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BILINEARIZED LEGENDRIAN CONTACT HOMOLOGY
AND THE AUGMENTATION CATEGORY

Frédéric Bourgeois and Baptiste Chantraine

In this paper, we construct an A∞-category associated to a Legen-
drian submanifold of a jet space. Objects of the category are augmenta-
tions of the Chekanov algebra A(Λ) and the homology of the morphism
spaces forms a new set of invariants of Legendrian submanifolds called
the bilinearized Legendrian contact homology. Those are constructed
as a generalization of linearized Legendrian contact homology using
two augmentations instead of one. Considering similar constructions
with more augmentations leads to the higher order composition maps
in the category and generalizes the idea of [6] where an A∞-algebra
was constructed from one augmentation. This category allows us to
define a notion of equivalence of augmentations when the coefficient
ring is a field regardless of its characteristic. We use simple examples
to show that bilinearized cohomology groups are efficient to distinguish
those equivalences classes. We also generalize the duality exact sequence
from [12] in our context, and interpret geometrically the bilinearized
homology in terms of the Floer homology of Lagrangian fillings (fol-
lowing [8]).
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1. Introduction

For a Legendrian submanifold Λ of a jet space J 1(M) Legendrian contact
homology is the homology of a non-commutative differential algebra freely
generated by double points of the projection of Λ to T ∗(M) constructed
in [5] for M � R and in [9, 11] in general. We refer to this algebra as the
Chekanov algebra of Λ denoted by (A(Λ), ∂) whose homology is denoted by
LCH(Λ). The boundary operator counts holomorphic curves in the symplec-
tization whose domains are disks with points removed on the boundary. At
one of these points, the holomorphic curve is required to have one positive
asymptotic and at all the others it is required to have a negative asymptotic.
When non-zero, Legendrian contact homology is most of time infinite dimen-
sional, hence this turns out to be difficult to distinguish two non-isomorphic
LCH algebras.
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Linearization of semi-free differential graded algebras (DGA) is a pro-
cess used in [5], which associates finite-dimensional invariants of Legendrian
submanifolds from their Chekanov algebras. Linearization is done using aug-
mentations of A(Λ) that is DGA-maps ε : A(Λ) → K where K is the coef-
ficient field we consider (most frequently Z2). Those invariants have the
advantage to be both computable (once the boundary operator of Legen-
drian contact homology is known) and efficient to distinguish Legendrian
submanifolds which were not distinguished by other invariants. However,
the process of linearization makes the theory commutative. Also, it is not
efficient regarding the question of distinguishing augmentations of Chekanov
algebra.

In this paper, we propose a new invariant called bilinearized Legendrian
contact homology which closely follows the process of linearization but uses
the fact that the theory is non-commutative in order to use two augmenta-
tions instead of one.

More precisely, for each pair of augmentations (ε0, ε1) we define a differ-
ential

dε0,ε1 : C(Λ) → C(Λ)

in homology, and its dual

μ1
ε1,ε0

: C∗(Λ) → C∗(Λ)

in cohomology, where C(Λ) is the vector space over K generated by Reeb
chords of Λ. We denote by Cε0,ε1 the complex (C(Λ), dε0,ε1), and by Cε1,ε0

the complex (C∗(Λ), μ1
ε1,ε0

). The homologies of those complexes are the
bilinearized (co)homology groups, we denote them by LCHε0,ε1(Λ) and
LCHε1,ε0(Λ), respectively. Those are generalizations of the standard lin-
earized Legendrian contact homology, as it will appear obvious from the
definition that the differential dε,ε is the standard augmented differential dε

from [5,9].
Our first result is that the set of those homologies is a Legendrian isotopy

invariant as stated in the following

Theorem 1.1. The set of isomorphism classes of LCHε1,ε0(Λ) (or of
LCHε0,ε1 (Λ)) over all pairs of augmentations (ε0, ε1) of A(Λ) is a Leg-
endrian isotopy invariant.

Geometrically, bilinearized Legendrian contact homology associated to
two augmentations ε0 and ε1 amounts to counting the holomorphic curves
decorated with the augmentations. An example of such a decorated curve
is shown in Figure 1. Note that the number of negative asymptotics on the
left and on the right could be arbitrary (see equation (2.5) for an explicit
algebraic definition).



556 F. BOURGEOIS AND B. CHANTRAINE

Figure 1. Curve contributing to dε0;ε1(γ+) (or μ1
ε0,ε1

(γ−3 )).

We can use similar ideas and consider holomorphic curves decorated by
d + 1 ≥ 3 augmentations to build structural maps μd

εd,...,ε0
: Cεd,εd−1

⊗ · · · ⊗
Cε1,ε0 → Cεd,ε0 . Figure 2 gives an example of such a curve, again the number
of decorated negative ends is in general arbitrary, equation (2.4) gives the
explicit formula of this operation.

Those structural maps satisfy an A∞-relation which allows us to define
an A∞-category whose objects are augmentations of the Chekanov algebra

Figure 2. Curve contributing to μ2
ε0,ε1,ε2

(γ−2 , γ−4 )).
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of Λ. We call this category the augmentation category of Λ. We denote it by
Aug(Λ). This is a direct generalization of the A∞-algebra constructed in [6].
Under Legendrian isotopy this category changes by a pseudo-equivalence as
stated in the following:

Theorem 1.2. If Λ is Legendrian isotopic to Λ′ then the categories Aug(Λ)
and Aug(Λ′) are pseudo-equivalent.

These categories are not (in general) cohomologically unital (in the sense
of [17]). Therefore one cannot take the definition of quasi-equivalence as
in [17]. In Section 2.3, we introduce the notion of pseudo-equivalence which
will coincide with the notion of quasi-equivalence in the case of c-unital
categories. We borrow many notations from [17] and try to give the neces-
sary definitions to understand the main concepts in the present paper. As it
will follow from this section that the morphism spaces in the corresponding
homological categories are invariant under quasi-equivalences, Theorem 1.1
is a corollary of Theorem 1.2.

The benefit of having a category where the objects are augmentations of
A(Λ) is that it allows us to define the notion of equivalence of augmentations
even when the ground field K is not of characteristic 0 (compare with the
definition in [3]). After precisely defining equivalence of augmentations in
Section 2.4.2 we prove that

Theorem 1.3. If Λ is Legendrian isotopic to Λ′ then the quasi-equivalence
of Theorem 1.2 induces a bijection between the equivalence classes of aug-
mentation of A(Λ) and those of A(Λ′).

In particular, if the characteristic of K is finite one gets that the (finite)
number of equivalence classes is a Legendrian invariant.

The group LCHε0,ε1 appears to be an efficient tool to distinguish some of
those equivalence classes of augmentations using the following theorem.

Theorem 1.4. If ε1 and ε2 are equivalent then for all augmentations ε

LCHε1,ε(Λ) � LCHε2,ε(Λ)

and
LCHε,ε1(Λ) � LCHε,ε2(Λ).

The first part of the paper (Section 2) is devoted to the algebraic con-
struction of the augmentation category for any semi-free DGA, we borrow
the necessary definitions regarding A∞-categories from [17] and try to make
this paper as self-contained as possible. In the second part, we apply this
algebraic construction to the case of the Chekanov algebra of a Legendrian
submanifold. We also give a geometrical interpretation of the bilinearized
differential in terms of the Chekanov algebra of the 2-copy Legendrian link.
We also investigate in Section 3.3 the generalization of the duality exact
sequence from [12], and we prove the following theorem.
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Theorem 1.5. Let ε0 and ε1 be two augmentations of Λ where Λ ⊂ J 1(M)
is horizontally displaceable. Then there is a long exact sequence
(1.1)

· · · → Hk+1(Λ) σε0,ε1−→ LCHn−k−1
ε1,ε0

(Λ) → LCHε0,ε1

k (Λ)
ρε0,ε1−→ Hk(Λ) → · · ·

In Section 4.1, we interpret the bilinearized Legendrian contact homology
when ε1 and ε2 come from Lagrangian fillings in terms of the Lagrangian
Floer homology of those fillings (as defined in [8]). In Section 5, we provide
some simple examples of computations which demonstrate the effectiveness
of Theorem 1.4 to distinguish augmentations.

2. Algebraic setup

2.1. The n-copy algebra of a free DGA.

2.1.1. The n-copy algebra. Let K be a field. For each n ∈ N we denote
by Kn the semi-simple algebra over K generated by ei, i ∈ {1, . . . , n}, with
the relations ei · ej = δi,jei and

∑
ei = 1. For a set A we denote by Cn(A)

the free Kn-bimodule generated by the elements of A and by

An(A) = Kn ⊕ Cn(A)⊕ (Cn(A)⊗ Cn(A))⊕ · · · ⊕ Cn(A)⊗k ⊕ · · ·

the tensor algebra over Kn of Cn(A) (here ⊗ denotes the tensor product of
Kn-modules). For each a ∈ A we denote by ai,j the element ei ·a·ej ∈ Cn(A).
Note that as a Kn-bimodule Cn(A) decomposes as

⊕
(i,j) Cn(A)i,j where

Cn(A)i,j is the submodule generated by the ai,j . In the tensor algebraAn(A),
Cn(A)i,j ⊗ Cn(A)k,l is non-zero iff j = k. A pair of multi-indices (I, J) of
the same length k, i.e., I = (i1, . . . , ik) and J = (j1, . . . , jk), is said to be
composable if for every l = 1, . . . , k − 1 we have jl = il+1. Then the tensor
product Cn(A)I,J := Cn(A)i1,j1⊗· · ·⊗Cn(A)ik,jk

does not vanish iff (I, J) is
composable, so that the tensor algebra An(A) decomposes as a Kn-bimodule
as the direct sum of submodules Cn(A)I,J over all composable pairs (I, J).
Note that, for i = 1, . . . , n, the K-subalgebra An(A)i ⊂ An(A) defined as
the tensor algebra of Cn(A)i,i, and corresponding to multi-indices I and J
having all components equal to i, is naturally isomorphic to A(A) := A1(A)
as a K-algebra.

Now suppose that the tensor algebra A(A) is equipped with a differential
∂ such that (A(A), ∂) is a differential algebra. We define a differential ∂n

on An(A) by setting ∂n(ei · a · ej) = ei · ∂(a) · ej for all a ∈ A, where ∂(a)
is interpreted as an element of An(A). We then extend ∂n to An(A) by
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linearity and by the Leibniz rule. Note that since a =
∑

i,j ai,j in An(A)
and

∑
i ei = 1 in Kn the formula tells us that any word of length k in

∂(a) appears as a sum in ∂n(a) over all composable pairs of multi-indices of
length k.

2.1.2. Grading. Assume also that the set A comes with a grading map
gr : A → Z which defines a grading on homogeneous elements of A(A)
by gr(ab) = gr(a) + gr(b). Defining the grading of elements of Kn to be
0, this extends to a grading on An(A). From now on we assume that the
differential ∂ has degree −1, so that ∂n has degree −1 as well and turns
(An(A), ∂n) a DGA over Kn. This means that the Leibniz rule becomes:
∂(ab) = ∂(a) · b + (−1)gr(a)a · ∂(b). The DGA (A, ∂) with generating set A
is commonly referred in the literature to a semi-free DGA.

In order to agree with the degree convention in the literature (see [17]),
there is a stabilization process when going from the language of DGAs to the
language of A∞-categories which induces a difference between the notions of
grading. We will give two different notations for those two different gradings.
We denote by gr(a) the grading of a ∈ A as a generator of A, this grading
will be referred to as the reduced grading according to the literature. We
will denote by |a| = gr(a)+1 the absolute grading of a as a generator of the
dual module C∗(A). Although we will pay careful attention to our notations,
the convention is that whenever we speak in the world of A∞-categories the
grading is assumed to be the absolute grading and in the world of DGA the
grading is assumed to be the reduced grading.

If V is a graded vector space, we denote by V [d] the graded vector space
isomorphic to V with degree shifted by d (i.e., the grading of a in V [d] is
gr(a) − d). When defined between graded vector space, we assume that all
our linear maps preserve the degree hence a map F : V → W shifting the
degree by d will be denoted by F : V → W [d].

If T : (V, μ1
V ) → (W [d], μ1

W ) is a linear map between chain complexes, we
will sometimes denote for short T ◦ μ1

V + (−1)dμ1
W ◦ T by μ1(T ).

2.1.3. Augmentations of An(A). Recall that an augmentation of a DGA
A over K is a DGA map from (A, ∂) to (K, 0). More precisely it as a map
ε : A → K satisfying

• ε(a) = 0 if gr(a) 
= 0,
• ε ◦ ∂ = 0,
• ε(ab) = ε(a) · ε(b).

Let E = (ε1, . . . , εn) be a n-tuple of augmentations of A(A) over K. We
define εE : An(A) → Kn by εE(a) =

∑
i εi(ei · a · ei) · ei. In other words, εE

equals εi · ei on A(A)i, and εE vanishes on Cn(A)I,J when the multi-indices
I and J are not constant.

Proposition 2.1. εE is an augmentation of An(A) over Kn.
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Proof. First, one must check that εE is an algebra morphism. For a ∈
Cn(A)I,J and b ∈ Cn(A)K,L, we have εE(a ·b) = εi(a ·b) ·ei = εi(a)εi(b) ·ei =
εE(a)εE(b) if I, J, K, L have all components equal to i. Otherwise, a · b = 0
so that εE(a · b) = 0 and at least one of εE(a) or εE(b) vanishes as well.

Second, one must check that εE ◦∂n = 0. Since ∂n(ei ·a ·ej) = ei ·∂(a) ·ej ,
we have εE ◦ ∂n(ei · a · ej) = ei · εi ◦ ∂(a)δi,j which vanishes since εi is an
augmentation. �

Using the augmentation εE one defines the Kn-algebra map φεE : An →
An which sends a generator a to a+εE(a). Consider the induced differential
∂εE = φεE ◦∂n◦φ−1

εE
. Since εE is an augmentation, ∂εE |Cn(A) has no constant

term and hence decomposes as a sum ∂εE
1 ⊕ ∂εE

2 ⊕ · · · ⊕ ∂εE
d ⊕ · · · where

∂εE
d : Cn(A) → Cn(A)⊗d[−1]. From ∂εE ◦∂εE = 0 one gets that ∂εE

1 ◦∂εE
1 = 0.

Dualizing each of ∂εE
d one gets a family of maps μd,n

εE : C∗n(A)⊗d →
C∗n(A)[2− d] (using the absolute grading here) defined by the relation:

μd,n(f)(b) = f(∂εE
d (b))

for any Kn-balanced form f on Cn(A).
Similarly to [6] from ∂εE ◦ ∂εE = 0 one gets that the family of maps μd,n

εE

is an An-algebra structure on C∗n(A) that is:

d∑
i=1

d−i∑
j=0

(−1)�jμd−i+1,n
εE

(
ad, ad−1, . . . , aj+i+1, μ

i,n
εE

(aj+i, . . . , aj+1), aj , . . . , a1

)(2.1)

= 0

where �j = |a1|+ · · ·+ |aj | − j.

2.2. The augmentation category.

2.2.1. Bilinearized complexes. Note that μd,n
εE maps C∗id,id−1

⊗C∗id−1,id−2
⊗

· · · ⊗ C∗i1,i0
to C∗id,i0

[2 − d] and that this map depends only on ∂ and
εid , εid−1

, . . . , εi0 . This implies that, after identifying each C∗i,j with C∗(A)
for each (d + 1)-tuple of augmentations ε0, . . . , εd the map μd,n

εE induces a
map μd

εd,...,ε0
: C∗(A)⊗d → C∗(A)[2 − d] independent of n ≥ d + 1 and

the remaining augmentations in E. A similar discussion holds for the map
∂εE

d : C(A) → C(A)[−1]. From equation (2.1) one deduces that:

d∑
i=1

d−i∑
j=0

(−1)�jμd−i+1
εd,...,εj+i,εj ,...,ε0

(
ad, ad−1, . . . , aj+i+1, μ

i
εj+i,...,εj

(aj+i, . . . ,

(2.2)

aj+1), aj , . . . , a1

)
= 0.
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In particular, when d = 1 one gets μ1
ε1,ε0

◦ μ1
ε1,ε0

= 0, similarly defining
dε0,ε1 the map on C(A) associated to ∂εE

1 one gets dε0,ε1◦dε0,ε1 = 0. Hence, we
get two complexes called the bilinearized complexes, Cε1,ε0 = (C∗(A), μ1

ε1,ε0
)

and Cε0,ε1 = (C(A), dε0,ε1). The homology of Cε0,ε1 is called the bilinearized
homology of (A(A), ∂) with respect to ε0 and ε1 and the homology of Cε1,ε0

is called the bilinearized cohomology.
The maps μd

εd,...,ε0
are higher order compositions of an A∞-category we

describe here.

2.2.2. Definition of Aug(A). The augmentation category Aug(A) is the
A∞-category defined by

• Ob(Aug(A)) is the set of augmentations of A,
• Morphisms from ε1 to ε2 are the complexes Cε2,ε1 =

(
C∗(A), μ1

ε2,ε1

)
,

• The A∞-composition maps are

μd
εd,...,ε0

: Cεd,εd−1
⊗ · · · ⊗ Cε1,ε0 → Cεd,ε0 [2− d].

In order to facilitate computations, we unravel here the construction to
give an explicit formula for those maps. If ∂(aj) =

∑
i1,...,ik

xj
i1,...,ik

·bj
i1

. . . bj
ik

with xj
i1,...,ik

∈ K and bj
i1

, . . . , bj
ik
∈ A then

∂ε0,...,εd
d (aj) =

∑
i1,...,ik

∑
j1<j2<···<jd

xj
i1,...,ik

ε0(b
j
i1

) · · · ε0(b
j
ij1−1

)(2.3)

× ε1(b
j
ij1+1

) · · · εd−1(b
j
ijd−1

)εd(b
j
ijd+1

) · · · εd(b
j
ik

) · bj
ij1

bj
ij2
· · · bj

ijd

and

μd
εd,...,ε0

(bd, . . . , b1) =
∑
aj∈A

∑
ld<···<l1

∑
i1,...,ik

bd=bj
ild

,...,b1=bj
il1

xj
i1,...,ik

εd(b
j
i1

) · · · εd(b
j
ild−1

)

(2.4)

εd−1

(
bj
ild+1

)
· · · ε0

(
bj
il1+1

)
· · · ε0

(
bj
ik

)
· aj

where we do a slight abuse and identify aj with its dual generator.
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To make things clearer, if wdbdwd−1bd−1wd−2 · · ·w1b1w0 is a word in ∂(a)
then we have a corresponding contribution εd(wd) · · · ε1(w1)ε0(w0) · a in
μd

εd,...,ε0
(bd, . . . , b1) (see Figures 1 and 2). When obvious we will drop the

subscripts and write μd instead of μd
εd,...,ε0

.
The most useful special cases of equations (2.3) and (2.4) are when d = 1

which gives

dε0,ε1(aj) =
∑

i1,...,ik

∑
l=1,...,k

xj
i1,...,ik

ε0(b
j
i1

) · · · ε0(b
j
il−1)ε1(b

j
il+1) · · · ε1(b

j
ik

) · bj
il

(2.5)

μ1
ε1,ε0

(b) =
∑
aj∈A

∑
i1,...,ik

b=bj
il

xj
i1,...,ik

ε1(b
j
i1

) · · · ε1(b
j
il−1)ε0(b

j
il+1) · · · ε0(b

j
ik

) · aj .

(2.6)

The homological category of Aug(A) is H(Aug(A)) whose objects are
the same as those of Aug(A), the morphism spaces are Hom(ε0, ε1) =
H(Cε1,ε0) and the composition of morphisms is given by [b1] ◦ [b2] =
(−1)|b2|[μ2

ε2,ε1,ε0
(b2, b1)] (note the case d = 2 of equation (2.2) implies that

this is well defined). The case d = 3 of equation (2.4) implies that this
composition is associative, hence (except for the existence of an identity
morphism) H(Aug(A)) is a genuine category.

2.3. Equivalence of non-unital A∞-categories. By the stabilization
process for the grading when going from the world of DGA to the one of
A∞-category, generators of degree 0 in the morphism spaces are elements a
of A such that gr(a) = −1. This implies that, by degree considerations, the
augmentation category has no reason for being unital (in any of the sense
of [17]). The notion of equivalence of categories in this context is not imme-
diate. For convenience for the reader we will recall here the basic definitions
of A∞-functors and natural transformations from [17]. Then we will propose
a definition for equivalence of A∞-categories which do not necessarily have
units (cohomological or strict). For objects ε0 and ε1 in an A∞-category A
we maintain the notation Cε1,ε0 for the morphism space from ε0 to ε1. As
we will consider several categories, we will sometimes denote this morphism
space CAε1,ε0

in order to specify in which category the morphism space is
considered.

Definition 2.2. An A∞-functor F between two A∞-categories (A, {μd
A})

and (B, {μd
B}) consists of the following:

• A map F : Ob(A) → Ob(B),
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• For each d ≥ 1 and (ε0, ε1, . . . , εd) ∈ Ob(A)d+1, a map F d
εd,...,ε0

:
Cεd,εd−1

⊗ · · · ⊗ Cε1,ε0 → CF (εd),F (ε0)[1− d] satisfying:

d∑
r=1

∑
s1+···+sr=d

μr
B
(
F sr

εd,...,εd−sr
(ad, . . . , ad−sr+1), . . . , F s1

εs1 ,...,ε0
(as1 , . . . , a1)

)(2.7)

=
d∑

i=1

d−i∑
j=0

(−1)�jF d−i+1
εd,...,εj+i,εj ,...,ε0

(
ad, . . . , μ

i
A(aj+i, . . . , aj+1), . . . , a1

)
.

The terms d = 1, 2 of equation (2.7) imply that F 1
ε1,ε0

descends to a map
H(F 1) : H(Cε1,ε0) → H(CF (ε1),F (ε0)) which is a functor from H(A) to H(B).
Again we drop the subscripts from the notation as they are most of the time
obvious and write F d for F d

εd,...,ε0
.

We now recall the definition of a pre-natural transformation between A∞-
functors.

Definition 2.3. Let F and G be two A∞-functors from A to B. A pre-
natural transformation of degree g from F to G is a family T = {T d}d≥0

where each T d consists of maps T d
εd,...,ε0

: Cεd,εd−1
⊗ · · · ⊗ Cε1,ε0 →

CG(εd),F (ε0)[g − d].

The set of pre-natural transformations comes with a degree 1 differential
defined by

μ1(T )d =
d+1∑
r=1

r∑
i=1

∑
s1+···+sr=d

(−1)†μr
B
(
Gsr(ad, . . . , ad−sr+1), . . . ,

Gsi+1(as1+···+si+1 , . . . , as1+···+si+1),

T si
εs1+···+si ,...,εs1+···+si−1

(as1+···+si , . . . , as1+···+si−1+1),(2.8)

F si−1(as1+···+si−1 , . . . , as1+···+si−2+1), . . . , F s1(as1 , . . . , a1)
)

−
d∑

i=1

d−i∑
j=0

(−1)�j+g−1T d−i+1
εd,...,εj+i,εj ,...,ε0

(
ad, . . . , aj+i+1,

μi
A(aj+i, . . . , aj+1), aj , . . . , a1

)
where † = (g − 1)(|a1|+ · · ·+ |as1+···+si−1 | − s1 − · · · − si−1).

A natural transformation is a pre-natural transformation such that
μ1(T ) = 0. For convenience of the reader we will explicitly detail the case
d = 0, 1 and 2 of μ1(T )d = 0 as it will be useful later.

• d = 0:

(2.9) T 0 ∈ CG(ε0),F (ε0) s.t. μ1(T 0) = 0,
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• d = 1:
(2.10)
μ2(G(a1), T 0)+(−1)(g−1)(|a1|−1)μ2(T 0, F (a1))+μ1(T 1(a1))−T 1(μ1(a1)) = 0,

• d = 2:

μ3(G1(a2), G1(a1), T 0) + (−1)(g−1)(|a1|−1)μ3(G1(a2), T 0, F 1(a1))
(2.11)

+ (−1)(g−1)(|a1|+|a2|)μ3(T 0, F 1(a1), F 1(a2))

+ μ2(G2(a2, a1), T 0) + (−1)(g−1)(|a1|+|a2|)μ2(T 0, F 2(a2, a1))

+ μ2(G1(a2), T 1(a1)) + (−1)(g−1)(|a1|−1)μ2(T 1(a2), F 1(a1))

+ μ1(T 2(a2, a1))(−1)gT 2(a2, μ
1(a1)) + (−1)g+|a1|−1T 2(μ1(a2), a1)

+ (−1)gT 1(μ2(a2, a1)) = 0.

Equation (2.9) implies that T 0 descends to a family of maps from F (ε0) to
G(ε0) in the homological category ([T 0

ε0
] ∈ H(CG(ε0),F (ε0))) which by (2.10)

satisfies H(G1)([a])◦ [T 0
ε0

] = (−1)g·|a|[T 0
ε0

]◦H(F 1)([a]), i.e., [T 0] is a natural
transformation from H(F 1) to H(G1).

Now assume that T 0 = 0. Then equation (2.10) implies that T 1
ε1,ε0

:
Cε1,ε0 → CG(ε1),F (ε0)[g − 1] is a chain map inducing [T 1

ε1,ε0
] in homology.

Following [17] we denote by nu-fun(F ,G)g the set of pre-natural trans-
formations from F to G. It comes with a filtration where F r(nu-fun(F ,G)g)
are pre-natural transformations such that T k = 0 for k ≤ r. It is obvious
from equation (2.8) that μ1 preserves this filtration. The previous remarks
about the T 0 = 0 case is part of the statement in [17, Section (1f)] that
the first page of the spectral sequence associated to this filtration is

Er,g
1 =

∏
ε0,...,εr

Homg
K
(HomH(A)(εr−1, εr)⊗ · · · ⊗HomH(A)(ε1, ε0),

HomH(B)(F (ε0), G(εr)).

2.3.1. Yoneda modules. Recall from [17] that given an object ε of an
A∞-category A one can see the assignment ε1 �→ Cε,ε1 as being part of the
definition of a right A∞-module over A, called the right Yoneda module of
ε and denoted by Yε

r . The action μd
Yε

r
: Yε

r (εd−1)⊗Cεd−1,εd−2
⊗· · ·⊗Cε1,ε0 →

Yε
r (ε0) of A on Yε

r is given by the A∞ operation μd (see [17, Section (1l)]).
This assignment is part of an A∞-functor, called the Yoneda embedding and
denoted by Yr, from A to the A∞-category of right modules over A. This
functor is cohomologically faithful, it however fails to be cohomologically
full if the category A lacks a cohomological unit (one cannot construct the
retraction of [17, Section (2g)]).
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Let ε and ε′ be two objects of an A∞-category A, we say that ε is pseudo-
isomorphic to ε′ if there exists a quasi-isomorphism ofA∞-modules T : Yε

r →
Yε′

r (i.e., T induces an isomorphism in homology, see Definition 2.4). We will
consider two A∞-categories A and B to be pseudo-equivalent if there exists
a cohomologically full and faithful functor F : A → B such that any object
of B is pseudo-isomorphic to an object of the form F (ε). In this situation, F
will be referred to as a pseudo-equivalence of A∞-categories. Of course, when
both involved categories admit cohomological units the definition recovers
the one from [17] since the Yoneda embedding is cohomologically full and
the last part of the definition implies that H(F) is essentially surjective.

2.3.2. Cohomological adjunctions. In order to prove that stable isomor-
phic DGAs have pseudo-equivalent augmentation categories, one needs to
prove that the relation of pseudo-equivalence is an equivalence relation. In
order to do so we will introduce the notion of cohomologically adjoint func-
tors and cohomological adjunction.

It is worthwhile to unravel the definition of morphism of modules in the
A∞ sense. A morphism of Yoneda modules is given by a sequence T d :
Yε

r (εd−1)⊗ Cεd−1,εd−2
⊗ · · · ⊗ Cε1,ε0 → Yε′

r (ε0), d ≥ 1, i.e., a family of maps

T d : Cε,εd−1
⊗ Cεd−1,εd−2

⊗ · · · ⊗ Cε1,ε0 → Cε′,ε0 ,

such that (see [17, equation (1.21)]):

d−1∑
j=0

(−1)†μj+1(T d−j(ad, ad−1, . . . , aj+1), aj , . . . , a1)

(2.12)

+
d∑

i=1

d−i∑
j=0

(−1)†T d−i+1(ad, ad−1, . . . , μ
i(aj+i, . . . , aj+1), aj , . . . , a1) = 0.

For d = 1, equation (2.12) implies that T 1 is a chain map, we recall now
the definition of quasi-isomorphism.

Definition 2.4. A morphism T between two Yoneda modules Yε
r and Yε′

r is
a quasi-isomorphism if for every object ε0 the chain map T 1

ε0
: Cε,ε0 → Cε′,ε0

induces an isomorphism in homology.

Let F be a pseudo-equivalence fromA to B then for any object ε of B there
is an object of A that we denote by G(ε) such that ε is pseudo-isomorphic to
F (G(ε)). Considering all together the pseudo-isomorphism leads to a family
of maps

T d : Cεd,εd−1
⊗ · · · ⊗ Cε1,ε0 → C

F
(
G(εd)

)
,ε0

.



566 F. BOURGEOIS AND B. CHANTRAINE

It follows from [17, Theorem 2.9] adapted in our context that G is part
of a cohomologically full and faithful functor G : B → A. Hence the family
of maps T d is a pre-natural transformation T ∈ F 1(nu-fun(Id,F ◦G)). Com-
paring equations (2.8) and (2.12) we get that this pre-natural transformation
satisfies:

μ1(T )d =
d∑

r=3

∑
s1+···+sr=d

(−1)†μr
B
(
(F ◦ G)sr(ad, . . . , ad−sr+1), . . . ,

(F ◦ G)s3(as1+s2+s3 , . . . , as1+s2+1),(2.13)

T s2(as1+s2 , . . . , as1), as1−1, . . . , a0

)
.

Note that since F is cohomologically full and faithful it admits an inverse
[F 1]−1 in homology, since we work over a field this map actually lifts to a
chain map U1 : CBF (ε′1),F (ε′0) → CAε′1,ε′0

. The composition U1
G(ε1),ε′0

◦ T 1
ε1,F (ε′0) :

CBε1,F (ε′0) → CAG(ε1),ε′0
is a quasi-isomorphism inducing an isomorphism Θ :

Hom(F (ε′0), ε1) � Hom(ε′0, G(ε1)). Combining equations (2.11) (with T 0 =
0) and (2.13) for the couple (F 1(a), b) where a ∈ CAε′1,ε′0

and b ∈ CBε0,F (ε′0)

one gets

μ2
B(T 1(b), F 1(a)) + T 1(μ2

A(b, F 1(a)) = μ1(T 2)(b, F 1(a)).

This implies that a induces the following commutative diagram in
homology:

Hom(F (ε′0), ε0)

[μ2
B(·,F (a))]

��

Θ �� Hom(ε′0, G(ε0))

[μ2
A(·,a)]

��

Hom(F (ε′1), ε0)
Θ �� Hom(ε′1, G(ε0))

A similar diagram exists for left composition. All in all, the fact that T
induces an isomorphism of Yoneda modules and that F and G are coho-
mologically full and faithful implies that T 1 induces an adjunction between
H(F ) and H(G). This justifies the following definition.

Definition 2.5. Let F : A → B and G : B → A be two cohomologically
full and faithful functors. A cohomological adjunction between F and G is a
pre-natural transformation T : Id → F ◦ G satisfying equation (2.13).

The previous discussion together with the adaptation of [17, Theorem
2.9] in our context implies the following proposition.
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Proposition 2.6. An A∞-functor F : A → B is a pseudo-equivalence iff
there exists a cohomologically full and faithful functor G : B → A and a
cohomological adjunction T between F and G.

We cannot emphasize enough that the fact that we work over a field is
absolutely necessary for the last claim to be true, recall that in [17] one relies
on the fact that we can split any complex as a sum of an acyclic complex
and a complex with vanishing differential.

Note that the degree 1 pre-natural transformation T : Id → Id defined by
T 1 = Id and T d = 0 for d 
= 1 satisfies μ1(T )d = μd for d even and 0 for d odd
and thus is a cohomological adjunction from Id to Id. Under the geometric
picture of Section 3.2, this should correspond to the interpolation between
the two comparison maps given by the trivial cylinder which counts holo-
morphic curves with moving boundary conditions on (a small perturbation
of) the trivial cylinder. In this situation, only the trivial curves contribute
which gives the definition of T 1.

Note also that in the presence of c-unit, the evaluation T 1(c) is an element
of CG(F (ε1)),ε0

which induces a natural isomorphism from H(G ◦ F) to the
identity as one expects from a quasi-equivalence in this context.

We are now able to prove the following proposition.

Proposition 2.7. The relation of pseudo-equivalence of A∞-categories is
an equivalence relation.

Proof. The identity functor is obviously a pseudo-equivalence as T 1 = Id
induces an isomorphism from Yr

ε to itself hence the relation is reflexive. It
follows from Proposition 2.6 that it is symmetric. In order to prove transi-
tivity let F0 : A → B and G0 : B → A be cohomologically adjoint pseudo-
equivalences. Similarly let F1 : B → C be the pseudo-equivalence from B
to C with cohomological adjoint G1. Denote by T0 and T1 the respective
homological adjunctions.
F1 and G1 being cohomologically full and faithful, one gets that the map

H(F 1
1 )◦H(G1

1) is an isomorphism. Again as we work over a field, this implies
that there exists a chain map Sε0,ε1 : CC

F1

(
G1(ε1)

)
,F1

(
G1(ε0)

) → CCε1,ε0
which

induces
(
H(F 1

1 ) ◦H(G1
1)
)−1 in homology.

This implies that the following composition,

CCε1,ε0

T0◦G1−→ CBF0◦G0◦G1(ε1),G1(ε0)
F1−→ CCF1◦F0◦G0◦G1(ε1),F1◦G1(ε0)(2.14)

S◦T 1−→ CCF1◦F0◦G0◦G1(ε1),ε0

is a quasi-isomorphism. This is the first application necessary to define an
adjunction from F1 ◦ F0 to G1 ◦ G0.

In order to define the higher order terms denote byA′ the image of F1◦G1.
The homological perturbation lemma of [17, Section (1i)] allows us to



568 F. BOURGEOIS AND B. CHANTRAINE

extend S to an A∞-functor on A′. The homological adjunction is thus given
by μ2(LST 1,LF1RG1T0) where μ2 is the composition of natural transfor-
mations, L and R are respectively the left and right compositions of a pre-
natural transformation with a functor (see [17, Section (1e)]). We are brief
here as in the present paper only the homological result will be relevant and
thus only the first map matters. �

Remark 2.8. Note that at the most elementary level one gets that for
an A∞-category the set of isomorphism types of the groups H(Cε1,ε0) is
invariant under quasi-equivalences.

Remark 2.9. Note that the map S ◦ T appearing in the proof of Proposition
2.7 induces an isomorphism from Hom(ε1, F (ε′0)) to Hom(G(ε1), ε′0) for any
ε′0 ∈ A and ε1 ∈ B whenever T is a homological adjunction. This justifies
the ambiguity between left and right adjunction.

2.4. Invariance.

2.4.1. Construction of functors on Aug(A). Let A and B be two semi-
free DGAs with generating sets A and B respectively and let f : A → B be
a DGA map. We denote by fn the associated map between An and Bn.

For an augmentation ε set F (ε) = ε ◦ f .
For a n-tuple of augmentations E = (ε1, . . . , εn) one defines fεE : An →

Bn by the Kn-algebra morphism φεE ◦ fn ◦φ−1
F (εE) where F (εE) is the n-uple

(F (ε1), . . . , F (εn)). This is a DGA-map from (An, ∂F (εE)) → (Bn, ∂εE ). Its
restriction to Cn(A) decomposes as a sum fεE

1 ⊕ fεE
2 ⊕· · ·⊕ fεE

j ⊕· · · where
fεE

j : Cn(A) → Cn(B)⊗j are Kn-bimodule homomorphisms. Note that there
is no 0-order term in the decomposition as those coming from Fn(εE) cancel
with those coming from φ−1

εE◦fn
. Dualizing each of the fεE

j and restricting
them to Cεd,εd−1

⊗ · · · ⊗Cε2,ε1 one gets maps F d
εE

: Cεd,εd−1
⊗ · · · ⊗Cε2,ε1 →

CF (εd),F (ε1)[1− d] (again note that here we use the absolute grading). As in
Section 2.2.1 those only depend on the augmentations ε1, . . . , εd and on f .
We denote by F d the sets of maps {F d

εd,...,ε1
} for all d-tuples of augmenta-

tions. From fεE ◦ ∂F (εE) = ∂εE ◦ fεE one deduces the following

Proposition 2.10. The family F = {F d} is an A∞-functor from Aug(B)
to Aug(A).

The construction is functorial with respect to the composition as stated
in the following:

Proposition 2.11. Let f and g be two DGA maps then the A∞-functor
associated to f ◦ g is G ◦F , where the composition of A∞-functors is defined
as in [17, Section (1b)].
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Proof. Consider (f ◦ g)εE |C(A). As f is a DGA map one gets the decompo-
sition

(f ◦ g)εE |C(A)(a) =
∑∑

fs1 ⊗ · · · ⊗ fsr(gi(a)).

Dualizing this equation and denoting H the functor associated to f ◦g leads
to the formula

Hd(ad, . . . , a1) =
∑

r

∑
s1+···+sr=d

Gr(F sr(ad, . . . , ad−sr+1), . . . , F s1(as1 , . . . , a1)),

which is the composition formula of A∞-functors. �

2.4.2. Equivalence of augmentations. We are now ready to give the
definition of equivalent augmentations.

Definition 2.12. Two augmentations ε1 and ε2 are equivalent if there is an
A∞-functor F such that ε1 = F (ε2) and a homological adjunction T from
F to the identity.

Note that in [3] equivalence of augmentations has a different shape. Pre-
cisely it is said that two augmentations are equivalent if there exists a deriva-
tion K such that ε1 = ε2 ◦ eK∂+∂K . This definition is of course problematic
if our coefficient ring is not an algebra over a field of characteristic 0. Equiv-
alent augmentations from [3] are equivalent in our sense using f = eK∂+∂K

to construct the A∞-functor. The natural transformation is given by dual-
izing homogenous component of K. It is not clear to us whether or not the
converse is true, compare also Formula (2.12) with the formula appearing
in [13, Lemma 3.13].

Definitions 2.4 and 2.9 imply the following

Theorem 2.13. Let ε1 and ε2 be two augmentations of A. If ε1 is equiva-
lent to ε2 then for any augmentation ε, we have H(Cε1,ε) � H(Cε2,ε) and
H(Cε,ε1) � H(Cε,ε2).

2.4.3. Invariance under stable isomorphisms. Recall that a stabiliza-
tion of a DGA is a new DGA with two more generators b, c such that ∂b = c.
Two DGAs are said to be stable isomorphic if they become isomorphic
after a sequence of stabilizations. The aim of this paragraph is to prove the
following:

Theorem 2.14. Let A and A′ be two stable isomorphic DGAs. Then their
augmentation categories are pseudo-equivalent.

Proof. From Proposition 2.7, it is sufficient to prove the theorem first for an
isomorphism and second for a stabilization. Let f : A → A be an isomor-
phism. Consider F the associated functor as in Proposition 2.10, and G the
functor associated to f−1. Then F ◦ G = Id and G ◦ F = Id imply that the
categories Aug(A, ∂) and Aug(A, ∂′) are pseudo-equivalent.
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Let A′ be a stabilization of A. The natural inclusion i : A → A′ is a
DGA morphism, inducing a functor I. Note that here Ik = 0 for k ≥ 2.
The map j : A′ → A which sends b and c to 0 is also a DGA morphism
inducing J . Obviously I and J are cohomologically full and faithful and
J ◦ I is the identity. Note that as vector spaces the morphism spaces Cε1,ε2

and Cε1,I◦J(ε2) are canonically the same and that the augmented differential
μ1

ε1,ε2
corresponds to the one for I ◦ J(εi). This implies that the pre-natural

transformation defined under this identification by T 1
ε1,ε2

= Id and T d = 0 if
d 
= 1 is a homological adjunction from I to J as noted in Section 2.3. �

The set of equivalence classes of augmentations behave nicely with respect
to stable isomorphisms of DGAs. Namely

Theorem 2.15. Let A(A) be a free DGA. Then we have:
(1) Let f be an isomorphism of A then ε1 is equivalent to ε2 iff ε1 ◦ f is

equivalent to ε2 ◦ f .
(2) Let i : A → A′ be the inclusion of a DGA into one of his stabilizations.

Then ε1 is equivalent to ε2 iff ε1 ◦ i is equivalent to ε2 ◦ i and two
augmentations ε′1, ε′2 of A′ are equivalent iff their restrictions to A are.

Proof. The first part is obvious. It is sufficient to compose the natural
adjunction with the functor induced by f−1.

If the stabilization is not of degree 0 the result is obvious, thus we sup-
pose that the stabilization has degree 0. One needs to prove that if ε′ is an
augmentation of A′ then ε′0 defined by ε′0(a) = ε′(a) for all generators a ∈ A
and ε′0(b) = ε′0(c) = 0 is equivalent to ε′. To do so we proceed as in the proof
of Theorem 2.14. We define the DGA morphism f : A′ → A′ by f(a) = a
for all a ∈ A, f(b) = b− ε′(b) and f(c) = c. Obviously F (ε′) = ε′0. The pre-
natural transformation T defined by T 1 = Id and T d = 0 induces the desired
homological natural adjunction. The proof is complete as ε′0 = ε′|A ◦ i. �

3. Geometric interpretation

3.1. Legendrian contact homology. In this section, we consider the jet
space J 1(M) := T ∗M×R of a n-dimensional manifold M with the standard
contact structure ξ = ker(dz − θ) where z parametrizes R and θ =

∑
pdq is

the standard Liouville form on T ∗M with (q, p) the conjugate coordinates.
A Legendrian submanifold Λ of J 1(M) is a n-dimensional submanifold such
that TΛ ⊂ ξ. We assume here that all Legendrian submanifolds are compact.

We denote by π the canonical projection of J 1(M) to T ∗M and by Π
the canonical projection of J 1(M) to M ×R. For a Legendrian submanifold
Λ, π(Λ) is called the Lagrangian projection and Π(Λ) is called the front
projection.

A Reeb chord γ of Λ is trajectory γ : [0, T ] → J 1(M) of ∂
∂z such that

T > 0, γ(0) and γ(T ) belong to Λ. Those are in bijection with double
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points of the Lagrangian projection. A Reeb chord is non-degenerate if the
corresponding double point of the Lagrangian projection is transverse and
if all Reeb chords are non-degenerate Λ is called chord generic. We denote
by R(Λ) the set of Reeb chords of Λ (if Λ is chord generic this is a finite set
since Λ is compact).

If Λ is chord-generic there is a grading map gr : R(Λ) → Z defined by the
Conley–Zehnder index (see [9]).

We denote by C(R(Λ)) the graded K-vector space generated by R(Λ) and
A(Λ) the tensor algebra of C(R(Λ)) as in Section 2. In general, K will be
Z2; if Λ is relatively spin, one can also consider Q. This algebra is called
the Chekanov algebra of Λ, it is a DGA with differential ∂ defined counting
some holomorphic curves in R× J 1(M) (see [10,11]).

Let J̃ be an almost complex structure on T ∗M compatible with −dθ. To J̃
we associate an almost complex structure J on R×J 1(M) by the following.
The differential of the projection π induces an isomorphism between ξ|(q,p,z)

and T(q,p)(T ∗M); we set J |ξ = J̃ under this identification. Finally, we set
J ∂

∂t to be equal to ∂
∂z . Such an almost complex structure will be referred to

as a compatible almost complex structure.
We denote by Dk the two-dimensional closed unit disk with the (k + 1)-

th roots of unity removed. For a complex structure j on Dk we choose
holomorphic coordinates [T,∞]× [0, 1] near 1 and [−∞,−T ]× [0, 1] near the
other punctures. A map u : (Dk, j) → R×J 1(M) is said to be holomorphic
if du ◦ j = J ◦ du.

If u is a holomorphic map then u|[T,∞]×[0,1] decomposes as a map (a, v, f)
with a : [T,∞]×[0, 1]→ R, v : [T,∞]×[0, 1]→ T ∗M and f : [T,∞]×[0, 1] →
R. Suppose u(∂Dk) ⊂ R × Λ then for a Reeb chord γ we say that u has a
positive asymptotic γ at 1 if v(z) → π(γ) and a(z) → ∞ when z → 1.
Similarly, for a root of unity z0 we say that u has a negative asymptotic γ
at z0 if v(z) → π(γ) and a(z) → −∞ when z → z0.

For Reeb chords γ+, γ1, . . . , γk we denote byM(γ+, γ1, . . . , γk) the moduli
space of holomorphic maps from (Dk, j) to R × J 1(M) with boundary on
R×Λ, positive asymptotics γ+ and negative asymptotics γ1, . . . , γk for all j
modulo biholomorphism (Dk, j) � (Dk, j

′) and translation in the R direction
in R× J 1(M).

The differential ∂ on A(Λ) is defined by

∂γ+ =
∑

γ1,...,γk
gr(γ1...γk)=gr(γ+)−1

#M(γ+, γ1, . . . , γk) · γ1 . . . γk

on generators and is extended to A(Λ) by linearity and the Leibniz rule.
The homology of the DGA (A(Λ), ∂) is called the Legendrian contact

homology of Λ and is denoted by LCH(Λ).
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As the Chekanov algebra (see [5, 9]) of a Legendrian submanifold Λ is
a semi-free DGA, the previous construction applies in this case to give the
augmentation category for the Legendrian submanifold Λ. We denote this
category by Aug(Λ). In the next section, we will show that this augmentation
category can be extracted from the geometrical data of the differential of
the Chekanov algebra of the n-copy Legendrian link.

One can choose more sophisticated coefficient rings to define Legendrian
contact homology, for instance one can keep track of the homology class
of the curves defining the differential using the group ring K[H1(Λ)]. Even
though this is not a field, one can still carry out the previous construction
considering all the chain complexes, tensor products and dual spaces over K

(the coefficients from H1(Λ) inducing a decomposition of the vector spaces).

3.2. The augmentation category of Legendrian submanifolds.

3.2.1. The augmentation category Aug(Λ). From Section 2, we deduce
that there is an A∞-category associated to A(Λ) we denote this category by
Aug(Λ). Note that from Theorem 3.2 the curve contributing to the products
μn are the curves shown in Figure 2.

The homologies of the complexes (C(R(Λ)), dε0,ε1) and (C(R(L)), μ1
ε1,ε0

)
are called the bilinearized Legendrian contact homology and cohomology
groups, and are denoted by LCHε0,ε1(L) and LCHε1,ε0(L).

Recall that Legendrian isotopies induce stable tame isomorphisms (and
thus stable isomorphisms) of the Chekanov algebra (see [5,9,11]). Thus The-
orem 2.14 implies Theorems 1.2 and 1.1. Theorem 1.3 is itself a consequence
of Theorem 2.13 which also implies Theorem 1.4.

We will now describe how the bilinearized differential appears naturally
when considering the Chekanov algebra of the two-copy Legendrian link
associated to Λ.

3.2.2. The n-copy Legendrian link. Let Λ be a Legendrian submanifold
of J 1(M). Choose small Morse functions fi, i = 2, . . . , n on Λ such that, for
each i 
= j, the critical points of fi and fj are disjoint and fi− fj is a Morse
function. We also set f1 = 0 in order to simplify notations. We denote by Λn

the Legendrian link Λ1�Λ2�· · ·�Λn where Λi is a perturbation of Λ+ iε ∂
∂z

by the 1-jet of the function εfi. The front and Lagrangian projections of Λ2

are illustrated by Figures 3 and 4 for the Legendrian unknot Λ.

3.2.3. Reeb chords of Λn. Let R(Λ) be the set of Reeb chords of Λ. Reeb
chords of Λn are of three different types:

(1) Reeb chords of Λi for each i ∈ {1, . . . , n} called pure chords.
(2) Critical points of fi − fj for each i 
= j called continuum chords.
(3) Long (i.e., not continuum) Reeb chords from Λi to Λj for each i 
= j

called mixed chords.
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Figure 3. Front projection of the two-copy Legendrian
unknot before perturbation.

Figure 4. Lagrangian projection of the two-copy Legendrian
unknot after perturbation.

For a fixed i, the set of chords of type 1 of Λi are in bijection with R(Λ);
for γ ∈ R(Λ) we denote γi,i the corresponding chord of Λi. Similarly, for
each i 
= j, chords of type 3 are in bijection with R(Λ) and for γ ∈ R(Λ) we
denote by γi,j the corresponding chord from Λi to Λj .

3.2.4. The differential. Let Ic be the two-sided ideal of A(Λn) generated
by continuum chords, i.e., Reeb chords coming from critical points of the
functions fi − fj . Then we have:

Proposition 3.1. For sufficiently small ε > 0, ∂(Ic) ⊂ Ic.

Proof. Let 
 be the minimal length of all Reeb chords of type 1 and 3 and
F be the maximum of all maxima of the functions fi− fj so that the length
of any chord of type 2 is smaller than ε(n − 1 + F ). Set ε < �

n−1+F . As
∂ decreases the length of chords, we get that for any chord of type 2 its
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boundary is in the algebra generated by chords of type 2. The Leibniz rule
thus implies that ∂(Ic) ⊂ Ic. �

We denote by An(Λ) the quotient A(Λn)/Ic. Then the differential on
A(Λn) descends to a differential ∂n on An(Λ). Note that An(Λ) is isomorphic
to the tensor algebra over K of Cn(Λ) where Cn(Λ) is the free K-vector space
generated by Reeb chords of Λn of type 1 and 3.

We extend the vector space structure of Cn(Λ) to a Kn-module structure
by setting ei · γj,k · el = δij · δkl · γj,k.

3.2.5. Structure of ∂n. Consider now the subalgebra of An(Λ) linearly
generated by γi1,j1 ⊗ · · · ⊗ γik,jk

where (I = (i1, . . . , ik), J = (j1, . . . , jk)) is
a composable pair of multi-indices. As a Kn-algebra it is isomorphic to the
algebra An(A) of Section 2.1 with A = R(Λ). As the differential ∂ counts
connected holomorphic curves it is obvious that ∂n(An(R(Λ))) ⊂ An(R(Λ)).

Theorem 3.2. For sufficiently small ε > 0, ∂n|An(R(Λ)) is the differential
on the n-copy algebra of (A(Λ), ∂) as in Section 2.1.

Proof. Consider Λ0
n the n-copy Legendrian link consisting of n-linked copies

of Λ translated in the z-direction, without perturbing them by Morse func-
tions. Reeb chords of this link are not all non-degenerate as any point of Λi

belongs to a chord running from Λi to Λj for all j 
= i. However, if chords
of Λ are non-degenerate then chords of Λ0

n are Morse–Bott. Similarly to [2],
one can consider the Morse–Bott approach to Legendrian contact homol-
ogy using a Morse–Bott generic compatible almost complex structure J on
R×M .

For sufficiently small ε > 0, J will be a generic almost complex structure
in the sense of [11] for the link Λt

n obtained by perturbing Λ0
n using the

Morse function t · fi, for all t ∈ (0, ε). All chords of Λt
n are described as

before and are therefore in natural bijection for all t ∈ (0, ε). When t = 0,
all non-continuum chords are in bijection with non-continuum chords of Λt

n

for t > 0 and are non-degenerate. Thus, as they are all in natural bijection,
we drop the index t and denote them by the same letter.

Let Mt(γ+, γ1, . . . , γk) be the moduli space of holomorphic maps on Dk

with boundary on R×Λt
n. We label the connected components of ∂(Dk) by

C0, . . . , Ck+1 starting from the arc connecting 1 to e2πi/(k+1). For a multi-
index I = (i0, i1, . . . , ik) we denote by MI

t (γ
+, γ1, . . . , γk) the moduli space

consisting of holomorphic maps such that the connected component Cj of
∂(Dk) is mapped to R× Λt

ij
, for j = 0, . . . , k.

If ε > 0 is small enough, if γ+, γ1, . . . , γk are non-continuum chords, then
the moduli spaces MI

t (γ
+, γ1, . . . , γk) are diffeomorphic for all t ∈ [0, ε),

since all non-continuum chords are non-degenerate.
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Recall that elements of MI(γ+, γ1, . . . , γj) are in bijection with holomor-
phic curves in T ∗M with boundary on the Lagrangian projection of Λi with
punctures to the double points corresponding to the Reeb chords (see [14]).
As the Lagrangian projection of Λ+ iε ∂

∂z is equal to the Lagrangian projec-
tion of Λ, the moduli space of holomorphic curves MI(γ+, γ1, . . . , γk) and
MJ(γ+, γ1, . . . , γk) are in bijective correspondence for any multi-indices I
and J of length k + 1. �

For a n-tuple of augmentations E = (ε1, . . . , εn) of A(Λ) over K one
gets an augmentation εE of A(Λn) over Kn setting εE(γi,i) = εi(γ) · ei for
any γ ∈ R(Λ) and sending every mixed chord to 0 similarly as done in
Section 2.1.3. The fact that this is an augmentation follows from Theorem
3.2, Proposition 3.1 and applying Proposition 2.1 to the quotient algebra.

For n = 2, the augmented complex decomposes as C1,1 ⊕ C2,2 ⊕ C1,2 ⊕
C2,1⊕C1,2(f) and from the fact that only the pure chords are augmented we
get that Ci,i are subcomplexes, the corresponding differential is the standard
augmented differential. C2,1 is also a subcomplex, it follows from Theorem
3.2 that its differential corresponds to the bilinearized differential dε1,ε2 .
Finally C1,2 ⊕ C1,2(f) is a subcomplex with differential(

dε1,ε2 0
ρ df

)
.

The differential dε1,ε2 is the bilinearized differential and the complex
(C(f), df ) is the Morse complex of f2. This can be seen by a standard
Morse–Bott argument and follows for example from [12, Theorem 3.6].
Finally, ρ is a chain map and thus the complex C1,2 ⊕ C1,2(f) is the cone
over ρ, we denote it C(ρ).

3.3. Duality exact sequence. A Legendrian submanifold Λ of J 1(M) is
horizontally displaceable if there exists a Hamiltonian diffeomorphism φ of
T ∗M such that φ(π(Λ)) ∩ π(Λ) = ∅. Note that if M is non-compact any
compact Legendrian submanifold is horizontally displaceable.

In [12], it is proved that linearized Legendrian contact homology and
cohomology of horizontally displaceable Legendrian submanifolds are parts
of an exact sequence (which generalizes the duality of [16]):

(3.1) · · · → Hk+1(Λ) → LCHn−k−1
ε (Λ) → LCHε

k(Λ) → Hk(Λ) → · · ·
called the duality exact sequence.

The same considerations allow us to prove Theorem 1.5.

Proof of Theorem 1.5. This is almost a direct application of the arguments
in [12] applied to the 4-component link 2Λ2 which consists of two copies
Λ2 and Λ̃2 of Λ2 far apart in the z-direction (one perturbs the second copy
using Morse functions in the same manner as in the previous section).
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First note that the discussion at the end of the previous section implies
that there is an exact sequence induced by ρ:

· · · → Hk+1(Λ) i∗−→ H(C(ρ)) π∗−→ LCHε1,ε2

k (Λ)
ρ−→ · · ·

It remains to identify H(C(ρ)) with the bilinearized Legendrian cohomol-
ogy. In order to do so, one must investigate how the exact sequence is built
in [12]. One closely follows the notation from there. The Reeb chords of 2Λ2

are of four types:
(1) Chords going from Λ2 to itself denoted by q0 and their corresponding

chords on Λ̃2 denoted by q̃0.
(2) Chords going from Λ2 to Λ̃2 denoted by q1 whose positive and negative

ends are nearby the positive and negative ends of the corresponding
chords on Λ2.

(3) Chords going from Λ2 to Λ̃2 denoted by p1 whose positive ends are
nearby the negative ends of the corresponding chords on Λ̃2 and neg-
ative ends are nearby the positive ends of the corresponding chords
on Λ2.

(4) Critical points of the Morse functions on Λ used to perturb Λ̃2.
The corresponding vector space complexes are denoted Q0, Q1, P 1 and

C1. Since Λ2 is itself a two-copy Legendrian link each of those vector spaces
decomposes further. We label each of the summand by the positive and
negative ends of the chords. For instance, Q1 = Q1

11⊕Q1
22⊕Q1

12⊕Q1
21⊕Q1

f1

where the differential splits as in the previous section. The vector space Q1⊕
C1 is a subcomplex for the linearized differential given by the augmentation
ε12 of 2Λ2 given by ε1 and ε2. This subcomplex is shown to have the structure
of a mapping cone of a map η : (Q1, dε12) → (Cf , df ). With respect to the
decomposition of Q1 this map turns out to be η = ρ11 ⊕ ρ22 ⊕ 0⊕ 0⊕ 0; in
other terms the vector space Q1

12 ⊕Q1
21 ⊕Q1

f1
is a subcomplex.

The long exact sequence of equation (3.1) is the one given by this mapping
cone, this implies that the exact sequence for the link Λ2:

· · · →Hk+1(Λ)⊕Hk+1(Λ) →
(3.2)

LCHn−k−1
ε1

(Λ)⊕ LCHn−k−1
ε2

(Λ)⊕ LCHn−k−1
ε2,ε1

(Λ)⊕Hn−k−1(C(ρ∗)) →
LCHε1

k (Λ)⊕ LCHε2
k (Λ)⊕ LCHε1,ε2

k (Λ)⊕Hk(C(ρ)) → · · ·
splits as four exact sequences, the first two are the exact sequences for LCHε1

and LCHε2 and the other two lead to isomorphisms: 0 → LCHn−k−1
ε2,ε1

(Λ) →
HkC(ρ) → 0 and 0 → Hn−k−1(C(ρ∗)) → LCHε1,ε2

k (Λ) → 0. This completes
the proof. �

A difference with the duality exact sequence lies in the fact that since
ε0 is a priori different from ε1 the manifold class (as in [12]) is not well
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understood, this is due to the fact that one cannot describe the fundamental
class (see Example 5.1).

4. Perspectives

4.1. Lagrangian fillings. In [8], Ekholm developed a Lagrangian intersec-
tion Floer theory for exact Lagrangian fillings related to the construction
of the rational relative symplectic field theory of [7]. This construction is
related to the wrapped Fukaya category of [1]. The convex part of this the-
ory is the Lagrangian intersection theory of the Lagrangian fillings in the
classical sense.

We recall the definition of Lagrangian filling which is a special case of
Lagrangian cobordism as in [4].

Definition 4.1. A Lagrangian filling of a Legendrian submanifold Λ of a
contact manifold (Y, ξ) in R× Y is a compact Lagrangian submanifold L of
(−∞, 0)× Y such that

(i) ∂L = Λ,
(ii) L ∪ (R+ × Λ) is a Lagrangian submanifold of R× Y .

In [8, 13], it is shown that an exact Lagrangian filling with vanishing
Maslov class of a Legendrian knot leads to an augmentation of its Chekanov
algebra. We denote the augmentation induced by L by εL. A consequence
of the results of [8] is the following isomorphism:

LCHn−k+2
εL

(Λ) � Hk(L).

The proof relies on the existence of an exact triangle involving LCHεL(Λ),
HF (L) and the full Lagrangian Floer homology of L.

Similarly to the case of the wrapped Floer homology, in jet space the
full Floer homology vanishes, so that LCHεL(Λ) and HF (L) are isomorphic.
Standard arguments then show that HF (L) � H(L). In the context of
bilinearized Legendrian contact homology, only the latter isomorphism fails
to be true as two different Lagrangian fillings might not be Hamiltonian
isotopic. Namely from [8, Theorem 4.9] we have:

Theorem 4.2. Let L1 and L2 be two exact Lagrangian fillings of Λ with
vanishing Maslov class inducing augmentations εL1 and εL2 of A(Λ). Then

LCHn−k+2
εL1

,εL2
(Λ) � HF k(L1, L2).

The proof is exactly the same as in [8, Section 4.4] but we make no use
of the conjectural Lemma 4.10 from there as we do not need to compare
holomorphic curves with Morse gradient trajectories here.
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4.2. Relation with generating families. This project is part of an
attempt in producing a unified picture of the Legendrian invariants aris-
ing from holomorphic curves on one side and generating families on the
other. Recall that a generating family for a Legendrian submanifold Λ
in jet space J 1(M) is a function F : M × Rm → R such that Λ =
{(q0, p0, F (q0, η0))|∂F

∂η (q0, η0) = 0 p0 = ∂F
∂q (q0, η0)}. To such a family one

associates the difference function

F̃ : M × Rm × Rm → R

(q, η1, η2) �→ F (q, η2)− F (q, η1)

and defines the generating family homology to be GF (Λ, F ) = H∗(F ≥
ε, F = ε). The set of those homology groups for all generating families form
a Legendrian invariant bearing similarities with the linearized Legendrian
contact homology. For instance, when M = R, it has been shown in [15]
that LCHε(Λ) � GF (Λ, F ε) where F ε is an equivalence class of generating
family associated to ε via graded ruling. It is a conjecture that this result
holds in any dimension.

Bilinearized Legendrian contact homology appears naturally when trying
to extend this conjectural isomorphism to a generalization of generating
family homology to an invariant communicated to us by Petya Pushkar and
defined using the function:

F̃ : M × Rm × Rm → R

(q, η1, η2) �→ F1(q, η2)− F2(q, η1)

and constructing GF (Λ; F1, F2) = H∗(F̃ ≥ ε, F̃ = ε) where F1 and F2 are
two generating families for Λ (one assume that they have been stabilized to
be defined on the same space). Conjecturally, those homologies correspond
to the bilinearized Legendrian contact homology groups. More deeply, one
can adapt a construction of Fukaya to construct an A∞-category whose
objects are generating families for Λ and morphism spaces are the Morse
complexes associated to F̃ . One expects the existence of an A∞-functor
from this category to Aug(Λ). It is not expected that this functor is a quasi-
equivalence, we however expect it to be cohomologically full and faithful and
that it induces an equivalence of categories for the derived categories.

Note that the considerations in Section 4.1 also imply the existence of a
cohomologically full and faithful functor from a Fukaya-type category con-
structed using a Lagrangian filling of Λ to Aug(Λ) we similarly conjecture
that this induces a quasi-equivalence of the derived categories.

5. Examples

In this section, we will show how bilinearized contact homology allows us to
distinguish augmentations of some DGAs.
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5.1. Trefoil knot. We start with the example of the maximal Thurston–
Bennequin right-handed trefoil knot shown in Figure 5. It has five augmen-
tations all of which lead to isomorphic linearized contact homologies. How-
ever, we will see that in the bilinearized contact homology table non-diagonal
terms are not isomorphic to any diagonal term. As a consequence, all those
five augmentations are pairwise non-homotopic. Moreover, all five augmen-
tations arise from Lagrangian fillings of the trefoil knot. Thus, the compu-
tation implies that those Lagrangian fillings are pairwise non-symplectically
equivalent (a result claimed by Ekholm, Honda and Kàlmàn in [13]).

The Chekanov algebra of K has five generators. Two of degree 1: a1 and
a2, and three of degree 0: b1, b2 and b3. The differential is given by:

∂a1 = 1 + b1 + b3 + b1b2b3,

∂a2 = 1 + b1 + b3 + b3b2b1.

This DGA admits five augmentations listed in Table 1.
An easy computation shows that LCHεi,εj (K) = Z2[0] as soon as i 
= j

and that LCHεi,εi(K) = Z2[1]⊕Z2
2[0]. These five augmentations are thus all

pairwise non-equivalent. As it is shown in [13], those five augmentations arise
in this context from five different Lagrangian fillings of K (one gets them

Figure 5. Right-handed maximal tb trefoil knot.

Table 1. Augmentations of the right-handed maximal tb tre-
foil knot

b1 b2 b3

ε1 1 1 1
ε2 1 0 0
ε3 1 1 0
ε4 0 0 1
ε5 0 1 1
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by resolving the crossing bi in various orders). It follows from our compu-
tation and Theorem 4.2 that those Lagrangian fillings are non-Hamiltonian
isotopic. Note that it follows from [13, Lemma 3.13] that isotopic exact
Lagrangian fillings lead to equivalent augmentations (the map T d is defined
counting degree −1 holomorphic curves along a generic isotopy Σt).

We compute also the maps of the exact sequence of Section 3.3 in order
to show that there is no fundamental class in the context of bilinearized
Legendrian contact homology. To get the explicit maps one needs to consider
the differential of the two-copy trefoil knot of Figure 6 (here the Morse
function on S1 has two minima m1 and m2 and two maxima M1 and M2).
Specifically one needs to understand the map ρ : C21 → Cf of Section 3.2.5
arising while computing the differential ∂ on generators of type γ12. From
Figure 6 we get:

∂(a1
12) = M1 + m1a

1
11 + (· · · ),

∂(a2
12) = M2 + a2

22m2 + (· · · ),
∂(b1

12) = m1b
1
11 + b1

22m2,

∂(b2
12) = m1b

2
11 + b2

22m2,

∂(b3
12) = m1b

3
11 + b3

22m2.

Figure 6. Two copies of the maximal tb trefoil knot.
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where the terms (· · · ) do not involve any continuum chords and are char-
acterized by Theorem 3.2.

This is enough to compute explicitly the long exact sequence. For ε1 and
ε2 we get that

ρε1,ε2(a1) = 0,

ρε1,ε2(a2) = 0,

ρε1,ε2(b1) = m1 + m2,

ρε1,ε2(b2) = m1,

ρε1,ε2(b3) = m1.

In this situation, LCHε1,ε2
0 is generated by [b2]. And the map ρε1,ε2 is

injective. Similar considerations imply that the map σ : H1(S1) → LCH0
ε2,ε1

is surjective. The map from LCH0
ε2,ε1

→ LCHε1,ε2
0 is thus 0.

5.2. Chekanov–Eliashberg knot. Consider the Legendrian knot of
Figure 7.

It is one of the two Legendrian knots which have been distinguished in [5]
using Legendrian contact homology. The second one admits only one aug-
mentation and hence has no non-trivial bilinearized Legendrian homology.
However, this one admits three augmentations that are (as we will compute)
non-equivalent. Again the degree of ai is 1 and the degree of bi is 0. The

Figure 7. Chekanov–Elisahberg Legendrian knot.
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Table 2. Augmentations of the Chekanov–Eliashberg knot.

b5 b6 b7 b8 b9

ε1 0 0 1 1 1
ε2 0 1 1 1 1
ε3 1 0 1 1 1

differential is given by

∂(a1) = 1 + b7 + b7b6b5 + b5 + b9b8b5,

∂(a2) = 1 + b9 + b5b6b9,

∂(a3) = 1 + b8b7,

∂(a4) = 1 + b8b9.

The augmentations are listed in Table 2.
For all of these augmentations, the linearized Legendrian contact homolo-

gies coincide and are given by LCHεi(K) � Z2[1]⊕ Z2
2[0], i = 1, 2, 3.

However, for any choice of a pair εi 
= εj of augmentations, we get
LCHεi,εj (K) � Z2[0] and we deduce that these three augmentations are
pairwise non-equivalent.

As the second Chekanov–Eliashberg example has only one augmentation,
we get that the set of equivalence classes of augmentations for those knots
are different.
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