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Toric Structures on Bundles of Projective Spaces

Andrew Fanoe

Recently, extending work by Karshon et al. [5], Borisov and McDuff
showed in [2] that a given closed symplectic manifold (M,ω) has a
finite number of distinct toric structures. Moreover, in [2] McDuff
also showed that a product of two projective spaces CP r × CP s

with any given symplectic form has a unique toric structure pro-
vided that r, s ≥ 2. In contrast, the product CP r × CP 1 can be
given infinitely many distinct toric structures, although only a
finite number of these are compatible with each given symplectic
form ω. In this paper, we extend these results by considering the
possible toric structures on a toric symplectic manifold (M,ω) with
dimH2(M) = 2. In particular, all such manifolds are CP r bundles
over CP s for some r, s. We show that there is a unique toric struc-
ture if r < s, and also that if r, s ≥ 2, M has at most finitely many
distinct toric structures that are compatible with any symplectic
structure on M . Thus, in this case the finiteness result does not
depend on fixing the symplectic structure. We will also give other
examples where (M,ω) has a unique toric structure, such as the
case where (M,ω) is monotone.

1. Introduction

Recall that (M2n, ω) is a symplectic manifold if ω is a closed 2-form with
ωn �= 0. Further recall that an S1 action on M is Hamiltonian if iξω is
exact, where ξ is the generating vector field of the action. A function H
with dH = iξω is then called a moment map for the action. Correspond-
ingly, an action of Tn on (M2n, ω) is called Hamiltonian if it can be written
in coordinates as an action of S1 × · · · × S1 with each S1 action being Hamil-
tonian. Such an action is determined by a moment map μ : M → Rn which
comes from piecing together the moment maps on each coordinate action.
A symplectic toric manifold (M2n, ω, Tn) is given by a symplectic manifold
(M2n, ω) together with an effective, Hamiltonian torus action of Tn.

Let M̃ → M → M̂ be a locally trivial fibration. Then M is a symplectic
bundle if M̃ has a symplectic structure ω0 and if the structure group of the
bundle is Symp(M̃). By Lemma 2.11 below, any symplectic toric manifold
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M with dimH2(M) = 2 is a CP r bundle over CP s. Furthermore, any such
toric structure can be realized as the projectivization P(L−a0 ⊕ L−a1 ⊕ · · · ⊕
L−ar

) of a sum of complex line bundles L−ai
over CP s with the obvious

action of the torus T r+s, where Lc is the line bundle over CP s with first
Chern class c times a generator of H2(CP s). By tensoring with Lc where
c = −max ai we may assume that a0 = 0 ≤ a1 ≤ · · · ≤ ar. Moreover, the
symplectic form ω restricts to the standard Fubini–Study form on the fiber,
and so may be normalized by requiring that ω(�) = r + 1, where � is the
homology class of a line in the fiber. Since H2(M) has rank 2, the above
normalization still leaves [ω] with one free parameter. We call this parameter
κ, and it can be easily seen to be determined by Vol(M, ω), as in Lemma 2.8.
Thus from the above we see that the tuple (a; κ) := (a1, . . . , ar; κ) determines
a toric structure on a symplectic toric manifold (M, ω) with dimH2(M) = 2,
where 0 ≤ a1 ≤ · · · ≤ ar are integers and κ is a real number related to the
symplectic volume of M .

We denote the resulting toric manifold by (Ma, ω
κ
a , Ta). By Definition 2.3

and Lemma 2.5 below, for each tuple a there is a number Ka(s) such that Ma

admits the structure described above for all κ > Ka(s) = σ1(a)− s, where
σ1(a) is the sum of the components of a. Furthermore, we have the following
fundamental result, which is proven at the end of Section 2.

Theorem 1.1. Let (M, ω, T ) be a toric symplectic manifold with
dimH2(M) = 2. Then there is a unique tuple (a; κ) with 0 ≤ a1 ≤ · · · ≤ ar

such that (M, ω, T ) is equivariantly symplectomorphic to (Ma, ω
κ
a , Ta).

Thus, to count toric structures on closed symplectic manifolds with
dimH2(M) = 2, it suffices to count toric structures on the manifolds Ma.

The following result is based on Theorem 6.1 of [1] and is instrumental to
the proofs of many of our results. Due to its important role in the rest of the
paper, we will give the details of the proof using our notation in Section 2.

Proposition 1.2. Let Ma and Mb be CP r bundles over CP s as above for
some vectors a and b. The following are equivalent:

(1) H∗(Ma; Z) is isomorphic to H∗(Mb ; Z) as a ring.

(2) P(L0 ⊕ L−a1 ⊕ · · · ⊕ L−ar
) is isomorphic to P(L0 ⊕ L−b1 ⊕ · · · ⊕ L−br

)
as a projective vector bundle.

(3) Ma is isomorphic to Mb as a symplectic bundle.
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(4) There is C ∈ Z such that

σi(C, C + a) := σi(C, a1 + C, . . . , ar + C)
= σi(0, b1, . . . , br) =: σi(0, b), 1 ≤ i ≤ min{r + 1, s},

where σi denotes the ith elementary symmetric function.

It is natural to conjecture that if (Ma, ω
κ
a) is isomorphic to (Mb, ωκ

b) as a
symplectic bundle, i.e., there exists a diffeomorphism φ : Ma → Mb preserv-
ing the fiberwise symplectic structure, then they are symplectomorphic for
all κ > max(Ka, Kb). However, this is not yet known except when s = 1 or,
as in Lemma 1.6 below, when κ � 0. In fact, we have the following theorem,
proven in Section 3.

Theorem 1.3. Let (Ma, ω
κ
a) and (Mb , ωκ

b ) be CP r bundles over CP 1 as
above with κ > max(Ka, Kb). Then (Ma, ω

κ
a) is symplectomorphic to

(Mb , ωκ
b ) if and only if (Ma, ω

κ
a) is isomorphic to (Mb , ωκ

b ) as a symplec-
tic bundle.

Since this is not known in the general case s > 1, we will consider the
following weaker notion of equivalence.

Definition 1.4. We say that two symplectic manifolds (M, ω), (M ′, ω′) are
deformation equivalent if there is a diffeomorphism φ : M → M ′ and a family
ωt, t ∈ [0, 1], of symplectic forms on M such that

φ∗([ω′]) = [ω], ω0 = φ∗(ω′), ω1 = ω.

Remark 1.5. In contrast to the usual definition of deformation equiva-
lence, we have required φ∗([ω′]) = [ω]. Thus the deformation starts and ends
in the same cohomology class, even if it leaves this class for some t.

The following lemma says that (Ma, ω
κ
a) and (Mb, ωκ

b) are isomorphic
as symplectic bundles if and only if they are deformation equivalent, and it
will be proven in Section 3.

Lemma 1.6. Let a = (a1, . . . , ar), b = (b1, . . . , br) be non-negative integer
vectors and κ a real number which determines the bundles (Ma, ω

κ
a) and

(Mb , ωκ
b ). Then Ma and Mb are isomorphic as symplectic bundles if and

only if (Ma, ω
κ
a) is deformation equivalent to (Mb , ωκ

b ). Moreover, for κ � 0,
we also have (Ma, ω

κ
a) is symplectomorphic to (Mb , ωκ

b ).
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Given the class of manifolds (Ma, ω
κ
a), we can ask how many different

toric structures we can put on the same deformation class. Given symplectic
toric manifolds (M, ω, T ) and (M ′, ω′, T ′), we recall that the toric structures
are called equivalent if there is an equivariant symplectomorphism from one
to the other, and are called inequivalent otherwise.

The following result uses the fact that two toric manifolds are equivalent
if and only if their moment polytopes are affine equivalent, and is proven in
Section 2.

Lemma 1.7. Let a = (a1, . . . , ar) and b = (b1, . . . , br) be integer vectors
with 0 ≤ a1 ≤ · · · ≤ ar and 0 ≤ b1 ≤ · · · ≤ br and let κ and κ′ be real num-
bers. Then (Ma, ω

κ
a , Ta) is equivalent to (Mb, ωκ′

b , Tb) ⇐⇒ (a; κ) = (b; κ′).

Question 1.8. Given a tuple (a; κ), what is Nn(a; κ), the number of inequiv-
alent toric structures on the deformation class of (M2n

a , ωκ
a)? In particular,

for fixed a and n, how does it depend on κ, and for which (a; κ) do we have
Nn(a; κ) = 1?

If a = 0, the manifold Ma is just a product CP r × CP s and this question
was answered in [2] as follows.

Proposition 1.9 ([2], Proposition 1.8). Let (M2n
a , ω) = (CP r × CP s, ωr ×

λωs) with λ > 0. Then if either r ≥ s ≥ 2, or r > s ≥ 1 and λ ≤ 1, or
r = s = 1 and λ = 1, there is a unique toric structure compatible with this
symplectic structure. In all other cases, the toric structure is not unique.

In light of this proposition, we will focus on the case where a �= 0, and
hence assume some ai �= 0. We now provide a summary of our results, to be
proven in Section 4. Our results are complete when r < s, but there are still
some open questions for r ≥ s. Recall that r is the dimension of the fiber
and s is the dimension of the base.

The first main theorem is a uniqueness result.

Theorem 1.10. Let (M2n, ωκ
a) be determined by a = (a1, . . . , ar) and κ, as

before. If r < s and a �= 0, we have

Nn(a; κ) =

{
0 if κ ≤ Ka(s),
1 if κ > Ka(s),

where Ka(s) := σ1(a)− s.
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This gives a complete characterization for Nn(a; κ) with r < s and has
the following interesting corollary.

Corollary 1.11. Let (M, ω, T ) and (M ′, ω′, T ′) be non-trivial toric CP r

bundles over CP s with r < s. If (M, ω) is deformation equivalent to (M ′, ω′),
then (M, ω, T ) is equivariantly symplectomorphic to (M ′, ω′, T ′).

Proof. This follows directly from the fact that if r < s and a �= 0, then
Nn(a, κ) = 1 for all κ > Ka(s). Indeed, the formula Nn(a, κ) = 1 implies that
for a fixed tuple (a; κ), any manifold (M, ω, T ) so that (M, ω) is deformation
equivalent to (Ma, ω

κ
a) is equivariantly symplectomorphic to (Ma, ω

κ
a , Ta).

�
The case where r ≥ s is more complicated, as the next example shows.

Example 1.12. Let r, s = 3, 2 and take a = (1, 4, 4) and b = (2, 2, 5). For
sufficiently large κ, both (Ma, ω

κ
a) and (Mb, ωκ

b) describe CP 3 bundles over
CP 2 which are deformation equivalent, by Proposition 1.2 and Lemma 1.6.
However, these are obviously not the same toric manifolds by Lemma 1.7
since a �= b. In fact, we show in Example 4.1 that

N5(a; κ) =

{
0 if κ ≤ 7,

2 if κ > 7,

so that there is no choice of κ for which N5(a; κ) = 1.

We will give more specific examples of the r ≥ s case at the end of
Section 4.

Even though there is not a general uniqueness theorem for the r ≥ s
case, there are still some uniqueness results. In particular, by restricting the
size of κ, we have the following theorem.

Theorem 1.13. Let a �= 0 and κ be as before with the added assumption
that κ ≤ 1. We have

Nn(a; κ) =

{
0 if κ ≤ Ka(s),
1 if Ka(s) < κ ≤ 1.

This has an interesting application. Recall that we say a symplectic
manifold is monotone if we have [ω] = k[c1(M)] for some positive constant
k which is usually normalized to equal 1. Our notation is chosen so that we
have the following, as in Remark 2.2(i) of [2].
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Lemma 1.14. (Ma, ω
κ
a) is monotone ⇐⇒ κ = 1.

In Question 1.11 of [2], McDuff conjectures that every monotone sym-
plectic toric manifold has a unique toric structure. An obvious corollary of
the above gives some support for this conjecture.

Corollary 1.15. If (M2n
a , ωκ

a) is monotone, then Nn(a; κ) = 1.

Remark 1.16. Recall that a toric symplectic manifold (M, ω, T ) is called
Fano if there is a smooth family of T -invariant forms ωt, 0 ≤ t ≤ 1, with
ω0 = ω and ω1 monotone. In our case, we have that (M2n

a , ωκ
a , Ta) is Fano if

and only if Ka(s) < 1. We will call such vectors a Fano vectors. In
Examples 4.4–4.6 below, we will consider the Fano case in some specific
examples.

Although we cannot yet compute Nn(a; κ) for all κ, we can say that as
a function of κ, Nn(a; κ) is monotonic and locally constant, with the only
jumps possible being at certain integer values of κ. Furthermore, if r = s,
these jumps are of size at most 1. More specifically, we have the following
theorem.

Theorem 1.17. Let a = (a1, . . . , ar) be a non-negative integer vector and
let KM be the minimum of the set of κ with Nn(a; κ) �= 0. Then we have the
following:

(1) Let � ≥ 0 be an integer, and let κ1, κ2 be real numbers. Then we have

KM + �(r + 1) < κ1, κ2 ≤ KM + (� + 1)(r + 1) =⇒ Nn(a; κ1) = Nn(a; κ2).

(2) If also r = s and κ = KM + �(r + 1) and 0 < ε ≤ r + 1,

Nn(a; κ) ≤ Nn(a; κ + ε) ≤ Nn(a; κ) + 1.

Notice that the number KM above need not equal the number Ka(s)
from before because there could be a different vector b so that (Ma, ω

κ
a) is

deformation equivalent to (Mb, ωκ
b) with Kb(s) < Ka(s). Then, we would

have Nn(a; κ) = Nn(b; κ) for all κ, while Kb(s) < Ka(s), which would obvi-
ously imply that KM ≤ Kb(s) < Ka(s).

The above theorem then says that if KM denotes the position of the first
jump of Nn(a; κ), then all subsequent jumps can only occur at the integers
KM + l(r + 1), and when r = s, these jumps are of size 0 or 1. An obvious
corollary of the above two theorems is another uniqueness result.
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Corollary 1.18. Let KM be as before, and assume that r = s. Further
assume we have an a = (a1, . . . , ar) so that Ka = KM . Then we have

Nn(a; κ) = 1 ∀KM < κ ≤ KM + r + 1.

The following result describes the behavior of Nn(a; κ) for large κ.

Theorem 1.19. Let a = (a1, . . . , ar) and b = (b1, . . . , br) be as before and
let C be an integer, as in Proposition 1.2. Furthermore, assume that

σi(0,b) = σi(C, C + a), i = 1, . . . , s

with r ≥ s ≥ 2. Then we have

− 1
r+1σ1(a) ≤ C < r−1

r σ1(a).

Moreover, this implies

κ1, κ2 ≥ (r + 1− 1
r )σ1(a)− s =⇒ Nn(a; κ1) = Nn(a; κ2).

In particular, we have

Nn(a;∞) := lim
κ→∞Nn(a; κ) < ∞.

Remark 1.20. This result is surprising at first glance. The condition
Nn(a;∞) <∞ implies that there are at most finitely many toric structures
which are compatible with an arbitrary symplectic structure on the given
deformation class of Ma. This is stronger than the finiteness result proven
by Borisov and McDuff in [2], which relies on fixing a symplectic structure
to get finiteness.

However, if r = s = 1, this does not happen. Indeed, in that case, a = a
and b = b are just numbers, and the manifolds (Ma, ω

κ
a) are the well-known

Hirzebruch surfaces. It is known for the Hirzebruch surfaces that if b− a
is even, then (Ma, ω

κ
a) is deformation equivalent to (Mb, ωκ

b), which shows
that for any a, we have

lim
κ→∞N2(a; κ) =∞.

Theorem 1.19 says that for any a, Nr+s(a;∞) is finite if r ≥ s ≥ 2. A
natural question to ask is what happens if instead of allowing only κ to vary,
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we also allow a to vary. Namely, we can consider the quantity

sup
a

Nr+s(a;∞)

for fixed r ≥ s ≥ 2. We have the following conjecture.

Conjecture 1.21. For any positive integers r ≥ s ≥ 2 we have

sup
a

Nr+s(a;∞) =∞,

where the supremum is over all non-negative integer vectors a.

Although we have not been able to verify this conjecture in full gener-
ality, we do have the following support for our conjecture.

Theorem 1.22. For any integer r ≥ s = 2 we have

sup
a

Nr+2(a;∞) = ∞,

where the supremum is over all non-negative integer vectors a.

Theorem 1.19 above has the following interesting corollary.

Corollary 1.23. Let a = (a1, . . . , ar) be as before, and let r ≥ s ≥ 2. Then
there is a constant K so that for all κ ≥ K, the symplectomorphism class of
(Ma, ω

κ
a) has exactly Nn(a;∞) inequivalent toric structures.

Proof. By Theorem 1.19, we know that Nn(a;∞) is a finite number. More
specifically, for all κ > (r + 1− 1

r )σ1(a)− s, Nn(a; κ) = Nn(a;∞). Also, as
in Lemma 1.6, for each vector b so that (Mb, ωκ

b) is deformation equiva-
lent to (Ma, ω

κ
a) for some κ, there is a constant Cb so that for all κ > Cb,

(Mb, ωκ
b) is actually symplectomorphic to (Ma, ω

κ
a). Furthermore, there is

a finite number of such constants Cb, and thus we can define the constant
K as

K := max{Cb, (r + 1− 1
r )σ1(a)− s}.

Then as above, for all κ > K, the symplectomorphism class of (Ma, ω
κ
a) has

exactly Nn(a;∞) toric structures. �



Toric Structures on Bundles of Projective Spaces 693

2. Definitions and basic results

This section discusses some basic background results that are important for
understanding and proving our above results. It is divided into an introduc-
tion to the geometric ideas and the homological ideas we will need. We now
introduce the geometric ideas.

First, we will discuss toric manifolds and polytopes. We will focus mostly
on the case where M is a symplectic toric CP r bundle over CP s. Recall
that we say M is a symplectic bundle if M is an M̃ bundle over M̂ so that
M̃ has a symplectic structure ω0 and the structure group of the bundle is
Symp(M̃). In particular, this implies that each fiber Fx over a point x ∈ M̂
has a symplectic structure ωx so that i∗(ωx) = ω0 where i is the inclusion of
the standard fiber.

If H1(M̂) = 0, as it is in our case where M̂ = CP s, we can piece the
forms ωx together into a closed form τ on M so that τ is non-degenerate on
the fibers of M . If also (M̂, ω̂) is symplectic, then there is a closed form ω
on M , defined by

ω = τ + Kπ∗(ω̂),

where π : M → M̂ is the projection and K ∈ R. It is well known that ω is
symplectic for sufficiently large K.

Now further assume that we have Hamiltonian torus actions T̃ , T and T̂
on M̃ , M and M̂ , respectively, making them each symplectic toric manifolds.
Then we say that M is a symplectic toric bundle if there is a short exact
sequence

T̃ → T → T̂ ,

such that i : (M̃, T̃ ) → (M, T ) and π : (M, T ) → (M̂, T̂ ) are equivariant.
Now, let Δ be the moment polytope of a toric structure on some sym-

plectic toric manifold (M, ω, T ). We can describe Δ as

{x ∈ Rn|〈x, ηi〉 ≤ κi for all i},

where the ηi are the outward primitive integer conormals to the facets of Δ
and the κi are support constants.

Example 2.1. The moment polytope of CPn will be denoted Δn, and is
a copy of the standard n-simplex when we choose ηi = −ei for 1 ≤ i ≤ n,
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ηn+1 = (1, . . . , 1) and all κi = 1. Notice that Δn has edges of length n + 1
and has volume equal to

Vol(Δn) = 1
n!(n + 1)n.

We recall that any moment polytope is a simple, smooth, rational poly-
tope. If dim(Δ) = n, simple means at each vertex exactly n facets meet,
rational means that the conormal vectors to these facets are primitive inte-
gral vectors and smooth means that these vectors form an integer basis of Zn.
We call such polytopes Delzant polytopes. The well-known Delzant theorem
from [3] says the following.

Theorem 2.2 (Delzant). For each Delzant polytope Δ, there is a sym-
plectic toric manifold MΔ with moment polytope Δ. Moreover, (M, ω, T ) is
equivariantly symplectomorphic to (M ′, ω′, T ′) if and only if ΔM and ΔM ′

are equivalent under the affine group generated by translations and the action
of GL(n; Z).

We are most interested in the case where the manifold M is a symplectic
toric M̃ bundle over M̂ . To study this, we will discuss the notion of a bundle
of polytopes.

The general definition of a polytope Δ being a Δ̃ bundle over Δ̂ given as
3.10 of [4] is more complicated than we will need, so we instead summarize
some key points. In particular, we only need the notion of a Δr bundle
over Δs.

The basic idea is to develop a notion of bundles so that by the Delzant
theorem above, a manifold (M, ω, T ) is a symplectic toric (CP r, ωr, Tr) bun-
dle over (CP s, ωs, Ts) if and only if Δ is a Δr bundle over Δs. At this point,
we recall that Δ ⊂ t∗, where t is the Lie algebra of T , and similarly for Δr

and Δs. Since the moment polytopes are then naturally subsets of the dual
spaces to the Lie algebras of the torus actions, we should expect a Δr bun-
dle over Δs to naturally be fibered by Δs over Δr, instead of the other way
around. This motivates the following definition.

Definition 2.3. We say that a polytope Δ is a Δr bundle over Δs if, for
some choice of (a; κ) where a = (a1, . . . , ar) are integers and κ ∈ R with
κ > Ka := σ1(a)− s, Δ is affine equivalent to the polytope Δκ

a, which is
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defined by setting

(2.1) ηi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ei if 1 ≤ i ≤ r,

(1, . . . , 1, 0, . . . , 0) if i = r + 1,

−ei−1 if r + 2 ≤ i ≤ r + s + 1,

(−a1, . . . ,−ar, 1, . . . , 1) if i = r + s + 2,

with κi = 1 for 1 ≤ i ≤ r + s + 1, and κr+s+2 = κ.

Remark 2.4. The polytope Δκ
a naturally has the structure of a standard

copy of Δr with fibers that are all rescaled copies of Δs. The vector a then
has a natural interpretation as the slope of the increase of the rescaling as
we move in the standard directions in Δr, while the number κ determines
the rescaling over the origin. We will now take a few moments to show this
more explicitly by computation.

We obtain relations on the coordinates xi of an arbitrary point of Δκ
a by

computing 〈x, ηi〉 for each i, for 1 ≤ i ≤ r + s. We get the inequalities

(*)
xi ≥ −1 ∀i,
x1 + · · ·+ xr ≤ 1,
xr+1 + · · ·+ xr+s ≤ κ + a1x1 + · · ·+ arxr.

The first two lines of (∗) imply the first r coordinates of x (x1, . . . , xr), form
a standard copy of Δr, as described in Example 2.1. Also, the first and third
lines of (∗) show that the last s coordinates of x, (xr+1, . . . , xr+s), form
a rescaled copy of Δs. Namely, they form a polytope Δκ,x

s described as a
subset of Rs by the conormals

ηi =

{
−ei ∀1 ≤ i ≤ s,

(1, . . . , 1), i = s + 1

with support constants κi = 1 for 1 ≤ i ≤ s and κs+1 = κ + a1x1 + · · ·+
arxr. Thus, Δκ,x

s is simply a standard simplex with edge length s + κ +
a1x1 + · · ·+ arxr.

Note also that the inequalities (∗) justify the restriction that κ > σ1(a)−
s. Indeed, if we assume that (x1, . . . , xr) = (−1, . . . ,−1), then the third
inequality of (∗) says that

xr+1 + · · ·+ xr+s ≤ κ− a1 − · · · − ar.



696 A. Fanoe

But, on the other hand, the first line of (∗) implies that xi ≥ −1, so that

xr+1 + · · ·+ xr+s ≥ −s.

Thus, to avoid contradiction, we must assume that κ > σ1(a)− s.
Also, note that in our case, we assumed all ai ≥ 0, so that in the

inequality
xr+1 + · · ·+ xr+s ≤ κ + a1x1 + · · ·+ arxr,

the size of the right-hand side (RHS) increases as the xi increase. Thus, the
Δs fiber of the point (−1, . . . ,−1) is the smallest fiber if we assume ai ≥ 0.

We now have the following lemma, which gives the relation between
CP r bundles over CP s and Δr bundles over Δs and discusses the effect of
increasing κ on the symplectic form ωκ

a .

Lemma 2.5. Let (M, ω, T ) be a symplectic toric manifold with moment
polytope Δ. Then (M, ω, T ) is a symplectic toric (CP r, ωr, Tr) bundle over
(CP s, ωs, Ts) if and only if Δ is a Δr bundle over Δs equivalent to Δκ

a for
some (a; κ). Moreover, for a fixed pair (a; κ) and a real number K > 0, we
have

ωκ+K
a = ωκ

a + K
s+1π∗(ωs).

Proof. The first statement is discussed in detail in Remark 5.2 of [4], but is
difficult to prove in much generality without the full definition of a bundle
of polytopes, which we have omitted. The idea is to use the full definition
of a bundle of polytopes to compute M as a complex manifold. In fact, in
Remark 5.2 of [4], it is concluded that if a = (a1, . . . , ar),

Ma = CP r ×C∗ (Cs+1 \ {0})

for the following C∗ actions. Let (z1, . . . , zr) be coordinates on CP r. Then
if teiθ represents the standard polar form of a number in C∗, the action on
CP r is described by

teiθ · (z1 . . . , zr) =
(
(teia1θ)z1, . . . , (teiarθ)zr

)
.

On Cs+1 \ {0}, the C∗ action is described by

teiθ · (z1, . . . , zs+1) =
(
(teiθ)z1, . . . , (teiθ)zs+1

)
,

which is the standard C∗ action.
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Furthermore, we have

(Ma, ω
κ
a) =

(
CP r ×C∗ (Cs+1 \ {0}), Ωλ(κ) = ωr × λ(κ)ω0

)
,

where ωr is the standard form on CP r, scaled so that ωr(�) = r + 1 with �
the homology class of a line, ω0 is the standard form on Cs+1 and λ(κ) is a
rescaling factor determined by κ.

We seek to compute ωκ+K
a . As above, Ma is determined as a complex

manifold by the relation

Ma = CP r ×C∗ (Cs+1 \ {0}).

Furthermore, ωκ+K
a is the reduction of Ωλ(κ+K) by the C∗ action. Then, an

easy computation shows that

ωκ+K
a − ωκ

a = K
s+1π∗(ωs),

where ωs is the standard form on CP s normalized so that ωs(�) = s + 1, as
before. Reordering the terms, we get the desired result. �

We now give a helpful condition for detecting when a polytope Δ is
a Δr bundle over Δs. First, there is the notion of two polytopes being
combinatorially equivalent.

Definition 2.6. Two polytopes Δ and Δ′ are said to be combinatorially
equivalent if there is a bijection φ between the facets Fi of Δ and F ′i of Δ′

with φ(Fi) = F ′i such that for each index set I⋂
i∈I

Fi �= ∅ ⇐⇒
⋂
i∈I

F ′i �= ∅.

McDuff and Tolman prove the following lemma in [4].

Lemma 2.7 ([4], Lemma 4.10). Let Δ be a polytope which is smooth and
combinatorially equivalent to Δr ×Δs. Then Δ is a Δr bundle over Δs or
a Δs bundle over Δr.

For the rest of the paper, we will only be interested in polytopes Δ which
are Δr bundles over Δs for some choice of r, s, which as in Definition 2.3
are determined by pairs (a; κ).

Using the above presentation we see that the vector a = (a1, . . . , ar)
determines the underlying bundle structure of the corresponding manifold
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M , while the constant κ determines how much of the structure of the base
M̂ is pulled back to the total space.

We now reinterpret κ in terms of the volume of the polytope to relate
the above choice of (a; κ) to the choice given at the beginning of the paper.
We have the following lemma.

Lemma 2.8. Let r, s be positive integers, let a = (a1, . . . , ar) be an integer
vector and let κ be a real number so that κ > K(a)(s). Then we have

Vol(Δκ
a) = 1

r!
1
s!(r + 1)r(κ + s)s.

Proof. Consider the polytope Δκ
a. As we saw before, this geometrically looks

like a standard copy of Δr with a rescaled copy of Δs over each point. The
point (0, . . . , 0) is the barycenter of the standard copy of Δr, and the copy of
Δs over this point is the rescaled polytope Δκ

s discussed in Remark 2.4. We
recall that it has the form of a standard s simplex with side length s + κ.
Now, since the sizes of the side lengths of the rescaled copies of CP s over
the base copy of CP r depend linearly on the coordinates in CP r and Δκ

s is
the Δs over the barycenter, we know that

Vol(Δκ
a) = Vol(Δr)V ol(Δκ

s ).

However, a simple geometric argument shows that

Vol(Δκ
s ) = 1

s!(κ + s)s, Vol(Δr) = 1
r!(r + 1)r. �

As the above shows, the tuple (a; κ) can be interpreted as a determining the
bundle structure of (Ma, ω

κ
a), while κ determines the volume of (Ma, ω

κ
a).

Also, as we see in Section 2.4 of [2], we can restrict to the case where
ai ≥ 0 for all i. To see this, recall from before that Δκ

a has a standard copy
of Δr with each point having a rescaled Δs over it. Also, we know that for
any vertex of Δ, we can choose coordinates around that vertex so that the
edge directions from that vertex are the standard vectors e1, . . . , en. If we
choose coordinates for Δ around the point of Δr with the “smallest” copy
of Δs, then by the interpretation of −ai as the slopes of linear changes in
the standard coordinate directions, we have −ai ≤ 0 for all i, which means
ai ≥ 0 for all i.

We now prove Lemma 1.7, which we recall states that

(Ma, ω
κ
a , Ta) ∼= (Mb, ωκ

b, Tb) ⇐⇒ (a; κ) = (b; κ),

where ∼= denotes the relation of equivariant symplectomorphism.
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Proof of Lemma 1.7. First, we notice that if (a; κ) = (b; κ′), then the mani-
folds are equivalent. It remains to show that if the manifolds are equivalent,
then (a; κ) = (b; κ′). In particular, we show that if Δκ

a is affine equivalent
to Δκ′

b , then (a; κ) = (b; κ′).
Since Δκ

a is affine equivalent to Δκ′
b and affine equivalences preserve

volume, Vol(Δκ
a) = Vol(Δκ′

b ). Then, a simple application of Lemma 2.8 shows
that κ = κ′. We now show that a = b.

As in Remark 2.4, the polytope Δκ
a consists of a standard copy of Δr

with a rescaled copy of Δs over each point. Furthermore, as we move in
the direction ei in the base copy of Δr, the edge lengths of the specific
copy of Δs increase linearly with slope ai. Thus, we have exactly r + 1
different s-dimensional faces of Δ, which are all copies of Δs of various sizes
sitting over the r + 1 vertices of this Δr. In particular, combining Remark
2.4 with Lemma 2.8, we can easily compute that the volume of the smallest
such Δs is 1

s!(κ + s− σ1(a))s, while the volumes of the other s faces will be
1
s!(κ + s− σ1(a) + ai)s.

Similarly, in Δκ
b, there are r + 1 different s-dimensional faces which are

copies of Δs, and their volumes are given by 1
s!(κ + s− σ1(b))s and 1

s!(κ +
s− σ1(b) + bi)s. Now, if there is an affine equivalence from Δκ

a to Δκ
b, it

would have to send the r + 1 copies of Δs in Δκ
a to the corresponding copies

of Δs in Δκ
a while preserving their volumes. In particular, by the above

computations, this implies that σ1(a) = σ1(b) and furthermore that for each
i, there is a j so that ai = bj . But the assumption that 0 ≤ a1 ≤ · · · ≤ ar

and 0 ≤ b1 ≤ · · · ≤ br implies that for each i, we have ai = bi. Thus, if the
polytopes are affine equivalent, then (a; κ) = (b; κ′), as desired. �

Now we will get into some of the more technical lemmas we will need
for the proofs of our results.

Lemma 2.9. Let r, s ≥ 1 be integers with r > 1 and let a = (a1, . . . , ar) be
a non-negative integer vector with some ai �= 0. Assume H∗(M ; Z) is iso-
morphic to the graded ring generated by α0 and β0 of H2(M) with relations

αs+1
0 = 0, β0

r∏
i=1

(β0 − aiα0) = 0,

then if there exist integers A, B so that (Aα0 + Bβ0)s+1 = 0, we must have
B = 0.

Proof. This a slight restatement of Lemma 6.2 in [1]. We follow their proof
closely. Since (Aα0 + Bβ0)s+1 = 0, (Aα0 + Bβ0)s+1 must be a consequence
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of our other relations. Namely, there exists C, D so that

(Aα0 + Bβ0)s+1 − Cαs+1
0 = Dβ0

r∏
i=1

(β0 − aiα0),

where C is an integer and D is an integer polynomial in α0 and β0 of degree
s− r if r ≤ s, and D = 0 if r > s.

If r > s, we then have (Aα0 + Bβ0)s+1 − Cαs+1
0 = 0, which gives B = 0

and C = As+1, as desired.
Consider now r ≤ s. Suppose first that A = 0. Since the RHS has no

pure α0 terms and A = 0, we must have C = 0 and the left-hand side (LHS)
is only a βs+1

0 term. But some ai �= 0, so that the RHS has a non-zero βr+1
0

term and a non-zero α0β
r
0 term, which is a contradiction. Thus, A �= 0. Now,

since the RHS has no pure α0 terms and A �= 0, we must have C = As+1

to cancel the αs+1
0 term from the LHS. If now B �= 0, the remaining terms

on the LHS can be expressed as a polynomial in α0 and β0 with no more
than two linear factors when optimally factored, while the RHS has at least
three linear factors since r > 1, so that the two polynomials can never be
equal. We briefly describe the factorization of the LHS. First, let Aα0 = X
and Bβ0 = Y . Then, since C = As+1, the LHS can be expressed as

(X − Y )s+1 −Xs+1,

and this has no more than two linear factors, as claimed. This contradiction
establishes that B = 0. �

We will now prove Proposition 1.2, which we use heavily in the proofs
of our main theorems.

Proof of Proposition 1.2. If a = b = 0, the result is obvious, thus one of a
and b is nonzero. Without loss of generality, we assume some ai �= 0. We
will prove that (1)⇒ (2) ⇒ (4) ⇒ (1) and also (2)⇔ (3).

First, we prove that (1)⇒ (2). This is the hardest direction of the
proof, and we will break it into three cases. First assume that r > 1. This
proof is taken from Theorem 6.1 of [1]. The Stanley–Reisner presentation of
H∗(Ma; Z) on Δa gives generators α0 and β0 for H∗(Ma; Z) satisfying

αs+1
0 = 0,(α0)

β0

r∏
i=1

(β0 − aiα0) = 0.(β0)
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Similarly, from the polytope Δb, we get generators α and β of H∗(Mb; Z)
with the relations

αs+1 = 0,(α)

β
r∏

i=1

(β − biα) = 0.(β)

Since H∗(Ma) is isomorphic to H∗(Mb), there exist integers A, B, C, D with
AD −BC = 1 so that

α0 = Aα + Bβ, β0 = Cα + Dβ.

Using αs+1
0 = 0 and Lemma 2.9, we conclude that B = 0, so that A = D = ±1.

Moreover, we can arrange A = D = 1 by possibly changing the signs of both
α and β. Now we substitute β0 = Cα + β and α0 = α into the relation (β0),
and since the relation (β0) must equal the relation (β), we know that the two
polynomials are equal as polynomials in β. Substituting the specific value
β = 1, we obtain the relation

(*)
r∏

i=0

(1 + (−ai + C)α) =
r∏

i=0

(1− biα),

where we assume that a0 = b0 = 0.
But the LHS is just the total Chern class of the bundle

[L0 ⊕ L−a1 ⊕ · · · ⊕ L−ar
]⊗ LC ,

while the RHS is the total Chern class of the bundle

L0 ⊕ L−b1 ⊕ · · · ⊕ L−br
.

Thus, since these two bundles have the same total Chern class and are sums
of line bundles, they are isomorphic as vector bundles, i.e.,

[L0 ⊕ L−a1 ⊕ · · · ⊕ L−ar
]⊗ LC

∼= (L0 ⊕ L−b1 ⊕ · · · ⊕ L−br
).

But the above shows that

P(L0 ⊕ L−a1 ⊕ · · · ⊕ L−ar
) = P(L0 ⊕ L−a1 ⊕ · · · ⊕ L−ar

),

as desired.
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Now, consider the case r = s = 1. Then a = (a), b = (b), and we know
that Ma and Mb are just the Hirzebruch surfaces Ha and Hb, respectively.
Repeated application of Lemma 3.1 then implies that Ha is symplectomor-
phic to Hb if b− a is even. A simple computation shows that H0 � H1, so
that in fact Ha is symplectomorphic to Hb if and only if b− a is even. In
particular, H∗(Ma; Z) ∼= H∗(Mb; Z) if and only if b− a is even. But then
C = a−b

2 is an integer. Now let a0 = b0 = 0 and let α be as before. In par-
ticular, α2 = 0 and a simple computation shows

1∏
i=0

(1 + (−ai + C)α) = (1 + Cα)(1 + (C − a)α) = 1 + (2C − a)α = 1− bα

=
1∏

i=0

(1− biα),

which implies condition (2) as above.
Lastly, consider the case r = 1, s ≥ 2. This proof is taken from Theorem

6.1 of [1]. As before, a = (a) and b = (b). Using the Stanley–Reisner presen-
tation, we get α0, β0, α and β as before, with integers A, B, C and D with
AD −BC = 1, and

α0 = Aα + Bβ, β0 = Cα + Dβ.

Now, recall from equations (β0) and (β) above that β0(β0 − aα0) = 0 and
β(β − bα) = 0. This implies that β2 = bαβ. Substituting from the above,
expanding, and simplifying, we get

0 =
(
Cα + Dβ

)(
(Cα + Dβ)− a(Aα + Bβ)

)
=

(
C(C − aA)

)
α2 +

(
C(D − aB) + D(C − aA)

)
αβ +

(
D(D − aB)

)
β2

=
(
C(C − aA)

)
α2 +

(
C(D − aB) + D(C − aA) + b(D(D − aB))

)
αβ.

Also, since s ≥ 2, equation (α) tell us that α2 �= 0. Since also αβ �= 0, it
follows that

C(C − aA) = 0, C(D − aB) + D(C − aA) = −b(D(D − aB)).

C(C − aA) = 0 implies that either C = 0 or C = aA. If C = 0, then by
AD −BC = 1, we know that A = D = ±1, where by changing signs of α
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and β if necessary, we can arrange A = D = 1. Substituting into the above,
this tells us that

−a = −b(1− aB),

so that b divides a.
Now, assume C = aA. Then AD −BC = 1 implies that AD − aAB = 1

so A(D − aB) = 1 which says that A = D − aB = ±1, where as before we
can arrange A = D − aB = 1. Then substituting as before, we get

a = −bD,

so that again b divides a. Thus, in either case, we have b divides a. In
particular, this implies b �= 0, so by switching the roles of a and b, we clearly
also have a divides b, so that a = b, which implies condition (2). Thus, we
conclude that (1)⇒ (2).

We next prove (2)⇒ (4). Now, since we are assuming that P(L0 ⊕
L−a1 ⊕ · · · ⊕ L−ar

) is isomorphic to P(L0 ⊕ L−b1 ⊕ · · · ⊕ L−br
) as a projec-

tive vector bundle, we know that there is some C so that (L0 ⊕ L−a1

⊕ · · · ⊕ L−ar
)⊗ LC is isomorphic to L0 ⊕ L−b1 ⊕ · · · ⊕ L−br

as vector bun-
dles, which implies that they have the same total Chern class, which gives
us the relation

(*)
r∏

i=0

(1 + (−ai + C)α) =
r∏

i=0

(1− biα),

where we assume that a0 = b0 = 0 as before. Here, we have assumed that
α is the standard generator of CP s, so that La is the line bundle over CP s

with first Chern class given by aα. Since αs+1 = 0, we know by expand-
ing and comparing coefficients of αi that the above equation is true if and
only if

σi(C, C − a1, . . . , C − ar) = σi(0,−b1, . . . ,−br) 1 ≤ i ≤ min{r + 1, s},

which in turn is true if and only if

σi(C, a1 + C, . . . , ar + C) = σi(0, b1, . . . , br),

where we have replaced −C by C as the arbitrary constant. This finishes
the proof that (2)⇒ (4).
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Next we show that (4) ⇒ (1). By (4), we know as above that there exists
a constant C so that

(*)
r∏

i=0

(1 + (−ai + C)α) =
r∏

i=0

(1− biα),

where α is the standard generator of H2(CP s). As before, this implies con-
dition (2), which implies condition (1).

It remains to show (2)⇔ (3). In both cases, the manifold M is a smooth
CP r bundle over CP s. The difference is that in (2), we are considering it
as a projective vector bundle, so that the structure group of the bundle
is PU(r + 1), whereas in condition (3), we are considering it as a sym-
plectic bundle, so that the structure group of the bundle is Symp(CP r).
Thus, the fact that (2)⇒ (3) follows immediately from the fact PU(r + 1) ⊂
Symp(CP r).

It remains to show that (3) ⇒ (2). However, as is shown in [6], there is
a natural extension of the notion of Chern classes to symplectic bundles.
Thus, since we have two isomorphic symplectic bundles, they have equal
total Chern classes in the symplectic sense, which implies that they have
equal total Chern class in the projective sense. Thus, there is a constant C
so that the bundles (L0 ⊕ L−a1 ⊕ · · · ⊕ L−ar

)⊗ LC and (L0 ⊕ L−b1 ⊕ · · · ⊕
L−br

) have the same total Chern class, which as before implies that they are
isomorphic as vector bundles. This in turn implies the condition (2). �

Lastly, we need a couple more lemmas to characterize the possible
moment polytopes of toric structures on symplectic toric bundles. First,
we recall the following theorem from [7].

Lemma 2.10 ([7], Proposition 1.1.1). Let Δ be a polytope of dimension
n with n + 2 facets. Then there exist k and m with k + m = n so that Δ is
combinatorially equivalent to Δk ×Δm.

We use this to prove the following fundamental lemma.

Lemma 2.11. If (M2n, ω, T ) is a symplectic toric manifold with
dimH2(M) = 2, then M is a CP r bundle over CP s, and hence is symplec-
tomorphic to some (Ma, ω

κ
a). Moreover, if a �= 0, any other toric structure

on M is a CP r bundle over CP s for the same r, s.

Proof. This proof follows the proof of Corollary 6.3 in [1]. By assumption,
dimH2(M) = 2, and therefore ΔM has dim ΔM + rank(H2(M)) =
n + 2 facets, which by Lemma 2.10 tells us it is combinatorially equivalent
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to some Δr ×Δs with r + s = n. Since it is also smooth, Lemma 2.7 says
ΔM is a Δr bundle over Δs for some choice of r and s with r + s = n, which
implies that M is a CP r bundle over CP s by Lemma 2.5. As in Defini-
tion 2.3, this bundle is determined by a pair (a; κ) where a = (a1, . . . , ar)
can be chosen so that ai ≥ 0.

Now, assume that some ai �= 0 and that we have some other toric struc-
ture generating a polytope Δ′. By the above, Δ′ is a Δk bundle over Δm

where k + m = n, and hence is determined by a pair (b; κ). Moreover, since
(b; κ) determines the same toric structure, we know (Ma, ω

κ
a) is deformation

equivalent to (Mb, ωκ
b), so that

H∗(Ma) ∼= H∗(Mb)

We show that k = r and m = s. Comparing information about Betti num-
bers, we can easily conclude that r + s = m + k and (1 + r)(1 + s) = (1 +
k)(1 + m) so that {r, s} = {k, m}. We show that we can arrange m = s.

To see this, assume that m = r, so that k = s. If r = s, there is nothing to
prove. First, assume r < s. Now, since M is a CP k bundle over CPm, there
is an element γ in H2(M ; Z) so that γm+1 = 0, γ �= 0. But γm+1 = γr+1, and
r < s, therefore γs = 0. But M is a CP r bundle over CP s determined by the
vector a, so as in the proof of Proposition 1.2, we know that H∗(M ; Z) ∼=
H∗(Ma; Z) has generators α0 and β0 with relations

αs+1
0 = 0, β0

r∏
i=1

(β0 − aiα0) = 0.

We recall now that we have assumed that some ai is not zero. We claim
that an element γ as above cannot exist. Indeed, if it did, then we would
have γ = Aα0 + Bβ0 with γs = 0. But then we must have some degree s− r
polynomial in α0 and β0, D, so that

(Aα0 + Bβ0)s = Dβ0

r∏
i=1

(β0 − aiα0).

Since the RHS has no pure α0 term, we must have A = 0, so that the LHS is
Bsβs

0. However, we assumed some ai �= 0, so that regardless of the choice of
D, the RHS will have some terms containing α0, so that the RHS can never
equal the LHS for any choice of D. This contradiction implies that m = s
and k = r, as required.

Now, consider the case where r > s. Since k = s and m = r, we then
have k < m. There are two cases to consider. First, assume b �= 0. Thus,
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some bi is non-zero, and we can run the above argument with the roles of a,
r and s replaced by b, k and m to get the desired result.

Now, if b = 0, then our Δk bundle over Δm is actually Δk ×Δm =
Δm ×Δk which is also a Δm bundle over Δk, hence a Δr bundle over Δs,
as desired. �

Using this, we can now prove Theorem 1.1, which we recall said that any
toric symplectic manifold (M, ω, T ) with dimH2(M) = 2 is equivariantly
symplectomorphic to the bundle (Ma, ω

κ
a , Ta) for a unique tuple (a; κ) with

0 ≤ a1 ≤ · · · ≤ ar.

Proof of Theorem 1.1. Since dimH2(M) = 2, Lemma 2.11 implies that ΔM

is a Δr bundle over Δs determined by some tuple (a; κ) with 0 ≤ a1 ≤
· · · ≤ ar, and in fact that (M, ω, T ) is equivariantly symplectomorphic to
(Ma, ω

κ
a , Ta). Lemma 1.7 implies that the tuple (a; κ) determined in this

fashion is in fact uniquely determined. �

3. Equivalence relations on toric symplectic manifolds

We now prove Theorem 1.3, which we recall said that if (Ma, ω
κ
a) and

(Mb, ωκ
b) are CP r bundles over CP s with s = 1 determined by vectors (a; κ)

and (b; κ), then they are isomorphic as symplectic bundles if and only if they
are actually symplectomorphic. First, we will prove a special case of this,
which will act as a technical lemma.

Lemma 3.1. Let a = (a1, . . . , ar) be a non-negative integer vector and let
(a; κ) determine the symplectic bundle (Ma, ω

κ
a), as before, where we assume

that Ma is a CP r bundle over CP 1. Now, assume that either a′ = (a1 +
1, . . . , ai + 2, . . . , ar + 1) for some i or that a′ = (a1, . . . , ai + 1, . . . ,
aj − 1, . . . , ar) for some i, j with aj − 1 ≥ 0. Then (Ma, ω

κ
a) and (Ma′ , ωκ

a′)
are symplectomorphic.

Proof. We will prove this theorem in two parts, corresponding to the cases
where a′ = (a1 + 1, . . . , ai + 2, . . . , ar + 1) for some i or where a′ = (a1, . . . ,
ai + 1, . . . , aj − 1, . . . , ar). Both parts will use the same basic symplectomor-
phism technique, which we describe below.

Recall as in Definition 2.3 that Δ, a Δr bundle over Δ1, has coordinates
(x1, . . . , xr, z) where (x1, . . . , xr) are coordinates on the standard Δr and z
will be thought of as the vertical direction, describing the copies of Δ1 over
various points of the base copy of Δr. Recall also there is a moment map,
denoted Φ : MΔ → Δ which takes MΔ to Δ. Let H be any hyperplane in
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Figure 1: Example of Lemma 3.1 with r = s = 1, a = 1 and ηH = (1, 1). The
first figure is Δκ

(1), the dotted line in the first two figures representing the
hyperplane H, the second figure is Δ′ and the third figure is Δκ

(3). Notice
that Δ′ is affine equivalent to Δκ

(3).

Δ transverse to the z direction with conormal ηH = (b1, . . . , br, 1), with bi

integers. Consider the intersection of the hyperplaneH with the polytope Δ.
This gives a polytope ΔH, which is still Delzant because the bi are integers.

Since H is transverse to the vertical z direction, ΔH effectively splits
the polytope Δ into a top half and a bottom half. The polytope Δ is then
described by taking the top half and bottom half and gluing them together
along ΔH by the identity. Now, consider an affine equivalence of the polytope
ΔH, which we will denote φ′. We can then define a polytope Δ′ by taking
the top half and bottom half, and gluing them together along ΔH by the
affine equivalence φ′ instead of the identity. Since the map φ′ is an affine
equivalence, Δ′ is evidently still a Delzant polytope. An example of this is
shown in Figure 1.

We briefly explain why MΔ and MΔ′ are symplectomorphic. To do this,
we redescribe the above process in a way that is the same symplectically,
but not torically. Namely, we will look on the level of the manifolds, not
the polytopes. First, we consider the hyperplane Q = Φ−1(H) in MΔ, and
thicken it by taking Q× {(0, ε)} and intersecting this with MΔ. As before,
this section of the manifold effectively divides M into a top and bottom
half, with the attaching maps to Q× {(0, ε)} at Q× {0} and Q× {ε} being
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the identity. We can then symplectically isotop Q× {(0, ε)} to a thickened
hyperplane Q′ × {(0, ε)} by an isotopy Ψ where Q′ × {ε} is equal to Q× {ε},
while Q′ × {0} is equivariantly symplectomorphic to Q× {0} by the map
Φ∗φ′, the lift of the affine equivalence φ′. By doing this we can produce a
manifold M ′ by letting M ′ = M both above and below Q× {(0, ε)}, but
replacing Q× {(0, ε)} with Q′ × {(0, ε)}, with the attaching map to the top
half at Q′ × {ε} being the identity as before, while the attaching map to
the bottom half at Q′ × {0} is the map Φ∗φ′. MΔ and M ′ are then isotopic,
hence symplectomorphic, by the isotopy Ψ′ which equals the identity on the
top half and bottom half, and which isotops Q× {(0, ε)} to Q′ × {(0, ε)} by
the isotopy Ψ. However, by construction M ′ is symplectomorphic to MΔ′ ,
which implies that MΔ and MΔ′ are symplectomorphic, as desired.

To complete the proof, we need only show that we can choose the hyper-
plane H and affine equivalence of ΔH in such a way that we can obtain
Δ′ = Δκ

a′ , where a′ is one of the vectors from before. Before we do this,
we first notice that since Δ is a Δr bundle over Δ1, if we take H trans-
verse to the z direction and intersect it with Δ, then ΔH is simply a copy
of Δr. We will label the vertices of the standard Δr as v0, . . . , vr where
v0 = (−1, . . . ,−1) and vi = (−1, . . . , n, . . . ,−1) where the n is in the ith
slot for 1 ≤ i ≤ r.

First, we consider vectors of the form a′ = (a1 + 1, . . . , ai + 2, . . . , ar + 1).
To show that Δ′ = Δκ

a′ , we will consider the hyperplane with conormal vec-
tor (1, . . . , 1). Recall from Remark 2.4 that a Δr bundle over Δ1 can be
thought of as a copy of Δr fibered by vertical copies of Δ1, where the value
of ai is the slope of increase of the sizes of Δ1 along the edge from v0 to
vi. Thus, to compute the value of ai, we only need to know the size of the
vertical edge over each vertex of Δr. It can then be easily computed that if
we take the hyperplane described by (1, . . . , 1) as above and take an affine
equivalence of ΔH which takes the vertex of ΔH over v0 to the vertex of
ΔH over vi, then this shortens the vertical edge over v0 by 1 unit, lengthens
the vertical edge over vi by 1, and fixes all other lengths. This corresponds
exactly to changing a to a′.

Consider now the vectors of the form a′ = (a1, . . . , ai + 1, . . . ,
aj − 1, . . . , ar) and take the hyperplane with conormal vector (0, . . . ,−1, . . . ,
0, 1) where the −1 is in the jth slot. Then as above, it can be easily com-
puted that by taking an affine equivalence of ΔH which takes the vertex of
ΔH above vj to the vertex of ΔH above vi, we shorten the vertical edge
over vj by 1 unit, lengthen the vertical edge over vi by 1 unit and fix all
other lengths. Again, this corresponds exactly to changing a to a′, which
completes the proof. �
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Remark 3.2. It can be shown that the above argument only works in the
s = 1 case. Indeed, if we try to run the above argument in the s > 1 case, we
will find that ΔH will correspond to a certain Δr bundle over Δs−1 where
s− 1 > 0. In the s = 1 case, we had ΔH as a Δr bundle over Δ0, which is
just a copy of Δr, which has plenty of affine symmetries. In fact, in Δr, there
is an affine symmetry which swaps any two vertices. However, Δr bundles
over Δs−1 with s− 1 > 0 have very few affine symmetries. The only time
when Δκ

a will have a symmetry is when some ai = 0 or when some ai = aj .
However, in our case it is easy to check that if we arrange our hyperplane H
to have ΔH have one of these symmetries, then in fact the polytopes Δ and
Δ′ from before are affine equivalent. More specifically, the affine equivalence
φ of ΔH could be extended to a global affine equivalence of either the top
half or bottom half, which obviously would imply that Δ and Δ′ are affine
equivalent. In other words, if s > 1, this symplectomorphism technique only
picks up the equivariant symplectomorphisms corresponding to coordinate
changes on the polytope Δ.

We can now use Lemma 3.1 above to prove Theorem 1.3.

Proof of Theorem 1.3. First, we will assume that (Ma, ω
κ
a) is symplectomor-

phic to (Mb, ωκ
b). If this is true, then H∗(Ma) ∼= H∗(Mb), which by Proposi-

tion 1.2, implies that Ma and Mb are isomorphic as symplectic bundles. Note
that the specific choice of symplectomorphism will in general have nothing
to do with the choice of isomorphism of symplectic bundles.

Now assume that Ma is isomorphic to Mb as a symplectic bundle. By
Proposition 1.2, there exists C ∈ Z so that σ1(C,a + C) = σ1(0,b), Thus,
we have σ1(b) = (r + 1)C + σ1(a) for some C. Without loss of generality,
we assume σ1(a) ≤ σ1(b). We show that any vector b can be reached from a
by the following elementary moves. We will denote by e1(a) the elementary
move described by

e1(a) = (a1 + 2, a2 + 1, . . . , ar + 1),

and by ei,j(a) the elementary move described by

ei,j(a) = (a1, . . . , ai − 1, . . . , aj + 1, . . . , ar).

Lemma 3.1 then says that (Ma, ω
κ
a) is symplectomorphic (Me1(a), ω

κ
e1(a))

and to (Mei,j(a), ωei,j(a)) for all i, j with ai − 1 ≥ 0. Thus, if we can reach
b from a by the elementary moves e1 and ei,j , Lemma 3.1 would give a
symplectomorphism from (Ma, ω

κ
a) to (Mb, ωκ

b) as desired.
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First, we recall that σ1(b) = (r + 1)C + σ1(a), where by our assumption,
C ≥ 0. Thus, by repeatedly applying e1, we can get a vector

a′ = eC
1 (a) = (a1 + 2C, a2 + C, . . . , ar + C),

where σ1(a′) = σ1(b). Next, repeatedly applying ej,1 for j ≥ 2, we can get a
vector

a′′ = (σ1(a) + (r + 1)C, 0, . . . , 0) = (σ1(b), 0, . . . , 0).

Notice that we can do this since each aj ≥ 0 and C ≥ 0, so that aj + C ≥ 0
for all j ≥ 2. Next we can get a vector a1 by repeatedly applying e1,2

a1 = e
σ1(b)−b1

1,2 (a′′) = (b1, σ1(b)− b1, 0, . . . , 0).

Notice that this is well defined because b1 ≥ 0 and σ1(b)− b1 = b2 + · · ·+
br ≥ 0 since all bi ≥ 0. Continuing on by induction, we get vectors ai, where

ai = e
σ1(b)−b1−···−bi

i,i+1 (ai−1)

= (b1, . . . , bi, σ1(b)− b1 − · · · − bi, 0, . . . , 0).

Notice that this is well defined for all 1 ≤ i ≤ r − 1 because the bi are all
non-negative, and, for all i, σ1(b)− b1 − · · · − bi = bi+1 + · · ·+ br ≥ 0 since
the bi are all non-negative. But then a straightforward computation shows
that

ar−1 = (b1, . . . , br−1, σ1(b)− b1 − · · · − br−1) = (b1, . . . , br) = b.

Thus, we have reached b from a by using the elementary moves e1 and ei,j ,
as desired. �

Lastly, we will say more about the deformation class of (Ma, ω
κ
a). In

particular, we will prove Lemma 1.6, which says that if Ma and Mb are both
CP r bundles over CP s, then they are isomorphic as symplectic bundles if and
only if they are deformation equivalent. Furthermore, if the above conditions
hold, we also have that (Ma, ω

κ
a) is symplectomorphic to (Mb, ωκ

b) if κ � 0.
This justifies our use of deformation equivalence as the equivalence relation
on symplectic manifolds.

Proof of Lemma 1.6. First assume that (Ma, ω
κ
a) is deformation equivalent

to (Mb, ωκ
b). Then Ma and Mb are diffeomorphic, and in particular, H∗(Ma)

is isomorphic to H∗(Mb), so that by Proposition 1.2, Ma is isomorphic to
Mb as a symplectic bundle.
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Now assume that Ma is isomorphic to Mb as a symplectic bundle. This
implies that there is a diffeomorphism φ : Ma →Mb so that

φ∗(ωb|Fφ(x)) = ωa|Fx
,

where Fx is the fiber over x and Fφ(x) is the fiber over φ(x). In other
words, the diffeomorphism φ preserves the fiberwise symplectic structures
of Ma and Mb. We claim that since we also have the same κ, we must
have φ∗([ωκ

b]) = [ωκ
a ]. To see this, recall that we have dim H2(Ma) = dim

H2(Mb) = 2, and thus an element of either cohomology is determined by
two parameters. Also, recall that our forms ωκ

a are determined by two param-
eters, where the first parameter determines the underlying bundle structure,
while the second parameter determines the volume. However, by the above,
(Ma, ω

κ
a) and (Mb, ωκ

b) have the same underlying bundle structure and the
same volume, so that in fact we must have

φ∗([ωκ
b]) = [ωκ

a ].

We wish to show that Ma and Mb are deformation equivalent. By the above,
it suffices to show that there is a family of symplectic forms ωt so that
ω0 = ωκ

a and ω3 = φ∗(ωκ
b). We can produce such a family explicitly. Namely,

if π is the map from Ma to CP s and ωs is the standard symplectic form on
CP s, the deformation ωt can be chosen explicitly as

ωt =

⎧⎪⎨⎪⎩
ωκ

a + Ktπ∗(ωs) if 0 ≤ t ≤ 1,

(t− 1)φ∗(ωκ
b) + (2− t)ωκ

a + Kπ∗(ωs) if 1 ≤ t ≤ 2,

φ∗(ωκ
b) + (3− t)Kπ∗(ωs) if 2 ≤ t ≤ 3.

Recall that Lemma 2.5 says

ωκ+K
a = ωκ

a + K
s+1π∗(ωs).

For 0 ≤ t ≤ 1, this implies that ωt = ω
(κ+(s+1)(tK))
a , and hence is non-

degenerate. Also, if K is large enough, then ωt for 1 ≤ t ≤ 2 will all be non-
degenerate. Now, recall that since φ is an isomorphism of symplectic bundles,
π ◦ φ = π, and hence π∗(ωs) = φ∗(π∗(ωs)). Using this and Lemma 2.5 as
above, we have for 2 ≤ t ≤ 3 that

ωt = φ∗(ωκ
b) + (3− t)Kπ∗(ωs)

= φ∗(ωκ
b) + (3− t)Kφ∗(π∗(ωs))
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= φ∗(ωκ
b + (3− t)Kπ∗(ωs))

= φ∗(ωκ+(s+1)((3−t)K)
b ),

and hence ωt is non-degenerate for 2 ≤ t ≤ 3, so that ωt is a family of sym-
plectic forms with ω0 = ωκ

a and ω3 = φ∗(ωκ
b), while [ωκ

a ] = φ∗([ωκ
b]), so that

(Ma, ω
κ
a) is deformation equivalent to (Mb, ωκ

b), as desired.
Lastly, by the above, for any λ > κ + K with K sufficiently large,

(Ma, ω
λ
a) is isotopic to (Mb, ωλ

b) by the linear isotopy tωλ
a + (1− t)ωλ

b, and
hence they are in fact symplectomorphic, as required. �

4. Proofs of main theorems

We now give the proofs of the main theorems stated in the introduction.
First we will prove Theorem 1.10, which we recall stating that if (M2n

a , ωκ
a)

is the CP r bundle over CP s determined by (a; κ), then Nn(a; κ) = 1 when
r < s.

Proof of Theorem 1.10. By Proposition 1.2, we know Ma and Mb are iso-
morphic as symplectic bundles if and only if there exists a C ∈ Z such that

σi(C, C + a1, . . . , C + ar) = σi(0, b1, . . . , br) 1 ≤ i ≤ min{r + 1, s} = r + 1,

where min{r + 1, s} = r + 1 since r < s.
If C = 0, then (C, C + a) = (0,a). Therefore, σi(0,a) = σi(0,b) for all

1 ≤ i ≤ r + 1, which implies a = b up to reordering, as desired. If C �= 0,
then if σr+1(C, C + a) = σr+1(0,b) = 0, we must have some i where
C + ai = 0, so C = −ai < 0. But then there is no way that σi(C, C + a) =
σi(0,b), for all i since all bi ≥ 0 and C < 0. This contradiction finishes the
proof of the theorem. �

We now focus on proving the theorems stated for the r ≥ s case. Before
we do that however, we give an example of a vector a and constant κ so
that Nn(a; κ) > 1. We first note that by Proposition 1.2 and Lemma 1.7, we
must only produce two vectors a = (a1, . . . , ar) and b = (b1, . . . , br) and a
number C so that

σi(C, C + a) = σi(0,b), 1 ≤ i ≤ min{r + 1, s} = s

with a �= b. Indeed, then by Lemma 1.7 they represent different toric struc-
tures since a �= b, but by Proposition 1.2 and Lemma 1.6, we know that the
underlying symplectic manifolds will be deformation equivalent. But r ≥ s,
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so min(r + 1, s) = s, which does not force (C, C + a) = (0,b). We have the
following explicit example.

Example 4.1. Let a = (1, 4, 4), b = (2, 2, 5) describe CP 3 bundles over
CP 2. Since σ1(a) = σ1(b), Ka = Kb, where we recall Ka is the number so
that Δκ

a is a bundle for all κ > Ka. Thus, as we increase κ, the two toric
structures (Ma, ω

κ
a , Ta) and (Mb, ωκ

b, Tb) will both appear at the same time,
so that the corresponding jump in N5(a; κ), which occurs at κ = 7, will be
a jump of size 2. Also, a fairly simple check will show that there is no other
choice of vector c such that (Mc, ω

κ
c ) is deformation equivalent to (Ma, ω

κ
a).

More specifically, by Proposition 1.2, the only options would be vectors c
that had σ1(c) = 5, 1, or σ1(c) ≥ 9, corresponding to C = −1 or C = −2, or
C ≥ 0. The C = −1 and C = −2 cases can easily be checked not to work
by hand. If C = 0, (1, 4, 4) and (2, 2, 5) are the only solutions, as a simple
computation shows.

Now assume C = 1. If we take the vector (1, 4, 4) and look for more
examples with C = 1, we must compare the vector (1, 2, 5, 5) to an arbi-
trary vector (0, d1, d2, d3). But σ1(1, 2, 5, 5) = 13 and σ2(1, 2, 5, 5) = 57, while
the biggest that σ2(0, d1, d2, d3) could be with σ1(0, d1, d2, d3) = 13 is when
(0, d1, d2, d3) = (0, 4, 4, 5), which has σ2(0, 4, 4, 5) = 56. Note that (0, 4, 4, 5)
is indeed the biggest because it is the vector which is closest to having all
terms equal, which an exercise in calculus will confirm is the biggest. That
there are no examples with C ≥ 2 follows directly from Lemma 4.3. Hence,
for the above choice of a = (1, 4, 4), we have

N5(a; κ) =

{
0 if κ ≤ 7,

2 if κ > 7.

We will now go back and prove the various theorems we stated for the
case r ≥ s, starting with Theorem 1.13, which says that Nn(a; κ) = 1 if
κ ≤ 1.

Proof of Theorem 1.13. If a defines a toric structure with κ ≤ 1, then we
know that κ > −s + σ1(a) = Ka, so in particular,

0 < σ1(a) < s + κ ≤ s + 1,

since κ ≤ 1. Proposition 1.2 together with Theorem 1.10 implies that if a
determines a bundle with a non-unique structure, then r ≥ s and there is a
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vector b = (b1, . . . , br) and a number C so that

σi(C, C + a1, . . . , C + ar) = σi(0, b1, . . . , br), 1 ≤ i ≤ s.

In our case, a and b satisfy ai ≥ 0 and bi ≥ 0, so that σ1(a) ≥ 0 and σ1(b) ≥
0. If they are both to be valid toric structures with κ ≤ 1, they must also
satisfy σ1(a) ≤ s and σ1(b) ≤ s, as we saw above. But σ1(C, C + a) = (r +
1)C + σ1(a), so putting this all together, we see that if σ1(C, C + a) =
σ1(0,b) = σ1(b), then C = 0 and σ1(a) = σ1(b) ≤ s.

Now assume a = (a1, . . . , ar) with ai ≥ 0 and σ1(a) = k with 1 ≤ k ≤ s.
Then since ai ∈ Z, the vector a has at most k ≤ s non-zero terms. Therefore,
for any two vectors a and b as above, we must have σi(a) = σi(b) = 0 for all
i > s. Therefore, if σi(a) = σi(b) for all 1 ≤ i ≤ s, we actually have σi(a) =
σi(b) for all i, which means that a = b up to reordering, as required. �

We next prove Theorem 1.17, which is a simple consequence of the above
machinery. Recall that Theorem 1.17 says first that the function Nn(a; κ)
viewed as a function of κ is a step function which can only have jumps at the
values KM + l(r + 1), and second that if r = s, then these potential jumps
are all of size 1.

Proof of Theorem 1.17. We first prove statement (1). Recall that KM ∈ Z

is the largest number so that Nn(a; KM ) = 0. Recall also that KM need
not equal Ka for every possible a. However, by the definition of KM , there
is always some vector b so that Kb = KM . For convenience sake, we will
assume that Ka = KM . We know from Proposition 1.2 and Lemma 1.6 that
if there is another inequivalent toric structure on Ma, there is a vector b so
that a �= b and an integer C so that

σi(C, C + a1, . . . , C + ar) = σi(0, b1, . . . , br), 1 ≤ i ≤ s < r + 1.

In particular, we know that C ≥ 0, since any b determining a toric struc-
ture on Ma must have Kb ≥ KM = Ka which implies σ1(b) ≥ σ1(a). Thus,
σ1(b) = σ1(a) + C(r + 1) for some integer C ≥ 0 and the value of Nn(a; κ)
can only jump at the values of κ where

κ = Kb = −s + σ1(b) = −s + σ1(a) + C(r + 1) = Ka + �(r + 1)
= KM + �(r + 1),

where � = C ≥ 0, which finishes the proof of statement (1).
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We now prove statement (2). Assume that for some κ, there is a jump
of size 2 or more. Then there exist two vectors a �= b with Ka = Kb and a
constant C so that

σi(C, C + a1, . . . , C + ar) = σi(0, b1, . . . , br), 1 ≤ i ≤ s < r + 1.

But Ka = Kb implies σ1(a) = σ1(b), which implies that C = 0, which obvi-
ously implies

σi(a) = σi(0,a) = σi(0,b) = σi(b), 1 ≤ i ≤ s = r.

This implies that a = b up to reordering. This contradiction establishes
statement (2). �

Next, we prove Theorem 1.19. Recall that this theorem first gave a bound
on the value of C allowed in the equations

σi(0, b) = σi(C, C + a)

and further said that

(κ1, κ2 > (r + 1− 1
r )σ1(a)− s) =⇒ (

Nn(a; κ1) = Nn(a; κ2)
)
.

We first prove the bound on C in the below lemma.

Lemma 4.2. Fix an r ≥ s ≥ 2. Assume we have non-negative integer vec-
tors a = (a1, . . . , ar) and b = (b1, . . . , br) as before, and a real number C so
that

σi(C, C + a) = σi(0, b), ∀1 ≤ i ≤ s < r + 1.

Then if some ai �= 0,

− 1
r+1σ1(a) ≤ C < r−1

r σ1(a).

Proof. First, notice that if C < − 1
r+1σ1(a), then

σ1(b) = (r + 1)C + σ1(a) < 0

which contradicts the fact that b is a positive integer vector. Thus, we must
have C ≥ − 1

r+1σ1(a).



716 A. Fanoe

It remains to show that C ≤ r−1
r σ1(a). Since s ≥ 2, it suffices to show

that if C > r−1
r σ1(a), then any non-negative integer vector b with σ1(0,b) =

σ1(C, C + a) satisfies

σ2(0,b) < σ2(C, C + a).

Indeed, for these values of C, there cannot exist a vector b with σi(0,b) =
σi(C, C + a) for all i. To see this, we will consider the two polynomials

Pa(C) := σ2(C, C + a),

Pb(C) := σ2

(
0, (r+1)C+σ1(a)

r , . . . , (r+1)C+σ1(a)
r

)
.

Notice that any vector b with σ1(0,b) = σ1(C, C + a), has σ2(b) ≤ Pb(C)
as a consequence of basic calculus. Indeed, the quantity σ2(0, b1, . . . , br) is
maximized by b1 = . . . = br, and the inequality follows from this fact. Thus,
to prove the theorem, it only remains to show that Pa(C)− Pb(C) > 0 for
all C ≥ r−1

r σ1(a). We will do this by showing that

(Pa − Pb)
(

r−1
r σ1(a)

)
> 0, (Pa − Pb)′

(
r−1

r σ1(a)
) ≥ 0,

(Pa − Pb)′′(C) > 0 ∀C.

Then since Pa − Pb is a degree 2 polynomial, the desired result will follow.
We show this by explicitly computing all three terms.

First, we see that

Pa(C) = σ2(C, C + a) =
(
r+1
2

)
C2 +

(
r
1

)
σ1(a)C + σ2(a)

= (r+1)(r)
2 C2 + rσ1(a)C + σ2(a).

Next, after some rearranging, we see that

Pb(C) = σ2

(
0, (r+1)C+σ1(a)

r , . . . , (r+1)C+σ1(a)
r

)
=

(
r
2

) (
r+1

r

)2
C2 + 2

(
r
2

)
r+1
r2 σ1(a)C +

(
r
2

)σ1(a)2

r2

= r(r−1)(r+1)2

2r2 C2 + r(r−1)(r+1)σ1(a)
r2 C + r(r−1)σ1(a)2

2r2

=
(

r2−1
r2

)(
(r+1)(r)

2 C2 + rσ1(a)C
)

+ r−1
2r σ1(a)2.

A simple computation gives

(Pa − Pb)(C) = r+1
2r C2 + 1

rσ1(a)C + σ2(a)− r−1
2r σ1(a)2.
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Also, taking the derivative of this, we get that

(Pa − Pb)′(C) = r+1
r C + 1

rσ1(a).

Finally, taking the derivative of this, we get

(Pa − Pb)′′(C) = r+1
r > 0 ∀C.

We then have the following computation:

(Pa − Pb)
(

r−1
r σ1(a)

)
= (r+1)(r−1)2

2r3 (σ1(a))2 + 2r2−2r
2r3 (σ1(a))2

+ σ2(a)− r3−r2

2r3 σ1(a)2

= 2r2−3r+1
2r3 σ1(a)2 + σ2(a)

= (2r−1)(r−1)
2r3 σ1(a)2 + σ2(a) > 0,

where the last inequality follows since ai ≥ 0 and some ai �= 0 and r ≥ s > 1,
which implies that (2r − 1) > 0 and r − 1 > 0. We also have

(Pa − Pb)′
(

r−1
r σ1(a)

)
=

(
r+1

r
r−1

r + 1
r

)
σ1(a) ≥ 0.

This computation completes the proof. �

The following similar lemma is useful in applications.

Lemma 4.3. Fix an integer C ≥ 0 and a non-negative integer vector a =
(a1, . . . , ar). Consider the inequalities

(∗0) σ2(0,b) ≤ σ2(C, C + a),

and the inequalities

(∗n) σ2(0,b) < σ2(C + n, C + n + a),

where n ≥ 1, and in (∗k) with 0 ≤ k ≤ n, b ranges over all integer vectors
with σ1(0,b) = σ1(C + k, C + k + a). Then

(∗0) =⇒ (∗n) ∀ n ≥ 1.

Proof. An obvious induction shows that it suffices to prove the theorem in
the case n = 1. Write (r + 1)C + σ1(a) = kr + � for some integers k, �, where
k ≥ 0 since C ≥ 0 and 0 ≤ � < r. We will call a′ = (a′0, . . . , a′r) = (C, C + a).
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Then the integer vector b with σ1(b) = σ1(C, C + a) with largest value of
σ2(0,b) is b = (k, . . . , k, k + 1, . . . , k + 1) with exactly r − � entries equal
to k and � entries equal to k + 1. Now, consider (C + 1, C + 1 + a). Then
σ1(C + 1, C + 1 + a) = (k + 1)r + � + 1 and the vector b′ with this σ1 and
the largest σ2 is now b′ = (k + 1, . . . , k + 1, k + 2, . . . , k + 2) where here
there are � + 1 entries equal to k + 2 and r − �− 1 entries equal to k +
1. Then we have (C + 1, C + 1 + a) = (a′0 + 1, . . . , a′r + 1) and b′ = (b1 +
1, . . . , br−� + 2, . . . , br + 1), since br−� = k while b′r−� = k + 2. A simple com-
putation shows that

σ2(C + 1, C + 1 + a) = σ2(a′) + rσ1(a′) +
(
r+1
2

)
.

Another simple computation shows that

σ2(b′) = σ2(b) + rσ1(b)− br−� +
(
r−1
2

)
+ 2r − 2 = σ2(b) + rσ1(a′)− k

+ r2−3r+2+4r−4
2

= σ2(b) + rσ1(a′)− k + r2+r
2 − 1

= σ2(b) + rσ1(a′) +
(
r+1
2

)
+ (−1− k) < σ2(a′) + rσ1(a′) +

(
r+1
2

)
= σ2(C + 1, C + 1 + a),

where the last inequality is true because −1− k < 0 and σ2(b) ≤ σ2(a′)
since we are assuming ∗0 is satisfied. Thus, we have the desired result. �

Proof of Theorem 1.19. Lemma 4.2 above proves the first statement of the
theorem. Thus it remains only to show that for a non-negative integer vector
a = (a1, . . . , ar),

κ1, κ2 ≥
(
r + 1− 1

r

)
σ1(a)− s =⇒ Nn(a; κ1) = Nn(a; κ2).

First, by Theorem 1.10, it suffices to consider r ≥ s > 1. We will show
that for any non-negative integer vector a, Nn(a; κ1)−Nn(a; κ2) = 0 when
κ1, κ2 ≥ (r + 1− 1

r )σ1(a)− s. Without loss of generality, assume that κ1 >
κ2. Now, if the results were false, we would have Nn(a; κ1)−Nn(a; κ2) > 0,
which would mean there was some vector b with κ2 < Kb ≤ κ1 and a cor-
responding number C so that

σi(C, C + a1, . . . , C + ar) = σi(0, b1, . . . , br), 1 ≤ i ≤ s < r + 1.
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Also, since Kb > κ2 ≥ (r + 1− 1
r )σ1(a)− s and Kb = −s + σ1(b), we know

that

σ1(b) = (r + 1)C + σ1(a) ≥ (
r + 1− 1

r

)
σ1(a)

=⇒ (r + 1)C ≥ r2−1
r σ1(a)

=⇒ C ≥ r2−1
r(r+1)σ1(a) = r−1

r σ1(a).

But this is impossible by Lemma 4.2 above. �

We will now give a proof of Theorem 1.22, which says that for any
r ≥ s = 2,

sup
a

Nr+s(a;∞) =∞.

Proof of Theorem 1.22. First we show that the above can be reduced to the
case r = s. A simple computation shows that for any vectors a and b and
any real number κ,

σi(a) = σi(b), ∀1 ≤ i ≤ s, =⇒ σi(a + κ) = σi(b + κ), ∀1 ≤ i ≤ s.

Next, consider a vector a = (a1, . . . , ar) with N2r(a;∞) = k. Then there
exist vectors b1, . . . ,bk−1 with corresponding constants C1, . . . , Ck−1 so that

σi(Cj ,a + Cj) = σi(0,bj) ∀1 ≤ i ≤ s, 1 ≤ j ≤ k − 1.

Now consider some r > s. Then r = s + � for some � ≥ 1. We can then define
the vectors

b�
j = (0, . . . , 0, Ck−1 − Cj , Ck−1 − Cj + bj),

where this vector has �− 1 entries equal to 0. Then, the above computation
shows that

σi(0,bl
j) = σi(0, . . . , 0, Ck−1, Ck−1 + a) ∀1 ≤ i ≤ s, 1 ≤ j ≤ k − 1, � ≥ 1.

This shows that if the theorem holds for r = s, then it holds for any r > s.
We now consider the case where r = s = 2. We will show that for any k,

there exists a vector ak = (ak, bk) with N4(ak;∞) = k.
To see this, notice that any vector a = (a, b) and any vector b with

σ1(0,b) = (C, C + a, C + b) can be written as b = (C + a + x, 2C + b− x)



720 A. Fanoe

for some integer x. Then

σ2(0, C + a + x, 2C + b− x) = σ2(C, C + a, C + b) ⇐⇒ bx− ax + Cx− x2

= bC + C2.

We will look for solutions of the special form C = λx. Now, substituting for
C and solving for x gives

x = b−a−bλ
λ2−λ+1 .

Thus, any choice of a, b and λ such that x and C are both integers will
result in a vector b with b �= a, while Ma and Mb are isomorphic as sym-
plectic bundles, by Proposition 1.2. We consider the family where λ = 1

n .
Substituting for λ, we have the following computation:

x =
b−a− b

n
1
n2− 1

n+1
=

n−1
n b−a

n2−n+1
n2

= n
n2−n+1((n− 1)b− na),

C = 1
n2−n+1((n− 1)b− na).

Thus, if we can find a pair of integers a, b with (n− 1)b− na ≡ 0 mod (n2 −
n + 1), then x and C will be integers as desired. More specifically, if for each
k we can find integers ak, bk and k − 1 integers n1, . . . , nk−1 with

(ni − 1)bk − niak ≡ 0 mod (n2
i − ni + 1)⇐⇒

−bk ≡ ni(ak − bk) mod (n2
i − ni + 1),∀1 ≤ i ≤ k − 1,

then ak = (ak, bk) would have N4(ak;∞) ≥ k for each k, as desired.
We will solve these equations using the Chinese Remainder Theorem.

More specifically, we restrict our attention to vectors of the form
(K, ck + K), for a fixed integer ck which fixes the quantity ak − bk = −ck.
Then, plugging in and simplifying, we have reduced the problem to picking
an integer K so that

K ≡ ck(ni − 1) mod n2
i − ni + 1

for some collection of integers ni. The Chinese Remainder Theorem then
says that this system of equations will have a solution provided that the
collection of integers Ni := n2

i − ni + 1 can be chosen to be relatively prime.
Thus, to complete the proof, we only need to produce a sequence Ni = n2

i −
ni + 1 such that gcd(Ni, Nj) = 1 for all i, j. We will produce this sequence
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by induction. In particular, we will produce a sequence Nn such that if i < j,
all prime factors of Ni are less than all prime factors of Nj . Such a sequence
would obviously have gcd(Ni, Nj) = 1.

First, let n1 = 2, so that N1 = 3. Now, assume that we have such integers
N1, . . . , Nk−1 with corresponding integers n1, . . . , nk−1 so that Ni = n2

i −
ni + 1 and such that if i < j, all prime factors of Ni are less then all prime
factors of Nj . Let pk be the largest prime number dividing Nk−1. Since we
have assumed N1 = 3, such a number pk will always exist for any k. Now,
let nk = pk! and let Nk = n2

k − nk + 1. Then if q is any prime such that
q ≤ pk, then by construction we have Nk ≡ 1 mod q, and hence the only
primes dividing Nk are bigger than pk, as desired. This computation finishes
the construction of the sequence Nn, and hence finishes the proof of the
theorem. �

The above techniques show that to prove Conjecture 1.21 for any
r ≥ s ≥ 2, it is enough to check it for any r = s. However, if r = s ≥ 3,
the equations involved are much more complicated than for the s = 2 case
above, and it is not clear how to show directly that supa(N2r(a;∞)) =∞.

We conclude the paper with a few interesting examples which explore
Theorem 1.19 in the Fano case. First, we explore the case r = s = 2.

Example 4.4. We claim that if r = s = 2 and (Ma, ω
κ
a) is Fano, then

N4(a;∞) = 1. We recall from Remark 1.16 that if a is a Fano vector, we
must have Ka < 1. However, since s = 2, a simple computation shows that
this implies that we must have σ1(a) ≤ 2, which gives us the four cases
a = (0, 0), a = (0, 1), a = (1, 1) and a = (0, 2). Recall that Proposition 1.9,
proven in [2], implies that if a = (0, 0), then N4(a;∞) = 1. Thus, we only
need to consider (0, 1), (1, 1) and (0, 2). The cases (0, 1) and (1, 1) are spe-
cial cases of Example 4.5 below, and for a = (0, 1) or a = (1, 1), we get
N4(a;∞) = 1 as well. Thus, it suffices to check that N4((0, 2);∞) = 1.

Since r = s = 2, by Lemma 4.2 it suffices to show that there is no vector
b and integer C such that

σi(0,b) = σi(C, C, 2 + C), i = 1, 2, −2
3 ≤ C < 1,

so that we only need to check the C = 0 case. However, an obvious computa-
tion shows that if C = 0, b = a, so that N4((0, 2);∞) = 1. Thus, if r = s = 2
and (Ma, ω

κ
a) is Fano, then N4(a;∞) = 1.

Next, we look at some higher dimensional Fano examples.
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Example 4.5. Consider vectors of the form a = (0, . . . , 0, 1, . . . , 1) where
σ1(a) = k. We will show that for such vectors, if s ≥ 2, Nr+s(a; κ) = 1 for
all κ > k − s, and in particular, Nr+s(a;∞) = 1. Further, note that these
vectors will be Fano whenever s ≥ k.

If this is false, then by Proposition 1.2, there exists some b and C so
that σi(C, C + a) = σi(0,b) where i ≥ 2. We will show that for our specific
choice of a, this cannot happen.

First, notice that we cannot choose C < 0 because then σ1(a) < 0. Sec-
ond, we cannot choose C = 0. Indeed, in that case, any non-negative integer
vector b with σ1(b) = k has σ2(b) ≤ σ2(a), with equality only if a = b.
Furthermore, this implies that a satisfies the hypothesis of Lemma 4.3 with
C = 0. Thus, if C > 0 and σ1(b) = σ1(C, C + a), Lemma 4.3 implies that
σ2(b) < σ2(C, C + a). Since s ≥ 2, the above and Proposition 1.2 then shows
that Nr+s(a;∞) = 1, as desired.

The next example shows that the general Fano case is not as nice, and
in fact there are examples of Fano toric manifolds which have more than one
toric structure.

Example 4.6. Let a be the vector a = (0, . . . , 0, 2) with r ≥ 3. Note that
here r ≥ 3 is necessary, as is seen in Example 4.4. Notice that this vec-
tor is Fano with s = 2, since Ka(2) = σ1(a)− 2 = 2− 2 = 0 < 1. On the
other hand, by choosing C = 1, we can consider the vector (1, 1 + a) =
(1, . . . , 1, 3) with exactly r ≥ 3 entries equal to 1. Then, consider the vector
b = (1, . . . , 1, 2, 2, 2) with exactly three entries equal to 2. First, we see that

σ1(b) = r + 3 = σ1(1, 1 + a).

However, we also have

(1, 1 + a) = (1, b1, . . . , br−3, br−2 − 1, br−1 − 1, br + 1).

Note that for the above to make sense, we must have a br−2 term, which we
do since r ≥ 3. So, using the above substitution, an easy computation shows
that

σ2(1, 1 + a) = σ2(0,b) + σ1(b)− (σ1(b)− br−2)− (σ1(b)− br−1)
+ (σ1(b)− br)− 1− 1 + 1 + 1− 1− 1

= σ2(b) + br−2 + br−1 − br − 2 = σ2(b),
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so that σi(b) = σi(1, 1 + a) for i = 1, 2. Thus, Proposition 1.2 together with
Lemma 1.6 implies that (Ma, ω

κ
a) is deformation equivalent to (Mb, ωκ

b),
while Lemma 1.7 implies that these give different toric structures since
a �= b. Also, by Lemma 4.2, we know that if C is to support a vector b
with the desired properties, then

C < r−1
r σ1(a) = r−1

r 2 < 2,

so that we cannot have C ≥ 2. Finally, since we know σ1(b) = r + 3, we
know that Kb(2) = r + 1. The above finishes the proof of the following: if
r ≥ 3 and a is as above, we have

Nr+2(a; κ) =

⎧⎪⎨⎪⎩
0 if κ ≤ 0,

1 if 0 < κ ≤ r + 1,

2 if r + 1 < κ.
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