(u) 2

— 0,

as n — oo. Since D : L%(Q) — L2(2 x A(1)) is closable, we have Z, = 0,
P xA(du)-a.e.. This means D is also closable with respect to the norm |- |p, .
Therefore, the space Dk,p(Rd) is a Banach space for p > 2.

One can check that, for k < k" and for p < p'.
(2.12) |F|Dk,p,p(Rd) < |F|Dk/,p/=p(Rd)7

and that D is an algebra, that is, F,G € Dy implies F'G € D,
For a complex valued process Z, (u € E), we define

|

i ~ Zu_
where we used the convention |Z[5, , = esssup,ca(,) E H )

|2k,

Dl Z,
P Z esssup E H
’ =0 (u,0)€A(p) 7(0)7(1‘)

2
]p . We define

o0
Dy, = {Zu; |215,, <}, DX =[)[)Dry
p>2 k=0
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Lemma 2.1.  Let p1,p2, and r be positive numbers satisfying p1,p2,r >
1and L +L = l < 1. For any non-negative integer k, suppose that |F(i)

k.pi,p
< 00, |Z(l)|,:p p <00 fori=1,2. Then, there is a positive constant C' =
C’(pl,pg,r k) such that the followmg inequalities hold

(2-13) |F1F2‘k,np < C|F1 k,Pl,P|F2|k,P2,P’

(214) |Z1F2‘;rp S C|Z1‘;p1 p‘F2|k,P2,P7

(215) |ZlZ2‘k7"p = Cp‘Zl|k D1, p|Z2‘k,p2,p

(2.16) / AL S OGN P
P k,r,p

where I is given in Condition 1.

Proof. 'We prove (2.15) only, because (2.13), (2.14), (2.16) can be proved
in a similar way. Applying the formula (2.10), we have for o € Al(p) (I < k),

IDL(ZN 2| < C (D7, ZW) (D4, Z2)))].

where the sum is given by (2.10). Because v(u) < p on A(p), we have v(71)v(72)
< (o). Hence, we get

i (1) i 7(2) i (1) i 7(2)
ess sup (D7, Zu )(D3, 20 ) <p esssup D Zu_ D7, 2
(u,0)€AIF1(p) y(u)y(o) (u,0)€ A1 (p) v(T1)y(u) y(72)y(u) .,
Di Z(l) Dj Z(Q)
T1 u T2 u

<p esssup
(u,1)EAT1(p)

ess sup
(u,m2)€ATT(p)

)

ARl ezl

Where in the last inequality, we have used Holder’s inequality with p'1 =
o PL py = P2 This proves (2.15). O

Next, we denote Dy, by the (analytical) adjoint space of Dy p, that is,
the space of all of linear continuous functionals on Dy, . It is well-known that
Dj, , is a Banach space with respect to the norm

@k, = sup [(,G)] (P € Dygpy)
|G‘k‘,p§1

We define
= U U DZJ” ]/j:;o = U m szp'
k=0p>2 k=0p>2

Composites of Schwartz distributions and functionals of a Poisson random mea-
sure will be defined as elements in D,,. Note that we do not choose the space

Uk=0MNp>2 Dk, instead of D.., see Remark 9.
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3. Preliminaries

In this section, we shall exhibit preliminary results on functionals of a
Poisson random measure which play an important role in the whole paper. In
particular, we shall give a modification of the smoothness criterion of Picard.
To this end, we shall study the domain of D*.

The positive constant numbers will be denoted by C' and may vary from
line to line. If they depend on some parameters, then this is emphasized by
index.

(1). Remarks on the domain of the operator D* . We introduced norms || - [|p, ,
and |- ||,  in the previous section. To study the domain of D", we shall
introduce other norms

P

_ k -
DI F
Flw, = |E[F]")+ S E / oL no@do) ||,
- \Flw, [1F[7] ; o |7 o )]
3.1 - )
& DiZ,|" ’
Z = |3 E /A oo )\o(da))\o(du),]
_jZO !

where Ag(du) is the probability measure

(3.2) Xo(du) = Mwu).

B fA(l) 7*(u)A(du)

Then, the following inequalities are true
(3.3) 1Flwy, < |Flpe, 12w, <1ZIb,,

for a functional F' € Dy, and a process Z, € Dy, Let S be the collection of
random variable X written as

X=f </¢1(U)N(du),...,/%(U)N(du))

where f(z1,...,r,) is a bounded smooth function in z1,...z, in R%, n € N,
and ¢1,...,¢, are smooth functions on E with compact support. Note that
| X|rp < oo. From (3.3), we have |X|w,, < oo if X € S. Let Wy, be
the completion of S by || - [lw,,. We denote Weo = ;2,52 Wkp, and
W =Nieo Np>2 Wi p- In [5], these norms (3.1), and spaces Wy, , and Wy,
were introduced and discussed.

Theorem 3.1.  Let Z, be a stochastic process belonging to Z N W,

and p an even number, and k a non-negative integer. Then, there is a constant
C =C(p,k) > 0 such that

(3.4) |D*(Z1A(1))|kap < C‘ZlA(l
holds.

‘N
NWitp,otp



100 Masafumi Hayashi

Remark 4. Ishikawa-Kunita have shown slightly stronger estimation
than (3.4) for Wiener-Poisson functional. For the proof, see Theorem 3.2 in
Ishikawa-Kunita [5].

Note that the dual operator
D* : L%(Q x Ey) — L%(Q)
is closable.

Lemma 3.1.  Suppose that |Z|3, , < oo for any k,p, and that Z, =0
on A(1)¢. Then, Z is in the domain of D*. Further, for any non-negative
integer k and even number p, there is a constant C = C(p,k) > 0 such that

(3.5) |D*(Z))|Wk,p < C‘Z|\NNk+p,k+p
holds.

Remark 5. Recall that the operator D* is defined for elements in Z by
(2.4). In Lemma 3.1, we said that the domain of D* is that of the dual operator
of D. Hence, (2.4) does not necessarily hold for the process Z which satisfies
the condition of Lemma 3.1. However, it can be deduced from the proof of
Lemma 3.1 that

D*(Z) = lim Zyoey, N(du), in Wi,
I=oo Ja()nA(d)e

From this, one can deduce that (2.5) holds for Z satisfying the condition of
Lemma 3.1 and for F' € L?(Q2) satisfying E[ [}, | Dy F[*A(du)] < co.

Proof. For a natural number I, we set Z. = Zul A(1)na(t)e(u). Note that

AMA(7)) < oo. Hence it holds that the process Z! is integrable. Indeed,

applying Schwarz’s inequality, we have
1
2

o] 5o () o o ]

where ¢ = fA(l) 7%(u)A(du). Note that Ag(A(7)) =T'(}) — 0 as | — oo. It also

holds that Z! — Z in Wy, for any non-negative integer k and p > 2, since
Schwartz’s inequality yields that
’LL

/,4(1) /A(l)k (

/ / D, Z,
E

A(1) JAQ)*

l_Zu)p

Ao<da>xo<du>]

1 2
/\o(dU)Ao(dU)] <r (1) Valws, ~ o
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as | — 0o. Applying Theorem 3.1, we get

(3.6) |D*(Z") — D*(Z")|w,., < CiplZh — Z" =0

|Wk~+p,k+1>

as l1,ly — oo, for any non-negative integer k and even number p. In particular
|D*(Z'') — D*(Z'2)||a — 0. As we noted above, D* is a closable operator. This
shows that Z is in the domain of D*. Because Wy, is a Banach space, one
can can check that D*(Z) is in Wy, for any k,p. We have

|D*(Z)|w,., < ID*(Z) = D*(Z)w,, + D" (Z)lw.,
< |D*(Z) - D*(Z")|w,, + ClZ151)naye Wi poiis-

Letting [ tends to infinity, we get the inequality (3.5). O

Remark 6. From this lemma, we can also define D*Z if Z is in Dy,
for any k, p.

Pick a system Z = {Z&J);j =1,2,...} C DY which satisfies Z{) =0 on
u € A°(1) for any j. For any G € Da, it follows from Lemma 2.1 that GZ™) is
in DZ. Hence, Lemma 3.1 shows that D*(Z@G) can be defined and is in W .
By the iteration of this argument, and by Lemma 2.1 in [5], one can define

(3.7) D"(G) := D*(Zz™D* (21 ... D*(Zz1G)...),

and show that D;(n)(G) € Wo. Repeating the argument of the proof of
Lemma 3.1, we have:

Lemma 3.2. Z= {Zq(ﬁ);j =1,2,...} C WX which satisfy Z9 =0 on
u € A°(1) for any j. Put Z = Z,(f)lAc(%)(u) for a natural number l. Then,
for G € Wqo, we have

Jim [D7"(G) = D™ (G)lwi, = 0

where Di\"(G) is defined by (3.7) with 2" = 27,

(2). Smoothness criterion of Picard. The following theorem is a modification
of Theorem 2.1 of Picard [12]. Recall that Condition 1 in Section 2 holds, and
that we use the notation a,vy(u),T'(p) in the whole paper.

Theorem 3.2.  Suppose that F € Do (R?) satisfies the following con-
dition:
(ND). there exists some 3 € (

5 1] such that for any p € (1,00), any p € (0,1),
and any non-negative integer k,

p»kr(p)_la

-1
sup esssup H(/ |v - DuF|21{\v.DuF\<pﬂ}/\(d“) ) oef
veRd TEAR(p) B
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where C, 1, does not depend on p. Then, for any natural number n, for r > 2,
for G € Doo, and for & € R?, we have

(3.8) S [E[Ge'¢ F)| < O(1L+ g0k

where C' is a constant which depends on n, r and F'.

Remark 7.  One can weaken the non-degenerate condition (ND) to the
following form;

Sup esssup H( /A( ) lev'DuF 112\ (du) )*1 ol Hpg CorT(p) 1,
P

verd T Ak (p)

|v|=1
because, in [12], the author used the non-degenerate condition (ND) to estimate

—1
the random variable ( fA(p) lev-Pul — 112\ (du) ) oe;. See Section 2 in [12].

Remark 8. Suppose that F = (Fy,...,F;) € Duoo(R?) satisfies the
condition (ND). We set % (€) = E[Ge'¢F]. Because Do is an algebra,
F™ .- F"" is also in Do for each multi-index m = (mq,...,mq). From
the inequality (3.8), we obtain

om o
gm0y

where C' is a constant which depends on n,m,F, and G. This means that
1/1%" is a rapidly decreasing function, hence so is the Fourier inversion of z/)g. In
particular, F' has the density function which is rapidly decreasing. We denote by
pr(z) the rapidly decreasing density function of F'. Then, because one can write
Y&(€) = [e*“E[G|F = z]pp(x) dz, the function Fy& = E[G|F = z]|pp(z) is
also rapidly decreasing.

vE(©) || BlGF™ - Fpef] | < o+ )08,

Remark 9. It seems difficult to obtain the inequality (3.8) for r =
2. We shall prove Theorem 4.1 by using (3.8) and define the composites of
Schwartz distributions and functionals of a Poisson random measure. This is
the reason why we define ]SzO as in the previous section.

Theorem 3.3.  Let Z&j)(g) 14 = 1,2,... be processes parametrized by
(u, &) € ExRY. Suppose that there exists some 3 < B <1 such that Z&j)(f) =0
ifue A& |7%), and that, for any non-negative integer 7, k, for p > 2 and for
any € € {€ € RY; [€] > 1},

7D, b < Crps(1EIT(E77)
where Cy, p ; does not depend on &. Then for each G € Do and v > 2, it holds
that

S 1D (G)ll2 < C(1+ €303,

where D;((g(G) is defined by (3.7) with 79 = Z&j)(ﬁ).
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Remark 10. The proof is essentially due to Picard, although slight
modifications are needed. We shall prove this theorem in Section 8.

Here, applying Theorem 3.3, we prove Theorem 3.2. Put

(€2 = DL e ™
(3'9) Z’u(&): f 1 ‘GZEDUF71|2)\(dv)'
AElH)

We shall use the following Lemma of Picard (see proof of Lemma 2.8 in [12]);

Lemma 3.3. Let I be in Doo(R?). Then it holds that, for any non-
negative integer k for p > 2 and for any € € {£ € R?; | €] > 1},

(3.10) ess sup
(wo) AT (€| )

S Cp,k:
p

£l

’D"(eig'D“F =)
(o)

and that

B1) 12O, < Cupy <|s / (M)v?(uwcxu)) .

Remark 11. Lemma 2.8 in [12] claims only that the inequality (3.11)
holds, but in the proof, it is shown that (3.10) also holds. We shall use the
inequality (3.10) in Section 6.

Note that

Dyei€F = (1€ DuF _1)ei€ F,
hence, we have
el F = /Zu(g)DueiﬁFA(du).
It follows from Lemma 3.1 that
E[Ge'¢ F]=E [G/Zu(g)DueigF)\(du)] = E[D*(Z.(§)G)e' ).
Repeating this argument, we get
E[Ge'¢ F) = E[D*(Z(€)D*(Z(€) ... D*(Z(€)G) .. .))e's F].
The absolute value of the right hand side is dominated by
I1D*(Z2(§)D"(Z(€) ... D*(Z(£)G) - - ) l2-

Therefore, applying Theorem 3.3 with quj ) = Z,,(€), we complete the proof of
Theorem 3.2.
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Remark 12. As we mentioned above, the proof is essentially due to
Picard. However, the process Z () is differ from that of Picard [12]; instead of
Z(€), the author used the following integrable process

1 (u)
A€l P)NAQ)
le?& Dol — 112X\(dv)’

(e7t&DuF 1)1

fA(m‘%)nA(c)c

where ¢ > 0 small enough. The process Z (&) defined by (3.9) is not necessarily
integrable. However, to prove asymptotic expansion theorem, we have to show
Theorem 3.3 for ZU)’s which are not necessarily integrable.

4. Composites of functionals of a Poisson random measure and
Schwarz distributions

In this section, we shall formulate composites of functionals of a Poisson
random measure and Schwartz distributions. Our formulation slightly differs
from that of the case for Wiener functionals (see Watanabe [17]). Take a natural
number d and be fixed. We shall consider Schwartz distributions on R%. We
denote by S the space of rapidly decreasing functions on R?. Recall that S is
a Fréchet space. We denote by S’ the space of continuous linear functionals
on S, that is the space of tempered distributions. For ¢ € S, we write F¢(§),
F ¢(x) for its Fourier transform and its inverse Fourier transform, respectively:

L efi&x x) dx I x) = eix~§
gt [, Fox) = [ ea(e)ae,

For ¢ € S and s € R, we define

Fo(&) =

ol =[ [+ lgr| 7o) de ]

and denote by Hs the completion of S by ||-||g,. We also denote Hoo = Ng>0Hs,
and H_o, = UgsoH_s. Then it is obvious that for s < r

(4.1) I, < ll¢le, . SCH,CH,CS.

For a functional F, we define Ap¢p = ¢(F) (¢ € S). Since for any k, the map
Dk 2 G — E[GAFp¢]| is a linear continuous functional on Dy, p, we can regard
Ap as the operator

(4.2) Ap:83 ¢+ App € Dj

Theorem 4.1.  For F € Do (R?), we suppose that F satisfies the con-
dition (ND) in Theorem 3.2. Then for any s > 0, there exists a natural number
n such that

(4.3) [Ap(9)lp; , < Cli¢lu_., foral¢eS, and anyp>2,

where C depends on F,n,p and s.
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Remark 13.  This theorem corresponds to Theorem 1.12 in Watanabe
[17] for Wiener functionals.

2s

1V(2%)
1— o
23

one can check that [p.(1+ 1€12)"(1725)% d¢ < 0o. Note that

Proof. For s > 0, take an integer n so that n >

(1 4+ d). Then,

O(F) = (FFo)(F) = / SFEFY(E) de.

Rd

By Theorem 3.2 and using Schwarz’s inequality, we have

|Ar(¢)|p; , = sup [E[Go(F)]|

|G‘n,p:1

~ sw B[ [ cereroga)
|Gln,p=1 R4

g/ sup | E[Ge'f ¢ | | Fo(€)| d€
R? |Gln,p=1

<c [ a+igr) B Foe) g

<ol [ a+ieP) 0B ] Iolly-0-ss

=Cldlu_o_g)n <Clolu.,

55
where, in the last inequality, we used the fact that —(1 — ﬁ)% < —s and
(4.1). O

Because S is dense in Hg, the inequality (4.3) shows that the linear oper-
ator (4.2) has the unique continuous extension:

(4.4) Ap :H,3T — ApT € D.,.

From this fact, we define composites of Schwartz distributions and functionals
of a Poisson random measure:

Definition 4.1.  Suppose that F' = (F1,..., Fy) satisfies the condition
(ND) in Theorem 3.2. For any T € H_o, we say that the linear continuous
functional ArT is composite of T € H_o, and F', and denote T o F = Ap.

In the Malliavin calculus on Wiener space, composites of smooth Wiener
functionals and Schwartz distributions can be evaluated by integration by parts
formula ( see Watanabe [17]). On the other hand, as we mentioned in Section 1,
we cannot apply the integration by parts formula in our formulation. However,
from Theorem 3.2, we know that the function ¥%(¢) = E[Ge*F] is in S.
Hence, the inequality (4.3) yields

ToF:G|—><ToF,G>=5’<-7:Ta1/’IC«i>S~
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Note that Fy%(z) = E[G|F = z]pr(z), where pr is the rapidly decreasing
density function of F. Hence, the following equality also holds

(4.5) (ToF,G)=g(T, FYi)s.
Next, we define the product H € D, and T o F' by
(HT o F,G) = ¢ (FT,¢v5™)s (G € Do),

where wg’H(f) = E[GHe* ). From Theorem 3.2, wg’H is in S. By the same
argument as in the proof of Theorem 4.1, one can deduce that HT o F' € ﬁ;

Example 4.1.  If T is the Dirac point mass §, at x, then it follows from
(4.5) that

(T'oF,G) =E[G|F = z]pr(x).
If T is the Heaviside function 1 ), then we have also
(ToF,G)=E[G;F > 0.
5. Asymptotic expansions

In this section, we shall consider a family of functionals F'(€) (e € (0,1))
depending on the parameter e.

Definition 5.1.
A) We say that F(e) has the asymptotic expansion F(e)~3 7" € f; in
Doo(RY), if the following conditions hold:
A1) F(e), fo, f1,---, € Doo(R?) for each € € (0,1).
A2) For each non-negative integer m, k and for p > 2,

F(e) =3 € fj

6m-{-l

lim sup < 00.

e—0

Dk,p(Rd)

B). We say that ®(¢) € D?_ has the asymptotic expansion ®(e) ~
Yo € ®; in D.., if the following conditions hold:
B1) ®(¢), g, Py, ..., € D} for each € € (0,1).
B2) For each non-negative integer m, there exists a k = k(m) such that
®(€), @, 1., Py €, D}, and

|®(€) — ZT:O dP;; »
emt1 < 0

lim sup
e—0

Remark 14. In condition B2), we restricted p to be in (2,00). This
restriction arise from the definition of f)::o
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We set
Ut:={¢cr?: |€|>1}).

We shall consider complex valued random variables has the form F'(e, &) where
(6,€) € (0,1] x U?, and give another definition of asymptotic expansions. Let
q(€) be a positive functions defined on U4, p(&) be a function defined on U¢ and
taking values in (0,1]. Let F(e,&) (€,€) € (0,1] x U? be a family of elements
in Do. For a non-negative integer m, we denote

F(e,§)~0(e"q(§)) on A(p(§))

if it holds that, for any p > 2 and for any non-negative integer k,

F
(5.1) lim sup sup —| (€ Elkppe

< 00
e—0 ¢geud €mq(€)

Definition 5.2.
A’). We say that a complex valued random variable F'(¢, &) has the asymp-

totic expansion F(e, &) ~ Y72 € f;(€) in Doo(q(§), A(p(£))), if the following
conditions hold:

A1) for any (€,€) € (0,1) x U?, F(e,€), fo(€), f1(€) .-, € Deo:
A 2) For any non-negative integer m

m

F(e,6) = Y € fi(&) ~ O(e"q(€)) on A(p(€)).

§j=0
A,S) For any non-negative integer 7, k, for any p > 2 and for any & € U<,
115 )k poie) < Clpka(§)-

C'). We say that a complex valued process Z, (€, &) has the asymptotic ex-

pansion Z,(€,&) ~ >, i230(&) in DZ(q(€), A(p(£))), if the following con-
ditions hold:
C'1) Zy(e,8), 20(€), 287 (¢),....e DY, for any (e, &) € (0,1) x U<
0,2) For any non-negative integer m,

m

Z(e.€) = Y 2D(€) ~ O(e™1q(€)) on A(p(€)).
j=0
0/3) For any non-negative integer 7, k, for any p > 2 and for any & € U<,
C'4) For any j, Zu(e,€) = 27 (€) = 0 if u € A°(p(€)).

Remark 15. One can check that the coefficient of the asymptotic ex-
pansion is uniquely determined.
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For a multi-index n = (ny,...,nq) and for x = (x1,...,24) € R%, we
denote
[n|=ny+---+ng, nl=ng!...ngl,

on = an1 ond

n __ ni na
W"'W7 X _1‘1 ...zd'

Definition 5.3. Let F'(¢) (¢ € (0,1]) be a parametrized process such
that F(e) € Do (R?) for any € € (0, 1]. We say that F'(e) satisfies the uniformly
non-degenerate condition if

(UN). there exists some § < # < 1 such that for any p € (1,00), and any
non-negative integer k,

limsup sup sup esssup H T(p)(K (e p,v)oelr)™t H < 00,
=0 pe(0,1) “'E‘Fj‘f TEAk(p) p

where K(€,p,v) = fAk(p) |V - Dy F(€)*1{|p, F(e)|<pry Mdu).
The following theorem is our main result:

Theorem 5.1.  Suppose that F(e) (e € (0,1]) satisfies the uniformly
non-degenerate condition (UN) and that F(e)~ 372 € f; in Do (R?). Then,

~

for any distribution T € H_.,, T o F(e) € D% has the asymptotic expansion
in D (RY):

ToR(@~ Y Y L@ fo - (F(e) ~ fo)"

m=0 In‘:m

~ D+ P+ Dy,

where ®, &1, P, ..., are given by the formal Taylor expansion

g =Tofy, ®1= Zh(aaz )ofo,

0 9?
Zfz(axz) fo+2,2f1f1( lﬁij)Ofo

1,]= 1
d
i 0 2
ng(axz 7)o o+ .”Zlmz (5T) o f
d
1 5
31J2k‘:1 flfl( 2t OxI Oxk )Ofo,....

Remark 16.  We shall give the proof of Theorem 5.1 in Section 6.

By using Lemma 2.1, one can easily prove the following proposition.
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Proposition 5.1.  Let qi(§)7q;(£) (i = 1,2) be non-negative functions
defined on U, and p(§) be a function defined on U? which values in (0,1].
Suppose that fori=1,2

Fi(e, &)~ @ fi(€) inDoo(ai(€),Alp(€)) (i=1,2),

=0

Zi(e,6) ~ Y _€2001(€)  inDL(¢;(8), Alp(§))) (i=1,2).

Then, it holds that

7).
Fi(e,§)Fa(6,€) ~ Y hi(€) in DZ(a1(€)q(8), A(p(§))),
j=0
wher?.)hj (&) = Zj1+j2:j j11 83 J2 &)

ZN e, &)Fi(6,6) ~ Y 2 in DL (q1(€)a:(£), A(p(€))),

where zgj)(E) = Zj1+jz:j Zgjl)’l(é) j12 (&);
).

ZY(e,€)Z%(c.€) ~ > _20(&) in DL (p(€)a1(£)a5(€). Alp(€)))

where Zq(f)(f) _ Zj1+j2:j Z’l(l,jl)71(£)z7(1,j2)72(£);
iv).

/

/Zi(e,i)Zﬁ(e,S)A(dU) ~ Y Eg5(6),  in Doo(T(p(€))a1(£)a2(€) Alp(€))),
§=0

where g;(€) = 32, j—i [ 27 (€)257%(€) Mdu).

The following theorem is a sufficient condition to satisfy the uniformly
non-degenerate condition (UN), and is a version of Theorem 3.1 of Picard [12].

Theorem 5.2.  Suppose that A\(ds x dz) = ds x v(dz). Define the d x d
matriz V(p) by Vi ;(p) = f{‘z|<p} zyx;v(dx). Suppose also that the ratio between
the largest and smallest eigenvalues of V(p) is bounded as p — 0, and that

lim inf p_a/ Ix|?v(dz) > 0.
{Ix|<p}

p—0
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The random variable F(€) € Doo satisfies the uniformly non-degenerate condi-
tion if the following conditions (a) and (b) hold:
(a). for any p > 1 and for any non-negative integer k

H < 00,
p

(b). there exists a matriz-valued process ¥y (€) such that for |x| < 1 and for any
p=1

DFF(e)
v(7)

sup
€

ess sup
TEAF (1)

sup || Dy o F(€) — r(e)xllp < Cpla",

(det / 1 wt<e>wz‘<e>dt)

where ¥ (€) is the transpose of the matriz 1 (€).

for some r > 1, and

-1
(5.2) lim sup

e—0

< 00,

p

Remark 17. Note that the conditions (a) and (b) are uniform in e.
Therefore, Theorem 5.2 can be proven by a similar argument as Theorem 3.1
in [12], so we omit the proof.

6. Proof of Theorem 5.1

Let 3 € (%,1) be fixed. We define functions p(€), q1(£), g2(€) on U? by

p(€) = €175, q(&)=&], (&) =|&[*T(p(&)).

Lemma 6.1.  Suppose that G(€,€) ~ >72,€¢ g;(€) in Doo(q2(),
A(p(£))), and that for any p > 2 for any non-negative integer k, and for & € U?,

(6.1) limsup sup esssup [|q2(6) (Ge, €) 0 1) ]|, < oc.
=0 el reA*(p(8))

Then, G=1(€, &) has the asymptotic expansion
(6.2) G e.€) ~ Y& g;(6) in Doclaz ' (6), Alp(£))),
j=0
where the coefficients are given by the formal expansion:
= L~ LSy (Ged —go(§)>j

G(6€)  g0(€) 1+ W 90(&) = 90(8)
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Remark 18. In the proof below, we shall show that

(6.3) esssup ||gp ' oef|lp < Cpiaz ' (€).
TEAR(p(£))

The argument of the proof of iii) in Lemma 2.7 of Picard [12] show that (6.1),
and (6.3) yield
(6.4)

lim S(l)lp ;u(})d |q2(£)G_1(E7£)|k,p,p(§) < 00, |gal(£)‘k,p,p(§) S Ck,pq51(£)7
€— e

respectively.

Proof. Firstly, we shall prove (6.3). For any r > 0, applying Chebychev’s
and Schwarz’s inequality, we get

+
esssup P( go(€) oer §r>
TEA*(p(€)) 72(§)
o p (|00 <,y |00 )
re Ak (p(£)) (€) 72(§)
—1||P
<0, esssup ‘(H ‘G( €) — (£>‘ OEi)‘ . ‘G(e,@ oe
rEAR (p(€)) q2(&) 32(§)
G _ p p
< Cp<7’p + esssup “Mosj > ess sup H%
rEAR (p(8)) ¢() 2p” rear(pe) | 1G(€: §) 0T | lly,
By iteration of (2.8) and by the assumption, we have
P
lim sup esssup H(—(g)) oet =0
“O¢eud reak(p(8)) 2p
Hence, from (6.1), we have
+
sup esssup P( M <r) < Cppr?.
£EU TR (p(€)) a2(€)
This implies (6.3).
We shall show (6.2). On the event B HG(E £) g0 5)‘ < 1} we have
11 1 i ( 5)—90(§)>j
a G(e,€)—g0(8) ’
G(E, 5) gO(E) 1 =+ Tﬁ?o j:O gO(S)

Hence, we can write

_ (—ym (G(e,a 90(€)>m+1
G(c.€) 90(€) '
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By the assumption, we see that, for any p > 2 and k, there exists €y > 0 such
that |G(€,€) — 90(&)|kp.pe) < Cpreqa(€) holds for any € € (0,¢). Hence, it
follows from (2.10) and (6.4) that

(6.5)

D, 11 K (G =g
Bovhi | el e Bl DI ”( 90(@) ) '

S Cp,k€m+1q2 (6)717

for € > 0 small enough. On the other hand, applying Chebychev’s inequality,
we have

—
J P

m—+1

G(e,€) — go0(§)
90(&)

for € > 0 small enough. One can check that

Dy (11 N (GO -a@)) L.
Bvi b (Gms) 0@ 2 v (T ))B

J

(6.6) P(B%)% < Cpm H < Cpme™t,

2p(m+1)

p

< esss H B¢
UEA’“(/J 5))

p

& L (G =0\ e
(0] <go<e>( v (% ))B

It follows from Schwarz’s inequality, (6.4) and (6.6) that the right hand side is
bounded by C,, xe™T1go(¢)~t. Combining (6.5), we have

L Ny (GO - a©) et
Glod)  moi@) 2 ”( 0(©) ) k (£)<Cm”“q2<s)’

+ ess sup
jz::o sEAR(p(£))

P

=0

for € > 0 small enough. Further, Proposition 5.1 yields that, for any j,

Ge8 -9\ S v, in
( 90(€) > ; 99(€)  in Duo(1, A(p(£))).

This completes the proof. O
Lemma 6.2.  Suppose that F(€) ~ > > €" f,, in Doo(R?). We set
Xu(6,€) = ('8 PFEE — 1)1y (u).

Then, we have X, (€, x) ~ Z 0 ejx(J)(E) in DY (q1(8), A(p(£))). In particular,
xg))(ﬁ) is given by (e*& Pufo(&) _ D1 a¢pe) (u).
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Proof, Put (E&O) (&) = (eif'DufO(E) — 1)1A(P(E))(u) Then, one can write
Xo(e, €) — xg))(f) - (ei£~Du(F(6)—fo) _ 1)81‘5~Dufo(€)1A(p(§))(u)_

It follows from (3.10) that \x(0)|,:)p7p(€) S Cprqr(€) and |ei5'D‘f°(5)|kN)p’p(€) <
Cpkq1(€). Hence, if we can show that (e?& Pu(F(9=fo) — 1)1, s (u) has the
asymptotic expansion Y22, dhy) in DY (q1(€), A(p(€))), then the assertion

follows from (2.15) and the fact that p(&)(q1(€))? = | & |27% < q1(8).
We set H, = D, (F(€) — fo). It follows from the proof of Lemma 3.3 that

(6.7) Hzl(lgl] | e & Hu — 1”197;),,3(5) < Cpreqi(§),

for € > 0 small enough. Note that

(6.8)
Do’ (ezEHu(E) _1— Zm (gHu(E))J>

j=1 1

y(o)y(u)

p

£ - Hy(e)" [t o
= HDUW/O /0 ...\/0 (e Hm& Hu( ) _ 1) dumdum_l...dul

(& -Hy(e)™ (e & Hule) — 1)
v(o)y(u)

p

< sup ess sup HDU
1€(0,1) (u,0)EA(p(E))

p

As we mentioned above, p(€)(q1(€))? < qi(€) holds. Hence, it follows from
(2.15) that the right hand side is bounded by €™*1g; (§) for € > 0 small enough.
From Proposition 5.1, we know that (£ -H,(¢))’ has the asymptotic expansion
PO e"hy™ in DX (q1(€); A(p(€))). Therefore, e?é Pu(F(€©)=fo) _ 1 has the

asymptotic expansion 3277, e/ht in DX (q1(€), A(p(€))). 0

Lemma 6.3.  Suppose that F(e) ~ 3372 (€ f; in A(1), and F(e) satis-
fies the uniformly non-degenerate condition. Put

(6.9) G(e, &) := / |ei£~DuF(e) —1PA(du).
A(p(€))
Then, we have
ﬁ ~ 3G (€) in Daola:(8), Alp(€)).
’ n=0

In particular, we have

-1
(6.10) ess sup </ |ei€‘f0 — 1|2)\(du)> oelll < Cp,kQ2(€)_1~
TEAK(p(£)) A(p(8))
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Proof. Note that

2

G 1{|DuF(e>|se—1}(“)A(du)> oef.

|Ge.&)oer| > [€) (/A( o ‘i-DvF(e)
p

Hence, uniformly non-degenerate condition yields that

limsup sup ess sup qu (G(e,8) oej)_lu < o0.
e—0+ ¢cUdT€A(p 4
Because, G(e fA( (5)) & Dul(€) _1)(e=1&-DuF(€) _1)\(du), the assertion
follows from Lemma 6.2, iv) in Proposition 5.1, and Lemma 6.1. U

The following theorem is easily deduced from Lemma 6.3, Lemma 6.2 and
ii) in Proposition 5.1.

Theorem 6.1.  Suppose that F(€) ~ Z;io e f; in A(1), and F(€) sat-
isfies the uniformly non-degenerate condition.
We set

(e71& Pkl — 1)1A<p<s))( u)

(6.11) Zu(€,§) = s 1€/ € PO 12X (dv)’

Then, we have Z(e,u, &) ~ 372 € z;(u, &) in DL (q0(€); A(p(€))), where

q0(&) = (1€ T(p(8))) ™"

Lemma 6.4.  Suppose that F(e) ~ Z;io €l f;, and F(€) satisfies the
uniformly non-degenerate condition. We set

Rp(€.¢) = eF@ - N~ ©

In|<m

—i€-9o

(—i& - (F(e) = fo))"

Then, for any natural number n for any r > 2 and for & € U, we have

(6.12)

limsup sup sup [e~ ™D (1 4 | ¢ 2)"mTOTA=)E BIGR,, (€, €)]| < .
—0 " £eUd |Glp =1

Proof. 1t follows from Proposition 5.1 that (£-(F(€)— fo))” has the asymp-
totic expansion Y 7 ¥Ry (&) in D(|€}7; A(p(€))). From Lemma 6.3, the in-
equality (6.10) holds. Hence from Theorem 3.2 (see Remark 7), we have

et -fo etéfo
(€ (PO - )| B |65 S oo

=k

sup |E |G
‘Gln,rzl k'

k—(1-2)2
S Cm,k:7n€m+l‘ 5 | ( 25) 2,
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for € > 0 small enough. We can regard G — E[G‘BIZ,J(O ejhgf(ﬁ)] as a linear

continuous functional on Dy, ,. Therefore, there is a sequence {l,,(§,-); n =
0,1,2,...} C D;, , such that, for € > 0 small enough,

et€- fo m

E-(F(e) — fo)k| — Fl(€,G

(613 e kZOE{ (F(e) fo))} kz:%e k(& G)
< Cemt gm0
By the Taylor expansion, we have
) i€ fo
(6.14) €T =3 i (F () — fo)* + O((EEIIF () = fol)™Y).
k=0

Hence, it holds that for each m

m

E[Ge'$ 7] =Y "t (¢, @)

k=0

(6.15) sup
‘Gln,rzl

S 06m+1| E |m—|—17

for € > 0 small enough.
On the other hand, we define Z,, (¢, &) by (6.11). Then, as we saw in Section
3, we have

B [Gei€ O] = B [Dyf (@)

where D", (G) is defined by (3.7) with 2 = Z{(e,€). Tt follows from

Theorem 6.1 that Z,(€,&) has the asymptotic expansion Z o€ z(])(g) in
DX (q0(€), A(p(€))). Hence, we have

*(no) &-F(e
E {DZ(e?s)(G)eZ£ F( )}

m

=E |D* Z (e, &) — Z ejz(j)(g) D*Z((Z;;)(G) GEF(€)
§=0

263 { Lo ( *Z((ZB)(GD eiE.F(G)}.

From Theorem 3.3, we have

(6.16)

\cfupl E |D* Z(G,E)—Zejzj(g) D;((:;)D(G) oiEF(€)

< Cpem g 0%,
Similarly, by expanding the sum Z;ﬁzo K [DZ © (D;((Z;l)(G)) eiE'F(e)} as in
(6.16), we get

sup |E |Ge T ejl 6,&,G)| < Cppe™ g7
|G‘n,r:1 |: :| Z | |
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where l;- (6,&,G) is a linear continuous functional on Dy, , and is given by

li(e,€,G) = Z E [D:h(g)(D:n(g)(‘ (D5 ) (G) -+ ))eig'F(e)} .
it =]
Again, from Theorem 3.3, we have Sup|gy, =1 |l;( G)| < C|E|” (I-35)%

)
Therefore, by the Taylor expansion (6.14), we can pick the sequence {1;7(&,-); k
=0,1,2,...} of linear functional on D, , such that, for each m,

m

E[Ge' ¢ T =3 " 1x(¢,6)

k=0

)

(6.17) sup <, m€m+1| ¢ |m+1 (1-£)z

Gl =1

for € > 0 small enough. If we compare (6.15) with (6.17), then we get I;(€,-) =
7 (&,-) for any k. Therefore, from (6.13) and (6.17), we get

] i€-FO]_ -
|GT3F:1| E[GR(& )l < \Gf’ffll E[Ge z::
o€ fo m
sup ZE §(F(e) = o)1 =D (&, G)
|G\n r=1 k=0 k=0

< Ce™tg |m“*“*%>%,
for € > 0 small enough. a

Proof of Theorem 5.1. By the definition of the composition, we have

<|<ni 7)o fo (Fl6) ~ fo >

- és, ( FOT , B[G(F(e) — fo)"e'€ ] ) s,

[n|<m

=s <]-"T, Z (_ZE)UE[G(F(G) - fo)n€i£'f0]> Se

n!
In|<m

d—2(s+m)—1

Taking sg > 0 so that '€ H™%° and n so that n > CEE . Then, we have
B
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(14 |€g[2)otmHI=0=55)5 4 ¢ < co. We define Ry, (¢, &) by (6.12). We get

|Tor@ - 3 L@ T)on e - )"

[n|<m

n,r

|
|Gln,»=1 n:

— sup ‘<TOF(6),G>—< > l(a“T)ofO(F(e)_fo)“,G>]
[n|<m
= swp | ¢ (FT, BGRu(E e))s, |

|G‘n,r:1

< swp [T, [/ (14 16P) |B [ GRo(e.0) ]| de]
| R

n,r=1

1
2

<At [ [ 0+ s BiGR60)? de ]

n,r=1

The assertion follows from Lemma 6.4. O

7. Applications to stochastic differential equations

In this section, we suppose that E = (0, 1] x R and A(du) = ds x v(du). As
we mentioned in Section 1, we shall consider the following real valued stochastic
differential equation:

(7.1) Xi(e) =z —|—/O b(Xs—(€))ds + 6/0+ /a(Xs,(e),y) N(ds x dy)

where € € (0,1), and give the asymptotic expansion:
(7.2) Xi()~> € fn in Do
n=0

For a function h(z,y) on R?, we denote by h(™)(z,%) the n-times derivatives
with respect to x, if it is differentiable. The regularity and boundedness as-
sumptions for functions a and b are the following;:

Assumption 1.  Suppose that there exist functions a(z) and a(z,y)
such that

(7.3) a(r,y) = a(x)y + a(z,y).

The functions a(x) and b(x) are infinitely differentiable with bounded deriva-
tive. The function a(x,y) is also infinitely differentiable with respect to x and
satisfy the following conditions: for some positive constant rqg > 1 such that
f{|z\<1} |z|"ov(dz) < oo, the following inequalities

(74)  a(z,y)| < O+ |z)ly™, [a™ (z,9)| < Clyl™  on {y; |yl <1},
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hold. Further, suppose that the following inequalities hold, for any p > 2 and
forn > 1,

(7.5) /la(%y)lpV(dy) <O+ [z))", Slip/la(”)(fc,y)l”l/(dy) < 00,

Remark 19. Under Assumption 1, the stochastic differential equation
(7.1) has the solution. Moreover, one can find several properties of the solution
to the stochastic differential equation (7.1) which Picard [12] has obtained. For
example, one can deduce from the proof of Theorem 4.1 in [12] that, for any

k, p,
p
< o0,

in particular X;(€) € Doo. Using the argument of the proof of Theorem 4.1,
we can also show that

DEX,(e)
esssup | —Z—~

supE
oceAk(1) ’7(0)

€

(7.6) sup sup |X;(€)|g,p < 0.
e 0<t<1

For convenience, we extend the region of the parameter € to the open
interval (—1,1). We denote by F the least o-field which N(A) (A C (0, s]xR})
are measurable.

Lemma 7.1. Let 0 < s < 1 be fized, and Yy, +(€) (0 < so <t < 1) be
a semimartingale having the following form

Voot = Yo+ [ siar+ [ [ ot ¥ias < ay)

where Yy, 5, (€) is Fy,-measurable, and g-(€) h,(€,y) are predictable processes
for each fized (e,y) € (=1,1) x R. Suppose that, for any p > 2,

(7.7) sup  E[[Ysys ()] + sup E[ sup [V, .(€)’] < oo
e€(—1,1) ee(—1,1) so<r<l

Moreover, we suppose that there exists a predictable process n(€) (sg <t < 1)
such that, for anyt € (so,1]

lg¢(€)] < C(S sup Yr— ()| + [me()]),

(7.8)
/\ht(@y)l”V(dy) < Cp( sup Yo (e)] + [ne(e))P,

so<r<t

then we have

=

@9 s Wl <6 (YSO,SOHPW[/ m<e>|pdrr>.

so<r<1
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Remark 20.  The proof of the inequality (7.9) is essentially due to [4],
although the argument in [4] is for a concrete semimartingale.

Proof. We set
Tr = 1nf{t > S, |Y;,t| > R}
with convention that inf ) = 1. By the condition (7.7), we have limp_..c P(Tr

<1)=0. Put th =Y, AT, By the monotone convergence theorem, we get

Jim B[ sup [Vl =E[lim sup [Vi ['] =E[sup [Ye.[]
s<r<1 R—o0 s<r<TrA1l s<r<1

Hence, if (7.9) holds for Y ¥ with a constant C, which does not depend on R,
then we complete the proof. We have

(7.10)
Yl (o

tATR
/ /h e,y)N(dr x dy) )

tATR
/So

By Schwarz’s inequality and (7.8), we have

<G, <|Y (e +

tATR p t t
@ [ a@a) <o [ m@ras [ s pEerd).
S0 EN) So so<u<lr
Put MsO,t—f [ he(e,y)N(dr x dy), andMSIzt—ftATth (6, y)N(dr x dy).

By the It6 formula we have

| My, R |P = a martingale with mean zero
tATR
[ M4 g = Mo l? = Py M P vl ds
S0

The mean value theorem yields that
||M507r + hs,rg(y)|p - |M80,7‘—|p - phs,rg(y)|Mso,r a

1 _
< 5P = Vs rg ()1 Mso,r + Os g (y) P2
< Co(|hsg P Moo o |P72 + |hsy r|P),

Using Doob’s inequality, we have

E[ sup M} ,[”]
so<r<t

(7.12)

tATR
<B| [ [ (elen)P M+ o)) vidy)ds
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In the case p = 2, one can deduce the assertion from (7.10), (7.11), (7.12),
(7.8), and Gronwall’s lemma. In the case p > 2, it follows from (7.8) that, for

T S tAfTR
T
/ gr, (€)dry
S

t p—2
<, (Y;O,SO(6>|+ [ en(@lar + s mf:,n(en) |
S0

so<ri<r

p—2
©osup VR, <e>|)

so<ri1<r

My, P2 < (|Y )+

and that
2
[ttty < o (inel+ sw v, @)
so<ri<r

Hence, Hélder’s inequality yields

tATR
/ / (ho(e,9) 2| Moy o P20 (dy)dr
0

<c, [/ (i (@1+ s |Y£,u<e>)pdrf

so<u<r

p—2

t r p P
[ (Wt [ @lan s v 01) ar
S0 S0 SOT1ST

t
<co [ / (|Yso,so<e>|f’+|nr<e>|ﬂ+ sup mﬁimv’) dr]
80

s<u<lr
Therefore, the right hand side of (7.12) is bounded by
t
G|V + [ (In@P + sup_ V2, 1) ]
S0 sp<r1<

Hence, (7.10), (7.11), and Gronwall’s lemma also show (7.9) for p > 2. O

Lemma 7.2.  For any p > 2, there exists a constant C, > 0 such that
the following inequalities hold

(7.13) E[ sup |X () — Xs(e1)]P] < Cple — 4P
0<s<1

Xs(€) — Xs(e1)  Xs(€) — Xs(e2)

€ — € € — €9

(7.14)  E { sup

p
} < C&A614*62p.
0<s<1

Remark 21.  From (7.14), one can check that

Xo(6) = Xo(a)  Xo(€) = Xi(e2)

€— € € — €y

E | sup

0<s<1

p
] < Cylle =€ P +ler — o).

By applying Lemma 1.1 in Fujiwara-Kunita [4], we know that there is a version
X, (€) of X¢(€) such that € — X, (€) is continuously differentiable.
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Proof.  We shall prove (7.13). Define Y;(¢,€1) = X;(€) — X¢(e1). We have

Viee) = [ (MXo(0) =X (0) ds

+ / (ca(Xoe(6),y) — 1a(Xa—(€).y)) N(ds x dy)
0+

Note that
1D(Xe—(€)) = B( X (er)] < sup b ()] Ye-(e,€1)l
and
[ 1ol @.) — cxaxe (@) Pridy)
<G |le-al? [ laXeehp)Putay)
+ [ laXes(0,) = X)) P(dy)

<Gy (le—eal 1+ X )P +[Yie(e, )" ),
where we used (7.5). By applying Lemma 7.1 with so = 0 and 7, s(y) =
le —€1] (1+|Xs_(€)|), we have (7.13).

Next, by using Lemma 7.1, we shall also show (7.14). Note that

Yi(e, €1) _ Yi(e, €2)

€ — €1 € — €g

[ (AR M) U9 =M ))
0

€— €1 € — €g

t
[ [ Nas < ay)
0+

where E(e, €1, s,y) is given by

ca(Xo_(6),y) — 1a(Xo—(6)y)  calXo_(0),y) — c1a(Xo—(c), )

€— €1 € — €1

Yi_(ee2)
€—eéo

We define n; = (1 + ’ ) |Ys—(€1,€2)]. Then, the inequality (7.13) shows

that E[supg<s<; [75[7] < [€1 — €2/P.One can write
b(Xs-(€)) = b(Xs—(e1)) _ Yi(c,€1)

1
= (1)
€— €1 €—e /0 b (Xsf(el) “!‘9}/57(6761))619.
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Because b has bounded derivatives, we have

(7.15)
‘bm_(e)) CB(Xy () B(Xe () — b( X, () >‘
€— €1 € — €
< }/;—(6,61) _ Ys—(€762) /1 ‘b(l)(Xs—(el) —|—9YS_(6,61))|d9
€ — €] € — €9 0
¢ _1? / PO (X (1) + Y- (6,2)) = B (X (e2) + 0o (e,e2) )| a0
s—(€,€1) B Yi_ (€, €2)

<c(

In a similar way, we have

)

€ — €1 € — €9

R = B
Volea) V(o)

P
n Ins_l”) .

/ (e 1, 5,9) v(dy) < C, / |a(Xo— (1), 1) — a(X_(e2),9)]" v(dy)

<o

Hence, we have

€ — €1 € — €9

y) —a(Xs—(€1),y)  a(Xs—(e),y) — a(Xs—(e2),y)|”
- v(dy)
€— € €— €
Y,_(e, € Y,_(€,e5) [P
S Cp ( ( 1) _ ( 2) + nsp) ,
€ — €1 € — €9
where, in the last inequality, we have also used
[J1atee).) - aX- (e )l v(ay)
< (s [ WV @nPrian ) 1Vl < G
By applying Lemma 7.1, we get the result. O

As we mentioned in Remark 21, we can take a modification of X (€) such
that € — X (€) is continuously differentiable. We denote by the same symbol

X (€) the continuously differential version. We denote also Xt(o)(e) = X;(€) and
XM (e) = %je). Then, one can check that X () (e) satisfies

O "y W s ta o (€),y)N(ds x
xM(e) = /b (Xo_ ()X d+/0 (Xo—(€),y)N(ds x dy)
+e// W(X,_(e),y) XM ()N (ds x dy).
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Further, applying the same argument to the process X (1)(6)7 we see that € —
X @ (€) has continuously differential version. Repeating the same argument
inductively, we have:

Theorem 7.1.  There exists a version of X(€) such that € — Xy(€) is
infinitely differentiable. Moreover, forn =2,3..., X" (¢) = dEnX( ) is given
by formal n—times derivative of X (€) with respect to e:

(7.16)
Xt‘")(e):/ inb d”//den ca(X,_(€),y) ) N(ds x dy).

Remark 22. The stochastic differential equation is defined by induc-

tion. More precisely, the stochastic differential equation (7.16) has the unique

0), e ,Xt(n_l) are given.

solution if the processes Xt(
Lemma 7.3.  For any n, any €, and any t, Xt(")(e) 18 10 Doo. Further,
we have

< Q.
k,p

(7.17) sup  sup ’Xt(")(e)
0<t<1ee(—1,1)

Proof. To prove this, we shall use induction with respect to n. In the
case n = 0, the claim is true because of (7.6). Let n > 1 be fixed. Suppose
that for each I < n, and for each non-negative integer k and for p > 2, (7.17)
holds. Under this assumption, we shall prove

(7.18) sup ’Xt("+1)(e) < 0.
ec(—1,1) k.p
We set
dn+1
Fl(e) = b(Xs(€)) — b (Xo_ () X1 (e)

d6"+1

n—+1
Fi(ey) = jn—o—l( a(Xs(€),y)) — e (X—(€), y) X"V (e).

The variable F2_(€,y) can be written by a linear sum of random variables such
as

oV (Xy(e),y) (X (XY (1=0,...,n) or

(7.19) / /
ea’(l )(XS(€)7 y) (Xgl))ll e (ngn))l" (l = 23 S 1)7
where 0 < ly,...,l,, <n. Hence, by the assumption of the induction, we have
D’“F2
(7.20) SUp sup esssup E [/‘ V(dy)} < 0.
€ 0<s<loecA(1)k
In a similar way, one can check that
(7.21) sup sup |F(s,€)|x, < 0.

€ 0<s<l1
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Pick w = (s1,y1) € A(1). Note that DuXt(nH) =0, if s; > t. Hence, to prove
(7.18) for k = 1, we have to see that

< 00.
p

sup sup ess sup

H D317y1Xt(€)
€ 0<t<1 (s1,y1)€EA(1)N(0,t]XR

\y1|

We set X, +(6,51) = Dy X;(€). Then one can check that X, ;(e,y1) satisfies

Xo (e, mm) = F2 (e,y1) + a(l)(X(O)( €),y )X(n-'rl)( 6)

mlﬁ/b‘” XOe) + Xy s (6,91)) Koy s (€,1) ds
/ / DX () + Koy ae (6,91), 9) Koy o (€, 31) N(ds x dy).

where

Y = / DL + 0 (K ()X (0 ds
/ / W(F2 (6 ) +aD(X12 (), 9) ) ) X (€) N(ds x dy).

Recall that F2_(e,y) can be written by a linear sum of random variables such
as (7.19). We use the convention that DG = G. Then, using Lemma 7.7 with
so = s and

0 0 n n+1
ne= [ 1ID.XO1+ Y IDRX () DE X (O] | 1XT (e,

kje{0,1}
1<kg+-kn<n

we have

1
1 v
sup ||m||p§cE[/ nrvsdr] < Clul,
S0

0<s1<t<1

where, in the last inequality, we used the assumption of the induction. By
Assumption 1, we have

DX (€) + DuX )X, o (6,11)] < CI KXoy - (6 51)),
/ aD(X V() + Xy o (6,01),y) KXoy oo (6, 31) [Pr(dy) < C| Xy o (€, 00)]7-
It follows from (7.3), (7.4), and (7.20) that

(7.22) sup || F2, (e, 1) + a(X O (€), 1) X7V (€|, < Clunl-
s1
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Hence, using Lemma 7.1 with sg = s1, ¢ = 5751’,5 and Yy, s, = FSQ1 (e,91) +
a(l)(Xﬁ?)(e),yl)X§?+1)(e), we have

SupE[ sup ‘Xsht(yhe)‘p]
€ s1<t<

t
< GIFE ) + VXD )X+ B | [ Waapar]
< Cp|yl |p~

This implies that sup, sup, | X"V (€)|;, < co. Repeating this argument, one

can get the result. a

Theorem 7.2.  The Taylor expansion
X ~ n“*1
1(€) nz_%f —

is the asymptotic expansion.

Proof. Taylor’s formula yields that

m (n) m-+1 1
Xy (e) - ZenXli(O) _ /O (1—0)" X" (ge) do

n! m!
n=0

Therefore, it follows from Lemma 7.3 that

X (e) — Z E”L'(O)

S s [ X e
. El

n=0

k,p
a
We define F(e) := w, then F'(€) has the asymptotic expansion

(n+1)
Yoo € fr with f, = X%Tl)(!o). We shall give a sufficient condition that F'(e)

satisfies the uniformly non-degenerate condition. Let Z7 (s < t) be a solution
to the following linear stochastic differential equation;

26 = v+ [ WX (0) Zo-(@drte [ [ aD(X0(0,) Z,—(0) N(dsxdy).

This equation is given by the derivative of the stochastic differential equation :

X =2 [ WX @)dr e [ [ a(Xeso(0.9)( Nids x dy).

with respect to the initial value z. Put 15(€) = Z; 1(€)a(X,(€)). Then, as in
Picard [12], one can check that for any p > 2 there is a constant C' > 0 such
that for any v = (s,z) € A(1)

(7.23) Sup [ D o) F(€) — Gr(e)z]lp < Cy(w)"™

where 7y is given in condition (7.4).
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Theorem 7.3.  Suppose that limsup,_, sup, E[|X:(€)| 7] < oo for any
p > 2, and that there is a positive constant ¢ > 0 such that

@(@)] > ela],  liminfinf(1+ eal(z,y)) > ¢

then F(€) := M satisfies the uniformly non-degenerate condition.

Proof. We use Theorem 5.2 with ¢;(€) = Z, 1(€)a(X,(€)) defined above.
Because of (7.23), all we have to do is to show that the condition (5.2) holds.
Thanks to Jensen’s inequality, we have

|(/01(¢t(6”2dt)_1 <[ [ 1y p

We define

ca(M(X,—(),))
Ws,t(e) / / 1+ Ea(l) (6),3/) N(d?" X dy),

< sup 17 (€)1 2p-

where K (e f b (X, )dr + ef;fa(l)(Xr_(e),y)J\N](dr X dy). Then, by
the assumptlon W +(€) is well-defined for each € > 0 small enough. It follows
from Theorem 63 in [14] that Zs_tl(e) (s < t) satisfies

t
Z;tl(e) =1 —|—/ Z;ﬁ_(e)dWs’T(e).

Hence, one can check that limsup,_,,sup, ||ZS_11 ()|lp < oo. From the condi-
tion limsup,_,qsup, E[|X:(€)|7P] < oo and |a(Xs(€)| > ¢|Xs(¢€)|, the assertion
follows. O

If @ is uniformly non-degenerate, then we need not to assume the condition
lim sup,_,, sup, E[| X:(€)| 7P] < o0

Example 7.1.  Suppose that the Lévy measure v(du) is given by
v(de) = 1z, 12<ryC (1(_0070)(@661 + 1(0700)(51,‘)6_]\/[;8) ||~ Y) e,

where C, G, M are positive constants and Y < 2. This is known as CGMY-
model in mathematical finance if R = co. We suppose that 0 < Y < 2, then
Condition 1 holds. Put ge(y) = log(1 4+ €(e¥ — 1)). Let 1 < R < oo be fixed.
Then, one can check that, for any y € [—R, R],

(7.24) |9¢(y)] < ReMe(1A Jy)).

We define b(e) = ffR(egé(y) — 1 — ge(y))v(dy), and consider the following
process;

Li(e) = t+//ge N(dr x dy).
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Then, by the Ito6 formula, we have
N t t R y
(7.25) Xy(e) == el =1+ b/ X,_dr + e/ / Xr—(e? = 1)N(dr x du).
0 0 J-R
On the other hand, for € > 0, the process L; can be considered as a Lévy
process with characteristic exponent ®(€)
log(1+e(ef*—1))

(€)= log Ele" €71 = b —b(e) + / ('€ =1 —igy)ve(dy),
log(14+€(e——1))

eV (l/(dz)

et+ev—1 dx

where v¢(dy) = ) dy. By Lemma 25.6 in Sato

w:lf)g(l—&-e—l(ey—l))
[16], we see that E[|X;|’] = E[ePX(9)] exists for any p € R, and by Theorem
25.17 in Sato [16], we get

limsup sup E[|X¢’] = limsup sup E[epit(e)]
e—0 0<t<L1 e—0 0<t<1

< lim sup exp{’p(b —b(e)) + /(epy -1 —py)Ve(dy)‘} < o0
e—0

where, in the last inequality, we used (7.24) after changing variable y = log(1+
e~ 1(e* —1)). Hence, the stochastic differential equation (7.25) satisfies the
condition in Theorem 7.3. We cannot choose R = oo; X;(€) does not belong to
LP for large p if R = co. However, it seems important to study the asymptotic
expansion of (7.25), if one want to know the property of geometric CGMY
process.

8. Appendix: Proof of Theorem 3.3

Proof of Theorem 3.3. We divide the proof of Theorem 3.3 into several
steps.

Step 1. For simplicity, we denote z{9 = Zﬁj)(ﬁ) and D;(n)(G)
= D;{S(G) Put Z9" = Zl(/)lA(%)c(u). We also define D;(ln)(G) as in

Lemma 3.2. By Lemma 3.2, all we have to do is to show that for any suf-
ficiently large [

IDL(G)]ls < C(1+ €12~ 5)5 |G,

where C' does not depend on [. The assumption of Theorem 3.3 yields that for
any k,j and for any p > 2

81 29 <129 < Crpy(1€I0(1E177))7

_1 _1
kpl€&l P kp|&| P

where CY,p,; is a constant which depends on p, k, j.
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Lemma 8.1. Under the notation above, we have

/ Goey, Zg_)’loegj N (du1)N(dus) . ..N(du,),
j=

1
where @; = (U1,...,u;) and Sp = {(u1,...,up) € E™; u; #uj if i # j}.
Remark 23.  See proof of Lemma 2.5 in Picard [13].

From Lemma 8.1, we can write
«(n) 2 -
(D57(6) = [ Goey, Gosy, 21(r) Nar),
Sp XSy

where,

[T70e= ) (1170
j=1

with 7 = (u1,...,upn,v1,...,0,). We divide the region S,, x S, as follows; for
Jl = {j%""’j'ﬂl} J2 {-]1""’-]'3”} C {172’...77?1}’ We deﬁne

. . . .1
u;, = v;, if and only if i3 = j
AJ1,J2 = {(u17"'7u7lav17"'71}7l); ! 4 .

andigzjg for some 1 <g<m
Then we can write

DyM(G)? = / N(dr),
m= 11 J2 Agy,aa

|J1\ [Jo|=m

where |J| is the cardinal number of the set J. Let J; = {ji,...,jL}, Jo =
{jf,---,jm} be fixed. Let us estimate the expectation of [, ~ Z! ()N (dr).
J1.72

Step 2. Put m = |J;| and k = n —m. Define {il,... ¥} ={1,....,n}N
J¢ and {i%,...,i2} = {1,...,n} N J5. We denote oy = (ujl,...,uj}n) and
09 = (uii,...,uii,vi%,...,viz). Then, on the set Ay, j,, we can regard Zl(T)

as the process parametrized by (o1,02) € Sp42r. We set

Goab = G i1y 230
A ) ﬁ Zuj‘; °Ca,, Zy ugj O€o H Z&t:{i) oca, ijig;) o0y,
0_1’ 0_2 — . "L m .
= V) Wuge) g (ua) ¥(uiz, )
Then, we can write
71 -
(8.2) 2 = Z'(01,02)
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Note that N(du) x N(du) = N(du). Recall that the measure Ao(du) is given
by (3.2). By applying Lemma 2.4 in Picard [12], we have

E

/ GoegnGosgnél(T) N(dr)
Agy Ty

=E

/ Goeg, GoggnZAl(T) N(doy) N(doy)
Ay,

=E

/ D,, (Gosgn GOE;LZl(Ul,Ug)) oet /\(dal))\(dag)]
Srn+2k

_ Cm—i—2k E

/ D,, (GosgnGoegnZl(al,ag))
St 2k v(o2)

/ D,/ Do, (GosgnGosgnZl(Ul,ag))
Smt2k

O&‘;—l Ao(d(fl))\o(ddg)]

— Cm—i—2k Z E

where ¢ = fA(l) A2 (u)A(du), oy is extracted from op, and the sum is obtained
by the formulas (2.10) and (2.8). The formula (2.10) and the fact that v(u) <1
on A(|€|7 ) yields

v(o2)

)\o(da'l)/\o(dag)‘| 5

D_ D,, (Goeg Goey Z\(o1,02))
E / 1 )\0(01))\0(d02)
Sont2k v(02)
D, Goeyg D,,Goey DVZl(al,ag)
<Nk / n Xo(o1)Ao(do
D N BT T 7 Gy | ol

where vy, 19, and v are extracted from (o1,09) and the sum is given by the
formula (2.10).

Step 3.  We shall estimate

/Sm+2k

For any r > 2, we take 7" > 1 such that % +
inequality, (8.3) is bounded by

(8.4)

D, Goe; D,,Goey,
y(v1) v(v2)

D,,Z_I(O'l, 0'2)
V(v)

(83) E

Ao(1)Ao(doz) ]

1

- =
T

1. By applying Holder’s

D, Goey D,,Goey D, Z oy, 09)

Ao(o1) o (do
/*;'7n+2k ,Y(Vl) ’Y(V2) % ’Y(V) ’l‘/ O( 1) O( 2)
Dy, Goex || || DwGoes, || || DZ! (01,0
S/ n n (01,02) Mo(o1)o(dors).
S 2k v(1) r y(v2) |, ~y(v) v

It follows from (2.1) that for any random process X,

Xuoer =X, ae-Ao(du)A(dr).
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Hence, it follows from (8.1) and (2.10) that,
‘ DVZI(O'l, 0'2)

ool <o(jerqerh)

r

sup ess sup

__1
01,02€A™TR(|£]F )

where C' > 0 does not depend on I. Note that the region of the integral in (8.4)
is A(|€]7)2+™ because Z¢) =0 on A(|€|7). For j = 1,2, applying Holder’s
inequality, we have

[

sup L ==

Glnr=1Ja e 5) 17(W5) |l
< sup E

/ ‘DVJG
T Glaw=1 [Jaqer ) [7(5)

<T(|g|75) =Pkl

where |v;| (j = 1,2) is the length of v; (j = 1,2), respectively. Remark that
(2.9) and definition of o1, 09 imply that v; and vo have no same component,
further v; and v, have to be extracted from oo. Hence, |v1| + |v2| < 2k holds.
Recall that r > 2. The right hand side of (8.4) is bounded by

H /‘ DVj DUZI(UlaUZ)
iSis v(v)

F(‘ S |—%)m+2k*(‘l’1|+|l’2|)
v(v5)
< CE 72 T(|g| h )2kl + (1= 1) (v lval)

Ao(dvj) - esssup ‘

01,02 r

v [+lval

< ClgnT(|g]h) T
<ClEITT(|E7F) " < Olg |2 En,

where, in the last inequality, we have used I'-2) in Condition 1 in Section 2.
The constant C' does not depend on [ > 0. This completes the proof. O
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