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CONVERGENCE OF KAHLER TO REAL POLARIZATIONS
ON FLAG MANIFOLDS VIA TORIC DEGENERATIONS

MARK D. HAMILTON AND HIROSHI KONNO

In this paper, we construct a family of complex structures on a
complex flag manifold that converge to the real polarization coming
from the Gelfand—Cetlin integrable system, in the sense that holomor-
phic sections of a prequantum line bundle converge to delta-function
sections supported on the Bohr-Sommerfeld fibers. Our construction
is based on a toric degeneration of flag varieties and a deformation of
Kahler structure on toric varieties by symplectic potentials.

1. Introduction

Let (M,w) be a 2n-dimensional symplectic manifold. A prequantum line
bundle (L, h, V) is a complex line bundle L on M with a Hermitian metric
h and a Hermitian connection V, whose curvature equals —27v/—1w. Geo-
metric quantization is a procedure to assign a certain vector space, which
is called a quantum Hilbert space, to (M, w). To perform a geometric quan-
tization procedure, we must choose a polarization, which is an integrable
Lagrangian subbundle of the (complexification of the) tangent bundle T'M
of M. Then, the quantum Hilbert space H(P) for a polarization P is naively
a subspace of (a certain completion of) the space of sections of L, consist-
ing of covariantly constant sections along the polarization P. See [W] for
general properties of geometric quantization.

The most common example of a polarization comes from an integrable
complex structure J on M such that (M,w,J) is a Kdhler manifold. In this
case, the anti-holomorphic tangent bundle P; = T%'M is a polarization,
which we call a K&hler polarization. The quantum Hilbert space H(Py) is

the space of holomorphic sections H O(L,gj) with respect to the natural
holomorphic structure 3’ on L induced by J.
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Another type of polarization, called a real polarization, is given by a
foliation of M into Lagrangian submanifolds. A completely integrable sys-
tem p: M — R™ (which is assumed to be proper) defines a singular real
polarization P,, where (P,), is the tangent space of the fiber of u at each
point z € M. We set BS(u) = {p € p(M)|H°((L, h,V)|,~1()) # 0}, where
HO((L,h, V1)) = {s € T((L, h, V)|,-1())|Vs = 0}. Namely, p € BS(p)
if and only if 4 ~!(p) is a Bohr-Sommerfeld fiber. Then, the quantum Hilbert
space H(F,) is defined to be ,cpg(, HO((L, h, V)lu-1)) [S]-

From the point of view of physics, the quantum Hilbert space should be
independent of the choice of polarization. In particular, although Kéahler and
real polarizations seem to be quite different, the quantum Hilbert space for
a Kahler polarization should be isomorphic to the one for a real polariza-
tion. There are several examples where this principle is observed to be true.
A non-singular projective toric variety has a natural Kéahler structure, and
its moment map for the torus action induces a (singular) real polarization.
It is well known that the dimension of the space of holomorphic sections
of the prequantum line bundle is the number of lattice points in the image
of the moment map, which is also the number of Bohr—-Sommerfeld fibers
in the variety. This implies that the principle holds in this case. In [JW],
Jeffrey—Weitsman showed that the principle also holds in the case of the
moduli space of flat connections over a compact Riemann surface.

A flag manifold with an integral symplectic structure has a singular real
polarization defined by the Gelfand—Cetlin system, which was introduced by
Guillemin—Sternberg in [GS], as well as a natural K&hler polarization since it
is a complex manifold. In [GS], the authors studied the quantization of flag
manifolds, and showed that the two polarizations give rise to quantizations
with the same dimensions. However, their proof did not give any sort of
direct relationship between the quantizations; rather, they computed the
dimensions of the quantizations by other means (representation-theoretical
and combinatoric) and showed they are equal.

One way of approaching the principle of independence of polariza-
tion is the following, considered by Baier, Florentino, Mourao and Nunes
in [BFMN]. Fix a Kéhler polarization P; and a real polarization P, on
(M,w). Then, the principle can be understood naturally if there is a family
{P.}sel0,00) of Kéhler polarizations on M with P;, = P; which converges
to P, in the sense that there exists a basis {0} },eps(p,) of H(Py,) for
each s € [0,00) such that, for each m € BS(P,), ol* converges to a delta-
function section supported on the Bohr-Sommerfeld fiber p~!(m) as s goes
to oo. In [BFMN], the authors carried out such a construction in the case
of a non-singular projective toric variety by changing symplectic potentials,
an important notion in the deformation theory of toric Kéhler structures

due to Guillemin [Gul, Gu2| and Abreu [Abl, Ab2].
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In this paper, we construct a family of Kéhler polarizations on a flag
manifold that converge to the real polarization coming from the Gelfand—
Cetlin system. See Theorem 2.1 for details. In doing so, we provide a direct
relationship between the two quantizations. Our construction is based on the
construction due to [BFMN] and the toric degeneration of a flag variety due
to Kogan and Miller [KM]. Originally, a toric degeneration of a flag variety
was constructed in terms of representation theory [GL, C]. Later Kogan
and Miller introduced deformed actions of a Borel subgroup on the space
of matrices and described a toric degeneration of a flag variety explicitly.
Moreover, they constructed a “degeneration in stages” of a flag variety to
study the geometric meaning of the Gelfand—Cetlin basis of the irreducible
representation of the unitary group. In [NNU], Nishinou, Nohara and Ueda
pointed out that through the degeneration in stages one can identify the
Gelfand—Cetlin system on the flag manifold with the integrable system on
the limiting toric variety.

Our construction of a family of Kéahler polarizations on a flag man-
ifold proceeds as follows. We start from a flag manifold Fl, embedded
in the product of projective spaces P = Hl:l,...,n—l IP’(/\Z C™). For each
(a1,...,an-1) € (Z=0)" !, we fix a prequantum line bundle on P induc-
ing a natural symplectic structure on Fl,. The toric degeneration of the
flag variety Fl,, due to [KM] is a family of complex subvarieties {V; };cc in
P, where Vi = Fl,, and Vj is a toric variety. Since all V; are diffeomorphic
to each other for ¢ # 0, the family {V;};+o can be considered as a family
of Kéhler structures on the flag manifold Fl,,. On the other hand, there
is a family of toric Kéhler structures {Vo s}sc0,00) 00 Vo with Voo = Vo,
as considered in [BFMN] (explained above). If we could identify Fl,, with
Wo,s as a symplectic manifold, we could pull back the complex structures on
Wo,s to Fl,,. However, the toric variety Vp is not diffeomorphic to the flag
manifold Fl,.

Instead, we consider a space V;, which is still diffeomorphic to the flag
manifold Fl,, but also is an approximation to V{;. We show that the defor-
mation {Vs}sejo,00) Can be realized as the restriction of a deformation of
the ambient toric variety P. The deformation of the ambient space induces
a family of Kéhler structures {Vs}seo,00) on Vi with Vo = V; for each
t € C. We develop a method to identify V; ; with V;o = V; as a symplec-
tic manifold. Moreover, we identify Fl, with V; as a symplectic manifold
by using the gradient-Hamiltonian flow (a notion that is due to Ruan [R])
along a path that is an approximation of the path for degeneration in stages.
Hence, we can pull the complex structure of V; ; back to Fl,,. We also lift
this identification to the prequantum line bundle in order to pull back holo-
morphic sections. Thus, we have a family of complex structures on the flag
manifold with a fixed symplectic structure and a family of sections of the
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prequantum line bundle on the flag manifold, which are holomorphic with
respect to the corresponding complex structure. Moreover, we give a pre-
cise estimate of these holomorphic sections, which allows us to prove that
the holomorphic sections converge to delta-function sections supported on
the Bohr—Sommerfeld fibers if we perform these two types of deformations
simultaneously in an appropriate way.

The content of this paper is organized as follows. In Section 2, we state our
main result. We review the results on a toric degeneration of a flag variety in
Section 3. Then, we recall the gradient-Hamiltonian flow and construct its
lift to the line bundle in Section 4. In Section 5, we review toric Kéhler struc-
tures of toric manifolds, in particular, their deformation due to [BFMN]. In
Section 6, we develop a method to identify submanifolds under the deforma-
tion of toric Kéhler structures of the ambient toric manifolds. We also give
an estimate of the change of holomorphic sections under this deformation. In
Section 7, we prove the main result, constructing a family of complex struc-
tures on the flag manifold, and proving that holomorphic sections converge
to delta-function sections supported on Bohr—-Sommerfeld fibers.

2. Main results

Let GL, and B be the general linear group and its Borel subgroup consist-
ing of upper triangular matrices with C-coefficients, respectively. The flag
manifold is defined to be the complex manifold Fl,, = GL,/B. Let A, be
the set of increasing indexes I = (i1 < --- < 4;) with 1 < 41,4 < n. For
I'=(i1 <---<i) €Ay and V = (v;5) € GLy, we set |I| =1 and

(% I Vo
pr(V) = det :
(%75 Uill

Then, the Plucker embedding
n—1 l
p: Fl,, - P= HP(/\(C")
=1

is defined by [V] = ([pr(V); 11| = 1], .., [pr(V): 11| = n—1]), where [z; 1] =
] is the homogeneous coordinate of P(A\'C™). Since the left U (n)-action on
M,,(C) commutes with the right B-action on M, (C), U(n) acts on Fli,, from
the left.

Next, we define a holomorphic line bundle on Fl,, and a Hermitian con-
nection on it. Let H; be the hyperplane bundle on P(A’ C™). It has a natural
Hermitian metric h; such that ngl = wj, where RY' is the curvature of

the Chern connection V; for the Hermitian metric h; and w; € Q2(P(A'C™))
is the Fubini-Study form. Let m: P — P(A'C") be the projection. Fix
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a = (ar,...,an-1) € (Z=9)" !. Then, we define a Kihler form wp and a
prequantum line bundle (L, ¥, VF) on P by

n—1 n—1
wp = Z alﬂ-l*wl € QQ(P)7 (LP7 hP? VP) = ® ﬂ-zk(Hla hl7 vl)®al'
=1 =1

Then, V¥ is the Chern connection of (LF, hF) and satisfies gRVP = wp.
We set (Ll pFln Py = p*(LF AF VF), ie., L is a holomorphic line
bundle on Fl,, with a Hermitian metric h¥'» and the Chern connection V'»
whose first Chern form is p*wp. The U(n)-action on Fl,, preserves p*wp with
a moment map figr(n): Fly, — u(n)*.

Next, we recall a certain completely integrable system on Fl,. Consider
U(l) for l=1,...,n—1 as a subgroup of U(n) defined by

(2.1) U(l) = {(o:l,,l Oﬁ:/) © U(n)}’

where Oy, € M;,—(C) and O,_;; € M,_;;(C) are the zero matrices,
E,_; € M,,_(C) is the unit element, and A € M;(C). Let ¢/ : u(n)* — u(l)*
be the dual map of the inclusion ¢: u(l) — u(n). Define a map A/ : u(l) — R
such that A\}(A) > --- > A(A) are eigenvalues of —/—1A4 for A € u(l). We
identify u(l) with u(l)* by the invariant inner product. In [GS], Guillemin
and Sternberg proved that

pae =N o oyl <l<n—1,1<j<1): Fl, —R?

is a completely integrable system, where d = % dimg Fl,, = @ The com-
pletely integrable system pugc: Fl, — R? and its image Agc = ugc(Fl,) C
R? are called the Gelfand-Cetlin system and the Gelfand-Cetlin polytope,
respectively. Note that pgc: Fl, — R? is a continuous map and that it
is smooth on ,uaé(lntAGC), where IntAgc is the interior of Agc. More-
over, figo(m) is a d-dimensional real torus for each m € IntAgc. In [GS],
Guillemin and Sternberg also proved that, for m € IntAgc C R?, the fiber
uélc(m) is a Bohr-Sommerfeld fiber if and only if m € IntAgc N Z? and
that the number of the points Agc NZ? coincides with the dimension of the

space of holomorphic sections H O(LF l”,gﬂn), where 5Fl" is the holomor-
phic structure on L. Namely, the quantum Hilbert space for the Kéhler
polarization on F,, is isomorphic to the one for the real polarization P,
coming from the Gelfand—Cetlin system pgc.

In this paper, we construct a family of complex structures {Js} s€[0,00) O
Fl,, such that the family of Kéhler polarizations {Pj, }sc[0,0c) converges to

the real polarization P, in the following sense.
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Theorem 2.1. Let F and Jg be the underlying C°°-manifold and the com-
plex structure of Fl,, respectively. Set wp = p*wp € Q*(F) and d =
dimp F = @ Let (LF,h¥ V¥) be the underlying C*® line bundle of
(LFn pEln 7 Fl) Then, there exists a one-parameter family of {Js}sefo,00)
of complex structures on F which satisfies the following:

(1) Js is continuous with respect to the parameter s € [0, 00).
(2) Jo = Jr.
(3) (F,wr, Js) is a Kdhler manifold for each s € [0,00). So, for each
€ [0,00), the Hermitian line bundle (L¥,h", V) induces the holo-
morphic structure 8 on LF.
(4) For each s € [0,00), there exists a basis {oJ'|m € Agc N 7% of
the space of holomorphic sectwns HO(LF, 85) such that, for each

m € IntAgc NZE, the section converges to a delta-function

llos IIL ®
section supported on the Bohr—Sommerfeld fiber ,u(_;é(m) i the
following sense: there exists a covariantly constant section 6., of
(LF, hF, VF”uaé(m) and a measure d,,, on pug(m) such that, for any

smooth section ¢ of the dual line bundle (L¥)*, the following holds:

oyt wa
li o\ Wk )
v <¢, o | 2 g > d /Nl(m)<¢7 d,,)d0

GC

Remark 2.2. By a similar argument as in the proof of Theorem 2.1, we
can also prove that the support of the section ¢7* converges to uéé(m) as
s — oo for any m € (Agc \IntAgc)NZY. However, we cannot prove that o™
converges to a delta-function section for m € (Agc \ IntAgc) N Z¢, because
we do not yet have a sufficient description of yicd,(m).

3. Toric degeneration of flag varieties

In [KM], Kogan and Miller constructed a toric degeneration of a flag variety
based on a deformed Borel action. They also introduced degeneration in
stages of a flag variety. In this section, we review their construction and recall
its symplectic geometric aspects due to Nishinou, Nohara and Ueda [NNUJ.

3.1. Deformed Borel action and toric degeneration. First, we define
the right action e of the product group (GL,)" on M, (C) by

V1g1 Vi
Veg= : for V=111 ¢€M,(C)and g = (g1,...,9n) € (GL,)".

Vndn Vn
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Set Mo (C*) = {(ay
My (C*) = (GLn)™ b

aii o an1 o
(@) ain O ann

Note that ¢(My,(C*)) is the maximal torus of (GL,)". We also set

i) € My(C)la;; # 0 for 4,5 = 1,...,n}. Define a map
n

1 1 1 1
Teo=do| = a | e )
a';zl ee Qpp—1 1 a/'r'zl e Qpp—1 1

We also define a k-dimensional algebraic subtorus Tc(;kc) of Tac by

T, = {1((aij))|(aij) € Mp(CT¥), i=k+1and j<kif a; # 1}.
Then, we have

Tac = {1} x TS x - x TS0 s 7Y,

Next, we define the deformed Borel action as follows. For t € C*, we
define t“ € M,,(C*) by

g 31 if >,
(3.1) (t)ij = ¢+, where w;; = {0 if i < j.
In the above (t¥);; is the (4, j)-component of t* € M, (C*). Then, we define
the deformed action e; of B on M, (C) by

Vb=V e{u(t*)(b,...,0)((t*)) "'},
where t(t*), (b,...,b),(t*)" € (GL,)™.

Let Clv;j|1 < 4,5 < n] be the coordinate ring of M,,(C). Let U C B the
subgroup consisting of the matrices with 1’s on the diagonal. Then, the ring
of U-invariant functions Clv;;|1 <1i,j < n)Y for the deformed action e; of U
is generated by the deformed Plucker coordinates

]|
{qr(V,t) = d;(t*) Ipr(V e o(t*)|I € A}, where dj(t*) = H(tw)ikk-
k=1
From the definition of w € M, (Z), we see that ¢;(V,t) is a polynomial of
vij (1 <4, <n) and t. Moreover, the deformed action e; can be naturally
extended to the case t = 0. Thus, we have a quotient F'l,,(t) = M,(C)//.B
for all t € C, where the right-hand side is a GIT quotient by the deformed
action e;. We also have a family f: (M,(C) x C)//B — C with f~1(¢t) =
Fl,(t). Fl,(1) is nothing but the flag variety Fli,. Note that each F,(t) is
embedded in P by the deformed Plucker embedding p;: Fl,(t) — P, which
is defined by [V] — ([gr(V,t); |I| = 1],...,[qr(V,t);|I| = n — 1]) as in the
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case of the usual Plucker embedding. In [KM], Kogan and Miller proved
the following, based on the argument in [GL].

Proposition 3.1. (1) The family f: (M,(C) x C)//B — C is flat.
(2) Fl,(t) is biholomorphic to Fl,, for any t € C*. Moreover, Fl,(0) is a
toric variety on which the torus Tgc acts with an open dense orbit.

Let us give a few remarks about Proposition 3.1. Note that, if we set
GL,(t) ={V € M,(C)|V e (t¥) € GL,},

then we have Fl,(t) = GL,(t)/.B for t € C*, where the right-hand side
is a geometric quotient of GL,(t) by the deformed action e, of the Borel
subgroup B. So, we see that Fl,(t) is biholomorphic to Fl, for any t € C*.
Moreover, since the action eg on M, (C) for g € Tgc commutes with the
action egb on M, (C) for b € B, the torus Tgc acts on Fl,(0) = M,(C)//oB.
Thus, the family f: (M, (C)xC)//B — C can be viewed as a toric degener-
ation of a flag variety. The existence of a toric degeneration of a flag variety
is originally proved in [GL, C] in terms of representation theory. In [AB], a
toric degeneration of a more general variety is constructed systematically.

3.2. Degeneration in stages. To relate the U(n)-action on Fl,, = Fl,(1)
with the Tgco-action on Fl,(0), Kogan and Miller introduced degener-

ation in stages as follows. For 7 = (to,...,t,) € (C*)""! we define
TV € M, (C*) by
(79);; = £, where t; = 1 and wj; is given in (3.1).

In the above (7%);; is the (4, j)-component of 7 € M,,(C*). Then, we define
the deformed action e, of B on M, (C) by

Ve b=Ve{ur¥)b,...,b)u(r*)1}.

Thus, we have Fl, (1) = M,(C)//;B for 7 € (C*)"! in the same way as
in Section 3.1. We note that Fl,(7) is also embedded in P by the deformed
Pliicker relations as F,,(t). Set

=(@1,...,1,t,0,...,00 e C" fort € [0,1] and k=1,...,n — 1.
—_— S —

n—1-k k—1
It is easy to see that Fl,(7f) = Mn((C)//TéB is well defined. Note that
Fl,(rl) has singularities if 7/ = 70 or k > 2. We call the family

{Fl,(7})}1epo,) the kth stage of the degeneration. Note that

Uln—k+1) x Ténc_l) X e X Té”c_kﬂ) acts on Fl,, (1),

U(n —k) x ngl) X e X Té%_kﬂ) acts on Fl,(f) for t € (0,1),

U(n —k) x ngl) X e X Té%_k) acts on Fl,,(17),
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where U(l) for l = 1,...,n — 1 are the subgroups of U(n) defined by (2.1).
Kogan and Miller considered the following degeneration in stages:

Fl, = Fly(r}) 25 FlL, (%) = Fl,(r}) — -+ — Fl(r}) 2 Pl (79)

— oo — Fl,(10_,) = Fl,(0).

n [NNU], Nishinou, Nohara and Ueda clarified the relation between
the Gelfand—Cetlin system on the flag variety Fl, and the completely
integrable system on Fl,(0) coming from its toric structure as follows.
The smooth part Fl,(7})™ of Fl,(}) has a symplectic structure L*th,
where ¢ Fly (tf)r¢ — P is the deformed Pliicker embedding. Let
KU (n—k) - Fl (th)*® — u(n — k) be the moment map for U(n — k)-action
on Fl,(t})™8 for t € [0,1], where u(n — k) is identified with u(n — k)* by
the invariant inner product. Define a map )\zkk: u(n — k) — R such that
AL (A) > > )\Z:’,z(A) are eigenvalues of —/—1A4 for A € u(n — k) as in
Section 2. Then, in [NNU], the authors proved the following.

Proposition 3.2. There erists an open dense subset Fl ( 1)° C Fly(1})re8
and a symplectzc diffeomorphism @2 : Fl,(1:")° — Fl,(12)° for each k =

I...,n—=1,t€[0,1] and 0 <t <t; <1 whzch satisfy the following:
(1) Flo(11)° = pge(IntAge) C Fly, holds.
(2) @Zt is the identity map for any t € [0,1]. Moreover, ¢, f3,t2 cp?’tl =

O™ holds for 0 <tz <ty <t; <1.
(3) Under the identification of Fl,(7})° for all t € [0,1] by the maps

9022’“ the moment map for U(n —k) x TC(;C 2 T((;nc*kJrl)

on Fl,(7})° is independent of t € (0,1].
(4) (X _p o pumem|l <j <n—k): Fl,(1))° — R"F coincides with the
k)

X - X -action

moment map for the ng ~action on Fl,(19)°.

The diffeomorphism g0t2’t1 Fl,(1{")° — Fl,(7{?)° is constructed by using
the gradient-Hamiltonian flow due to Ruan [R], which is explained in the
next section. The moment map for U(n—k) xTé%_l) X -xTé%_kH)-action on
Fl,(7})° induces the completely integrable system on Fl,(7})° in the same
way as in the case of the Gelfand—Cetlin system. Proposition 3.2 implies the
completely integrable system on Fl,(7£)° for t € [0,1] and 1 <k <n -1
remains the same during the degenera‘mon in stages.

Due to Proposition 3.2, we have a diffeomorphism

(3.2) o=t opnl, o oplt: FIS — Fl,(0)°,
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where FIS = Fl,(ri)° and Fl,(0)° = Fl,(79_;)°. Then, Nishinou, Nohara
and Ueda proved the following.

n(n—1)

Corollary 3.3. Let ugc: Fl, — R be the Gelfand—Cetlin system. Let
UTee: Fln(0) — (tge)® be the moment map for the action of Tac on Fly(0).

. . . . . n(n—1) .
Then, there is a linear isomorphism i: R~ 2 — (tgc)* such that iopugc =

UTge © Yo: Fly, — (tge)*. In particular, Fl,(0)° = u:}éc (IntAgc) C Fl,(0)
holds.

Therefore, the authors concluded that Fl,(0) is a toric variety con-
structed from the Gelfand—Cetlin polytope Agc. This fact is originally
proved in [KM] in a different way. So, Fi,,(0) is called a Gelfand—Cetlin toric
variety. Moreover, the Gelfand—Cetlin polytope Acc can be considered nat-
urally as a subset of (tgc)*. From now on, we consider the Gelfand—Cetlin
system to be the map pgc: Fl, — (tac)*.

4. Gradient-Hamiltonian flow

Let (M,w,J) be a Kéhler manifold. Let f: M — C be a holomorphic func-
tion. Set B = f(M) and V. = f~!(c) for ¢ € B. Denote the inclusion
map of V. by p.: V. — M. Then, we have a family of symplectic manifolds
{(Ve, piw) }eeB.ey Where Breg is the set of regular values of f. To identify
these symplectic manifolds, Ruan introduced the gradient-Hamiltonian flow
in [R]. In this section, we recall the gradient-Hamiltonian flow and its basic
properties. We also discuss the lift of the gradient-Hamiltonian flow to the
prequantum line bundle.
By simple computations, we see that the following holds.

Lemma 4.1. Let (M,w,J) be a Kdihler manifold. Let Rf and Sf be the real
and imaginary part of the holomorphic function f: M — C, respectively. Let
Xgf € X(M) be the Hamiltonian vector field of the function Sf. Then, the
following holds:

Xgr = —grad(Rf), that is, i(—grad(Rf))w = —d(Sf),

where i(—grad(Rf))w is the contraction. In particular, X5 = —grad(Rf)
s non-zero at a reqular point of f.

Suppose that f is proper and that each point in M is a regular point of
f. Then, we have the following vector field:

grad(Rf) Xgf
7 = — = c X(M).
grad AP~ [KagP < T )




CONVERGENCE OF POLARIZATIONS ON FLAG MANIFOLDS 483
It is easy to see that
ZRf)=-1, Z(3f)=0on M.

Since f: M — B is proper, for any ¢ € B there exists ¢, > 0 such that
the flow {;}+ generated by the vector field Z € X'(M) induces a diffeomor-
phism |y, : V. — Vo for t € (—e.,€.). In [R], Ruan found the following
remarkable property.

Proposition 4.2. (p|y,)*(pi_w) = piw fort € (—ec,€c).

We call Z € X(M) the gradient-Hamiltonian vector field and {p;}; the
gradient-Hamiltonian flow, respectively.

Next, we discuss the lift of the gradient-Hamiltonian flow to the prequan-
tum line bundle. Let us assume that there exists a prequantum line bundle
(L,h,V) on M in addition to the above setting. For any ¢ € B, we denote
the restriction of (L, h, V) to the fiber V. by (LY, hVe, VVe).

The horizontal lift Z € X(L) of Z € X(M) induces the flow {@;}, which
is a lift of the gradient-Hamiltonian flow {¢;};. Similarly, for any ¢ € B,
there exists €, > 0 such that the flow {¢;}; induces a bundle isomorphism
Gilpve: LVe — LVe=t for t € (—e., €c).

Then, we have the following proposition. Since its proof does not seem to
be found in the literature, we give a proof here.

Proposition 4.3. (&;|.v.)*VVe~t = VVe and (@¢|pve)*hVe—t = BV fort €
(—é€c, €c).-

Proof. Since the connection V preserves the Hermitian metric h, the second
assertion is obvious. So, we prove the first assertion.

Since Z(3f) = 0 on M, the gradient-Hamiltonian flow {y:}; preserves
Mgi—gc. = {p € M|Sf(p) = Sc}. First, we show that i(Z)w = 0 on Mg f—g.
In fact, we have

. A Xgy —d(Sf)
W(Z)w =1 (|X9yf’2> w = Xos P =0 on Mgf—ge.

Let S C L be the unit sphere bundle and p: S — M the projection. If
we denote the connection form of V by a € Q!(S), then we have da = p*w.
Since the restriction of the horizontal lift Z € X(L) to S can be considered
as Z € X(S), we have i(Z)a = 0 and p.Z = Z. So, on p~}(Mgf—g.), we
have

Lya =i(Z2)(p*w) = p*{i(p.Z)w} = p*{i(Z)w} = 0.
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Thus, the flow induced by the vector field Z € X(S) preserves the connection
V on p_l(Mgf:gc). O

5. Toric Kahler structures of toric manifolds

In this section, we review toric Kahler structures of toric manifolds. Starting
from a Delzant polytope, we construct a symplectic toric manifold in Sec-
tion 5.1 (due to [D], also described in [Gul]) and a complex toric manifold
in Section 5.2 (described in [Au] and in Appendix 1 of [Gu2]). See [F] for
general properties of a complex toric manifold. We identify them according
to a choice of symplectic potentials due to [Abl, Ab2, Gul, Gu2| in Sec-
tion 5.3. We also review a certain deformation of toric Kéahler structures by
changing symplectic potentials, which was introduced in [BFMN].
Let T™ be a real torus with the Lie algebra t"*. Let

(5.1) A={pe (") |(p,rj)+A; >0forj=1,...,d}

be a bounded Delzant polytope, where (,): (f*)* x t* — R is the natural
pairing and 7; is a primitive vector in the lattice tj for j = 1,...,d. We
assume Aq,...,Ag € Z. We set

(52) L) = (pri)+ A Fy = {pe () [l(p) = 0} for j=1,....d.

Let T% be a real torus with the Lie algebra t and X,..., Xy € t% be the
standard basis of t¢. Let m: t¥ — {” be the surjective Lie algebra homomor-
phism defined by 7(X;) = r; for j = 1,...,d. Then, the kernel of the cor-
responding Lie group homomorphism 7: T% — T™ is a connected subtorus
K of T? with the Lie algebra €. Let ug,...,ug € (t1)* be the dual basis of
X,..., X, € tCZl. We set Aa = A\ui + -+ -+ Agug € (td)%

5.1. A symplectic toric manifold Mgymp. Let @ be the standard
symplectic form on C¢. The natural action of T on (C? &) admits a
moment map jupa: C4 — (t4)*, given by ppa(z) = 7'['2?:1 |zj|?u;, where
2z = (21,...,2q4). If we denote the dual map of the inclusion ¢: & — ¢
by «*: (t9)* — £, then the moment map pux: C? — € for the action
of the subtorus K on (C% @) is given by ux(z) = WZ?ZI |zj|2t*u;. The
compact symplectic toric manifold Mgy, is defined to be the symplec-
tic quotient Myymp = px' (1*Aa)/K with the natural symplectic structure
w € O2(Mgymp). The quotient torus T" = T9/K acts on (Mgymp,w) with
the moment map pgn : Msymp — (£%)*. Since pga(2) — Aa € ker{t*: (t)* —
£} = image{7*: (")* — (t9)*}, it is given by uzn([2]) = (%)~ (pa(2) —
Aa) € (1)*. It is well known that pgn (Mgymp) = A.
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Next, we define a prequantum line bundle on Mgy, Let Esymp =C?xC
be the trivial line bundle with the standard fiber metric iL Let V be a Her-
mitian connection on Leymp defined by V = d — /=17 Zl j(@jdy; — yjdy),
where x;, y; are the real and imaginary part of z;, respectively. The action of
T? on Lgymp defined by (z,v)Expraf = (2Expra€, ve2™V =188 preserves
the Hermitian metric i and the connection V, where Exppa: t¢ — T% is the
exponential map. Then, the prequantum line bundle (Lsymp, h, V) on Mgymp
is defined to be the quotient of the restriction of Lsymp to ( *Aa) by the
action of the subtorus K. Moreover, the quotient torus T" = T%/K acts on
Lgymp, preserving h and V. Let [2]x € Mgymp denote a point represented
by z € ' (t*Aa). Similarly, [z, v] denotes a point in Leymp represented by
(2,0) € i (" Xa)  C.

Set Msymp pi7s (IntA), where IntA is the interior of the Delzant poly-
tope A. Then, it is easy to see that (\/ @, . l‘ifrm) € ,U,_I(L*)\A) for

any p € IntA. Therefore, the map ngymp: IntA x "/t — Msoymp defined by

(53) wsymp p> [(\/ p ) EXan )
_ [( L) ony=twa) ld(p)e%ﬁm,@)]
T B T «

is a diffeomorphism, where § € t¢ is taken so that 7(§) = ¢. Note that we
have

(5.4) prn 0 Y (P, la]) = p - for (p, [g]) € IntA x ¢7/4.

Next, we define a section sgymp of Lgymp restricted to MSOymp by

Skymp (P [4 K\/» \/ld»>

This section induces a unitary trivialization of the prequantum line bundle
Lgymp on MSymp

Fix a Z-basis p1, ..., pn € (t")} and its dual basis g1, . .., gn € t2. Set A =
{x = (z1,...,2) € R >, x;pi € IntA}. Then, we have a coordinate
(z,[0]) € AY x R"/Z"™ on IntA x t"/t2. So, (,[f]) € A® x R"/Z" can be
considered as a coordinate on MSymp It is easy to see the following by simple
computations.

EXan (Q) € Lsymp-

Lemma 5.1. Let (z,[0]) € AY xR™/Z" be the coordinate on MY, induced

by the fized basis p1,...,pn € (t*);,. Then, the symplectic form w on MSymp
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and the connection V on Lsymp\]\/fsoymp are described as follows.
(1) w|M£ymp = Z?:l dx; N db;.
(2) V|Msoymp =d—2my/—1% 7" | x;df; with respect to the unitary trivial-
ization defined by the section sgymp on Msoymp.
(3) For m € IntA, ME}L (m) is a Bohr—-Sommerfeld fiber for the prequan-
tum line bundle (Lsymp, h, V) if and only if m € IntA N (t*);,. More-
over, 5m([0]> - 6271-\/?121:1 mieiS(s)yrnp‘u;,{L (m)
section of <LSymp7hvv)|u;}L(m) form = >0 mp; € IntA N (£7)5,

where [0] € R™/Z™ is a coordinate on pupm(m).

18 a covariantly constant

5.2. A complex toric manifold Mcomp. Let A be a Delzant polytope
defined by (5.1), and denote the set of its vertices by A(0). Let F; C (t")*
be the hyperplane defined in (5.2) for j = 1,...,d. For each v € A(0),
we set A, = {jlv € Fj}, Cd = {z € C¥z; # 0if j € {1,...,d} \ Ay}
and CdA = Uve A(0) C‘Ui. Then, the compact complex toric manifold Mcomp
is defined to be the quotient space Mcomp = C‘i /K¢, where K¢ is the
complexification of the subtorus K. Similarly, the complexification of the
torus T% is denoted by T(g. The quotient torus T4 = Tg /K¢ acts on Mcomp,
preserving its complex structure J.

Next, we define a holomorphic line bundle on Mcomp. Let icomp =CixC
be a trivial holomorphic line bundle on C% Define the action of Tg on
Leomp by (z,v)Expng = (zExpng,ve%‘/jl(/\A@). The holomorphic line

bundle Lcomp is defined to be the quotient of the restriction of Ecomp to
C‘i by the action of Kc. Then, the quotient torus 7¢ = T(g /K¢ acts on
Leomp, preserving its holomorphic structure 0. Let [2]x. € Mcomp denote a
point represented by z € C4. Similarly, [2,v]k. denotes a point in Leomp
represented by (z,v) € C4 x C.

Next, we define a meromorphic section s¢o,,

of Lcomp on Mcomp by

d
A,
Sgomp([Z]Kc) = |% H ij S LCOmp for z € CdA
Jj=1 Ke
The section sgomp is holomorphic and non-zero on Mgomp = ((Cx)d /Kc,
where (C*)? = {z € Cz; # 0 for i = 1,...,d} C C4. So, it induces a

holomorphic trivialization of Leomp on Mcoomp.

For m € AN (t");,, we define a holomorphic section 0™ of Leomp by

d
(5.5) o™ ([2re) = |2 [[ 7™ | € Loomp for = € C4.
j=1

K¢
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It is well known that {o™|m € AN (t")7} is a basis of the space of holomor-
phic sections H O(Lcomp, 0).
Next, we introduce a complex coordinate on Mgomp Fix a Z-basis

P1s---,Pn € (1), and its dual basis q1,---,qn € t; as in Section 5.1. Then,

we define a complex coordinate @0, : Mg, — (C*)" by

d d
(5.6) (pgomp([z]KC): sz{p17w>7_”’sz<.pn,m> ’
j=1

j=1

where r; € ¢} is the vector in (5.1) for j = 1,...,d. Since HJ 1 Jp“m is
a Kc-invariant meromorphic function on C¢, it descends to a meromorphic

function on Meomp. If we set (w1, ..., wn) = ©2mp([2]k.), then we have

(5.7) o™ ([#lk.) = <H wim’q”) Oomp([2]2) O Meomp.

i=1

5.3. Symplectic potentials. In Sections 5.1 and 5.2, starting from a
Delzant polytope A defined in (5.1), we constructed a symplectic and com-
plex toric manifold, respectively. In this section, we identify them, using
symplectic potentials due to [Gul, Gu2, Abl, Ab2|. We also recall a cer-
tain deformation of toric Kéahler structures due to [BFMN].

The inclusion ,u[_(l(b*)\A) C (CdA induces a map Xcan: Msymp — Mecomp- It
is well known that this map is a diffeomorphism. In [Gul, Gu2], Guillemin
showed that this map is described by a single function gc,, as follows.

Fix a Z-basis pi,...,p, € (t"); and its dual basis ¢i,...,q, € t} as
in Sections 5.1 and 5.2. Fix §; € tdZ so that 7(q;) = ¢q; for i = 1,...,n. Let

(,[6]) be the symplectic coordinate on MY, and (wy, ..., wy) the complex
coordinate on Mgomp induced by p1,...,p, € ()7, respectively. If we write

p= >, xipi, then, by (5.3) and (5.6) we have

d (pi,rj)
Wi (Xcan (@ H <\/> 2my/ =130 1<quQZ>6’z> _ eQw(Bg(;jn +\/j19i)’

where gean: IntA — R is a function defined by

d

1

Gean(p) = = z:l lj(p)logl;(p) + (a linear function on (t")*) for p € IntA.
j:

Note that gean extends continuously to gean: A — R.
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Definition 5.2. A function g € C%(A) is a symplectic potential if and only
if the following holds:

(1) g = gean € C(A),

(2) the Hessian Hess,g of g at p is positive definite for any p € IntA,

(3) there exists a strictly positive function o € C*°(A) such that

-1

d
det(Hesspg) = | a(p) H Li(p) for any p € IntA.
j=1

The set of symplectic potentials is denoted by SP(A).

The following results are due to [Gul, Gu2, Abl, Ab2], supplemented
by Baier et al. [ BFMN].

Theorem 5.3. Let A C (t")* be a Delzant polytope. Let (Mgymp,w) be
a symplectic toric manifold and (Mcomp,J) a complex toric manifold con-
structed from A. Let (Lsymp,h, V) be a prequantum line bundle on Mgymy
and (Lcomp,é) a holomorphic line bundle on Mcomp constructed from A.
Fix a Z-basis p1,...,pn € (1")7,. Let (x,[0]) be the symplectic coordinate on
MSOymp and w = (w1, ..., wy) the complex coordinate on MY, induced by
P1,---,Dn € (1), respectively.

(A) Each g € SP(A) defines a T™-equivariant diffeomorphism xg: Msymp —
Meomp and a T -equivariant bundle isomorphism Xg: Lsymp — Lcomp Such
that the following holds:

(al) The following diagram commutes:

(Leymp: 7, V) =% (Leomp, 0)
) !

(Magmp,w) 5 (Meomp, J)

(a2) (Msymp, w, x3J) is a Kdhler manifold.

(a3) V is the Chern connection of the Hermitian holomorphic line bundle
(Lsympa h7 X;a)

(ad) xglaro + MO — MO is a diffecomorphism given by

Symp * symp comp
99 10
(5.8) wi(xg(z,[0])) = e%(azﬁﬁel) fori=1,...,n.
The map x4 is independent of the choice of the basis pi1,...,pp €
(t")7,. Moreover, if we write w; = 2 WitV=10) for i =1,... . n, then
the inverse mapping (Xg\Msoymp)_l: Mgomp — MSOymp s given by

59wl W) =g 00 W) =6 fori=1.....n

where f(y) = —g(x(y)) + > i1 i(y)yi-
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9g
x 0 o 2”(9—2?:111'?) 0 0
(ab) XgScomp = € i) Sgump 0T Mgy

(B) On the other hand, if x: Msymp — Meomp s a T™-equivariant diffeo-
morphism such that (Msymp,w,Xx*J) is a Kdhler manifold and that x is
homotopic to Xcan, then there exists g € SP(A) such that x = xg.

In [BFMN], the authors considered a certain one-parameter family of
symplectic potentials, which provides a one-parameter family of identifica-
tions of a symplectic toric manifold with a complex toric manifold. In other
words, it provides a deformation of toric Kéahler structures. The authors
proved the following remarkable property of the deformation.

Proposition 5.4. Let x5: Msymp — Mcomp and Xs: Lsymp — Lcomp be
the diffeomorphism and the bundle isomorphism defined by gs = go + sv €
SP(A) for s > 0, respectively, where v: A — R is a smooth strictly convex

function. Then, for each m € AN(t")7,, the section o™ converges

TRE™ (11 areymng)
to a delta-function section supported on the fiber u;% (m) in the following
sense: there exists a covariantly constant section 8y, of (Lsymp, h, V)] ok (m)
Tn
and a measure df,, on ,u}}b (m) such that, for any smooth section ¢ of the

dual line bundle L., the following holds:

lim 6, 6C e R
5=  Mmp \ IXET ™ N2 M) / 7 Sk (m)

Note that the authors proved the above results not only for m € IntA N
(t")7 but also for all m € AN (t")}. In Proposition 6.6 below, we slightly
generalize this proposition.

6. Submanifolds under the deformation due to [BFMN]

In the last section, starting from a Delzant polytope A defined by (5.1),
we constructed a symplectic toric manifold (Mgymp,w) and a complex toric
manifold (Mcomp, J). In this section, we study the change of the identification
Xs* (Msympyw) - (Mcompw]) and its lift xs: (Lsympaha v) - (LCOmpaa)
induced by a family of symplectic potentials g = go + sv € SP(A) for
s > 0. In Proposition 5.4, v € C*°(A) is assumed to be a strictly convex
function. Here, we assume that v € C°°(A) is a weakly convex function,
which will be important in Propositions 6.5 and 6.6. In particular, we study
the behavior of submanifolds and of the prequantum line bundles on them
under the change of identification of the ambient toric manifolds.

6.1. Identification of submanifolds. Given a complex submanifold Viomp
of (Mcomp, J), we consider the change of the identification xs: (Msymp,w) —
(Mcomp, J). This implies that the complex structure of the complex
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submanifold remains the same, but the symplectic structure (x;!)*w on
it changes. In this subsection, we develop a method to identify (Veomp,
(x;1)*w), for different values of s, as symplectic manifolds. We also lift
the identification to the prequantum line bundle.

Proposition 6.1. Let (Veomp,J") be a compact complex submanifold
of (Meomp,J) and peomp: Veomp — Meomp the inclusion. Set Viymp, =
Xgl(Vcomp), and denote the inclusion by po: Vsymp — Msymp-

Then, there exists an inclusion ps: Veymp — Msymp and a diffeomorphism
X, Vsymp — Veomps for each s > 0, such the following holds:

(a) piw = pjw.
(b) The following diagram commutes:

(Msymp’ w) 2, (Mcompa J)
T Ps T Pcomp
XS
(VSympa pow) — (Veomp> JV)-
(c) (Vsymp,p[’;w,X:JV) is a Kdhler manifold.

(d) The maps ps and X, are canonically defined and depend smoothly on
s> 0.

Proof. If we set ¥ = xg © (Xs)_13 MCOmp - Mcomp and ws = ((XS)_I)*W S
QQ(Mcomp) for each s > 0, then we have

(6.1) PYwo = Ws.
We show the following.

Claim 6.2. There exists a diffeomorphism ¢s: Veomp — Veomp for each
s >0, such that ¢o = ichomp and ¢g (p:ompws) = p:ompwo'

Proof of Claim 6.2. Since pgon,ws and peopy,p,wo are cohomologous, Claim 6.2

is a direct consequence of the theorem of Moser. However, we give a proof,

because we will use the notation here in the proof of Proposition 6.3.
Define a vector field X, € X (Mcomp) by

d
(62) (X = |, Gerp) € Ty Meomp fr p € Moo,
By (6.1) we have
de * * [
(6.3) I = Y (Lx,wo) = dns, where ns = ¥ {i(Xs)wo} € Ql(Mcomp).

Suppose that there exists a diffeomorphism ¢,: Veomp — Veomp such
that @5 (0eompws) = Peompwo for each s > 0. If we define a vector field



CONVERGENCE OF POLARIZATIONS ON FLAG MANIFOLDS 491

Ys € X(Vcomp) by ( )¢>s( ) — %‘tzo(bs—i-t(p) € qus(p)‘/;:omp for p € Veomp
then we have

* * dpzom w
7{¢3( Pcomp® )} = ¢s {LYS (pcompws) + dsps}
_ ¢sd{ pcomp ) + p:ompns} .

Therefore, if we define Yy € X' (Veomp) conversely by

(64) i(}/:?)(pZOmpr) + onmpﬁs =0,

then we have a desired diffeomorphism ¢s: Veomp — Veomp by integrating
Ys € X(Veomp). Moreover, we have ¢g = idy,,,,, from this construction. [J

SinCe peompOX0[Vaymy = X09P0, We Bave (X0l )* (Plompt'0) = pifw- Define

a smooth map ps: Vaymp — Msymp by ps = (Xs) ™' © peomp © Bs © X0|Viymp- BY
Claim 6.2, we have

p:w = (XD“/symp)*d):(p:Ompws) = (XO|‘/;,ymp)*(p:Ompwo) = pgw

Thus, we proved (a).

Define X+ Veymp — Veomp by X, = s 0 X0|Vsymp- Then, we have x50 ps =
Peomp © X s which implies (b).

Since X* (Prompws) = ps(Xiws) = psw = ppw, we see that (Vaymp, pow, x5J")
is isomorphlc to (Veomp PeompWss J V), which a Kihler manifold. Therefore,
(c) follows.

Finally, we prove (d). In the above construction of ¢, there is no ambigu-
ous choice. So, ¢, is canonically defined and depends smoothly on s > 0.
Therefore, the maps ps and X, are canonically defined and depend smoothly
on s > 0. Thus, we finish the proof of Proposition 6.1. U

Next, we construct a lift of the maps ps: Vsymp — Mgymp and X, Veymp —
Veomp to the prequantum line bundle.

Proposition 6.3. In addition to the assumption of Proposition 6.1, let
* =14 * )

( symp?hv VV) = pO(LSymp7h7 V) and (L comp?a ) = pcomp(LCOHlpva) be
a prequantum line bundle on (Viymp, piw) and a holomorphic line bundle on
(Veomps JV), respectively. Let Peomp L}fomp — Leomp be the canonical lift of
the inclusion pecomp: Veomp — MComp

Then, there exzsts a lift ps: Symp — Lsymp 0f ps: Voymp — Msymp and a
lift x - LSymp Comp of X, Veymp — Veomp, for each s > 0, such that the
followmg holds:

(a‘) ps(LSympa h> V) = ( symp? hv VV)
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(b) The following diagram commutes:

(Lsymp: b V) X, (chmp,é)
T Ps T Pecomp

(LY e BV, YY) 25 (LY, 0, 8Y),

symp?

(c) VV is the Chern connection of (Lg,mp, hV,ngv).
(d) The maps ps and X, are canonically defined and depend smoothly on
s> 0.

Proof. We use the same notation as in the proof of Proposition 6.1.
First, we show the following.

Claim 6.4. Let R: Viymp % [0,00) — Mgymp, be the map defined by R(p, s) =
ps(p). Then, the following holds:

(0 .
i (83) (R*w) =0 on Viymp x [0, 00).

Proof of Claim 6.4. Define 0: Veomp X [0,00) — Meomp by 0(p,s) = s o
Peomp © ¢s(p). Fix any (po, s0) € Veymp X [0,00) and v € Ty, Viymp. We set
qo = Xo(pO) € Vztompv w = (XO)*I’O (Q) € qu v;:ompv and

v = (Qv 0) € TpoVsymp OR= T(po,so){‘/symp X [07 OO)}7
w = (w,0) € Ty, Veomp & R = Ty 50){Veomp x [0,00)}.

Since R(p,s) = ((xo0) Lo 0)(x,(p) s), we have

(&) @a}, 0= (0o (32 ) Dtmea@).

By (6.2), we have

0 0
Ostaoso) \ 55 ) = 25

0
= (XSO)wSO 0pcompOPs (qo) + (ﬂ)so )* (pcomp)* (as
9*((10,50) (w) = (Ys)x (Peomp ) x(Ps ) g0 (02)-

(% O Pcomp © ¢s)(QO)

S=80

bulan))

S=50
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Thus, we have

V@) ), o

= W;ko (7’( SO)WO)}pwmquﬁsO(qo)((pcomp) (¢80>*QO (w))
+{(Pcomp) (7/)50) wo F(( 80)¢>so(qo (¢30)*q0(w))
= (7780)pcomp0¢so(qo)((pcomp) (Ps0)xq0 (W)

+< pcompn50)¢so (q0) (<¢50)*q0( ))
-0,

where we used (6.3) and (6.4) in the second equality. This implies
Claim 6.4. O

Consider the line bundle (Lgyy,,, 1, V') = R*(Lsymp, h, V) on Viymp X
[0,00). Let S" C Ly, be the unit sphere bundle and p: S" — Viymp x [0, 00)
the projection. If we denote the connection form of V’ by a € Q1(.S”), then we
have da = p* R*w. If we denote the horizontal lift of g € X (Viymp % [0, 00))

by £ € X(S), we have i(§)a = 0 and p.& = 8 . So, we have

Lea = ie1da = (0 Rw) =y fip O (R} = {1 (2) ()} =0

Thus, the flow defined by the vector field £ € X(S”) preserves the connection
V’. So, it induces a lift p,: Symp — Lgymp of the map pg: Viymp — Msymp
such that % (h, V) = (RY, V") for s > 0. This implies (a).

Since xs 0 ps = Pcomp © X holds, 5( ﬁ(;)}mp O Xs O pPs: ngmp - L(‘:/Omp is
well defined. Thus, (b) holds from the definition of ¥ _: LSymp — LY np-
symp? hV ~*8 )
is isomorphic to p%(Lsymp,h, X:0). Since V is the Chern connectlon of
(Lsymp, hy X:0), VV' = p*V is the Chern connection of (LY, hv,izgv).
This implies (c).

Finally, (d) holds obviously from the definition of the maps g5 and X, O

Since ngv = ~*(pcompg) = p5(X:0), we see that (LY

symp

6.2. Toric subvarieties. Let (Msymp,w) and (Mcomp,J) be a symplectic
and complex toric manifold, respectively, constructed from a Delzant poly-
tope A defined by (5.1). In this subsection, we study a (possibly singular)
toric subvariety Veomp 0f (Mcomp, J/) under the deformation of toric Kéhler
structures of the ambient toric manifold.

Fix a Z-basis p1,...,pn € (1), and its dual basis ¢i,...,q, € t}. This
induces symplectic coordinate (z,[0]) on MO, as in Section 5.1 and com-

symp
plex coordinate w = (wy,...,w,) on MComp as in Section 5.2. Note that
MCOOmp is the T¢-orbit through e = (1,...,1) € M((:)Ol’np
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Proposition 6.5. Let Té be an l-dimensional subtorus of T¢. Let 1*:
(t)* — (t)* be the dual map of the inclusion of the Lie algebra v: t — t.
Let Veomp C Mcomp be a closed [-dimensional (possibly singular) toric subva-
riety containing e = (1,...,1). The torus action on Veomp is the restriction
of the T(lc—action on Meomp and its orbit through e is open dense in Veomp-

(1) Let xs: Msymp — Mecomp be the diffeomorphism defined by
gs = go +s(vo*) € SP(A) for s >0,

where v: 1*(A) — R is a smooth strictly convex function. Set Viymp =
(Xo)_l(vcomp)- Then, xo © Xs_l‘Vcomp: Veomp — Veomp 15 @ homeomor-
phism for each s > 0.

(2) Let ps: Voymp — Mgymp and X, Veymp — Veomp be the maps con-
structed in Proposition 6.1. Then, ps = po and X = Xs|vym, hold for
s > 0. Moreover, their lifts constructed in Proposition 6.3 are given

P S 84 S — . TV \4
by ps = po: Lgymp — Lsymp and X = XS‘LXymp' Lymp = Leomp-

Proof. (1) Note that Veomp N M, O is a connected component of

comp

(6.5) {w € Mgomp\ ngp’q” =1 for all p € ker.* N (t")}} ,
i=1

which contains e = (1,...,1). By (5.8), we see that (xs) ™ (Veomp N MOp)
is a connected component of

(6.6)
n N(B9s 4 /7.
(G, [8]) € MO e T @ (FEHVTI0) _ g ol e eor i 1 (1)),

S,

On the other hand, we have

n 'ags B n | 940 n | a(gob*) B n | ddo
Z<P» ql>% = Z(Pa Qz>% + 52(29, %>T = Z(Pa (h)axi

i=1 b=l g i=1 i i=1

because > (p, qﬁ% is a differential in the direction of ker:.* for all p €
ker .* N (£*)%. Therefore, we have (xs) ™ (Veomp) € (x0) 1 (Veomp) = Veymp-
So, we have an injective continuous map xg © X;lfvc omp * Veomp = Veomp-
Next, we show that the map xo © X5 !|Viomp: Veomp — Veomp IS surjec-
tive. Let VC%mp be the Ti-orbit through e. Note that xo © x5 '|viewm, i
T'-equivariant and injective. If we consider the isotropy subgroup at each
pOint7 we have Xo © XLZI(V::%mp) C ‘/;%mp and X0 © Xgl(‘/éomp \ ‘/c((])mp) -
Veomp \ Veymp- Since xo o Xgllvc%mp is a C*®-map and its differential is

an isomorphism at each point, xo o x5 (Vilyp) is open in VO . On the
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other hand, since VCOmp is compact, x0 © X5 ' (Veomp) is compact. Therefore,

. 0 0 . . .
we see that xg o x5 ‘Vc%mp Veomp — Veomp 18 surjective. So, we see that

X0 © X5 1|Vcomp : Veomp — Veomp 18 surjective.

Since X0 © X5 HVeomp : Veomp — Veomp is a bijective continuous map and
Veomp 1s a compact Hausdorff space, it is a homeomorphism

(2) In the proof of Proposition 6.1, we constructed ¢s: Veomp — Veomp by
integrating the time-dependent vector field Yy € X' (Veomp) defined by

i(Ys) (Peomps) + Peompls = 0, where 1y = ¥ {i(Xs)wo} € Q' (Meomp).

In our situation, the vector field Yy is defined on VC%mp Since VC%mp is
non- compact it is not obvious that Y; is integrated to define the map

¢8|‘/comp Comp — VC%mp However, we show that this holds in our case
and that ¢S|Vc% - extends to a homeomorphism ¢s: Veomp — Veomp-
In the proof of Proposition 6.5 (1), we showed that ¢S|Vc%mp = Yo 0

yo VO o — VO s a diffeomorphism. Moreover, by (6.2) the

Gomp  ’ comp comp

restrlctlon Xslvo p, bakes its values in the tangent bundle of VC%mp If we

note (6.1), we have

onmpns = onmpiﬁ:{i( )wO}
= pzomp{i(( ) )%WO} - Z(( ) (X ‘Vcomp))p:omp‘*)s'

Thus, we have

0= i(Ys) (Prompws) T Peomplls = i(Vs + (05 ) (Xslvs, ) Péomps-
So, we have
Yot (95 (Xslvg,,,) = 0 € X (Vigmp):
For any p € V;%mp, we have
(Vo = W) Kl o = — ] _ v oterp) = £|  wiows(r).
com t dtlt

Namely, we have (YS)¢3_1(p) = %‘t20¢;+1t( ). Thus, the vector field Yy on
VO s integrated to define ¢S|Vc%m = Y7o = xsoxg ' lvo - So,

comp comp comp
¢8|Vc%mp is extended to a homeomorphism ¢5 = x50 xq |Vcomp- Veomp —
Veomp- So,_we hove X, = ¢s0 X0|Vaymp = Xs|Vigmp- Lhen, the rest of the
statement is obvious. O

Recall that we defined a holomorphic section 0™ of Leomp, for m € AN(t")7,
by (5.5). Then, x;0™ is a section of Leymp. By Proposition 6.5 (2), the section

pr(o™) = py(XEo™) of LSymp can be written as X530 v, ., -
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Proposition 6.6. In addition to the assumptions in Proposition 6.5, sup-
pose that *((tV)5) = (). Set pp = 1* o ppn: Mggmp — (t)* and
Ay = MTZ(Vsymp)'

(1) Form,m’ € AN ()5, 0™|viowy = 0™ [Veomp of £ = t*m’.

(2) Forp € IntAy, ,u;ll (P)NVaymp is a Bohr-Sommerfeld fiber for the pre-
quantum  line  bundle  (Lsymp,h, V)|, f and only if
p € IntAy N ()5

3) Fiz any m € AN (t")3 with *m € IntAy N ()35, Let By, be an open
neighborhood of t*m in (€)*. Then, there exists Co(s) > 0, depending
continuously on s > 0, such that lims_,o, Co(s) = 0 and, for arbitrary
§s>0

175 leo (tsgmp i (B ) = COLS),

)2* o™

where T

= TR Vaymo 2t (Ve

(4) Fizm € AN(t")} with .*m € IntAy N (t)3. The section 7|y, con-
verges to a delta-function section supported on the Bohr—-Sommerfeld
fiber u;}(L*m) N Vsymp 0 the following sense: there exists a covari-

antly constant section 0,m O0f (Lsymp, h, V)]lfll(ﬁm) and a measure
T

d6,«y, on u;ll(b*m) N Viymp such that, for any smooth section ¢ of the

dual line bundle (Lg,mp)*, the following holds:

. m sw)t
lim <¢7Ts |Vsymp> (po ) :/_ <¢a 6L*m>d9L*m~
m

|
§—00 ymp I Tll (¢*m)NVaymp

Proof. (1) By (5.7), we have o™ /o™ = [, w,§m,_m’qi> on M? Since

comp*
m' —m € ker1*, due to (6.5), we have 6™ /o™ =1 on Veomp-
(2) Since t*((£)3) = ()%, we can take p}, ..., p) € (t")} so that .*p), ..., .*p]
is a Z-basis of (t)%. In addition, if we fix a Z-basis Dip1s -+ Py of (kere*) N

(t")7, then p},...,p}, is a Z-basis of (t)}. It induces the complex coordi-
nate w' = (wi,...,w},) on M, and the symplectic coordinate (a,[6']) on
MSOymp as in the previous subsections.

By (6.5), we have Veomp N My, = {w' € MO, wq = = w), =
1}. So, by (6.6), we see that 6], ,,...,0,, are constant on Viymp N MO,
Moreover, by (5.4), we have ppi (2, [0']) = SO, @p} for (/,[0]) € M-

For each p = Zi:l zip, € IntAy, since ,u;ll (p) N Viymp is a single T'-orbit,
x},...,z} are also constant on ,u;,l () N Viymp-
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On the other hand, due to Lemma 5.1, we see that V\Mo o = d —
2my/—1% 1 | «}df) with respect to the trivialization defined by s0 There-

symp*
fore, for a fixed p = Zi Lziph € IntAy, the multi-valued section

6p(07]) = V1% 13310250 p Of (Lsymp,h, V)|, 71 (P)NVaymp

constant. Since §, is smgle—valued if and only if p 6 IntAV N (t))3, we finish
the proof.

is covariantly

(3) The following proof is a slight modification of the argument in [BFMN].
If we write m = > ; mip} € (")}, due to (5.7) and Theorem 5.3, we have

n
X~s* = XNS* { <H(w;)ml> sgomp}
=1

n 2] o
27rm{< g3 —1 ) 27r<g —Sn 95)
{l | e v Bx; ? e s i=1 ’Laac; SO

=1
2”(93—2?:1<x;—m;>09
(&

S
oa! ) o2V =I(7, mi0;) 0

symp

I ) I . .
If we set i, (p) = 3521 (2 —mg) 557 () —v(p) for p = 35y j™pf € "A C

(t)*, then we have a,,(2') = a,«,, o pri(2,[0']). As in the argument in
Section 4 in [BFMN)], we have

N

N

1
d
gL*m(p) = Qb*m(b*m) + / @gb*m(ﬁm + t(p - L*m))dt
0

1
= —um) [ ) HesSom ) (0~ )
0

Since v: t*(A) — R is strictly convex and ¢*A is compact, if we put [|p||* =
Zi ()2 for p = ZZ Lziph = *a’ € (t)*, there exists C1, Cy > 0 such that

—v(t*m) +Ci|lp— *m||* < @ (p) < —v(t*m) + Ca|lp — *m||* for p € L*A.
So, we have

(6.7) o5 (D) < esz(L*m)—SC1Hp—L*m”2 for p € AL
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On the other hand, there exists Cs > 0, for sufficiently small r > 0

/ e 52 (P) gy
Ay

> / esz(L*m)fsCQprL*m\Pdp > C3T,lesz(L*m)fngr2.
T(L*m)mAV

Since ayy, = Q«p, © it is @ smooth function on Mgymp, <" is a smooth section
of Lgymp- Since ¢"* is non-zero on /J,;ll(L*m) and independent of s > 0, there
exists C4 > 0 such that

~ e )
(68) ||X:0-m‘vsympHL1(qump) > 047"1682“ m)—sCor .

By (6.7) and (6.8), there exists C5 > 0 such that

Ok M

/ /
(e, )] = | et )
HXSU "/;ymp HLl(‘/symp)

sv(1*m)—sCh||t* ' —1*m)||?
e = —1l —s(C * )k 2_C 2

< _ s(C||e*a’ = ml| or )
<Cs rlesy(vm)—sCar? Csre

Since we can take small » > 0 so that Ci|[p — t*m||?> — Cor? > 0 for any
p € t*A\ B+, we finish the proof.

(4) By the above argument, we also have

o280, (D)

li —S(p—1*
5250 e ™% m [ 1 ) (p—vm)

for .*m € IntAy N (t)%, where 6(x) is the Dirac delta function on (t)*
supported at the origin. Moreover, the restriction ¢ =

0(6277\/?1(2221 mi@i) s0

symp) |M;ll (¢*m)NVaymp’

" ~Lrm)NVa
MTI t*m) symp
where c is a constant, is a covari-

antly constant section on u;ll(b*m) N Viymp, which we denote by 0,+,(6). So,
the assertion is proved easily. The details are the same as in [BFMN]. [O

7. Proof of main result

In this section, we prove Theorem 2.1 by applying the method developed in
Section 6. In Section 7.1, we explain how the setting of Theorem 2.1 fits into
the framework of Section 6. In Section 7.2, we construct a family of complex
structures on the flag manifold, from which (1)—(3) of Theorem 2.1 turn out
to be obvious. Finally, we prove Theorem 2.1 (4) in Sections 7.3 and 7.4.

7.1. Set up. In Section 2, we fixed a symplectic structure wp on P =
1—[?:—11 P(A\' C™). We denote the complex structure on P by Jp. Note that
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(P, wp, Jp) is a toric Kéhler manifold, constructed from a Delzant polytope
Ap. Moreover, the toric Kédhler manifold (P,wp, Jp) can be viewed as the
identification of a symplectic toric manifold (Psymp,wp) with a complex toric
manifold (Peomp, Jp) by the diffeomorphism xo: (Psymp,wp) — (Peomp, Jp)
defined by a symplectic potential gy € SP(Ap), as in Section 5.3. Similarly,
the Hermitian line bundle (LF, h¥, V?) can also be viewed as the identifica-

tion of the prequantum line bundle (Llspymp, RE, VF) on (Psymp, wp) with the

holomorphic line bundle (Lfomp,gp) on (Peomp, Jp) via the bundle isomor-
phism Yo, which is a lift of the map xo: Psymp — Peomp-

The flag manifold (F,wp, Jr) in Theorem 2.1 can also be viewed as the
identification of (Fsymp,wr) with (Feomp, Jr) as follows. Let us denote the
Pliicker embedding by peomp: (Feomp: Jr) — (Peomp, Jp). We set Foymp =
Xo 1(1Fc0mp) and let psymp: Fsymp — Psymp be the embedding. Note that

Psympwp = wr. We also set (LISFymp;hF,v]F) — p:ymp( Lfymp,hP,VP) and
i]F —] . .
(Lfomp,a ) = piomp(Lfomp,a ). Then, we have the following commutative
diagrams:
(7.1)
Pomp ) 2% (Peomps J) (Lo BEVE) 20 (£5,,,0)
T Psymp T Pcomp T ﬁsymp T ﬁcomp
XO‘FSymp F F F XO‘LE}'WP F af
(Fsymp; W]F) - (Fcompﬂ JF) (Lsylnp7 h ) \Y ) - (Lcomp7 0 )v

where psymp and peomp are the natural embeddings.

In Section 3.1, we constructed a family of varieties {Fi,(t) =
M, (C)//tB}tiec. We set (Vi comp, Jv,) = Fln(t) for t € [0,1] and denote
the deformed Pliicker embedding by p¢.comp: Vicomp — Pcomp, Which is
defined in Section 3.1. Let V; symp = X(;l(Vt,C()mp) and pg0: Visymp — Psymp
be the embedding. We also set (LYt =~ h"t V") = p;“’o(Lfymp,hP,VP) and

symp’
Vi - . .
(L(‘%mp,a N = pzcomp(Lfomp,@ ). Then, we have a commutative diagram,

which is the case s = 0 in the diagram (7.4) below. Note that Vi comp = Feomp
and Vi symp = Fesymp and that Vp comp is the Gelfand-Cetlin toric variety
Fl,(0) C P. Thus, the above family {V} comp }ie[0,1] connects the flag mani-
fold Feomp with the Gelfand—Cetlin toric variety F1,(0).

For any ¢ € [0, 1], fix a path v;: [0,1] — C"~!, which is given by straight
lines connecting the points

7w (0)=(1,...,1) = (1,...,1,t) = (1,...,1,t,t) = - = (t,...,t) = v(1).

Recall that we constructed a family of varieties {Fl,, (1) = M,,(C)//,B} for
7 € (C*)"! in Section 3.2 and that we also constructed a degeneration in
stages by extending the family. The path ~; is an approximation to the path
Yo for the degeneration in stages. Note that Fi,,(7:(1)) = (Vi,comp, Jv;) for
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t € [0,1]. Due to Propositions 4.2 and 4.3, the gradient-Hamiltonian flow
along the path -, for ¢ € (0,1], gives a symplectic diffeomorphism which
together with its lift to the prequantum line bundle gives rise to the following
diagram:

W7}
72) (Lfymp,lhﬂ“, VE) =5 (L AV VYY)

v
(Fsympapzympwﬁ”) — (V;:,Symp’l);owﬁ")'

We can also extend Wy : Fgymp — Visymp in (7.2) to the case t = 0 if we
restrict its domain to an open dense subset Fg,,,, of Feymp. It is already
given by (3.2). Using the notation in this section, it should be written as
Wo: Foymp — Vosymp- We also have its lift to the prequantum line bundle.
Thus, we have the following:

7
(LIsFymp7 hF’ VF) ‘]ngmp —0> (L;/}(’)mp7 hVO ) VVO ) ’V()O,symp
(7.3) ! !
o * v o *
(Fsymp? psympwP) — (%,sympa pO,OwP)'

7.2. Construction of a family of complex structures. On (P, wp, Jp),
a (% dimpg P)-dimensional torus Tp acts with an open dense orbit. On the
Gelfand-Cetlin toric variety F,,(0) = Vj comp C P, a (% dimp F)-dimensional
torus Tgc acts with an open dense subset, as explained in Section 3.2. There
is an injective homomorphism igc: Tgc — Tp such that the embedding
P0,comp : V0,comp — Peomp is equivariant. It is described explicitly in Section
6 in [NNU]J. Let 10 § — t&o be the dual map of the inclusion of the Lie
algebras tqc: tgc — tp. From the description of the map igc: Tac — Tp
given in [NNU], we see that ¢&-((tp)7,) = (tac)7-

Fix a strictly convex function v: tf,o — R and set v = v o (5: tp — R.
Let us consider the diffeomorphism xs: (Psymp,wp) — (Peomp, Jp) defined
by gs = go + sv € SP(Ap). Due to Propositions 6.1 and 6.3, we have the
following commutative diagrams:

(7.4)
Xs XS =P

(Psymp’ WIP) - (Pcompa J]P’) (Lgpymp7~hpa VP) - (L](I:DONmpa 0 )
T Pt,s T Pt,comp T Pt.s ~ T Pt,comp
* X ,8 X \s —V;

(V;‘/,Sympa pt,OwP) L} (V;f,compv JVf) (Lgimpa tha th) L (L}:{gmpa 8 t)a

where Xoo = X0| Vi symp and Xt,O = XO‘LYsymp' Note that pf wp = piowp €
0% (Vi,symp)-
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In the case (t,s) = (1,0), the diagrams (7.4) are the same as the dia-
grams (7.1). In the case t = 0, the diagrams (7.4) describe the deformation
of toric Kéhler structures of the Gelfand-Cetlin toric variety Vj comp. The
defining equation of the image of the embedding po comp: Vo,comp — Peomp
is given by equations (7) in [NNU]. From this description, we see that
the image po comp(Vo,comp) contains the point (1,...,1) € P in the notation
in Proposition 6.5. So, Proposition 6.6 can be applied to our case. There-
fore, the holomorphic sections on Vj comp converge to delta-function sections
supported on Bohr—Sommerfeld fibers as s goes to infinity. Therefore, the
holomorphic sections on V; comp are close to delta-function sections when ¢
and s go to zero and infinity, respectively, at the same time. So, we make
t a function of s as follows: let ¢: [0,00) — Ry be a strictly decreasing
C*°-function with #(0) = 1 and lims_. t(s) = 0, where R is the set of
positive real numbers. (In fact, ¢(s) should be required to satisfy additional
conditions, which will be discussed in Lemma 7.5 below.)

We define a complex structure Js on (Fsymp, pgympwe) as the pull back of
TV by the following composition of diffeomorphisms, which appeared in
the diagrams (7.2) and (7.4):

* Wy * Xt,s
(Fsymwpsympw]lj’) - (Vt,sympv pt,[)w[P’) — (Vt,comp7 Jvt)
Namely, a family of complex structures {Js}sejo,00) 00 (Fsymp; Paymp@e) is
defined by

(7.5) Js = (Xt(s),s © \I’t(s))*‘]‘/asr

Then, (1) and (2) of Theorem 2.1 follow from the construction of {Js}c[0,0c)-
By Proposition 6.1 (2), (Visymp. powe, X; ,Jv;) is a Kéhler manifold. More-

over, (‘/t(s)ysymI”p:(s),OwP7X:(5)73JVt(s)) is isomorphic to (Fsymp, Piympwp; Js)
as a Kahler manifold. So, Theorem 2.1 (3) follows as well. Thus, for any
s € [0,00), Jg induces the holomorphic structure d° of the Hermitian line

bundle (Lgymp,hF,VF). Note that the map Xt(s)’s o \ilt(s): (Lfymp,gs) —
Vics)

(Leomp, 5Vt<s)) is an isomorphism of holomorphic line bundles.
To prove Theorem 2.1 (4), we have to construct a basis {o'|m € Agc N
S

(tac)b} of the space of holomorphic sections HO( ngymp’g ).

First, we find a basis of the space of holomorphic sections H O(Ll@mp, 5%)
in the following way. Recall that the Gelfand—Cetlin polytope Agc is consid-
ered as a subset of ;- as explained in Section 3.2. Since &, ((tp)7) = (tac)y,

for each m € Agc N (tcc);, we can choose m € Ap N (tp);, such that
*(m) = m. Let ™ be the holomorphic section of (Lfomp75P) defined by

(5.5). Due to Proposition 6.6 (1), the restriction (po.comp)*om t0 Vo comp
depends only on m € Agc N (tgc)y, not on m. Due to Corollary 3.3,
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Agc is the moment polytope for the action of Tgc on the Gelfand—
Cetlin toric variety (Vosymp, paowp), where panP is the first Chern form
of (LY, h"°, V). Since LYY, is naturally identified with L{S, by the

symp> com

map X, ,, we see that {(po,comp)*om|m € Agc N (tac)y} is a basis of the

space of holomorphic sections H O(ngmp,gvo) by the general fact on toric
varieties.

Since linearly independence of the restriction of holomorphic sections from
P is an open condition, there exists sy > 0 such that, for any s > s,
{(Pe(s),comp) @™ |m € Acc N (tae)y} are liniarly independent. On the other

hand, all (Vi) comp> JVz(s)) and all (ng%?p,g‘/t“)) are isomorphic for s > 0

as complex manifolds and holomorphic line bundles, respectively. Moreover,
due to [GS], the dimension of the space of holomorphic sections of Lg}mp =

Lfomp is equal to the numbers of Agc N (tac)y,- Therefore, we conclude that

{(Pe(s),comp) o™ |m € Agc N (tac)y} is a basis of the space of holomorphic

. Vits) aVics
sections HY (Lcéﬁrfp, 0! >> for any s > sg.

So we define, for s > sg,

(76) O.gn = (Xt(s),s o \ijt(s))*((ﬁt(s),comp)*am) for m € Age N (tGC)E,'

Vi(s)

Since all (Vi(s) comp: Jvy,)) and all (Lcomp,gw(s)

) are isomorphic for s > 0

as complex manifolds and holomorphic line bundles, respectively, we can
extend a basis {o]'|m € Agc N (tgc)y,} of the space of holomorphic sections

H° <Lfymp,58> for all s € [0, sp], which depends continuously on s. Thus, we

have defined the basis {o}*|m € Agc N (tgc)y,} of the space of holomorphic

sections H' (Lfymp,gs) for all s > 0.

7.3. Another gradient-Hamiltonian flow. To prove that the holomor-
phic sections defined by (7.6) converge to delta-function sections, we intro-
duce another gradient-Hamiltonian flow.

Let us consider the family of varieties f: (M,(C) x C)//B — C con-
structed in Section 3.1. Put the standard Ké&hler metric on C. Consider
the map F: (M,(C) x C)//B — Pgymp x C given by F(x) = (pro(z),t)
if v € Visymp = f71(t). We put the Kihler metric on the smooth part of
(M (C) x C)//B by pulling back the metric on Pgymp x C by the map F.
Consider the gradient-Hamiltonian flow along the straight-line path from 1
to 0 in C. Since V} symp are smooth manifolds for all ¢ € (0,1], by Lemma 4.1
the vector field and thus the flow are defined on all of V;gymp for each
t € (0,1], and also on Vg0, where Voo o is the same as in (7.3). Let
Visymp C Visymp denote the image of Vi .., under the reverse flow. Then,
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due to Propositions 4.2 and 4.3, we have the following symplectic diffeomor-
phism and its lift defined by the gradient-Hamiltonian flow for ¢ € [0, 1]:

(L BV Vv 5 (Lo, B0, V1)

symp? t,symp symp>?

! !

(Vigmps P0w) == (Vosymp A,008):

Let pry 0 Psymp — 5 be the moment map for the Tp-action on (Psymp, wp).
Set (7o = t&o © Uyt Psymp — t& - Fix an open set B C IntAgc such that
IntAgc N (tee)y, € B and B C IntAge. Set Uy = pg (B) N Vosymp C
V0.symp- Here, we are considering Vj symp as a subset of Pgyp, by the embed-
ding po0. Moreover, we set Uy = <I>t_1(Uo) and Uf = Vi gymp \ Ur. We denote
the closure of U; in V} symp by U;. Note that U; and Uf are compact.

Let dp( , ) be the distance on P. Then, we have the following.

o
|VO,symp

Lemma 7.1. For an arbitrary € > 0, there exists t1 > 0 such that
dp(peo(x), po,o(Pe(x))) < € for any 0 <t <ty and x € Uy C V; symp-

Proof. Fix an arbitrary small ¢{ > 0. Then, U; consists of regular points of
[+ (Mu(C) x C)//B — C for any 0 <t <t} and [Jy;<;, Uy is compact. As
noted in Lemma 4.1, |grad(Rf)| is non-zero at regular points of f. Therefore,
there exists ¢ > 0 such that |grad(Rf)| > c on Uy, for every t € [0,#}]. Thus,
the gradient-Hamiltonian vector field Z satisfies |Z| < 1 on U; for t € [0,t}].
Since ®; is the flow of Z over a “time” ¢, we finish the proof. O

Similarly, we have the following.

Lemma 7.2. For an arbitrary € > 0, there exists t2 > 0 such that
dp(p10(T; (), pro(Pgt o ®y(2))) < € for all0 < t <ty and 2 € U; C
Vi symp, where Wy is the map in (7.2) or (7.3).

Proof. This follows from “smoothness in initial conditions” results in the
theory of differential equations. Because the path ~; is close to the path g
considered in Section 7.1 for small ¢ > 0, the resulting diffeomorphisms ¥y
and WU, are very close. Combining with Lemma 7.1, we finish the proof. [

7.4. Convergence to delta-function sections. For an m € IntAgc N
(tac)y, we have chosen m € Ap N (tp)7, such that .*(m) = m and defined
the holomorphic section ¢ by (7.6). From now on, we prove that, if we

choose t(s) appropriately for s > 0, the section converges to a

[ PEve—
delta-function section supported on the Bohr-Sommerfeld fiber ,uc_;lc(m) as
s goes to infinity. Set, for 0 <t <1, s >> 0,

5(: s (ﬁ;ﬁk compam) —=Vi
Tm — _ j 5 ’ _ e HO (L‘/t >~<* 6 t).
t,s HXZS (pzcompam) HLl(‘/t,syrnp) symp? A o
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Since
o U G V! (5 comp®™)
tTts = 5% (5 7 = TGror (= - ;

3 HXZS([);COmpUm)HLl(‘/t,symp) ”\Il;kazs(p;compo-m)HL]"(Fsymp)

I * m 5 ; ;
we have Wy 7 o= CEdPry— where t(s) will be defined in Lemma 7.5
below.

For a section ¢ € F((Lfymp)*), we denote the push-forward of ¢ with

respect to the map W, by Wy, ¢, which is a section of the line bundle (Lg/yfmp)*
for t > 0 or a section of (L;‘@mp)* restricted to some open dense subset of

Vo,symp for t = 0. In what follows, we omit the notation for the volume form
when integrating on Fgymp or Vi symp, since it is preserved by the maps W
and ®;. First, we have the following:

Lemma 7.3. (1) Form € IntAgc, b (m)NVy symp is a Bohr-Sommerfeld

fiber for (L;/yomp, RYo,VY0) if and only if m € (tgc)s.

(2) For m € IntAgcN (tac)y, there exists a covariantly constant section dp,

Vo Vo vV —1
of (Lgfmps 70,V )’u;éc(m)ﬂVo,symp and a measure dfp, on puz, . (m)NVosymp

which satisfy the following: for any ¢ € F((Lfymp)*), there exists C1(s,¢) > 0
for s >0, such that limg_,o C1(s,¢) =0 and

Jo

Proof. (1) follows from Proposition 6.6 (2).

(2) follows from Proposition 6.6 (4). Since the number of points in IntAgcnN
(tac)y is finite, we can choose Ci(s,¢) independently of m € IntAgc N
(tac)z O

(7.7)

(Foup, ) — / (F0u, ) | < C (5, ).
I

—1
,Symp Tge (m)nVO,Symp

We take U; C V; gymp as in Section 7.3. Then, we have the following.

Lemma 7.4. For each section ¢ € F((L;Fymp)*), the following holds:

| et - / (Tou, 6ur) b

symp T (M)NVo,symp

< C1(8,0) + Vol (Fsymp) 16/l cow,,mp) (172 lco ey + 125764l core))
+ vol(Faymp) |91l co 5,y mp) 17775 — D170 5 oo (07,
+ [P0t — D Woeo]|cowy)-
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o
o
ot

Proof. Fix arbitrary ¢ € T'(( )*). Then, we have

F
Lsymp

a8 | wumn- [ (F0.6.0,) dO
IFsymp M;GC (m)mVO,symp
- / (Uptp, 7l72) — / 1 (V0,0 dbp,
Vt,symp .Uq_*GC (m)mVO»Symp

<

<\Tjt*¢v TZZ) - / <¢10*¢a 7’67,%9>

Vo,symp

A,symp
I,

The second term on the right-hand side of (7.8) is estimated by (7.7). Next,
we estimate the first term on the right-hand side of (7.8)

Jo

+

—1
Tac (m)NVo,symp

(Bou, 7i) / (Bous, Orn) Al
I

,Symp

(7.9)

(s, ) / (o, 7

,Symp VO,Symp

Jo

(Fru, ) — / (@5 0.0, B17)

Vi ,Symp

»Symp

< / (Bpo 71y — (B Fgu6, Bi7i)
Uy
+ / (Bpah, i) — (85 Douh, D377
U¢
< / (Bpu 711y — (B Bgu6, Bi71)
Uy

+ VOl (Faymp) [0l 00 (fuyump) (I8 oo ) + 195 7 o rg))-

Finally, we estimate the first term on the right-hand side of (7.9). If we
note that

/U [B100] < VOl U E1mll oy < vl Fagmp) | Sllcoen

~ % ~ o~
’X07S(p6,compam)| < 17

B = [ < [ o <
U, 708 Uy * Uy ||XS,S (p67compam)"L1(Vo7symp)
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then we have
(7.10)

/U (Dpup, 7Y — (D7 0,0, i)
t

< / (Bpu 7" — DY | + / (Bpah— B3 Dou, BF 1)
Ut Ut

< i — & oo /U (Bpd| + [ F1a6 — &) T0.6 ooy /U By
t t

< I = 576" [l co () VOl Fsymp) Bl 0 () + Wt — D5 Woul| co ) -

y (7.7)—(7.10), we finish the proof of Lemma 7.4. O

Next, we introduce a function t¢: [0,00) — R so that the holomorphic
sections ol converges to delta-function sections as s goes to infinity.

Lemma 7.5. There exists a strictly decreasing C*°-function t: [0,00) —
R<o, where Rsg is the set of positive real numbers, with t(0) = 1 and
lims_,oo t(s) = 0 which satisfies the following: for any ¢ € F((Lgymp)*),
there exists a constant Ca(s, ¢) > 0 with lims_.o Ca(s, ) = 0 such that

/]Fsymp <¢7 t(s s) s> - /,ul <\i/()*¢, 5m> db,,| < 02(37¢)'

Tao (m)NVo,symp

Proof. First, we estimate the term \|<i>2‘7‘&";||00(Utc) in Lemma 7.4. Due to
Proposition 6.6 (3), there exists C3(s) > 0 such that lim,_,o, C3(s) = 0 and,
for any t > 0,

(7.11) 1258 lcows) = It llcows) < Cals)-

Next, we estimate other terms in Lemma 7.4. In Section 7.3, we fixed an
open set B C IntAgc such that IntAgc N (tge)y, € B and B C IntAgc.
We set Uy = ,uTGC( ) N Vo symp C Vosymp and Uy = @ (Uo) Now, we
also take an open set By C IntAgc such that IntAgc N (t(;c) C B; and
Bj C B. Then, due to Proposition 6.6 (3), there exists Cy(s) > 0 such that
lim,—oc C4(s) = 0 and, for any s > 0 and m € IntAgc N (tac)y,

1) o || < Culs)
: ”ﬁ"mvo,sympHLl(Vo,symp) CO(IPsymp\uEéc(Bl))— 4=

Since pos = p0,0: Vo,symp — Psymp for s > 0 by Proposition 6.5 (2), we
have

p0,5(U5) = po.o(U§) C Paymp \ g, (B1)-
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Note that
im 157 (77 comp@™ M 22 (Vi um) = 155 4 (56 comp®™ M LV symp) 7 O-
Since Uf is compact, for each n = 1,2,..., there exists t,, € (0,1] which is
independent of ¢ and satisfies the following (7.13) holds for each s € [n,n+1]
and t € [0, t,]:

th (p;COmpam)HLl(%5 m ) ]-
(7.13)  pes(Uf) C Poymp \ MTGC( 1) = ¥ — .
|| 0 S(pO comp )|’L1(V075ymp) 2

By (7.12) and (7.13), we have, for each s € [n,n+ 1] and ¢ € [0, t,,]

pr < (Xso™)
175, (XE0™ 121V cyrmp)

(7.14) Ca(s) > |

lcoqwe)

5(: s(ﬁ;fk compo-m)

lcoqwe)

_||’~*

Ao S(ﬁo COmp g )HLl (Vo,symp)

. Hzt’s(p;comp )HLl Vvtsymp

= — = 7/, HCO Ug)-
”X;,s (ps,comp )HLl(VO symp) "

By (7.13) and (7.14), we have, for each s € [n,n + 1] and t € [0, t,,]
(7.15) 17 slcowey < 2Cu(s).

Moreover, due to Lemmas 7.1 and 7.2, taking smaller ¢,, > 0 if necessary,
we may also conclude that the following (7.16) and (7.17) hold for each
s € [n,n+1] and t € [0,,]:

T, * 1 *

(7.16)  |Ims — ®i70sllcow,) < ) for any m € IntA N (tge)7,

91l (Faymmp)
n+2

By Lemma 7.4 together with (7.11), (7. 15) (7.16) and (7.17), we have,
for each section ¢ € T((LE,,,)*), n=1,2,..., s € [n,n+ 1] and t € [0,1,]
0.0 - [ (F0.061)

symp
/]F\symp M;Cl;c (m)mVO»Symp
< C1(5, 9) + Vol (Fsymp) 91100 oy mp) (2Ca(8) + C3(s))

1 91l (Faymmp)
s+1 s+1

(T17) Bt — 37 F0u6] o) < for any ¢ € D((LE,)").

symp

+ VO](Fsymp) ”¢HCO(]FsymP)
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We can take a continuous decreasing function ¢: [0, 00) — R with ¢(0) = 1
and lim, .~ t(s) = 0 such that t(n) < t, for n >> 0. Thus, we finish the
proof of Lemma 7.5. O

We use t(s) in Lemma 7.5 to define the complex structure Js by (7. 5) and

the holomorphic section ol by (7.6). If we recall \Il Hs) t( )s = ol os
St Fsymp)
then we have
o ~
lim ¢y o) = / (Pos, Om) dbp,
570 JFsymp ||US HLl(Fsymp) #;éc (m)NVo,symp

Due to Corollary 3.3, if we define a covariantly constant section oF of
(LF, h¥, VF)|ugé(m) by pulling 4,, on ,u}éc (m) NV symp back by ¥, then we
have the desired convergence in Theorem 2.1 (4).
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