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THE DUISTERMAAT–HECKMAN FORMULA AND THE
COHOMOLOGY OF MODULI SPACES OF POLYGONS

Alessia Mandini

We give a presentation of the cohomology ring of spatial polygon
spaces M(r) with fixed side lengths r ∈ R

n
+. These spaces can be

described as the symplectic reduction of the Grassmaniann of 2-planes
in C

n by the U(1)n-action by multiplication, where U(1)n is the torus
of diagonal matrices in the unitary group U(n). We prove that the
first Chern classes of the n line bundles associated with the fibration
(r-level set) → M(r) generate the cohomology ring H∗(M(r), C). By
applying the Duistermaat–Heckman Theorem, we then deduce the rela-
tions on these generators from the piece-wise polynomial function that
describes the volume of M(r). We also give an explicit description of
the birational map between M(r) and M(r′) when the lengths vectors
r and r′ are in different chambers of the moment polytope. This wall-
crossing analysis is the key step to prove that the Chern classes above
are generators of H∗(M(r)) (this is well-known when M(r) is toric, and
by wall-crossing we prove that it holds also when M(r) is not toric).

1. Introduction

Spatial polygon spaces are a widely studied family of moduli spaces
obtained by symplectic reduction, see for example [AG,Go,HK98,HK97,
KT,KM,Kh,Kl,Ko,M,Ta01,Ta02]. A first way to introduce M(r) is as
the space of closed piece-wise linear paths in R

3 such that the jth step has
norm rj , modulo rotations and translations. The vector r = (r1, . . . , rn) ∈
R

n
+ is called the lengths vector.
Kapovich and Millson [KM] showed that one can describe M(r) by means

of a symplectic quotient as follows. Let Sr =
∏n

j=1 S2
rj

be the product of
n spheres in R

3 of radii r1, . . . , rn and centers all the origin. The diagonal
SO(3)-action on Sr is Hamiltonian with moment map μ : Sr → so(3)∗ � R

3,
μ(e1, . . . , en) = e1 + · · · + en. Note that an element (e1, . . . , en) ∈ Sr is in
μ−1(0) if and only if the path in R

3 with edges e1, . . . , en closes to a polygon.
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The moduli space of spatial polygons M(r) arises then as the symplectic
quotient μ−1(0)/SO(3) =: Sr//0SO(3).

This fits into a broader picture: let U(1)n be the maximal torus of diagonal
matrices in the unitary group U(n) and consider the action by conjugation
of U(1)n × U(2) ⊂ U(n)× U(2) on C

n×2 (an element in the complex space
is naturally thought as an n × 2 matrix). Note that the diagonal circle
U(1) ⊂ U(1)n × U(2) fixes everything, and therefore only the action of
K := U(1)n × U(2)/U(1) is effective. One can then realize the polygon
space M(r) as the symplectic reduction

C
n×2

//
(r,0)

K

cf. [HK97]. It is enlightening to perform the symplectic reduction in stages.
Taking first the quotient by U(1)n one obtains the product of spheres Sr

(here the reduction is performed by means of the Hopf map as explained
in Section 2 and in [HK97]). The residual U(2)/U1 � SO(3) action is the
one described above, and one recovers the description of the polygon space
M(r) as the symplectic quotient Sr//0SO(3).

Performing the reduction in stages in the opposite order, one obtains the
Gelfand–MacPherson correspondence. In fact, one first obtains the Grass-
manian Gr(2, n) of complex planes in C

n as the reduction C
n×2//0U(2). Then

the quotient by the residual U(1)n/U(1) action on Gr(2, n) is isomorphic to
the moduli space of n points in CP

1, cf. [GM], and hence, by Klyachko [Kl]
and Kapovich and Millson [KM], is also isomorphic to the polygon space
M(r). This is summarized in the following diagram:

C
n×2

U(2)

������������
U(1)n

�����������

Gr(2, n)

U(1)n/U(1) �����
���

���
�

∏n
j=1 S2

rj

U(2)/U1�SO(3)�����������

M(r)

These two descriptions of the moduli space of polygons intertwine
throughout the paper, and give rise to the description we present of the
cohomology ring of M(r). On the subject there is a broad literature. Haus-
mann and Knutson [HK98] computed the integer cohomology rings of the
moduli spaces M(r) by embedding these spaces (which in general are not
toric) in toric varieties and computing the kernel of the induced restriction
map on cohomologies. The cohomology ring of the polygon space was also
computed by Goldin. In fact, in [Go] she finds explicit formulae for the ratio-
nal cohomology ring of the symplectic reduction of coadjoint orbits of SU(n)
by the action of a maximal torus. Considering degenerate coadjoint orbits
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she determines the cohomology ring of the reduction of the Grassmannian
of k-planes in C

n. By the Gelfand–MacPherson correspondence, see [GM],
this is the moduli space of n points in CP

k−1 which, for k = 2, is isomorphic
to the moduli space of n-sided polygons in R

3. Previously Brion [B] and
Kirwan [Ki] have computed the rational cohomology ring of the special case
of equilateral polygon spaces M(1, . . . , 1) with an odd number of edges.

Many other contributed to the study of these spaces; see for example
[AG, Ko, Ta01] where the intersection numbers are explicitly computed
(by means of a recursion formula in [AG], using “quantization commutes
with reduction” in [Ta01], via an algebro-geometric approach in [Ko]). More
contextualized reference will be given throughout the paper.

Our approach to the cohomology ring of M(r) is as follows. First, we give
an explicit description of the birational map between two polygon spaces
M(r) and M(r′) when r and r′ lie in different chambers of the moment
polytope μ−1

U(1)n(Gr(2, n)). Using this description, we prove that the first
Chern classes c1, . . . , cn of the n line bundles associated to the fibration
μ−1

U(1)n(r) → M(r) generate the cohomology ring H∗(M(r), C) (whenever
M(r) is a smooth manifold). This provides the opportunity to determine the
relations on the generators c1, . . . , cn by applying the Duistermaat–Heckman
Theorem, once the piece-wise polynomial function volM(r) that associates
to each generic r the symplectic volume of M(r) is known, as it is in our
case. In particular, this also proves that polygon spaces only have even
dimensional cohomology. The fact that H∗(M(r), C) is generated by the
classes ci’s was established in [HK98, Corollary 7.4]; see also Remark 5.9.

Let us describe in more detail the results in this paper. Section 2 is a brief
overview on polygon spaces, where we give details for the symplectic reduc-
tions outlined above and for the moment polytope Ξ := μ−1

U(1)n(Gr(2, n)).
The polygon space M(r) is a smooth Kähler manifold if and only if for any
index set I ⊂ {1, . . . , n} the scalar quantity

εI(r) :=
∑

I

ri −
∑
Ic

ri

never vanishes. When this is the case, the lengths vector r is called generic.
In Section 3, we prove that, for r generic, the piece-wise polynomial func-

tion for the symplectic volume of M(r) is given by

(1.1) volM(r) = − (2π)n−3

2(n− 3)!

∑
I long

(−1)n−|I| εI(r)n−3,

where an index set I is said to be long (or r-long) if and only if εI(r) > 0.
The symplectic volume of M(r) was first computed by Takakura [Ta01] by
means of a formula for the generating function of the intersection pairings
of M(r). Formula (1.1) was later obtained independently by Vu The Khoi
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in [Kh]. The equilateral polygon space M(1, . . . , 1) has some independent
interest, and has been studied under several points of view, see for example
[B,Ki92]. It is easy to see that the equilateral polygon space is smooth only
for odd number of edges n. In this case, the symplectic volume of M(1, . . . , 1)
has been computed by Kamiyama and Tezuka [KT], Takakura [Ta02] and
by Martin [Ma]. In Section 3, we prove that Martin’s techniques can be
adapted to compute the volume of M(r) (Theorem 3.4) for generic r’s.
We believe that this has some independent interests. The proof sets in the
context of equivariant cohomology, where the surjectivity of the Kirwan map
k : H∗

SO(3)(Sr) → H∗(M(r)) suggests that the calculation of the symplectic
volume volM(r) can be done by looking at

∫
M(r) k(a) for a suitably chosen

equivariant form a ∈ H∗
SO(3)(Sr) (i.e., such that k maps a onto the top power

of the symplectic reduced form ωr on M(r)). This is the natural setting
for beautiful results, known as Localization Theorems, that enable one to
localize the computation of the integral above at data associated to the
fixed point set. Formula (1.1) is then an application of Martin’s Localization
Theorem (cf. [Ma] and Theorem 3.1 in here).

In Section 4, we deal with describing the diffeotype of M(r) when r
crosses a wall in Ξ. It is well-known that for r0 and r1 on either side of
a wall, the associated symplectic reductions M(r0) and M(r1) are related
by a birational map that is the composite of a blow-up followed by a
blow-down. This holds in greater generality, as proven in [GS89, BP].
For polygon spaces we can characterize the submanifolds blown up and
blown down as lower-dimensional polygon spaces; cf. Theorem 4.1. The
moment polytope Ξ, first studied in [HK97], is the hypersimplex {r ∈
R

n
+ | 0 ≤ 2ri ≤ 1 and

∑n
i=1 ri = 1}. The regions Δi of regular values in

Ξ (called chambers) are separated by walls, which are the connected com-
ponents of the image via μU(1)n of the fixed points set Gr(2, n)H for sub-
groups H ⊂ U(1)n. It is not difficult to see that it is enough to consider
the circles {diag(eiθχI(1), . . . , eiθχI(n))} ⊂ U(1)n where, for any index set
I ⊂ {1, . . . , n} index set, χI(i) = 1 if i ∈ I and χI(j) = 0 if j ∈ Ic. It follows
(see Section 2 and [HK97]) that the walls in Ξ have equation

(1.2)
∑

I

ri −
∑
Ic

ri = 0

for some I ⊂ {1, . . . , n}. The polygon space M(r) is a smooth (n − 3)-
dimensional symplectic manifold if and only if equation (1.2) is never satis-
fied for any index set I. Consider

εIp(r) =
∑
Ip

ri −
∑
Iq

ri,

where the index set Ip = {i1, . . . ip} has cardinality p and Iq = {j1, . . . jq}
is its complement (hence q := n − p). Let WIp denote the data of the wall
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Figure 1. A polygon in MI4(r) with I4 = {1, 3, 4, 6} ⊂ {1, . . . , 9}.

of equation εIp(r) = 0 together with the wall-crossing direction from the
chamber where εIp(r) > 0 to the one where εIq(r) > 0. Throughout this
paper we will only consider single wall-crossings, i.e., we assume that the
wall-crossing point rc is not on a intersection of walls. This is not restrictive,
since any non-single wall-crossing can be decomposed in a finite number of
single wall-crossings. Let rc ∈ WIp be the wall-crossing point, i.e., εIp(r

c) =
0. It follows that μ−1(0) contains the SO(3)-orbit of the polygon P c =
(ec

1, . . . , e
c
n) with

ec
i =

{
(ri, 0, 0) if i ∈ Ip;
−(ri, 0, 0) if i ∈ Iq.

The polygon P c lies completely on a line, the x-axis, and therefore it is fixed
by the circle S1 of rotations around it. This originates a singularity of conic
type in the quotient M(rc). In Section 4, we analyze this singularity using
the description of M(r) as the symplectic quotient of Gr(2, n) by U(1)n. In
particular, we first perform reduction on Gr(2, n) by a complement H of
the circle S1 ⊆ U(1)n/U(1) associated to the wall. The residual S1-action
on Gr(2, n)//{r2,...,rn−1}H is still Hamiltonian with moment map μS1 . The
wall-crossing problem for polygon spaces gets then reduced to studying the
changes in the quotient(

Gr(2, n)//{r2,...,rn−1}H
)
//rS

1

when r goes through a critical value of μS1 . This provides us with two blow-
down maps β− : M(r0) → M(rc) and β+ : M(r1) → M(rc), where r0 and r1

are regular values respectively before and after the wall-crossing as above.
To give an explicit description of the two maps β− and β+ let us introduce
some notation. Consider the submanifold MIp(r) ⊂ M(r) of polygons such
that the edges ei, for i ∈ Ip, are parallel and point in the same direction as
in Figure 1.

Note that MIp(r) is naturally isomorphic to the moduli space M(rIp)
of (p + 1)-gons with lengths vector rIp := (

∑
i∈Ip

ri, rj1 , . . . , rjq). It follows
that MIp(r

0) is empty. In fact, the condition εIp(r
0) > 0 implies that {1}

is an rIp-long edge, and therefore the closing condition
∑

ei = 0 is never
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satisfied for any �e ∈ SrIp
. On the other hand, MIq(r

0) � M(rIq) is not empty
and, as proven in Section 4, is diffeomorphic to the projective space CP

p−2.
Similarly, the submanifold MIq(r

1) is empty while MIp(r
1) is the projective

space CP
q−2. In Section 4, we prove that β− maps M(r0) \MIq(r

0) diffeo-
morphically onto M(rc)\ [P c], and MIq(r

0) gets blown down via β− to [P c].
Similarly, β+ blows down MIp(r

1) to [P c] and maps M(r1) \MIp(r
1) diffeo-

morphically onto M(rc)\ [P c]. The spaces MIp(r
1) and MIq(r

0) are different
resolutions of the singularity corresponding to the degenerate polygon [P c] in
M(rc), and both are dominated by the blow-up M̃ of M(rc) at the singular
point, with exceptional divisor E � CP

q−2 × CP
p−2 �MIp(r

1)×MIq(r
0).

This wall-crossing analysis and the volume formula intertwine in Sec-
tion 5, where we describe the cohomology ring H∗(M(r), C). In Section 5.1,
we recall some results due to Guillemin and Sternberg [GS95] on the coho-
mology ring of reduced spaces. Section 5.2 is the heart of our description of
H∗(M(r)). In fact, if r0 is in an external chamber of the moment polytope
Ξ, then M(r0) is toric and the Chern classes c1, . . . , cn of the n complex line
bundles associated with μ−1

U(1)n(r0) → M(r0) generate the cohomology ring
H∗(M(r0)). We prove by wall-crossing arguments that this holds for any reg-
ular value r in any chamber of the moment polytope Ξ. In fact, any internal
chamber can be reached from an external one by a finite number of single
wall-crossings. First we prove, as an application of our wall-crossing analysis,
that crossing a wall WIp changes the dimensions of the cohomology groups of
degree k for k an even integer in the interval [2min(p, q)−2, 2max(p, q)−4].
Precisely, if M(r0) and M(r1) are polygon spaces before and after crossing
the wall WIp , then

dimHk(M(r1)) = dimHk(M(r0)) + 1, 2p− 2 ≤ k ≤ 2q − 4 (case q ≥ p)

for k even, and Hk(M(r1)) = Hk(M(r0)) for any other value of k. In par-
ticular

Hk(M(r1)) = Hk(M(r0)) = 0 ∀k odd.

This result may also be obtained from the Poincaré polynomial formulae
of Klyachko [Kl] or Hausmann–Knutson [HK98]. This increasing in the
dimension of the “middle” cohomology groups can be explicitly described
in terms of the submanifolds MIp(r

1) and MIq(r
0). Assume for simplicity

that q ≥ p, and let PD([MIp(r
0)]) be the Poincaré dual of MIp(r

0). Then
the cohomology class PD([MIp(r

0)]) living in H2p−2(M(r0)) is zero, since
MIp(r

0) is empty. On the other side, MIp(r
1) is not empty and the class of

its Poincaré dual PD([MIp(r
1)]) determines the increase in the dimension

of H2p−2(M(r1)).
The increase in higher-dimensional cohomology groups is given by the

cup product PD([MIp(r
1)]) � cα

1 (N 1) of PD([MIp(r
1)]) with the first Chern
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class c1(N 1), where N 1 is the normal bundle to MIp(r
1), and with its powers

cα
1 (N 1) for α = 0, . . . , q − p, as prescribed by the Decomposition Theorem

(see [BBD] and also [CM05], and Theorem 5.6 in here):

H∗(M(r1)) = H∗(M(r0))⊕
q−p⊕
α=0

C
(
PD([MIp(r

1)]) � cα
1 (N 1)

)
.

We prove that PD([MIp(r
1)]) and c1(N 1) are linear combinations of the first

Chern classes c1, . . . , cn, (cf. Proposition 5.7). It follows that H∗(M(r1)) is
generated by c1, . . . , cn if H∗(M(r0)) is as well. This is the case for r0 in an
external chamber and therefore, by crossing a finite number of walls, for r0

in any chamber of the moment polytope Ξ.
Applying the Duistermaat–Heckman Theorem one can then describe the

cohomology ring of M(r) as follows (Theorem 5.8):

H∗(M(r), C) � C[x1, . . . , xn]/Ann(volM(r)),

where a polynomial Q(x1, . . . , xn) ∈ Ann(volM(r)) if and only if

Q

(
∂

∂r1
, . . . ,

∂

∂rn

)
volM(r) = 0.

2. The moduli space of polygons M(r)

Let S2
t be the sphere in R

3 of radius t and center the origin. For r =
(r1, . . . , rn) ∈ R

n
+, the product Sr =

∏n
j=1 S2

rj
of n 2-spheres is a smooth

manifold. Let pj : Sr → S2
rj

be the projection on the jth factor and let ωj

be the volume form on the sphere S2
rj

. Because the ωj ’s are closed and non-
degenerate, the 2-form ω =

∑n
j=1

1
rj

p∗jωj is closed and non-degenerate as well
and defines a symplectic structure on Sr. Note that the symplectic form ω
can be written equivalently as

∑n
j=1 rjπ

∗
j ωS2 where πj is the composition of

pj with the rescaling map S2
rj
→ S2, for details see [KM, Section 1].

The group SO(3) acts diagonally on Sr. Equivalently, identifying the
sphere S2

rj
with a SO(3)-coadjoint orbit, the SO(3)-action on each sphere

is the coadjoint one. The choice of an invariant inner product on the Lie
algebra so(3) of SO(3) induces an identification so(3)∗ � R

3 between the
dual of so(3) and R

3. On each sphere S2
rj

, the moment map associated to
the coadjoint action is the inclusion of S2

rj
in R

3. By linearity, the diagonal
action of SO(3) on Sr has moment map

μ : Sr → R
3,

�e = (e1, . . . , en) �→ e1 + · · ·+ en.

The level set μ−1(0) := M̃(r) = {�e = (e1, . . . , en) ∈ Sr |
∑n

i=1 ei = 0} is a
submanifold of Sr because 0 is a regular value for μ.
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A polygon in R
3 is a closed piece-wise linear path in R

3. Consider the
piece-wise linear path such that the jth step is given by the vector ej . Such
a path closes if and only if

∑n
i=1 ei = 0. Therefore, M̃(r) is the space of

n-gons of fixed sides length r1, . . . , rn. Its quotient

M(r) := M̃(r)/SO(3) = Sr//SO(3)

is the space of n-gons of fixed sides length r1, . . . , rn modulo rigid motions,
and is usually called polygon space. A polygon is called degenerate if it lies
completely on a line.

The moduli space M(r) is a smooth manifold if and only if the lengths
vector r is generic, i.e., for each I ⊂ {1, . . . , n}, the quantity

εI(r) :=
∑
i∈I

ri −
∑
i∈Ic

ri

is non-zero. Equivalently, if and only if in M(r) there are no degenerate poly-
gons. In fact, if there exists a polygon P on a line (or an index set I such that
εI(r) = 0) then its stabilizer is S1 since the polygon P is fixed by rotations
around the axis it defines. Therefore the SO(3)-action on M̃(r) is not free
and the quotient has singularities, which have been studied by Kapovich
and Millson in [KM]. Precisely, they proved that M(r) is a complex ana-
lytic space with isolated singularities corresponding to the degenerate n-gons
in M(r), and these singularities are equivalent to homogeneous quadratic
cones. Along the proof of the wall-crossing Theorem 4.1 in Section 4, we will
provide an explicit description of the cone CW over the singularity. Note
that, for r generic, the polygon space M(r) inherits a symplectic form by
symplectic reduction, see for example [Au].

An alternative description of the moduli space M(r) is given by Hausmann
and Knutson in [HK97] which also resemble an earlier work of Gelfand and
MacPherson [GM]. With minor adaptations we provide an overview here.
Let U(1)n be the maximal torus of diagonal matrices in the unitary group
U(n). The group U(1)n × U(2) acts by conjugation on C

n×2. The action
is Hamiltonian and the polygon space M(r) can then be realized as the
symplectic quotient of C

n×2 by U(1)n×U(2); cf. [HK97]. One can perform
reduction in stages. Consider first the U(2)-action with associated moment
map

μ
U(2)

: C
n×2 → u(2)∗,

A �→ − i

2
(A∗A− Id),
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where A∗ is the conjugate transpose of A and Id is the identity matrix. The
Stiefel manifold of orthonormal 2 frames in C

n, defined as follows

St2,n =

⎧⎪⎨⎪⎩
⎛⎜⎝ a1 b1

...
...

an bn

⎞⎟⎠ ∈ C
n×2 :

n∑
i=1

|ai|2 = 1,
n∑

i=1

|bi|2 = 1,
n∑

i=1

aib̄i = 0

⎫⎪⎬⎪⎭
can be realized as the zero level set μ−1

U(2)
(0). Let Gr(2, n) be the Grassman-

nian of 2-planes in C
n. The map

p : St2,n → Gr(2, n)

that takes an element (a, b) ∈ St2,n into the plane generated by the col-
umn vectors a and b is actually the projection of St2,n on to the orbit space
St2,n/U(2). This realizes the Grassmannian Gr(2, n) as the symplectic quo-
tient C

n×2//U(2). The projection p is U(n)-equivariant and thus the U(n)-
action descends to an action on the quotient Gr(2, n). The action of the
maximal torus U(1)n on Gr(2, n) is Hamiltonian with associated moment
map μ

U(1)n
: Gr(2, n) → R

n such that, if Π = 〈a, b〉 is the plane generated
by a, b ∈ C

n, then

μ
U(1)n

(Π) =
1
2
(|a1|2 + |b1|2, . . . , |an|2 + |bn|2).

The image of the moment map μ
U(1)n

(Gr(2, n)) is the hypersimplex Ξ

μ
U(1)n

(Gr(2, n)) = Ξ =

{
(r1, . . . , rn) ∈ R

n| 0 ≤ 2ri ≤ 1,
n∑

i=1

ri = 1

}
and the set of critical values of μ

U(1)n
consists of those points (r1, . . . , rn) ∈ Ξ

satisfying one of the following conditions
(a) one of the ri’s vanishes or is equal to 1/2;
(b) ∃ I such that εI(r) = 0 with |I| and |Ic| at least two.

Remark 2.1. Note that points satisfying (a) constitute the boundary of
Ξ, while points satisfying condition (b) are the inner walls of Ξ. Moreover,
condition (a) is equivalent to the following

(a′) ∃ I such that εI(r) = 0 with |I| = 1 or |I| = n− 1
Therefore, a wall in Ξ has equation

(2.1) εI(r) = −εIc(r) = 0

for some index subset I ⊂ {1, . . . , n}. Denote by WI or WIc the wall of
equation (2.1). (In Section 4, the choice of either WI or WIc will encode
the wall crossing direction.) The walls separates the regions Δi of regular
values, called chambers, for which εI(r) �= 0 for any I ⊂ {1, . . . , n}. An
index set I is said to be short if εI(r) < 0, and long if its complement
is short. Geometrically, an index set I is short if the polygon space M(r)
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contains configurations [e1, . . . , en] where the edges ei, for i ∈ I, are all
positive proportional to each other. For example, a polygon as in figure 1
exists in M(r) if and only if the index set I4 = {1, 3, 4, 6} is short.

Since for any regular value either I or Ic is short, and this is consistent
within the chamber Δi containing r, it follows that a chamber Δi is uniquely
determined by the collection of short sets

S(Δi) := {I ⊂ {1, . . . , n} | I is short for any r ∈ Δi}.
Given I ∈ S(Δi), the wall WI is in the closure of Δi if and only if I is
maximal (with respect to the inclusion) in S(Δi). A chamber Δi is external
if its closure contains an outer wall. Equivalently, this means that there
exists a cardinality-1 set {j} ∈ S(Δi) which is not contained in any other
short set.

Under a canonical diffeomorphism between M(r) and M(λr) the sym-
plectic forms are proportional (ωλr = λωr). Hence, the condition that fixes
the perimeter

∑n
i=1 ri = 1 is not restrictive and allows one to work with the

compact polytope Ξ rather than with the positive octant R
n
+, whose cham-

bers of regular values are cones. The particular choice
∑n

i=1 ri = 1 descends
from the moment map μ

U(2)
(or equivalently from considering orthonormal

frames in St2,n).

Proposition 2.2. (Hausmann–Knutson [HK97]) For generic r ∈ Ξ, the
polygon space M(r) is the symplectic reduction relative to the U(1)n-action
on the Grassmaniann Gr(2, n) at the level set r, i.e.,

M(r) � U(1)n\μ−1
U(1)n

(r) = Gr(2, n)//rU(1)n.

Note that one recovers the previous description of M(r) as the symplectic
quotient Sr//SO(3) performing the reduction of C

n×2 by U(1)n × U(2) in
the opposite order. In fact, let μ̃U(1)n : C

n×2 → R
n be the moment map for

the U(1)n action on C
n×2. Clearly

μ̃U(1)n(a, b) =
1
2
(|a1|2 + |b1|2, . . . , |an|2 + |bn|2)

and

μ̃−1
U(1)n(r) �

n∏
j=1

S3√
2rj

.

The torus U(1)n acts diagonally on
∏n

j=1 S3√
2rj

and the projection map

μ̃−1
U(1)n(r) → C

n×2//r U(1)n
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is just the Hopf map

Hn :
∏
j

S3√
2rj
→

∏
j

S2
rj

,

(a, b) �→ (H(a1, b1), . . . , H(an, bn)),

where

H(ai, bi) =
( |ai|2 − |bi|2

2
, Re(āibi), Im(āibi)

)
and Re(āibi) and Im(āibi) are the real and imaginary part of āibi ∈ C. Note
that on each sphere the map Hn is obtained from the quaternionic Hopf
map

H̃(a�, b�) = i[(|a�|2 − |b�|2) + 2ā�b� j].

The residual U(2)/U(1) � SO(3) action is then the one described above.
Since these two descriptions of M(r) obtained by performing reduction

in stages in different order will play a central role along the paper, we
find it convenient to explore here the relation between the two. Denote
by p−1(μ−1

U(1)n(r)) the preimage in St2,n of the r-level set in Gr(2, n). Then

p−1(μ−1
U(1)n(r)) is the set of (a, b) ∈ St2,n such that each row has norm 2ri,

i.e.,

p−1(μ−1
U(1)n(r)) = {(a, b) ∈ St2,n : |ai|2 + |bi|2 = 2ri ∀i = 1, . . . n}.

This naturally defines the inclusion map

(2.2) ı : p−1(μ−1
U(1)n(r)) ↪→ μ̃−1

U(1)n(r) �
∏
j

S3√
2rj

.

It follows that

Hn(ı(p−1(μ−1
U(1)n(r)))) = μ−1

SO(3)(0) =

⎧⎨⎩(e1, . . . , en) ∈
∏
j

S2
rj
|
∑

i

ei = 0

⎫⎬⎭ .

The fact that the vectors ei := H(ai, bi) sum up to 0 follows from the
conditions for (a, b) ∈ St2,n:

H(ai, bi) =

(
n∑

i=1

|ai|2 − |bi|2
2

,

n∑
i=1

Re(āibi),
n∑

i=1

Im(āibi)

)
= 0.
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Thus, the following diagram embodies the rich geometric structure of M(r) :
(2.3)

St2,n ⊇ p−1(μ−1
U(1)n(r))

p

��

� � �� ı(p−1(μ−1
U(1)n(r))) ⊆∏

j S3√
2rj

Hn

��
Gr(2, n) ⊇ μ−1

U(1)n(r)

U(1)n

���������������
μ−1

SO(3)(0) ⊆∏
j S2

rj

s

U(2)/U1�SO(3)
�����������������

M(r)

Remark 2.3. In [KM] Kapovich and Millson define the so-called bend-
ing flows on the polygon space M(r). As proved in [HK97], these form
the residual torus action from the Gelfand–Cetlin system on the Grass-
mannian Gr(2, n). The bending flows define a toric action on the polygon
space M(r) if and only if it is possible to choose a system of n − 3 non-
intersecting and nowhere vanishing diagonals. For n = 4, 5, 6, Hausmann
and Knutson [HK97, Section 6] determine explicit combinatorial condi-
tions depending on r ∈ R

n
+ for the bending action on M(r) to be toric; see

also [M]. In particular, for n = 5, in [HK00], Hausmann and Knutson prove
that M(1, 1, 1, 1, 1) is not toric. In fact, it has Riemann–Roch number 6 and
Euler characteristic 7. Still, for small ε, the length vector (1+ε, 1, 1, 1, 1+ε)
is in the same chamber as (1, 1, 1, 1, 1) and the bending flows define a toric
action on the polygon space M(1 + ε, 1, 1, 1, 1 + ε); cf. [HK97, HK00].
Consequently in the same chamber, we can obtain both toric and non-toric
manifolds, i.e., being toric is not an invariant of the chamber.

3. The symplectic volume of M(r)

The goal of this of this section is to prove an explicit formula for the
volume of polygon spaces. The volume of M(r) had been already com-
puted [Ta01, Kh], still we believe that the proof we give via Martin’s
localization Theorem has some independent interest. Moreover, the volume
formula Theorem 3.4 has a central role for our description of the cohomology
ring H∗(M(r), C) in Theorem 5.8.

3.1. Martin’s results. In this section, we give some basic definitions and
results in equivariant cohomology. On this topic, there is a rich literature,
in particular we refer to the survey papers [AB] and [Du], and also the
book [Ki].

Let G be a compact Lie group acting on a smooth manifold M in a
Hamiltonian way, with moment map μ : M → g∗. The equivariant cohomo-
logy of M is defined to be the ordinary cohomology of MG := EG ×G M,
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where EG is the total space of the universal bundle EG → BG, BG being
the classifying space of the group G.

Let ξ ∈ (g∗)G be a regular value for the moment map μ, fixed by the
co-adjoint G-action. Assume also that G acts freely on μ−1(ξ), so that the
orbit space μ−1(ξ)/G := M//

ξ
G is a manifold.

In [Ki], Kirwan proved that there exists an epimorphism

k : H∗
G(M) → H∗(M//

ξ
G),

which is known as the Kirwan map.
The surjectivity of the Kirwan map rises the hope that a good deal of

information about the cohomology ring H∗(M//
ξ
G) of a reduced space can

be computed from the equivariant cohomology H∗
G(M) of M. The extra

information encoded by the equivariant cohomology turns out to be related
to the orbit structure of the G-action, and in this sense equivariant coho-
mology is the natural setting for results, known as localization Theorems,
which enables many computation to be reduced to the fixed point set of the
G-action.

Our proof of the volume formula (Theorem 3.4) for the moduli space of
polygons is based on a localization Theorem due to Martin [Ma]. A similar
result has been proven independently by Guillemin and Kalkman [GK].
In [Ma] it is calculated, as an example, the symplectic volume of the moduli
space M(1, . . . , 1) of polygons with an odd number of edges all of length 1.
In Section 3.2, we prove that, mutata mutandis, Martin’s techniques hold
for any generic r ∈ R

n
+.

Assume now that M is symplectic. Endow M with a Hamiltonian action
of a torus T with associated moment map μ : X → t∗. Let p0 and p1 be
two regular values of the moment map μ. A transverse path Z is a one-
dimensional submanifold Z ⊂ t∗ with boundary {p0, p1} such that Z is
transverse to μ. A wall in t∗ is defined to be a connected component of
μ(MH) where MH is the fixed point set for some oriented subgroup H � S1

of T.
Orient H as follows: first orient Z from p0 to p1. Each positive tangent

vector field in TqZ, thought as an element of t∗, defines a functional on t
which restricts to a non-zero functional on h:= Lie(H). The orientation of
H is defined to be the positive one with respect to this functional.

Theorem 3.1 (Localization Theorem [Ma]). Let p0 and p1 be regular
values of the moment map μ joined by a transverse path Z having a single
wall-crossing at q and let H � S1 be the oriented subgroup associated to the
wall-crossing from p0 to p1. There exists a map

λH : H∗
T (M) → H∗

T/H(MH),
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called localization map, such that, for any a ∈ H∗
T (X),∫

M//p0
T

k0(a)−
∫

M//p1
T

k1(a) =
∫

MH//q T
kq(λH(a|

MH
))

where the maps ki : H∗
T (M) → H∗(M//pi

T ) are the Kirwan maps, MH//qT

is the symplectic quotient of μ−1
|
MH

(q) ∩MH by the quotient subgroup T/H

and kq : H∗
T/H(MH) → H∗(MH//qT ) is the associated Kirwan map.

It is possible to describe the localization map λH in terms of equivariant
characteristic classes. As pointed out in [AB], the functorial nature of the
construction that to M associates MG enables one to define equivariant
correspondents of the concepts of ordinary cohomology in a natural way. In
particular, if V is a vector bundle over M, then any action of G on V lifting
the action on M can be used to define a vector bundle VG = EG ×G V
over MG that extends the bundle V → M. Thus, for example, the first
Chern class of VG, c1(VG), naturally lies in H∗(MG) =: H∗

G(M) and is
called the equivariant first Chern class of V, denoted by cG

1 (V ). All other
equivariant characteristic classes are defined in a similar way. (See also [Ma],
Appendix B.)

As before, H � S1 is the subgroup of T associated to the wall-crossing
we are examining. Let T ′ ⊂ T be a complement of H, i.e., T = T ′ × H.
This defines an isomorphism H∗

T (MH) ∼= H∗
T ′(M

H)⊗H∗
H(MH). Note that

H∗
H(MH) ∼= H∗(BH) (it is enough to remember that H∗

H(MH) is defined
to be the ordinary cohomology ring H∗(EH ×H MH) and to note that H
acts trivially on its fixed point set MH). Therefore

H∗
T (MH) ∼= H∗

T ′(M
H)⊗H∗(BH).

It follows that the restriction to MH of any class a ∈ H∗
T (M) decomposes

as a|
MH

=
∑

i≥0 ai ⊗ ui where u is the positive generator of H∗(BH) and
the ai are elements in H∗

T ′(M
H).

Proposition 3.2 ( [Ma]). With the notation above,

λH(a) = k(MH
i )

∑
i≥0

ai � sw
i−ρ+1,

where k(MH
i ) is the greatest common divisor of the weights of the H-action

on the fibers of the normal bundle νMH
i → MH

i , sw
j denotes the jth T ′-

equivariant Segre class of (νMH , H) and ρ is the function (constant on the
connected components of MH) such that 2ρ = rank(νMH).

The next result relate integration over the symplectic quotients respec-
tively by a non abelian group G and by a maximal torus in G.

Let G be a connected compact Lie group, which acts on the smooth
manifold M in a Hamiltonian way, with associated moment map μG. Let
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T be a maximal subtorus in G. The restriction of the G-action defines a
Hamiltonian T -action on M (with associated moment map μT ). There is
a natural restriction map rG

T : H∗
G(M) → H∗

T (M) between the equivari-
ant (with respect to G and T ) cohomology rings. To fix the notation, C

m
(w)

denotes the complex space C
m endowed of the S1-action with weight w and

C(w) := M × Cw is the total space of an equivariant line bundle over M.

Theorem 3.3 (Equivariant integration formula [Ma2]). For all a ∈
H∗

G(M), ∫
M//G

kG(a) =
1
|W |

∫
M//T

kT

(
rG
T (a) �

∏
α∈Δ

cT
1 (Cα)

)
,

where |W | is the order of the Weyl group of G and Δ is the set of roots
of G.

3.2. The volume theorem.

Theorem 3.4. For generic r ∈ R
n
+,

volM(r) = − (2π)n−3

2(n− 3)!

∑
Ilong

(−1)n−|I| εI(r)n−3

where I ⊂ {1, . . . , n} is long if and only if εI(r) =
∑

i∈I ri −
∑

i∈Ic ri > 0.

Proof. The first step in the proof is to apply Theorem 3.3 and write the
volume of M(r) as

volM(r) =
1
2

∫
Sr//S1

kS1(rSO(3)
S1 (a) � cS1

1 (C(1)) � cS1

1 (C(−1))),

where a ∈ H∗
SO(3)(Sr) is such that kSO(3)(a) is the volume form on

Sr//SO(3) = M(r) and S1 is a (arbitrarily chosen) maximal subtorus of
SO(3). (We have already entered in the formula that the Weyl group of
SO(3) is Z/2Z and that the set of roots of SO(3) is {±1}.)

The second step is to apply the localization Theorem 3.1 to localize the
calculation of the integral above to data associated to the fixed points set
of the S1-action.

Remember that the symplectic structure on Sr is defined by the 2-form
ω =

∑n
j=1

1
rj

p∗jωj , where pj : Sr → S2
rj

is the natural projection on the
jth factor and ωj is the volume form on the sphere S2

rj
. It is a calculation

to check that, if α is the volume form on the unit sphere and ωFS is the
Fubini–Study form on CP

1 � S2, then ωj = rjα = 2rjωFS.
On each sphere consider the line bundle O(2rj) → S2

j . The tensor product
of their pullbacks p∗jO(2rj) defines on Sr the line bundle L := O(2r1)� · · ·�
O(2rn) (known in literature as the prequantum line bundle of Sr). Observe
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that ωFS is the first Chern class ofO(1), precisely [ωFS
2π ] = c1(O(1)). It follows

by the definition of the symplectic form ω on Sr that[ ω

2π

]
= c1(O(2r1) � · · ·�O(2rn)) = c1(L).

The construction above is well defined just for integral r1, . . . , rn, so let
us restrict to the case r ∈ Z

n
+ and prove the stated result for the volume

of M(r). Then, for each λ ∈ R
+, we get the volume of M(λr) by rescal-

ing. Indeed, volM(λr) = (λ)n−3(volM(r)), thus the formula holds also for
rational ri. Finally, by density, the result extends to r ∈ R

n
+.

Let a be the (n−3)th power of the first equivariant Chern class c
SO(3)
1 (L)

of the prequantum line bundle L (normalized by a factor (2π)n−3

(n−3)! ). Then
its image k(a) through the Kirwan map k : H∗

SO(3)(Sr) → H∗(Sr//SO(3)) is
the volume form on M(r) :

vol M(r) =
(2π)n−3

(n− 3)!

∫
M(r)

k(cSO(3)
1 (L)n−3).

We now apply the equivariant integration formula (Theorem 3.3). The
restriction r

SO(3)
S1 maps c

SO(3)
1 (L)n−3 to cS1

1 (L)n−3, thus

volM(r) =
1
2

(2π)n−3

(n− 3)!

∫
Sr//S1

kS1(cS1

1 (L)n−3 � cS1

1 (C(1)) � cS1

1 (C(−1)))

and the first step is done.
In order to apply the localization Theorem 3.1 we make an explicit choice

of a maximal subtorus S1 ⊂ SO(3) : let S1 be the subgroup that acts on
each sphere by rotation along the z-axis. This action is Hamiltonian with
moment map the height function

μ : S2
rj
→ s1 � R,

ej = (xj , yj , zj) �→ ht(ej) = zj .

Note that the fixed points of this action are the north pole Nj and the south
pole Sj and the image μ(S2

rj
) is the segment [μ(Sj), μ(Nj)] = [−rj , rj ] (in

agreement with the convexity Theorem).
These observations extend easily to the product manifold Sr : consider on

Sr the circle action by rotation around the z-axis of each sphere. This action
is Hamiltonian and, by linearity, has moment map the sum of the heights,
i.e., μ(e1, . . . , en) =

∑n
j=1 zj .

A point (e1, . . . , en) is fixed by this action if and only if ej ∈ {Nj , Sj}
for each j ∈ {1, . . . , n}, and these points are isolated. For these points we
introduce a more handy notation: let I be any subset of {1, . . . , n}. We define
fI to be the point (e1, . . . , en) ∈ Sr such that ej is a north pole if j ∈ I and
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a south pole if j ∈ Ic. Thus, all the fixed points are an fI for some index set
I and

μ(fI) =
∑
i∈I

ri −
∑
i∈Ic

ri = εI(r).

Remark 3.5. Note that εI(r) �= 0 for all I because we assumed r generic.
This implies that 0 is a regular value of the moment map μ. In fact dxμ is
identically 0 if and only if x = fI : for each tangent vector v = (v1, . . . , vn) ∈
TxS, dxμ(v) =

∑
j ζj , where ζj is the third component of vj . So dxμ ≡ 0 ⇐⇒

ζj = 0 ∀j ⇐⇒ x = fI for some I.

From the Atiyah and Guillemin–Sternberg convexity Theorem, the image
μ(Sr) is the convex hull of the points μ(fI), i.e.,

μ(Sr) =

[
−

n∑
i=1

ri,
n∑

i=1

ri

]
.

The idea is now to apply Theorem 3.1 to calculate the volume of Sr//S1.
Choose p0 = 0 and p1 >

∑n
i=1 ri, so that μ−1(p1) is empty, this implies that

the integral over Sr//S1(p1) is zero and∫
Sr//S1

k(ã) =
∑∫

XH//T (q)
kq(λH(ã|

XH
))

where the sum is made over the walls μ(XHi) that the path Z = [0, p1] ⊂ R

crosses at qi.
Moreover, note that the walls in μ(Sr) are just the points μ(fI), and that

the path Z crosses the walls μ(fI) only for those I such that εI(r) > 0.
Let I be the family of all these index sets I. Since that the quotient spaces
XH//T (q) are just points, we obtain∫

Sr//S1

k(ã) =
∑
I∈I

kI(λI(ã|fI
)).

Now we will study the normal bundle νfI in order to work out the neces-
sary details to use the equivariant description of λfI

(see Proposition 3.2).
The fI ’s are points thus for each I the normal bundle νfI is the direct

sum of copies of TNjS
2
rj

and TSjS
2
rj

. Precisely

νfI � C
|I|
(1) ⊕ C

n−|I|
(−1) .

The equivariant Segre classes that appear in Proposition 3.2 formally lie in
H∗

T/H(fI), where H � S1 is the subgroup of T associated to the wall μ(fI);
in our case T is S1 itself, so sw(νfI) lies in the de Rham cohomology ring
H∗(fI). The bundle νfI has rank one, and the jth Chern classes cj(C(±1))
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are zero for each I and j (because, for each I, νfI is a line bundle over a
point). Then

cw(νfI) = (−1)n−|I|

and

sw
j (νfI)

{
(−1)n−|I| j = 0,

0 otherwise.

Moreover, the greatest common divisor k(fI) = 1 for each I because the
weights are all ±1.

We have now all the ingredients to apply the equivariant formula in
Proposition 3.2 and calculate λI(ã|fI

), with ã = cS1

1 (L)n−3 � cS1

1 (C(1)) �

cS1

1 (C(−1)).
From the construction of the line bundle L we made above, it follows that

L|fI
= C(εI(r)) where again I is the index set that “detects” the north poles.

Thus

cS1

1 (L)|fI
= (εI(r))u,

where u is the positive generator of the equivariant cohomology of a point
H∗

S1(fI). Similarly,

cS1

1

(
C(1)

)
|fI

= u, cS1

1

(
C(−1)

)
|fI

= −u.

So
ã|fI

= −(εI(r))n−3un−1

and

λI(ã|fI
) = −(−1)n−|I|(εI(r))n−3un−1.

To finish the proof we should now apply the Kirwan map kq : H∗
T/H(XH) →

H∗(XH//T (q)) as in Theorem 3.1. Since in our case T is S1 itself and the
fixed points sets XH are the fI ’s, the map kq : H∗(fI) → H∗(fI) is the
identity. Thus, summing on all the admissible I, the result follows. �

3.3. Examples. Let Δ0 be the chamber in Ξ ∈ R
5 determined by its

collection of short sets

S(Δ0) = {{i} | i = 1, . . . , 5} ∪ {{j, k} | j, k = 1, 2, 4, 5}
∪ {{i, j, k} | i, j, k = 1, 2, 4, 5}.

Consequently, the collection of r0-long sets is

I(r0) = {{3, j}, {3, j, k} : j, k = 1, 2, 4, 5} ∪ {I ⊆ {1, . . . , 5} : |I| = 4, 5}.



MODULI SPACES OF POLYGONS 189

Note that the chamber Δ0 is not empty, for example, 1
7(1, 1, 3, 1, 1) ∈ Δ0.

Then, by Theorem 3.4, it follows (by plain computation) that the volume of
the associated symplectic quotient M(r0) is

volM(r0) = 2π2(r0
1 + r0

2 − r0
3 + r0

4 + r0
5)

2.

Because the perimeter
∑n

i=1 ri = 1 is fixed on Ξ, one also obtains
vol M(r0) = 2π2(1− 2r0

3)
2.

Consider now the adjacent chamber Δ1 characterized by

S(Δ1) = {{i} | i = 1, . . . , 5} ∪ {{j, k} | j, k = 1, 2, 4, 5} ∪ {1, 3}
∪ {{1, j, k} | j, k = 2, 4, 5}.

Also the chamber Δ1 is not empty, as for example the lengths vector
2
11

(
1
2 , 1, 2, 1, 1

)
is in Δ1. The closures of Δ0 and Δ1 intersect in the wall

of equation ε{1,3}(r) = ε{2,4,5}(r) = 0. This means that {1, 3} is r0-long and
r1-short, while its complement {2, 4, 5} is r1-long and r0-short. This is the
only difference between in the collections of r0-long sets and r1-long sets.
Hence, applying Theorem 3.4, we get

volM(r1) = 4π2r1
1(r

1
2 − r1

3 + r1
4 + r1

5).

Again, using the fixed perimeter condition, one obtains volM(r1) =
4π2r1

1(1− r1
1 − 2r1

3).

4. Crossing the walls

In this section, we explicitly describe how the diffeotype of the manifold
M(r) changes as r crosses a wall in Ξ = μ

U(1)n
(Gr(2, n)).

The chambers Δi of regular values in the convex polytope Ξ are con-
vex polytopes themselves. They are separated by walls, i.e., by the images
μ

U(1)n
(Gr(2, n)S1

) of the sets of points fixed by the circle subgroups of U(1)n.

For r0 and r1 in different chambers Δ0 and Δ1, the symplectic reductions
M(r0) and M(r1) are related by a birational map that can be described in
terms of blowing up and down submanifolds. This follows from a general
construction due independently to Brion–Procesi [BP] and to Guillemin–
Sternberg [GS89]. In this section, we show that these submanifolds are
resolutions of the singularity corresponding to the degenerate polygon in
the singular quotient M(rc) (where rc is the wall-crossing point) and char-
acterize them in terms of polygon spaces of lower dimension.

Through all the paper we assume a single wall-crossing, meaning that the
wall-crossing point is not on a intersection of walls, but lies on one and only
one wall. This also implies that the quotient M(rc) has only one critical
point. The assumption is not restrictive since any non-single wall-crossing
can be decomposed in a finite number of subsequent single wall-crossing;
cf. [GS89].
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In [GS89] Guillemin and Sternberg give a thorough analysis of wall-
crossing problems relative to (quasi-free) S1-actions. They also point out
that their construction can be made H-equivariant, when H is any compact
group commuting with the S1-action. This is our case: in fact we will first
perform the symplectic reduction by a complement H of the S1 associated
to the wall and then apply the analysis as in [GS89] to the remaining S1-
action. Still there is a small subtlety here, since the action of U(1)n is not
effective.

In this section, we prove the following Theorem 4.1. Before stating that,
let us introduce some notation: consider r0 and r1 regular values of μU(1)n

lying in different chambers, Δ0 and Δ1 respectively, separated by the wall of
equation

(4.1) εIp(r) = 0.

Assume also that the lengths vectors r0 ∈ Δ0 and r1 ∈ Δ1 satisfy

(4.2) εIp(r
0) > 0 and εIp(r

1) < 0

and call WIp the wall of Equation (4.1) together with the wall-crossing direc-
tion from Δ0 to Δ1. Moreover, for any index set I ⊂ {1, . . . n}, let MI(r)
be the (eventually empty) submanifold of M(r) of those polygons such that
the edges ei, for i ∈ I, are positive proportional to each other. Precisely

MI(r) := M̃I(r)/SO(3),

where

M̃I(r) := {(e1, . . . , en) ∈ Sr |
n∑

j=1

ej = 0, ei = λkek, ∀i, k ∈ I, λk ∈ R+}.
(4.3)

Theorem 4.1. Let the lengths vector r cross a wall WIp in Ξ as above.
Then the diffeotype of the moduli space of polygons M(r) changes by blowing
up MIc

p
(r0) � CP

p−2 and blowing down the projectivized normal bundle of
MIp(r1) � CP

q−2.

The polygon spaces MIp(r
1) and MIq(r

0) are resolutions of the singularity
corresponding to the degenerate polygon [P c] in M(rc), and both are dom-
inated by the blow-up M̃ of M(rc) at the singular point, with exceptional
divisor CP

p−2 × CP
q−2.

Proof. Let H ′ := {diag(eiβ1 , . . . , eiβn−1 , 1) | eiβj ∈ S1 ∀j = 1, . . . , n− 1} ⊂
U(1)n be a complement of the diagonal circle {diag(eiθ, . . . , eiθ)} ⊂ U(1)n.
The group H ′ acts effectively on Gr(2, n) by restriction of the U(1)n-action
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with associated moment map

μH′ : Gr(2, n) → R
n−1,

(a, b) �→ 1
2
(|a1|2 + |b1|2, . . . , |an−1|2 + |bn−1|2).

The moment polytope μH′(Gr(2, n)) is the image of Ξ via the projection
map R

n → R
n−1 that drops the last coordinate. Since the action of U(1)n is

not effective (the diagonal circle fixes every point), one can easily see that
both the quotients

μ−1
U(1)n(r1, . . . , rn)/U(1)n and μ−1

H′ (r1, . . . , rn−1)/H ′

are diffeomorphic, and each is the moduli space of polygons M(r). Note in
particular that rn is uniquely determined by r1, . . . , rn−1. In other words,
if (r1, . . . , rn) are coordinates in Ξ, then the coordinates r1, . . . , rn−1 on the
projected polytope μH′(Gr(2, n)) satisfy

rn = 1−
n−1∑
i=1

ri.

It follows that the wall εIp(r) = 0 is mapped in μH′(Gr(2, n)) onto the wall
of equation

(4.4)
∑
i∈Ip

ri =
1
2
.

In particular, external walls satisfy 2
∑

i∈Ip
ri = 1 for Ip of cardinality 1 or

n− 1. Note that whenever (4.4) holds, then the condition
∑n

1 ri = 1 implies
2
∑

i∈Ic
p
ri = 1, where Ic

p is the complement of Ip in {1, . . . , n}. Therefore,
there exists at least one index i ∈ Ip and at least one index j ∈ Ic

p such
that ri �= 0 and rj �= 0. Since M(r) is symplectomorphic to M(σ(r)) for any
permutation σ of the n edges, it is not restrictive to assume Ip = {1, . . . p}
and r1 �= 0 as well as rn �= 0.

The orientation of the circle associated to WIp is determined accordingly
with the wall-crossing direction. This means that among the directions

v± = ±(−1, . . . ,−1︸ ︷︷ ︸
p

, 0, . . . , 0)

normal to the wall (4.4), we wish to choose the one that has positive inner
product with the vector (r1 − r0) ∈ R

n−1. This is the case for v− (it follows
from assumption (4.2)), and therefore the circle associated to WIp is

S1 := {diag( e−iθ, . . . , e−iθ︸ ︷︷ ︸
p

, 1, . . . , 1)} ⊂ H ′ ⊂ U(1)n.
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Let rc be the wall-crossing point and let

H := {diag(1, eiθ2 , . . . , eiθn−1 , 1) | eiθj ∈ S1 ∀j = 2, . . . , n− 1}
be a complement of S1 in H ′. The group H acts on Gr(2, n) in a Hamiltonian
fashion with associated moment map

μH(a, b) =
1
2
(|a2|2 + |b2|2, . . . , |an−1|2 + |bn−1|2).

We now analyze the S1-action on μ−1
H (rc

2, . . . , r
c
n−1)/H. In particular, if μS1

is the moment map for the residual S1-action on μ−1
H (rc

2, . . . , r
c
n−1)/H, we

will describe the singular reduced space μ−1
S1 (0)/S1 as in [Gu], obtaining

also the two resolutions of the singularity in Theorem 4.1.
To this aim, note that the fixed points set of the S1-action consists only

of the point [P c]:
(4.5)

(
μ−1

H (rc
2, . . . , r

c
n−1)/H

)S1

= [P c] :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1− 2

∑p
2 rc

i 0√
2rc

2 0
...

...√
2rc

p 0
0

√
2rc

p+1
...

...
0

√
2rc

n−1

0
√

1− 2
∑n−1

p+1 rc
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To prove (4.5) note that an element (a, b) ∈ μ−1
H (rc

2, . . . , r
c
n−1)/H is fixed by

the S1-action if and only if{
ai = 0, ∀i = p + 1, . . . , n,

bj = 0 ∀j = 1, . . . , p.

It then follows from the moment map conditions that |ai| =
√

2rc
i for all i =

2, . . . , n and |bj | = √
2rc

j for all j = p+1, . . . , n. Recalling that
∑n

1 |ai|2 = 1
and

∑n
1 |bi|2 = 1 since (a, b) ∈ St2,n, we get that

a1 =

√√√√1− 2
p∑
2

rc
i eiφ1 and bn =

√√√√1− 2
n−1∑
p+1

rc
i eiφn

for some φ1, φn ∈ [0, 2π[. Modulo the SU(2)-action, we can then take a1 and
bn to be real. Now modulo the H action, we can take e−iφ1ai, i = 2, . . . , p,
and eiφnbj , j = p + 1, . . . , n− 1, to be real as well, and (4.5) follows.

In a neighborhood U ⊂ μ−1
H (rc

2, . . . , r
c
n−1)/H of the fixed point [P c] we give

a local system of coordinates (w2, . . . , wp, zp+1, . . . , zn−1) ∈ C
n−2, centered
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at [P c], such that

(4.6) P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 0
l2 w2
...

...
lp wp

zp+1 mp+1
...

...
zn−1 mn−1

0 mn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∀P ∈ U

with lj and mk real functions of (w, z) and of the wall-crossing value rc.
These local coordinates can be determined as follows. Given (a, b) ∈ U con-
sider a non-zero minor, for example the one formed by the first and the last
row (this clearly does not vanish for U neighborhood of [P c] small enough).
Then using the U(2) action we can rewrite (a, b) as

(4.7)

⎛⎜⎜⎜⎜⎜⎝
l̃1 0
z̃2 w̃2
...

...
z̃n−1 w̃n−1

0 m̃n

⎞⎟⎟⎟⎟⎟⎠
where l̃1 = |a1|2 + |b1|2, m̃n = |an|2 + |bn|2 and

(4.8) z̃i =
aibn − anbi

a1bn − anb1
, w̃i =

a1bi − aib1

a1bn − anb1
.

Writing z̃j = |z̃j |eiθ̃j for j = 2, . . . , p and w̃k = |w̃k|eiθ̃k for k = p+1, . . . , n−
1, one can see that, modulo the H-action, (4.7) becomes (4.6), where

wj = e−iθ̃j w̃j , lj = |z̃j | =
√

2rc
j − |wj |2, ∀j = 2, . . . , p,

zk = e−iθ̃k z̃k, mk = |w̃k| =
√

2rc
k − |zk|2 ∀k = p + 1, . . . , n− 1

and consequently

l1 =

⎛⎝1− 2
p∑

j=2

rc
j +

p∑
j=2

|wj |2 −
n−1∑

k=p+1

|zk|2
⎞⎠1/2

;

mn =

⎛⎝1− 2
n−1∑

k=p+1

rc
k −

p∑
j=2

|wj |2 +
n−1∑

k=p+1

|zk|2
⎞⎠1/2

.
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In such a neighborhood U of [P c] the action of S1 is then

diag(e−iθ, . . . , e−iθ, 1, . . . , 1) · (w2, . . . , wp, zp+1, . . . , zn−1)

= (e−iθw2, . . . , e
−iθwp, e

iθzp+1, . . . , e
iθzn−1)

with associated moment map

μS1(w2, . . . , wp, zp+1, . . . , zn−1) =
1
2

⎛⎝− p∑
j=2

|wj |2 +
n−1∑

k=p+1

|zk|2
⎞⎠ .

The critical level set
p∑

j=2

|wj |2 =
n−1∑

k=p+1

|zk|2

is a conic subset of C
n−2. Precisely, it is the cone over the product of the two

spheres S2p−3 = {wj |
∑p

j=2 |wj |2 = 1} and S2q−3 = {zk |
∑n−1

k=p+1 |zk|2 =
1}, where q := n − p. The action of S1 on this product is free so the orbit
space W = (S2p−3 × S2q−3)/S1 is a compact manifold and the quotient
μ−1

S1 (0)/S1 in the neighborhood U of [P c] looks like a cone CW over W with
vertex at {0} = [P c].

From the action (w2, . . . , wp) �→ (e−iθw2, . . . , e
−iθwp) of S1 on S2p−3 one

gets the Hopf fibration
π : S2p−3 → CP

p−2.

Since S1 acts also on S2q−3, one can consider the associated bundle

(S2p−3 × S2q−3)/S1 → CP
p−2

obtaining a description of W as a fiber bundle over CP
p−2. Reversing the

roles of p and q we get W as a fiber bundle over CP
q−2. Associated with

these two description of W we obtain the desingularizations of M(rc) as in
Theorem 4.1. In fact, since the action of S1 on S2q−3 extends to a linear
action on C

q−1 one can form the associated vector bundle

(4.9) W− := S2p−3 ×π C
q−1

��
CP

p−2.

On this bundle there is a blowing down map β− : W− → CW ,

β−(w2, . . . , wp, zp+1, . . . , zn−1)

=

⎛⎝√√√√ n−1∑
i=p+1

|zi|2 w2, . . . ,

√√√√ n−1∑
i=p+1

|zi|2 wp, zp+1, . . . , zn−1

⎞⎠
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and an embedding of CP
p−2 as the zero section of the bundle (4.9):

ι : CP
p−2 → W−

[w2, . . . , wp] �→ (w2, . . . , wp, 0 . . . , 0).

Moreover, the image of CP
p−2 in W− gets blown down to {0} ∈ CW , and

β− maps W− \ CP
p−2 diffeomorphically onto CW \ {0}.

On the other hand, reversing again the roles of p and q one obtains a
desingularization W+ of M(rc), where W+ is now the bundle

(4.10) W+ := C
p−1 ×π S2q−3

��
CP

q−2

with associated blowing down map β+ : W+ → CW and embedding ι :
CP

q−2 → W+ as the zero section.
Via these two desingularizations we obtain our description of the bira-

tional map from M(r0) to M(r1) with r0 and r1 as in Theorem 4.1.
In fact, for −∑p

j=2 |wj |2+
∑n−1

k=p+1 |zk|2 = −ε the orbit space μ−1
S1 (−ε)/S1

is identical topologically with W−. Note that r1 is then uniquely determined

r1 = l21 = 1−
p∑

j=2

rc
j + ε

and consequently

rn = 1−
n−1∑

k=p+1

rc
k − ε.

This means that r0 := (r1, r
c
2, . . . , r

c
n−1, rn), with r1 and rn as above, satis-

fies εIp(r
0) > 0. Using the right-hand side of diagram (2.3) we can give a

geometric characterization of the CP
p−2 that is blown down by the map β−,

describing it as a lower-dimensional polygon space.
As seen above, CP

p−2 is embedded in W− as the zero section with respect
to the local coordinates (w, z), i.e.,
(4.11)

CP
p−2 = {(w1, . . . , wp, zp+1, . . . , zn−1) | zk = 0 ∀ k = p + 1, . . . , n− 1}.

From (4.8) it follows

(4.12) zk = 0 ⇐⇒ akbn − anbk = 0.

We now want to describe CP
p−2 performing the reductions as the right-hand

side of the diagram (2.3). To this aim, start from (a, b) ∈ p−1(μ−1
U(1)n(r)) ⊂

St2,n satisfying (4.12) for every k = p + 1, . . . , n − 1 and consider it as an
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element in
∏

j S3√
2rj

via the inclusion map ı as in (2.2). Recall that the

Hopf map Hn maps (a, b) to (e1, . . . , en) ∈ ∏
j S2

rj
where ei = 1/2(|ai|2 −

|bi|2, 2Re(āibi), 2Im(āibi)).
Condition (4.12) then implies that for every k = p + 1, . . . , n − 1 the

vectors ek are positive multiples of each other, i.e.,

(4.13) ∀k = p + 1, . . . , n− 1, ∃λk ∈ R+ s.t. ek = λken.

In fact, if an = 0 then ak = 0 (note that bn cannot vanish simultaneously
with an since we assumed rn �= 0) and clearly

ek =
(
−|bk|2

2
, 0, 0

)
=
|bk|2
2|bn|2

(−|bn|2, 0, 0
)

=
|bk|2
2|bn|2 en.

Similarly, if bn = 0 then

ek =
( |ak|2

2
, 0, 0

)
=
|ak|2
2|an|2 en.

If both an and bn are non-zero, from (4.12) we obtain bkāk = bn
an
|ak|2. This

implies

|bk|2 =
b̄n

ān
ākbk =

|b̄n|2
|ān|2 |ak|2.

It then follows that

ek = |ak|2
(

1
2

(
1− |b̄n|2

|ān|2
)

, Re
bn

an
, Im

bn

an

)
=
|ak|2
2|ān|2 en

proving (4.13).
Therefore,

Hn(ı{(a, b) ∈ p−1(μ−1
U(1)n(r)) | akbn − anbk = 0

∀ k = p + 1, . . . , n− 1}) = M̃Ic
p
(r)

and the projective space (4.11) is then the quotient MIc
p
(r) := M̃Ic

p
(r)/SO(3).

In words, MIc
p
(r) is the submanifold of M(r) of those n-gons such that

the last n − p edges are positive multiple one of the other. Note that for
r ∈ Δ0 this is a non-empty submanifold (in fact it is a CP

p−2). In partic-
ular, MIc

p
(r) is naturally diffeomorphic to the (p − 2)-dimensional polygon

space M(r1, . . . , rp,
∑n

k=p+1 rk).
On the other hand, for

−
p∑

j=2

|wj |2 +
n−1∑

k=p+1

|zk|2 = ε
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the orbit space μ−1
S1 (ε)/S1 is identical topologically with W+. Again r1 and

rn are uniquely determined:

r1 = 1−
p∑

j=2

rc
j − ε and rn = 1−

n−1∑
k=p+1

rc
k + ε.

The resulting lengths vector r1 = (r1, r
c
2, . . . , r

c
n−1, rn) satisfies −εIp(r

1) =
εIc

p
(r1) > 0. The zero section of W+ is now the projective space CP

q−2

corresponding to the vanishing of the coordinates wj for j = 2, . . . , p. It
follows then from (4.8) that wj vanishes if and only if a1bj − ajb1 = 0.
Arguments similar to the ones above allow us to identify CP

q−2 with the
submanifold MIp(r) ⊂ M(r). Again, for r ∈ Δ1 the submanifold MIp(r) is
non-empty and is diffeomorphic to the (q − 2)-dimensional polygon space
M(

∑p
j=1 rj , r2, . . . , rn).

Note that on the wall-crossing point rc, εIp(r
c) = 0 and MIp(r

c) = MIc
p
(rc)

is the singular point [P c] in M(rc). Moreover, note that as r0 → rc, we have
εIp(r

0) → 0 and MIc
p
(r0) ⊂ M(r0) collapses to [P c] ∈ M(rc). Similarly, as

r1 → rc, we have εIp(r
1) → 0 and MIp(r

1) ⊂ M(r1) collapses to [P c] ∈
M(rc). Roughly speaking, as r0 → rc, the “width” εIp(r

0) of polygons in
MIc

p
(r0) ⊂ M(r0) goes to zero, and the (p − 2)-dimensional submanifold

MIc
p
(r) collapses to a point when r reaches the wall WIp . Similarly, as r

leaves from the wall WIp to the interior of Δ1, the degenerate polygon [P c]
gets inflated of an εIc

p
(r1) amount, and MIp(r

1) is the (q − 2)-dimensional
submanifold that is born as crossing the wall WIp .

The birational map between M(r0) and M(r1) is hence the composite
of a blow-up followed by a blow-down, where the exceptional divisor is the
product of the flip loci. The maps β+ and β− blow down the flip loci MIc

p
(r)

and MIp(r) to the singular point [P c] ∈M(rc), as in Figure 2. Note that in
Figure 2 there are no moment polytopes, just schematic representations of
the (eventually singular) manifolds. �

Note that the above wall-crossing analysis also holds for external walls. So
in particular, for any i = 1, . . . , n, crossing the wall W{1,...,n}\{i} replaces the
empty set with M(r) � M{i}(r) � CP

n−3. Therefore we have the following
immediate consequence of Theorem 4.1

Proposition 4.2. Let r be in an external chamber Δ of Ξ. Then

M(r) � CP
n−3.

In particular, Proposition 4.2 implies that for n ≥ 5 the Weyl group
acts transitively on the external chambers of Ξ. In fact, for n ≥ 5, Farber,
Hausmann and Schütz [FHS] have shown that, for r’s in different chambers
of Ξ, the polygon spaces M(r) are not diffeomorphic unless their chambers
are related by the Weyl group action.
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Figure 2. Crossing a wall.

4.1. Examples. Let Δ0 and Δ1 be the adjacent chambers in Ξ ∈ R
5 as in

Example 3.3. Note that {3} is a maximal short set in S(Δ0) and therefore
Δ0 is an external chamber. By Corollary 4.2, M(r0) � CP

2.
The closures of Δ0 and Δ1 intersect in the wall of equation

ε{1,3}(r) = ε{2,4,5}(r) = 0,

see Example 3.3. In particular, if one considers the lengths vectors r0 =
1
7 (1, 1, 3, 1, 1) ∈ Δ0 and r1 = 2

11

(
1
2 , 1, 2, 1, 1

) ∈ Δ1, then the segment [r0, r1]
hits the wall at rc = 1

6

(
2
3 , 1, 7

3 , 1, 1
)
. By Theorem 4.1, when crossing this wall

the point M{2,4,5}(r0) � M(r0
2 + r0

4 + r0
5, r

0
1, r

0
3) gets blown up. Therefore,

for all r1 ∈ Δ1, M(r1) is diffeomorphic to CP
2 blown up in one point with

exceptional divisor M{1,3}(r1) � M(r1
1 + r1

3, r
1
2, r

1
4, r

1
5) � CP

1. The maps
β+ and β− blow down M{2,4,5}(r0) and M{1,3}(r1) to the critical point [P c]
where the degenerate polygon has edges

ec
1 =

(
1
9
, 0, 0

)
, ec

2 =
(
−1

6
, 0, 0

)
= ec

4 = ec
5, ec

3 =
(

7
18

, 0, 0
)

.

5. The cohomology ring of M(r)

In this section, we study how the cohomology ring of M(r) changes as
r crosses a wall in the moment polytope Ξ. We apply the Duistermaat–
Heckman Theorem together with the volume formula (Theorem 3.4) to
describe explicitly the cohomology ring H∗(M(r)).

The study of the cohomology ring structure of a reduced space M//G has
been since the 80’s one of the foremost topics in equivariant symplectic geom-
etry. The problem is not closed though. In fact, (even in the well-behaved
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case of a compact connected Lie group G acting on a compact manifold
M) to give an explicit description of the cohomology ring H∗(M//G, C) still
some (non-trivial) work needs to be done. This was already pointed out by
Guillemin and Sternberg in [GS95], who observed that in “nice” situations
(essentially when the Chern class of the fibration μ−1(ξ) → M//G gener-
ates the cohomology ring), then a good deal of information on H∗(M//G, C)
can be deduced from the Duistermaat–Heckman Theorem, if the polynomial
that describes the volume of the symplectic reduction is known. This is the
point of view we take in our analysis.

5.1. The cohomology ring of reduced spaces. In this section, we sum-
marize the main ideas and theorems in [GS95] using the notation of moduli
spaces of polygons. These arguments are valid in more general settings, and
have been applied in [GS95] to flag manifolds and toric manifolds associated
with a simplicial fan. For proofs and more details we refer to [GS95]. Let r
and r0 be regular values of μU(1)n lying in the same chamber and denote by
(M(r), ωr) and (M(r0), ωr0) the associated symplectic quotients. Using this
notation we now state the Duistermaat–Heckman Theorem, which relates
the cohomology classes [ωr] and [ωr0 ] of the symplectic reduced forms ωr

and ωr0 .

Theorem 5.1 (J.J. Duistermaat, G.J. Heckman, [DH]). As differen-
tiable manifolds M(r) = M(r0), and

[ωr] = [ωr0 ] +
n∑

i=1

(ri − r0
i )ci,

where c1, . . . , cn are the first Chern classes of the n line bundles associated
to the fibration μ−1(r) → M(r).

By definition of symplectic volume, we have:

vol M(r) =
∫

M(r)
exp([ωr]) =

∫
M(r0)

exp([ωr0 ] +
n∑

i=1

(ri − r0
i )ci).

Then vol M(r) is a polynomial (on each chamber) of degree n− 3 and

∂α

∂rα
volM(r)|r0

=
1
k!

∫
M(r0)

[ωr0 ]kcα1
1 · · · cαn

n

for α multindex, |α| = α1 + · · ·+ αn = n− 3− k, with 0 ≤ k ≤ n− 3.
In particular, if |α| = n− 3,

(5.1)
∂α

∂rα
volM(r)|r0

=
∫

M(r0)
cα1
1 · · · cαn

n .

If the ci generate the cohomology ring H∗(M(r), C), then Guillemin and
Sternberg observe that it is possible to read from (5.1) the multiplicative
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relations between the generators, concluding the following explicit descrip-
tion of H∗(M(r), C).

Theorem 5.2 ( [GS95]). If c1, . . . , cn generate the cohomology ring
H∗(M(r), C), then H∗(M(r), C) is isomorphic to the abstract ring

C[x1, . . . , xn]/Ann(volM(r)),

where Q(x1, . . . , xn) ∈ Ann(volM(r)) if and only if Q(∂/∂r1, . . . , ∂/∂rn)
vol M(r) = 0 and the isomorphism is given by xi �→ ci.

Therefore, it is a central problem to determine when the ci generate the
cohomology ring H∗(M(r)). When M(r) is toric it is well known that this
is the case (see, for example, [Fu]). Still, there are choices of r for which
the polygon space M(r) is not toric, as it is the case, for example, for r =
(1, 1, 1, 1, 1), cf. [HK00] and Remark 2.3.

In general, let Δ be the set of regular values of μ in the convex polytope Ξ.
The connected components Δ1, . . . ,Δ� of Δ are themselves convex polytopes.
Therefore, by the Duistermaat–Heckman Theorem, the diffeotype of the
reduced space M(r) (thus also its cohomology ring) depends only on the
chamber Δi that contains r. If the closure of Δi contains a vertex of Ξ, then its
associated reduced space is a toric manifold and its associated cohomology
ring is generated by the ci, [GS95].

We prove that this holds for each regular value r by applying the wall-
crossing analysis we did in Section 4, showing that crossing a wall has the
effect of killing some relations, and so (roughly speaking) some of the gen-
erators that were “hidden” appear.

5.2. Wall-crossing and cohomology. By Theorem 4.1, when r crosses
the wall WIp the diffeotype of the reduced manifold M(r) changes by replac-
ing a copy of CP

p−2 in M(r) by a CP
q−2 by means of a blow-up followed by

a blow-down.
In this section, we study how the cohomology ring H∗(M(r)) changes as

r crosses a wall; the main tools to prove our result are the Mayer–Vietoris
sequence and the Gysin sequence, together with the decomposition theorem
as presented in [BBD,CM05].

Let M and M ′ be the moduli spaces of polygons respectively before and
after crossing the wall WIp . Moreover, denote by V and V ′ the tubular neigh-
borhoods in M and M ′ respectively of the submanifolds as in Theorem 4.1:

V = NεCP
p−2 = tubular neighborhood of CP

p−2 ⊂ M,

V ′ = NεCP
q−2 = tubular neighborhood of CP

q−2 ⊂M ′,

U = M \ CP
p−2,

U ′ = M ′ \ CP
q−2.
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By the wall-crossing Theorem 4.1, U = U ′ and U ∩ V = U ′ ∩ V ′ =: Sε. The
Mayer–Vietoris sequences for the manifolds M and M ′ are:

· · · → Hk−1(Sε) → Hk(M) → Hk(U)⊕Hk(V ) → Hk(Sε) → · · ·
· · · → Hk−1(Sε) → Hk(M ′) → Hk(U ′)⊕Hk(V ′) → Hk(Sε) → · · ·

Because Hk(U) = Hk(U ′), the change in the cohomology ring structures
H∗(M) and H∗(M ′) is enclosed in how Hk(V ′) and Hk(V ) map into Hk(Sε).
These maps will be brought to light in the proof of the next proposition.

Proposition 5.3.

H∗(Sε) = H∗(CP
min(p,q)−2)⊗H∗(S2max(p,q)−3)

Proof. By construction, NεCP
p−2 is the total space of a disk fibration over

CP
p−2, and Sε is the total space of the associated fibration in spheres:

NεCP
p−2

D2q−2 ⇒
��

Sε

S2q−3

��
CP

p−2
CP

p−2

The sphere fibration π : Sε
S2q−3

��CP
p−2 induces the following Gysin sequence

→ Hk(CP
p−2) π∗−→ Hk(Sε)

π∗−→ Hk−(2q−3)(CP
p−2) ∧e−→ Hk+1(CP

p−2) →
where π∗ is the map induced in cohomology by the projection map π, π∗ is
the integration along the fibers and ∧e is the wedge product with the Euler
class.

Recall that

Hk(CP
p−2) =

{
C if k = 0, 2, . . . , 2(p− 2),
0 otherwise.

Suppose that q ≥ p. Then the first part of the Gysin map is

C
π∗ �� H0(Sε)

π∗ �� 0
∧e �� 0

π∗ �� H1(Sε)
π∗ �� 0

∧e �� C
π∗ ��

π∗ �� H2(Sε)
π∗ �� 0

∧e �� 0
π∗ �� H3(Sε)

π∗ �� 0 �� . . .

until cohomology groups of degree k = 2p−2 (in fact Hk−(2q−3)(CP
p−2) � 0

for all 0 ≤ k ≤ 2q − 3). Therefore,

(5.2) Hk(Sε) � Hk(CP
p−2) ∀ 0 ≤ k ≤ 2(p− 2).
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At k = 2q − 3 the Gysin sequence goes as follows:

0
π∗ �� H2q−3(Sε)

π∗ �� C
∧e �� 0

π∗ �� H2q−3(Sε)
π∗ �� 0

∧e ��

∧e �� 0
π∗ �� H2q−1(Sε)

π∗ �� C
∧e �� 0 �� . . .

To check this second part the only thing to keep in mind is that Hk(CP
p−2) �

0 for all k ≥ 2q − 3. In fact k ≥ 2q − 3 ≥ 2p− 3 > 2(p− 2). Observing that
k − 2q + 3 = 2(p− 2) ⇐⇒ k = 2(p + q)− 7,

Hk(Sε) � Hk−(2q−3)(CP
p−2) ∀ 2q − 3 ≤ k ≤ 2n− 7.(5.3)

Hk(Sε) � 0 ∀ k : 2(p− 2) < k < 2q − 3 or k ≥ 2n− 6.(5.4)

Summarizing, from (5.2), (5.3) and (5.4), we get

H∗(Sε) = H∗(CP
p−2)⊗H∗(S2q−3).

It is easy to check that if we assume p ≥ q then p and q exchange their roles,
and the result follows. �

Note that H∗(V ) = H∗(CP
p−2) because V retracts on CP

p−2. Similarly,
H∗(V ′) = H∗(CP

q−2), and we have all the ingredients to write the Mayer–
Vietoris sequences for M and M ′ :

H0(M) → H0(U)⊕ C → C → H1(M) → H1(U)⊕ 0 → 0→
→ H2(M) → H2(U)⊕ C → C →

and

H0(M ′) → H0(U ′)⊕ C → C → H1(M ′) → H1(U ′)⊕ 0 → 0 →
→ H2(M ′) → H2(U ′)⊕ C → C →

Assume again that q ≥ p. So, until degree 2(p− 2), the two sequences above
are the same, thus

Hk(M) = Hk(M ′) ∀ 0 ≤ k ≤ 2(p− 2).

At 2(p− 2)+1 the Mayer–Vietoris sequences of the manifolds of M and M ′
are:

→ H2p−3(M) → H2p−3(U)⊕ 0 → 0→ H2p−2(M) → H2p−2(U)⊕ 0 → 0→
→H2p−3(M ′)→H2p−3(U ′)⊕ 0→ 0→H2p−2(M ′)→H2p−2(U ′)⊕ C→ 0→
and, until degree 2q−3 the two sequences differ by the fact that Hk(V ′) = C

while Hk(V ) � 0 for k even, 2p− 3 ≤ k ≤ 2q − 3. Thus,

dim(Hk(M ′)) = dim(Hk(M)) + 1 if k even, 2p− 3 ≤ k ≤ 2q − 3

and
Hk(M ′) = Hk(M) = 0 for k odd.
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At 2q − 3 the Mayer–Vietoris sequences for M and M ′ are

→ H2q−3(M) → H2q−3(U)⊕ 0 → 0→ H2q−2(M) → H2q−2(U)⊕ 0→ 0 →
→H2q−3(M ′)→H2q−3(U ′)⊕ 0→ 0→H2q−2(M ′)→H2q−2(U ′)⊕ 0→ 0→

and so again (just as for 0 ≤ k ≤ 2(p− 2))

Hk(M ′) � Hk(M) k ≥ 2q − 3.

If p ≥ q similar arguments hold, therefore we have proved the following:

Proposition 5.4.

Hk(M ′) = Hk(M) = 0, if k is odd;

Hk(M ′) = Hk(M),
{

0 ≤ k ≤ 2(min(p, q)− 2),
k ≥ 2max(p, q)− 3;

dimHk(M ′) = dimHk(M) + 1 k even, 2p− 2 ≤ k ≤ 2q − 4 (case q ≥ p);
dimHk(M) = dimHk(M ′) + 1 k even, 2q − 2 ≤ k ≤ 2p− 4 (case p ≥ q);

This calculation, done using the Mayer–Vietoris sequences of the ma-
nifolds M and M ′, tells us in which degree the cohomology groups of the
symplectic quotient M(r) change as r crosses a wall WIp .

Even though it is natural- by the construction- to expect that the new
born cohomological classes are polynomial in the class of the blown up
manifold CP

q−2 or CP
p−2, this calculation does not give us such pre-

cise informations. We use the decomposition Theorem due to Beilinson–
Bernstein–Deligne [BBD] to identify precisely the new born classes that
increase the dimension of the cohomology groups of “middle” degrees. To
this aim, some notation needs to be introduced.

Let f : X → Y be a map of algebraic manifolds (i.e., manifolds which
are the set of common zeros of a finite number of polynomials). For each
0 < k < dimX

2 , define Yk := {y ∈ Y : dim(f−1(y)) ≥ k}. The map f is small
if and only if

(5.5) dimYk + 2k < dimX ∀ 0 < k <
dimX

2
;

and semi-small if and only if

(5.6) dimYk + 2k ≤ dimX ∀ 0 < k <
dimX

2
.

Proposition 5.5. At least one of the blow-down maps β+ and β− as in
Theorem 4.1 is small.

Proof. Denote by Y ±k := {y ∈ M(rc) : dim(β−1
± (y)) ≥ k}. If q > p, then β+

is small. In fact

Y +
k =

{
{[P c]} for 1 ≤ k ≤ 2(p− 2)
∅ otherwise.
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Thus, inequality (5.5) for k = 2(p− 2) is verified:

4(p− 2) < 2(n− 3) ⇐⇒ 4p− 8 < 2p + 2q − 6 ⇐⇒ p− 1 < q,

and similarly inequality (5.5) is verified for smaller k’s. Under the assump-
tion q > p the map β− is not semi-small (thus even not small). In fact
Y −k = {[P c]} and inequality (5.6) for k = q − 2 does not hold since

4(q − 2) ≤ 2(n− 3) ⇐⇒ q − 1 ≤ p.

If p > q, then β− is small and β+ is not semi-small. Note that if p = q
then both β− and β+ are small. �

Assume that β+ : M → M(rc) is small. Then H∗(M) = IH∗(M(rc)),
where IH∗(M(rc)) is the intersection cohomology of the singular manifold
M(rc) (see the survey paper by de Cataldo and Migliorini [CM]).

We state the decomposition Theorem just for the special situation of β+

and β− resolutions of the singularity corresponding to the lined polygon
in M(rc). For the statement in full generality, proofs and more details we
refer to the original paper [BBD], and to [CM05] by de Cataldo–Migliorini,
where an alternative proof is given.

In our setting, the decomposition Theorem says that H∗(M ′) is isomor-
phic to the intersection cohomology IH∗(M(rc)) of M(rc) plus polynomials
in the cohomological classes of submanifolds Ci of M. In the moduli space
situation, these submanifolds are just the preimages of the points yi ∈ Y +

k .
If we assume that q ≥ p (which is equivalent to assuming β+ small),

then C := (β−)−1([P c]) is the resolution in M ′ of the singularity [P c]. By
Theorem 4.1,

C = MIp(r) � CP
q−2.

Applying the decomposition Theorem we get:

Theorem 5.6. Let β+ : M → M(rc) be a small resolution of the singularity
in M(rc) and let M ′ be the polygon space birational to M via the single wall-
crossing described above. Then

H∗(M ′) = H∗(M)⊕
q−p⊕
α=0

C
(
PD([MIp(r)]) � cα

1 (N ′)
)

where PD([MIp(r)]) ∈ H2p−2(M ′) is the Poincaré dual of MIp(r) ⊂M ′, and
c1(N ′) is the first Chern class of the normal bundle N ′ to MIp(r) ⊆ M ′.

At the light of this result, to prove that H∗(M(r)) is generated by the
Chern classes ci we need to express the classes PD([MIp(r)]) and the cup
products PD([MIp(r)]) � cα

1 (N ′) as combinations of the ci.
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By Poincaré duality, PD([MIp(r)]) ∈ H2p−2(M ′) and thus we want to
show that, for some constants Aα,

PD([MIp(r)]) =
∑

∑
αi=p−1

Aαcα1
1 · · · cαn

n .

To this aim, we will explicitly describe the classes ci by means of the two
description of the polygon space M(r) that one gets from the U(1)n×U(2)-
action on C

n×2 by performing reduction in stages as summarized in diagram
2.3.

Let r be a regular value in Δ1 such that the reduced manifold M(r) �M ′.
Since the fibration μ−1(r) → M(r) as in (2.3) is trivial, the classes ci of the n-
complex line bundles associated to it are actually the classes ci relative to the
n Hopf fibrations S3√

2ri
→ S2

ri
. These are well known to be the Chern classes

of the tautological line bundle O(−1) over CP
1 (under the identification

CP
1 � S2). More precisely,

(5.7) s∗ci = c1(p∗i (O(−1))) = −[p∗i ωFS],

where s is the fibration s : μ−1
SO(3)(0) → M(r), pi is the projection pi :∏

j S2
rj
→ S2

ri
and ωFS is the Fubini–Study symplectic form.

Proposition 5.7. The Poincaré dual of MIp(r) is the (2p− 2)−class

PD([MIp(r)]) = (−1)p−1
∏

j=2,...,p

(cij + ci1) ∈ H2p−2(M ′)

where Ip = {ij | j = 1, . . . , p}. Moreover first Chern class c1(N ′) of the
normal bundle to MIp(r) is

c1(N ′) = −2(ci2 + · · ·+ cip).

Proof. The polygon space M(r) can also be described as the GIT quotient
of

∏
n CP

1 by the diagonal action of PSL(2, C). Let H → CP
1 be the hyper-

plane bundle. Then the line bundle p∗i H ⊗ p∗jH over
∏

n CP
1 induces a line

bundle Lij on the quotient M(r), cf [Ko]. For all i = 1, . . . , n, let zi be the
first Chern class

zi := c1(Lii) ∈ H2(M(r), Z).

Clearly s∗zi = c1(p∗iO(2)) = 2[p∗i ωFS]. It follows that

zi = −2ci.

In the equilateral case, Kamiyama and Tezuka [KT] prove that the Poincaré
dual of zi+zj

2 is the submanifold of M(1, . . . , 1) consisting of those poly-
gons �e such that ei = ej . This easily generalizes to the non-equilateral case
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(cf. [Ko]), and the Poincaré dual of zi+zj

2 = −(ci + cj) is the submanifold
M{i,j}(r). Since

MIp(r) =
⋂

ij∈Ip\{i1}
M{i1,ij}(r)

the result follows.
Analogously one can prove that the first Chern class c1(N ′) of the normal

bundle to MIp(r) is a linear combination of the Chern classes ci, i = 1, . . . , n.
In fact, the tangent bundle to M(r) is the direct sum p∗1O(2)⊕ · · ·⊕ p∗nO(2)
of the pullbacks of the tangent bundle to each sphere.

The submanifold MIp(r) is the moduli space of polygons obtained as
the quotient by the SO(3)-action on the product of spheres of radii
(
∑

i∈Ip
ri, rip+1 , . . . , rin), with Ip = {i1, . . . , ip}. Since the inclusion

S2∑
i∈Ip

ri
↪→ S2

ri1
× · · · × S2

rip
is the diagonal one, then the tangent bun-

dle to MIp(r) is

(p∗i1O(2)⊗ · · · ⊗ p∗ipO(2))⊕ p∗ip+1
O(2)⊕ · · · ⊕ p∗inO(2)

and therefore the first Chern class of the quotient TM(r)/TMIp(r) is the
sum of (p− 1) among the first Chern classes ci for i ∈ Ip, i.e.,

(5.8) c1(N ′) = −2(ci2 + · · ·+ cip).

�

Note that similar arguments hold if p > q, i.e., if β+ is not small while β−
is. In this case, the decomposition Theorem implies that the cohomology of
M is described as follows

H∗(M) = H∗(M ′)⊕
p−q⊕
α=0

C
(
PD([MIq(r)]) � cα

1 (N )
)
,

where PD([MIq(r)]) ∈ H2q−2(M) is the class of MIq(r) ⊂ M, and c1(N )
is the first Chern class of the normal bundle N to MIq(r) ⊆ M. Moreover
PD([MIq(r)]) ∈ H2q−2(M) and c1(N ) are clearly combinations of the ci’s,
since Proposition 5.7 follows from diagram (2.3) (which holds for any smooth
polygon space, and in particular for any r such that M(r) � M). Thus, by
Theorem 5.2, the following holds:

Theorem 5.8. For r generic, the cohomology ring H∗(M(r), C) of the mod-
uli space of polygons M(r) is generated by the first Chern classes c1, . . . , cn

of the n complex line bundles associated to the fibration μ−1(r1, . . . , rn) →
M(r). So

H∗(M(r), C) � C[x1, . . . , xn]/Ann(volM(r))
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where a polynomial Q(x1, . . . , xn) ∈ Ann(volM(r)) if and only if

Q

(
∂

∂r1
, . . . ,

∂

∂rn

)
vol M(r) = 0

and, as in Theorem 5.2, the isomorphism is given by xi �→ ci.

Note that the formula (5.1) determines not only the cohomology ring of
the polygon space M(r) but also its intersection numbers. Explicit formulas
for these have been obtained by Agapito and Godinho [AG] via a recur-
sion relation in n, by Takakura [Ta01] using “quantization commutes with
reduction” and by Konno [Ko] using algebro-geometric methods. For exam-
ple, consider the lengths vector r = (4, 3, 4, 3, 4) as in [AG, Example 7.1]
(or equivalently its projection onto Ξ). By Theorem 3.4 one calculates that
the volume of M(r) is

vol M(r) = −π2

⎛⎝6
n∑

i=1

r2
i − 2

∑
i
=j

rirj

⎞⎠ .

By the formulas (5.1) one recovers (up to rescaling by 2π2) the results in
[AG], precisely ∫

M(r)
c2
i = −6π2 ∀ i = 1, . . . , 5;∫

M(r)
cicj = 2π2 ∀ i �= j.

Remark 5.9. In [HK98] Hausmann and Knutson compute the cohomology
ring H∗(M(r), Z) in terms of generators they call R and Vi. Denote by L
the collection of r-long sets and define the collection of indeces Ln and Sn

as follows:

Ln := {J ⊂ {1, . . . , n− 1} | J ∪ {n} is long}
Sn := {J ⊂ {1, . . . , n− 1} | J ∪ {n} is short}.

Theorem 5.10 ((Hausmann–Knutson)). For r generic, the cohomology
ring H∗(M(r), Z) is

Z[R, V1, . . . , Vn−1]/IPol

where R and Vi are of degree 2 and IPol is generated by the following three
families:

• V 2
i + RiVi for all i = 1, . . . n− 1;

• ∏
i∈J Vi for all J ∈ Ln;

• ∑
S⊂L,S∈Sn

(∏
i∈S Vi

)
R|L\S|−1 for all L ⊂ {1, . . . , n− 1} long.



208 A. MANDINI

They also relate the generators R and Vi to the first Chern classes c̃i :=
c1(Ai) of circle bundles Ai →M(r) where

Ai := {(e1, . . . , en) ∈
n∏

i=1

S2
ri
|

n∑
i=1

ei = 0 and ei = (0, 0, ri)}.

Precisely,

c̃i =

{
R + 2Vi if i = 1, . . . , n− 1
−R if i = n.

Let ω be the reduced symplectic form on the polygon space M(r). Then

c̃i =
∂

∂ri
[ω].

Hence, by (5.7), the Chern classes ci in Theorem 5.8 are opposite to the
classes c̃i, i.e., ci = −c̃i. In particular, this implies that the classes c1, . . . , cn

also generate the cohomology of the polygon space M(r) with coefficients
in Z[12 ], cf. [HK98, Corollary 7.4, Proposition 7.6]. Hausmann and
Knutson determine the following relations on the generators ci:

(1) c2
i = c2

n for all i = 1, . . . , n;
(2)

∏
i∈L(ci + cn) for all L ∈ Ln;

(3) c−1
n

(∏
i∈L(ci − cn)−∏

i∈L(ci + cn)
)

for all L ⊆ {1, . . . , n− 1}, L long.

The relations (1) may also be easily obtained from Theorems 5.8 and 3.4
since

∂

∂ri
εI(r)n−3 = λi

I(n− 3)εI(r)n−2,

where

(5.9) λi
I =

{
1 if i ∈ I,

−1 if i ∈ Ic.

5.2.1. Some examples. Let Δ0 and Δ1 be the chambers as in Example
3.3. If r ∈ Δ0, then M(r) � CP

2 (see Proposition 4.2) and its symplectic
volume is

volM(r) = 2π2(r1 + r2 − r3 + r4 + r5)2.
Since

∂

∂r3
volM(r) = − ∂

∂ri
volM(r) ∀i = 1, 2, 4, 5

it follows that
c1 = c2 = c4 = c5 = −c3.

By Theorem 5.8, the relation on the generator c3 is given by ∂2

∂r2
3
volM(r) =

4π2, hence

H∗(M(r)) =
C[c3]
(c3

3)
.
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Now consider r ∈ Δ1, the polygon space M(r) has symplectic volume

volM(r) = 4π2r1(r2 − r3 + r4 + r5).

It follows that
∂

∂r3
volM(r) = − ∂

∂ri
volM(r) ∀i = 2, 4, 5

and hence
c2 = c4 = c5 = −c3.

The relations on the Chern classes c1 and c3 are given by

∂2

∂r2
1

volM(r) = 0 and
∂2

∂r2
3

volM(r) = 0.

Hence, the cohomology ring of M(r) is

H∗(M(r)) =
C[c1, c3]
(c2

1, c
2
3)

.

By the wall-crossing study, cf. Section 4.1, M(r) is diffeomorphic to CP
2

blown up at a point with exceptional divisor M{1,3}. By Proposition 5.7

PD([M{1,3}(r)]) = −(c1 + c3).

With respect to the basis {−c1 +c3,−(c1 +c3)} the polygon space M(r) has

intersection form
( −1 0

0 1

)
.

Consider now the lengths vector r = 1
11(3, 1, 3, 1, 3). Hausmann and Knut-

son [HK97] have shown that M(r) is isomorphic to S2 × S2. It is again a
plain computation to obtain the volume of M(r):

vol M(r) = 8π2r2r4.

From this we obtain the relations

c1 = c3 = c5 = 0

and by Theorem 5.8 the cohomology of M(r) is

H∗(M(r)) =
C[c2, c4]
(c2

2, c
2
4)

.

Moreover, with respect to the basis {c2, c4} the polygon space M(r) has

intersection form
(

1 0
0 1

)
. This also illustrates that H∗(CP

2�CP2, C) ≈

H∗(S2 × S2, C) as indeed the intersection forms
( −1 0

0 1

)
and

(
1 0
0 1

)
are equivalent over C (in fact, they are equivalent over Z[12 ]).



210 A. MANDINI

The latter example is a particular case of lengths vectors of type

r =
1
p
(r1, . . . , rn−3, 1, 1, 1)

with
∑n−3

i=1 ri < 1 and p = 3 +
∑n−3

i=1 ri. In this case, the long sets I are all
and just the sets that contain at least two elements of {n− 2, n− 1, n}. The
volume of the associated polygon space M(r) is

(5.10) volM(r) =
(2π)n−3

(n− 3)!
2n−2 r1 · · · rn−3.

Thus, cn−2 = cn−1 = cn = 0 and

H∗(M(r)) =
C[c1, . . . , cn−3]
(c2

1, . . . , c
2
n−3)

.

To obtain (5.10) from Theorem 3.4 one can first observe that the volume of
M(r) can be rewritten as follows:

volM(r) = C
∑
Ilong

(−1)n−|I| ∑
(k1,...,kn)∈K

(
n− 3

k1, . . . , kn

)
(λ1

Ir1)k1 · · · (λn
I rn)kn

= C
∑

(k1,...,kn)∈K

(
n− 3

k1, . . . , kn

)
rk1
1 · · · rkn

n

∑
Ilong

(−1)n−|I|(λ1
I)

k1 · · · (λn
I )kn ,

where C = − (2π)n−3

2(n−3)! , K = {(k1, . . . , kn) ∈ Z
n
+ |

∑n
i=1 ki = n − 3} and λi

I is
as in (5.9). Let us concentrate on the second sum.

For (k1, . . . , kn) = (1, . . . , 1, 0, 0, 0) one obtains∑
Ilong

(−1)n−|I|λ1
I · · ·λn

I

= 3
n−3∑
j=0

(
n− 3

j

)
(−1)n−2−j(−1)n−3+j +

n−3∑
j=0

(
n− 3

j

)
(−1)n−3−j(−1)n−3+j

(5.11)

= 2
n−3∑
j=0

(
n− 3

j

)
= −2n−3,

where the first sum in (5.11) is relative to long sets I such that |I∩{n−2, n−
1, n}| = 2 and the second sum to long sets I such that {n−2, n−1, n} ⊆ I. By
similar arguments one can prove that for any other choice of (k1, . . . , kn) ∈ K
one obtains ∑

Ilong

(−1)n−|I|(λ1
I)

k1 · · · (λn
I )kn = 0,

hence proving (5.10).
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