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PACKING NUMBERS OF RATIONAL RULED
FOUR-MANIFOLDS

Olguta Buse and Martin Pinsonnault

We completely solve the symplectic packing problem with equally
sized balls for any rational, ruled, symplectic four-manifolds. We give
explicit formulae for the packing numbers, the generalized Gromov
widths, the stability numbers, and the corresponding obstructing excep-
tional classes. As a corollary, we give explicit values for when an
ellipsoid of type E(a, b), with b

a ∈ N, embeds in a polydisc P (s, t).
Under this integrality assumption, we also give an alternative proof of
a recent result of M. Hutchings showing that the embedded contact
homology capacities give sharp inequalities for embedding ellipsoids
into polydisks.
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1. Introduction and main results

1.1. Background. Let �kB(c) be the disjoint union of k standard
2n-dimensional balls of radius r and capacity c = πr2. The kth packing
number of a compact, 2n-dimensional, symplectic manifold (M, ω) is

pk(M, ω) =
supc vol(�kB(c))

vol(M, ω)
,

where the supremum is taken over all c for which there exists a sym-
plectic embedding of �kB(c) into (M, ω). Naturally, pk(M, ω) ≤ 1. When
pk(M, ω) = 1 we say that (M, ω) admits a full packing by k balls, otherwise
we say that there is a packing obstruction. An equivalent invariant is the
generalized kth Gromov width wk(M, ω) defined by setting

wk(M, ω) = sup
c>0

{c | �k B(c) embeds symplectically into (M, ω)}

For a compact manifold of dimension 2n the width wk is thus bounded by

0 < wk(M2n, ω) ≤ cvol(M2n, ω) :=

√
n! vol (M2n, ω)

k
.

Although no general tools are known to compute those invariants for arbi-
trary symplectic manifolds, some results can be derived from complex
algebraic geometry. For instance, in [17], D. McDuff and L. Polterovich
computed pk(CP

2), for k ≤ 9. They also proved that pk(CP
n) = 1, whenever

k = pn and that limk→∞ pk(M, ω) = 1 for any compact symplectic manifold.
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In view of that later result, it is natural to ask whether the sequence pk(M, ω)
is eventually stable, that is, whether there is a number Nstab(M, ω) such that
pk(M, ω) = 1 for all k ≥ Nstab(M, ω). To date, this remains an interesting
open question (see [3,5] for a complete discussion). The only general result
in that regard is due to P. Biran [1, 2] who settled this question positively
for all closed symplectic four-manifolds whose symplectic forms (after rescal-
ing) are in rational cohomology classes. His techniques allowed him to obtain
some lower and upper bounds for Nstab(M4, ω), which can be explicitly com-
puted in some cases. In particular, he showed that Nstab(CP

2) ≤ 9 which,
in view of McDuff and Polterovich results, is sharp.

The same techniques apply to rational ruled symplectic four-manifolds.
Recall that, after rescaling, any such manifold is symplectomorphic to either:

• the trivial bundle M0
μ := (S2 × S2, ω0

μ), where the symplectic area of
the a section S2×{∗} is μ ≥ 1 and the area of a fiber {∗}×S2 is 1; or

• the non-trivial bundle M1
μ := (S2

�S2, ω1
μ), where the symplectic area

of a section of self-intersection −1 is μ > 0 and the area of a fiber is 1.

In [1] Biran showed that

(1.1) pk(M0
μ) = min

{
1,

k

2μ
inf

(
μn1 + n2

2n1 + 2n2 − 1

)2
}

,

where the infimum is taken over all naturals n1, n2 for which the Diophantine
equations

(1.2) 2n1n2 =

(
i=k∑
i=1

m2
i

)
− 1, 2(n1 + n2) =

(
i=k∑
i=1

mi

)
+ 1

admit a vector solution (m1, . . . , mk) ∈ N
k, while

pk(M1
μ) = min

{
1,

k

2μ + 1
inf

(
μn1 + n2

n1 + 2n2 − 1

)2
}

,

where the infimum is taken over all naturals n1, n2, for which the equations

n1(2n2 − n1) =

(
i=k∑
i=1

m2
i

)
− 1, n1 + 2n2 =

(
i=k∑
i=1

mi

)
+ 1

admit a vector solution (m1, . . . , mk) ∈ N
k (as we will see later, those equa-

tions simply ensure that the exceptional classes in the k-fold blow-up of M i
μ

have non-negative symplectic areas). He also obtained the following bounds
for the stability number of M0

μ:

2μ ≤ Nstab(M0
μ) ≤ 8μ.
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Building on [1,17], F. Schlenk [21] later computed the packing numbers
pk(M i

μ), i = 0, 1, for k ≤ 7 (those can be found in Appendix A), and proved
that

max(8, 2μ + 1) ≤ Nstab(M1
μ) ≤

{
8μ + 4 if 1

2 ≤ μ,
2μ+1

μ2 if μ < 1
2 .

The above results reduce, in principle, the computation of the packing
numbers pk(M i

μ), k ≥ 8, and of the stability numbers Nstab(M i
μ) to purely

arithmetic problems. However, since their general solutions are not known,
they do not yield explicit formulae in terms of the parameters k and μ.

1.2. Main results. In this paper, we use a modified version of Li–Li’s
reduction algorithm [12,13], to compute the packing numbers, the general-
ized Gromov widths, and the stability numbers of rational ruled symplectic
four-manifolds. We also identify the exceptional homology classes that give
the obstructions to symplectic embeddings of k balls in M i

μ, for k ≥ 8.
We observe that our method can be used, in principle, to compute the pack-
ing numbers of any k-fold symplectic blow-up of CP

2. We also note that D.
McDuff and F. Schlenk used a similar method in [14] to fully describe the
embedding functions of four-dimensional ellipsoids into standard balls.

1.2.1. The trivial bundle. For the trivial bundle M0
μ, our computations

of the generalized Gromov widths wk(M0
μ) reveal that the obstructions to

the embeddings of k ≥ 8 balls in M i
μ depend in an essential way on the

parity of k. Indeed, fixing k ≥ 8 and viewing wk = wk(μ) as a function of
μ ≥ 1, we show that there are only finitely many obstructions for k odd,
while there are infinitely many obstructions for k even.

Theorem 1.1. Let M0
μ = (S2 × S2, μσ ⊕ σ) with μ ≥ 1.

(1) When k = 2p + 1 is odd, the generalized Gromov width w2p+1(M0
μ) is

given by

w2p+1(M0
μ) =

⎧⎪⎪⎨
⎪⎪⎩

cvol =
√

2μ
2p+1 if μ ∈ [1, p + 1 −√

2p + 1
)
,

μ+p
2p+1 if μ ∈ [p + 1 −√

2p + 1, p + 1
)
,

1 if μ ∈ [p + 1, ∞) .

(2) When k = 2p is even, there exists a decreasing sequence {δn} with

limit λ = p−2+
√

p2−4p
2 and intervals In given by I0 = [p, ∞), In =

[δn, δn−1), and I∞ = [1, γ), as well as a sequence of linear functions
wn : R → R, n ≥ 1, such that

w2p(M0
μ) =

⎧⎪⎪⎨
⎪⎪⎩

cvol =
√

μ
p if μ ∈ I∞,

wn(μ) if μ ∈ In, n ≥ 1,

1 if μ ∈ I0.
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In Section 3, Proposition 3.7 gives explicit formulae for the functions
wn, as well as complete descriptions of the even generalized Gromov widths
w2p as piecewise linear functions of μ. As an immediate corollary, we get
the packing numbers of M0

μ (see Corollaries 3.4 and 3.17) and we compute
the stability numbers of M0

μ. Let write Nodd (resp. Neven) for the stability
numbers obtained by only considering embeddings of an odd (resp. even)
number of balls. Then,

Corollary 1.2. The odd stability number of M0
μ is

Nodd(M0
μ) =

⎧⎪⎨
⎪⎩

7 if μ = 8
7 ,

9 if μ ∈ [1, 8
7

) ∪ (8
7 , 2

]
,

2
⌈
μ +

√
2μ
⌉

+ 1 if μ ∈ (2, ∞] ,

while its even stability number is given by

Neven(M0
μ) = 2

⌈
μ + 2 +

1
μ

⌉
.

It follows that

Nstab(M0
μ) =

⎧⎪⎨
⎪⎩

9 if μ = 8
7 ,

Nodd if μ ∈ [1, 8
7

) ∪ (8
7 , 2

]
,

Nodd(M0
μ) − 1 if μ ∈ (2, ∞] .

Before we move on to describe our results in the twisted case, let us explain
the following consequence of Theorem 1.1. Given positive real numbers
a, b, s, t, recall that the standard 4-dimensional ellipsoid E(a, b) is defined
by setting

E(a, b) :=
{

z ∈ C
2 | π|z1|2

a
+

π|z2|2
b

≤ 1
}

,

while the standard four-dimensional polydisk P (s, t) is given by

P (s, t) :=
{
z ∈ C

2 | π|z1|2 ≤ s, π|z2|2 ≤ t
}

.

Recently D. Müller [18] showed that the problem of embedding an ellipsoid
into a polydisc is equivalent with embedding a collection of balls of various
sizes into the polydisc. Using this, we can state

Corollary 1.3. Let k be any integer greater than 8 and let a, s, t be any posi-
tive real numbers with s < t. Denote by μ = a

s . The following are equivalent:
(i) E(a, ka) ↪→ P (s, t)
(ii) If k = 2p + 1 is odd, then a

s ≤ wk = min{1, cvol,
μ+p
2p+1}. If k = 2p

is even, then a
s ≤ wk = minn∈N{1, cvol, wn}. Moreover, there is an

n ∈ N ∪ {∞} so that μ = a
s ∈ In and the precise value of this wk is

given by Theorem 1.1 part (ii).
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The proof of this corollary is given at the end of the paper. In that section,
we also give an alternative proof, valid only for the case when b/a is an
integer, of a recent result of M. Hutchings [7,9] stating that the embedded
contact homology (ECH) capacities give sharp conditions under which an
ellipsoid of type E(a, b) embeds in a polydisk P (ν, μ).

1.2.2. The non-trivial bundle. One would expect results similar to those
of Theorem 1.1 to hold for the twisted bundle M1

μ. However, it turns out
there is no essential difference between odd and even k. Instead, all the
complexity appears at the special value k = 8.

Theorem 1.4. There exist three functions u1(μ, n), u2(μ, n), u3(μ, n),
depending on μ ∈ (0,∞) and n ∈ Z \ 0, all linear in μ, such that

w8

(
M1

μ

)
= min

n∈Z\{0}

{
cvol =

√
2μ + 1

8
, u1(μ, n), u2(μ, n), u3(μ, n),

6μ + 6
17

}

In Section 4, we give explicit formulae for the functions ui(μ, n), as well
as complete descriptions of the generalized Gromov width w8 as a piecewise
linear function of μ. As a corollary, we show that there exist infinitely many
values of μ for which we can fully pack the non-trivial bundle with eight
disjoint balls. Indeed, if we define the set S ⊂ (0,∞) by setting

S =
{

8n2 − 8n + 1
16n2

,
1
2
,

8n2 + 8n + 1
16n2

}
, n ≥ 1

then we have

Corollary 1.5. There is a full packing of the non-trivial bundle M1
μ by eight

balls if, and only if, μ ∈ S.

The general case k ≥ 9 is easier to deal with as the number of obstructions
is always finite, namely

Theorem 1.6. Given k ≥ 9, let us write k = 2p or k = 2p + 1 depending
on the parity of k, and let μ ∈ (1/2,∞). Then the kth generalized Gromov
width of M1

μ is given by:

w2p(M1
μ) =

⎧⎪⎪⎨
⎪⎪⎩

cvol =
√

2μ+1
2p if μ ∈ [1/2, p −√

2p
)
,

p+μ
2p if μ ∈ [p −√

2p , p
)
,

1 if μ ∈ [p, ∞) ,
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and

w2p+1(M1
μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cvol =
√

2μ+1
2p+1 if μ ∈

[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
,

p(p+μ−1)
2p2−p−1

if μ ∈
[

p3−2p2+1−(p−1)
√

2p+1
p2 , p(p−1)

p+1

)
,

p+μ
2p if μ ∈

[
p(p−1)

p+1 , p
)

,

1 if μ ∈ [p, ∞) .

The previous results allow us to compute the stability numbers of the
non-trivial bundle, namely

Corollary 1.7. The stability number Nstab of M1
μ is

Nstab =

⎧⎪⎨
⎪⎩

8 if μ ∈ S,

9 if μ ∈ (0, 3
2

) \ S,

Neven − 1 if μ ∈ [3
2 , ∞)

.

To conclude this introduction, we want to point out that our presenta-
tion is written with a dual purpose in mind. First, we obtained our results
through an hybrid process of mathematical reasoning and computer-aided
symbolic computations using SAGE [19], and our exposition replicates part
of that process. Secondly, although we do not discuss the arithmetic aspects
of the reduction process in the present paper, we advance the idea that the
reduction algorithm is an effective computational tool that can be used in
many other instances where one must deal with Diophantine approximation
problems involving hyperbolic lattices.

2. Embedding balls in symplectic four-dimensional rational
manifolds

2.1. Symplectic embeddings of balls and symplectic blow-ups.
Using the correspondence between ball embeddings and blow-ups, the prob-
lem of deciding whether a collection B = �jB(δj) of k disjoint balls of capaci-
ties δj embeds symplectically in M i

μ reduces to the question of understanding
the symplectic cone of the k-fold blow-up of M i

μ (see, for instance, McDuf
and Polterovich [17]). Because the k-fold blow-up of M i

μ is diffeomorphic to
CP

2 blown-up (k + 1) times, this is in turn equivalent to understanding the
symplectic cone of the rational surfaces CP

2# (k + 1)CP
2, for k ≥ 1.

2.2. Reduced classes and symplectic cones of rational surfaces.
Given n ≥ 1, let us denote by Xn := (Xn, ωλ;δ1,...,δn) the n-fold sym-
plectic blow-up of (CP

2, ωλ) at n disjoint balls of capacities δ1, . . . , δn. Let
{L, E1, . . . , En} be the standard basis of H2(Xn; Z) consisting of the class
of a line L, and the classes Ei, 1 ≤ i ≤ n, of the exceptional divisors.
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Using Poincaré duality, the cohomology class of the symplectic form on Xn

is identified with λL−∑
i δiEi while, given any compatible almost-complex

structure J on Xn, the first Chern class c1 := c1(J) ∈ H2(Xn; Z) is identified
with the homology class K := 3L −∑

i Ei.
The intersection product gives H2(Xn; Z) the structure of an odd uni-

modular lattice of type (1, n), while H2(Xn; R) becomes an inner product
space of signature (1, n). Let P and P+ denote, respectively, the positive
cone and the forward cone in H2(Xn; R):

P := {A ∈ H2(Xn; R) | A = 0, and A · A ≥ 0} ,

P+ :=

{
a0L −

∑
i

aiEi ∈ P | a0 ≥ 0

}
.

Let CK ⊂ H2(Xn; R) be the K-symplectic cone, that is,

CK = {A ∈ H2(Xn; Z) | A = PD[ω] for some ω ∈ ΩK},
where ΩK is the set of orientation-compatible symplectic forms with K as
the symplectic canonical class. Similarly, let EK ⊂ H2(Xn; Z) be the set of
symplectic exceptional homology classes, that is,

EK := {E | E · E = −1 and E is represented by some embedded

ω-symplectic sphere, ω ∈ ΩK}.
Building on the work of Taubes on Seiberg–Witten and Gromov invariants,
P. Biran, and then T.-J. Li and A.-K. Liu characterized the symplectic
cone of smooth, closed, oriented four-manifolds with b+ = 1 in terms of
exceptional classes. In the case of Xn, this gives

Theorem 2.1 (see [3] Theorem 3.2, and [11] Theorem 3).

CK = {A ∈ P+ | A · E > 0 for all E ∈ EK}.
Since EK is not explicitly known for n ≥ 10, this characterization can-

not be used directly to show that a given class A ∈ P+ belongs to CK .
However, the group Diff+ of orientation preserving diffeomorphisms acts on
H2(Xn; Z), and any diffeomorphism preserving K also preserves the sets EK

and CK . Let us write O(1, n) for the group of orthogonal transformations
of H2(Xn; Z), D(1, n) for the image of Diff+ in O(1, n), and DK(1, n) for
the subgroup of D(1, n) fixing K. Recall that if a class A ∈ H2(Xn; Z) of
self-intersection ±1 or ±2 is represented by a smooth embedded sphere, then
the reflection about A

rA(B) := B − 2
(

A · B
A · A

)
A



�

�

�

�

�

�

�

�

PACKING NUMBERS 277

belongs to D(1, n). Assume n ≥ 3 and set
α0 = L − E1 − E2 − E3,

αi = Ei − Ei+1, 1 ≤ i ≤ n − 1.
(2.1)

For n ≥ 3, those classes are represented by smooth embedded spheres, and
since αi · αi = −2 and K · αi = 0, the reflections rαi belong to DK(1, n).
The reflection C := rα0 , classically known as the Cremona transformation,
takes a class (a0 ; a1, . . . , an) to the class

(a0 − d ; a1 − d, a2 − d, a3 − d, a4, . . . , an) ,

where d = a1 + a2 + a3 − a0, while the reflection rαi , i ≥ 1, permutes the
coefficients ai and ai+1.

The key ingredient to understand the action of DK(1, n) on the symplectic
cone CK is the notion of a reduced class:

Definition 2.2. Let k ≥ 3. A class A = a0L−∑i aiEi is said to be reduced
with respect to the basis {L, E1, . . . , Ek} if a1 ≥ a2 ≥ · · · ≥ ak ≥ 0 and
a0 ≥ a1 + a2 + a3.

Theorem 2.3. Assume n ≥ 3.
(1) (see [13], Theorem 3.1) The group D(1, n) is generated by the reflec-

tions {rL, rE1 , rα0 , . . . , rαn}. In particular, it follows that the group
DK(1, n) is generated by the reflections {rα0 , . . . , rαn}.

(2) (see [12], Theorem D and [11], Theorem 1) The group DK(1, n) acts
transitively on EK .

(3) (see [22], Proposition 2.2) The orbit of an element A ∈ P under the
action of D(1, n) contains a unique reduced class.

(4) (see [11], Proposition 4.9 (3)) A reduced class A = a0L − ∑
i aiEi

belongs to CK if and only if ai > 0 for all i.

Combining Theorem 2.1 with Theorem 2.3 (2), we have

Corollary 2.4. Let C0 denote the set of reduced classes a0L−∑i aiEi with
ai > 0, ∀i.

(1) A class A ∈ P+ belongs to CK if and only if its orbit under DK(1, n)
only contains classes A = a0L −∑

i aiEi with ai > 0, ∀i.
(2) The set C0 is a fundamental domain of CK under the action of

DK(1, n). In particular,

CK = DK(1, n) · C0.

2.3. The reduction algorithm. The idea to use Cremona transformations
in order to simplify questions regarding the symplectic cone has been used
long time ago (see for instance [4] in which the author investigates the Kahler
cone and where the symplectic cone is implicitly described). However, as we
now explain, Theorem 2.3 and Corollary 2.4 yield a simple algorithm to
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decide whether a given class in P+ belongs to CK . To simplify notation, let
us write (a0 ; a1, . . . , an) for the class a0L −∑

i aiEi.
Step 1. Set � = −1 and pick v0 := (a0

0 ; a0
1, . . . , a

0
n) ∈ P+.

Step 2. Increment � by one. If a�
1 ≥ · · · ≥ a�

n, set v̂� = v� and go to Step 3.
Otherwise, using reflections rαi ∈ DK(1, n) about αi = Ei − Ei+1,
1 ≤ i ≤ n− 1, permute the coefficients of v� so that a�

1 ≥ a�
2 ≥ · · · ≥

a�
n and write v̂� for the reordered vector.

Step 3. Let a�
n be the last coefficient in v̂�. If a�

n < 0, then v� ∈ CK . Thus
v0 ∈ CK and the algorithm stops.

Step 4. Let d� := a�
1 + a�

2 + a�
3 − a�

0. If d� ≤ 0, then the class v̂� is reduced.
In that case
– If a�

n > 0, then v̂� ∈ CK , hence v0 ∈ CK as well, and the algorithm
stops.

– If a�
n = 0, then v̂� is in the boundary of CK , hence v0 is in the

boundary of CK as well, and the algorithm stops.
Step 5. The class v̂� has non-negative coefficients but is not reduced. Apply

the reflection rα0 ∈ DK(1, n) about α0 = L−E1−E2−E3 to obtain
the class vector

v�+1 = (a�
0 − d� ; a�

1 − d�, a
�
2 − d�, a

�
3 − d�, a

�
4, . . . , a

�
n)

= (2a�
0 − a�

1 − a�
2 − a�

3; a
�
0 − a�

2 − a�
3, a

�
0 − a�

1 − a�
3,

a�
0 − a�

1 − a�
2, a

�
4, . . . , a

�
n)

= (a�+1
0 ; a�+1

1 , . . . , a�+1
n )

and go back to Step 2.
We claim that the algorithm stops after finitely many iterations. To see this,
first note that the self-intersection of all the vectors v̂� is constant (since
every v̂� is obtained from v0 by applying an element of DK(1, n)). Because
v0 ∈ P+, this implies that

v̂� · v̂� = (a�
0)

2 −
∑

i

(a�
i)

2 ≥ 0,

so that |a�
0| ≥ |a�

i |, for all 1 ≤ i ≤ n. Note also that since a0
0 ≥ 0, we must

have a�
0 ≥ 0, for all � ≥ 0. This follows from the fact that in Step (4) above,

a�+1
0 = 2a�

0 − a�
1 − a�

2 − a�
3 < a�

0 is negative if and only if 2a�
0 < a�

1 + a�
2 + a�

3.
But since

0 ≤ A ·A = (a�
0)

2−
∑

i

(a�
i)

2 and (a�
1+a�

2+a�
3)

2 ≤ 3((a�
1)

2+(a�
2)

2+(a�
3)

2),

that would imply

(a�
1)

2 + (a�
2)

2 + (a�
3)

2 ≤ (a�
0)

2 ≤ 3
4((a�

1)
2 + (a�

2)
2 + (a�

3)
2).

Hence, a�+1
0 must be non-negative.
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Since the algorithm stops whenever the smallest coefficient of some v̂� is
negative, let us suppose that, starting with some v0 ∈ P+, we obtain an
infinite sequence of vectors v̂� with non-negative coefficients a�

0 ≥ a�
1 ≥ · · · ≥

a�
n ≥ 0. By Corollary 2.4, all the vectors v̂� are in the closure of CK . Note

also that none of the vectors v̂� is reduced, so that d� > 0, for all � ≥ 0.
Suppose that v0 ∈ CK , that is, all the coefficients a�

i are strictly positive.
In that case, there exists a symplectic form ω0 such that [ω0] = v0. The
process produces a sequence ω� of symplectic forms which are, by construc-
tion, diffeomorphic to the initial symplectic form ω0 and such that, for at
least one index i ≥ 1, a

(�)
i := 〈[ω�], Ei〉 is a strictly decreasing sequence of

positive numbers. By Taubes results on the equivalence of Seiberg–Witten
and Gromov invariants, the Gromov invariant of Ei only depends on the
underlying smooth structure of Xn. Thus, the class Ei contains an embed-
ded ω�-symplectic sphere whose size is a�

i . The diffeomorphism from (Xn, ω�)
to (Xn, ω0) carries this sphere to an embedded symplectic sphere in (Xn, ω0)
of size a�

i . However, the set of symplectic areas of exceptional spheres does
not have accumulation points, see for instance [10] Lemma 4.1. Thus, the
sequence a�

i , being a decreasing sequence of positive numbers that does not
have accumulation points, must be finite.

If v0 is in the boundary of CK , then all v̂� belong to ∂CK and there are
integers N ≥ 0 and 2 ≤ m ≤ n− 1 such that, for all � ≥ N , we have a�

m = 0
and

v̂� = (a�
0 ; a�

1, a
�
2, . . . , a

�
m, 0, . . . , 0).

Because v̂� · v̂� ≥ 0 and d� > 0, we must have m ≥ 2. If m = 2, then
aN

3 = 0, so that a�+1
3 = a�

2 − d� = −d� < 0, which contradicts the fact that
a�

i ≥ 0, for all � ≥ 0. Hence, m ≥ 3. The vectors (a�
0 ; a�

1, . . . , a
�
m), � > N ,

have strictly positive coefficients and thus represent classes in H2(Xm; Z)
which, by Corollary 2.4, must be in CK(Xm). By the previous argument, the
sequence v̂� must be finite.

2.4. Strategy for the computation of wk(M i
µ) and pk(M i

µ). Recall
that any rational ruled four-manifold is, after rescaling, symplectomorphic
to either

• the trivial bundle M0
μ := (S2 × S2, ω0

μ), where the symplectic area of
the a section S2 × {∗} is μ ≥ 1 and the area of a fiber {∗} × S2 is 1;
or

• the non-trivial bundle M1
μ := (S2

�S2, ω1
μ), where the symplectic area

of a section of self-intersection −1 is μ > 0 and the area of a fiber is 1.

We identify the k-fold blow-up of M0
μ of equal sizes c = c1 = · · · = ck,

with CP
2 blown up (k+1) times endowed with a symplectic form ω0

μ,c which
gives area μ + 1− c to a line and areas {μ− c, 1− c, c, . . . , c} to the (k + 1)



�

�

�

�

�

�

�

�

280 BUSE AND PINSONNAULT

exceptional divisors. We represent the Poincaré dual of [ω0
μ,c] by the vector

(2.2) v0
μ,c := (μ + 1 − c ; μ − c, c×(k−1), 1 − c) ∈ H2(Xk+1; R).

Similarly, we identify the k-fold blow-ups of M1
μ of equal sizes c = c1 =

· · · = ck, with CP
2 blown up (k + 1) times endowed with a symplectic form

ω1
μ,c which gives area μ + 1 to a line and areas {μ, c, . . . , c} to the (k + 1)

exceptional divisors. The Poincaré dual of [ω1
μ,c] is thus represented by the

vector

(2.3) v1
μ,c :=

(
μ + 1 ; μ, c×k

)
∈ H2(Xk+1; R).

The existence of an embedding of k disjoint balls of capacity c into M i
μ is

then equivalent to vi
μ,c belonging to the symplectic cone CK of Xk+1, where

K := (3 ; 1×(k+1)). Hence, given k ≥ 8, the computation of the generalized
Gromov widths wk(M0

μ) and of the packing numbers pk(M0
μ) reduces to

finding the largest capacity c > 0 such that

• vi
μ,c ∈ P+ (i.e., vi

μ,c · vi
μ,c ≥ 0);

• the orbit of vi
μ,c under DK(1, k+1) only contains non-negative vectors

or, equivalently, the reduction algorithm applied to vi
μ,c produces a

reduced and non-negative vector.

A posteriori, once one knows the generalized Gromov widths given in
Theorems 1.1 and 1.6, one can easily check that those numbers are the right
ones. Indeed, given μ and wk = wk(μ), it is enough to find two automor-
phisms φ1, φ2 ∈ DK(1, k + 1) such that

• φ1(vμ,wk
) is non-negative and reduced;

• for each ε > 0, φ2(vμ,wk+ε) contains a negative coefficient.

This can be done using the reduction algorithm. Our strategy is then to
proceed backward: (i) use the algorithm to find upper bounds wn = wn(μ)
for the value of wk; (ii) find the smallest one, say wn0 , and (iii) show that
one gets a non-negative reduced vector after setting c = wn0 in vi

μ,c. Since
the algorithm consists in applying elements of DK(1, k + 1) to the initial
vector vi

μ,c, a simple dualization gives us an exceptional class E ∈ CK(Xk+1)
that defines the obstruction. More precisely, if φ ∈ Dk is the automorphism
corresponding to the upper bound wk = wn0 , then

0 = (φ vμ,wk
, Ek+1) = (vμ,wk

, φ∗ Ek+1) ,

so that φ∗ Ek+1 is an obstructing exceptional class. Such a class is generally
not unique and, in fact, the reduction process often gives finitely many
choices.
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3. Embeddings of k ≥ 8 disjoint balls in the trivial bundle M0
µ

This section will be dedicated to proving the results in Theorem 1.1 as well
as introducing several immediate corollaries. As explained in Section 2.4, the
computation of the generalized Gromov widths wk(M0

μ) and of the packing
numbers pk(M0

μ) reduces to finding the largest capacity c > 0 such that the
vector

v0 := v0
μ,c =

(
μ + 1 − c ; μ − c, c×(k−1), 1 − c

)
belongs to the closure of the symplectic cone of Xk+1.

The initial step of the reduction algorithm already gives non-trivial
results. Indeed, the vector v0 is non-negative only if c ≤ 1, which is equiva-
lent to the fact that the Gromov width is w1(M0

μ) = 1. This obviously gives
an upper bound for wk, and we note that this bound is stronger than the
volume condition whenever μ ≥ k

2 . Now, the vector v0 is ordered only if we
suppose c ≥ 1/2. When 0 < c ≤ 1

2 , the reordered vector v̂0 is

v̂0 =
(
μ + 1 − c ; μ − c, 1 − c, c×(k−1)

)
,

which is positive and reduced (since its defect is zero). Now, we observe that
cvol ≤ 1/2 if and only if k ≥ 8μ. Hence, wk(M0

μ) = cvol whenever μ ≤ k
8 .

That implies we have full packing by k balls for all μ ∈ [1, k/8] while, for
μ ∈ (k/8,∞), we have the lower and upper bounds 1/2 < wk ≤ min{1, cvol}.

Given n ∈ N, let us write

λn = μ + 1 − c − nd0,

where d0 = 2c − 1. Using this notation, we have

v0 =
(
λ0 ; λ0 − 1, ck−1, (1 − c)

)
.

Given μ > k/8 and c ∈ (1/2, 1], the vector v0 is ordered, and has defect
d0 = 2c − 1 > 0. Applying a Cremona transformation C followed by the
permutation R := (1, 2, k + 1, k + 2, 3, . . . , k), we get the vector

v1 =
(
λ1 ; λ1 − 1, c×(k−3), (1 − c)×3

)
,

which is ordered if and only if λ1−1 = μ+1−3c ≥ c. Assuming v1 ordered,
its defect is also d0 = 2c − 1 > 0, so that we can apply another Cremona
move C and a reordering R to get

v2 =
(
λ2 ; λ2 − 1, c×(k−5), (1 − c)×5

)

provided k ≥ 5. Clearly, we can repeat this process n times to get a vector

vn := (RC)nv0 =
(
λn ; λn − 1, c×(k−2n), (1 − c)×(2n+1)

)
,

as long as 2n ≤ k and λn−1 − 1 = μ + 1 − c − (n − 1)d0 ≥ c.
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Lemma 3.1. Given k ≥ 4, let us write k = 2p or k = 2p + 1 depending
on the parity of k. Choose any μ ≥ 1 and c ∈ (1/2, cvol]. Then the following
holds:

• If k is even, the vector vp−3 is ordered.
• If k is odd, the vector vp−2 is ordered.

Proof. Let k = 2p. Then the vector vp−3 is ordered if and only if λp−3−1 ≥ c,
which is equivalent to

μ + p − 3
2(p − 2)

≥ c.

Clearly, it is sufficient to consider the case c = cvol for which the previous
inequality becomes

μ + p − 3
2(p − 2)

≥
√

μ

p
.

This is equivalent to f(μ) = p(μ + p − 3)2 − 4μ(p − 2)2 ≥ 0, which is a
quadratic polynomial in μ with positive leading coefficient, whose roots are

p2 − 5p + 8 ± 4(p − 2)
√

4 − p

p
.

So, for p ≥ 5, there are no real roots, while in the case p = 4, we have a
double root at μ = 1.

Similarly, for k = 2p + 1, the vector vp−2 is ordered if and only if

μ + p − 2
2(p − 1)

≥ c.

For c = cvol, we get
μ + p − 2
2(p − 1)

≥
√

2μ

2p + 1
,

which is equivalent to f(μ) = (2p + 1)(μ + p − 2)2 − 8μ(p − 1)2 ≥ 0. Again,
this is a quadratic polynomial in μ with positive leading coefficient, whose
roots are

2p2 − 5p + 6 ± (p − 1)
√

8(4 − p)
2p + 1

.

So, for p ≥ 5, there are no real roots while, in the case p = 4, we have a
double root at μ = 2. �

Remark 3.2. Observe that the vector vi+1 is obtained from vi by apply-
ing a Cremona transformation followed by the permutation R := (1, 2, k +
1, k + 2, 3, . . . , k). For convenience, we denote the corresponding element of
DK(1, k + 1) by RC. We can thus write vi = (RC)iv0.
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We now differentiate our discussion depending on whether k isodd or even.

3.1. The odd case k = 2p + 1. This subsection will provide the proof of
part (i) of Theorem 1.1.

By Lemma 3.1, we know that the vector

vp−2 =
(
λp−2 ; λp−2 − 1, c×4, (1 − c)×(2p−3)

)

is ordered whenever k ≥ 4, μ ≥ 1, and c ∈ (1/2, cvol]. So, we can perform a
RC move to get

vp−1 =
(
λp−1 ; λp−1 − 1, c×2, (1 − c)×(2p−1)

)
.

We now consider two cases depending on whether vp−1 is ordered or not.
Case 1: Suppose vp−1 is not ordered, that is, λp−1−1 < c. Since λp−2−1 ≥

c, we must have

(λp−1 − 1) − (1 − c) = λp−2 − (2c − 1) − 2 + c = (λp−2 − 1) − c ≥ 0,

so that
v̂p−1 =

(
λp−1 ; c×2, λp−1 − 1, (1 − c)×(2p−1)

)
is ordered with defect dp−1 = 2c−1 > 0. Performing another RC move gives

v̂p =
(
λp ; (1 − c)×(2p+1), λp − 1

)
.

Since dp = 3(1− c)−λp = 3(1− c)−λp−1 +2c−1 = (1− c)− (λp−1−1) ≤ 0,
the vector v̂p is reduced. It is positive if and only if λp − 1 ≥ 0. Solving for c
in the equation λp−1 ≥ 0, we obtain a new upper bound for the generalized
width w2p+1, namely

w2p+1 ≤ μ + p

2p + 1
.

We note that this bound is stronger than the previous bound w2p+1 ≤ 1 only
when μ ≤ p + 1, while it is stronger than the volume condition whenever
μ ∈ [α−, α+], where α± = p + 1 ±√

2p + 1.
Case 2: Suppose that vp−1 is ordered. Performing a RC move yields

v̂p =
(
λp ; λp − 1, (1 − c)×(2p+1)

)

with defect
dp = 2(1 − c) − 1 = 1 − 2c < 0.

Therefore, v̂p is reduced and positive, so that there is an embedding of 2p+1
balls of size c into M0

μ. That occurs unless λp−1 − 1 < c. Solving for c in the
equation λp−1 − 1 ≤ c, we get a new lower bound for w2p+1, namely

μ + p − 1
2p

≤ w2p+1.
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We therefore have:

Proposition 3.3. Let k = 2p + 1 ≥ 9 and consider μ ≥ 1. The (2p + 1)th
generalized Gromov width of M0

μ is

w2p+1(M0
μ) =

⎧⎪⎪⎨
⎪⎪⎩

cvol if μ ∈ [1, p + 1 −√
2p + 1

)
,

μ+p
2p+1 if μ ∈ [p + 1 −√

2p + 1, p + 1
)
,

1 if μ ∈ [p + 1, ∞) .

Proof. The previous discussion shows that w2p+1(M0
μ) = min

{
cvol, 1, μ+p

2p+1

}
.

�
An immediate consequence is the following:

Corollary 3.4. Let k = 2p + 1 ≥ 9 and consider μ ≥ 1. The (2p + 1)th
packing number of M0

μ is

p2p+1(M0
μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if μ ∈ [1, p + 1 −√
2p + 1

)
,

(μ+p)2

2μ(2p+1) if μ ∈ [p + 1 −√
2p + 1, p + 1

)
,

2p+1
2μ if μ ∈ [p + 1, ∞) .

Corollary 3.5. The odd stability number of M0
μ is

Nodd(M0
μ) =

⎧⎪⎪⎨
⎪⎪⎩

7 if μ = 8
7 ,

9 if μ ∈ [1, 8
7

) ∪ (8
7 , 2

]
,

2
⌈
μ +

√
2μ
⌉

+ 1 if μ ∈ (2, ∞] .

Proof. By Proposition A.1, the only pair (μ, k) for which we have full packing
by k = 2p + 1 ≤ 7 balls is (8/7, 7). On the other hand, the largest root of
the polynomial in p

(2p + 1)(μ + p)2 − 2μ(2p + 1)2

obtained by setting

c2
vol =

μ + p

2p + 1
is

r(μ) = μ +
√

2μ.

The integer J(μ) := max{9, 2�r(μ)� + 1} gives the odd stability number in
the range k ≥ 9. Since J(8/7) = 9, the result follows. �

As explained in Section 2.4, we can combine the above results with
Remark 3.2 to find obstructing exceptional classes in H2(X2p+2; Z). These
results can be easily translated into curves in the 2p+1-fold blow-up of M0

μ

as well by using the identification of the two spaces.
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Corollary 3.6. The exceptional classes in H2(X2p+2; Z) that give the
obstructions to the embedding of 2p + 1 balls into M0

μ are of type(
1 ; 1×2, 0×(2p−1)

)
when μ ∈ [p + 1, ∞) ;

(
p ; p − 1, 1×2p, 0

)
when μ ∈

[
p + 1 −

√
2p + 1, p + 1

)
.

For μ ∈ [
1, p + 1 −√

2p + 1
)
, the only obstruction is given by the volume

condition.

Proof. On each interval, the reduction algorithm defines an automorphism
φ ∈ DK(1, k + 1) as a composition of Cremona moves and reorderings. The
obstructing exceptional class is then given by φ∗Ek+1. In the present cases,
the automorphism is

φ =

{
(RC)p for μ ∈ [p + 1, ∞) ,

(RC)(SC)(RC)p−2 for μ ∈ [p + 1 −√
2p + 1, p + 1

)
,

where R and C are the automorphisms defined in Remark 3.2, and where S
corresponds to the permutation (1, 4, 2, 3, 5, . . . , k + 2). �

3.2. The even case k = 2p. This subsection is dedicated to proving
the following proposition, which is just a more precise formulation of part
(ii) in Theorem 1.1

Proposition 3.7. There exist two sequences an and γn satisfying the
recurrence relations

an+3 = (p − 1)an+2 − (p − 1)an+1 + an,(3.1)

γn+3 = (p − 1)γn+2 − (p − 1)γn+1 + γn,(3.2)

with initial conditions

a0 = 0, a1 = 1, a2 = (p − 1),

γ0 = 1, γ1 = p, γ2 = (p − 1)2,
so that the generalized Gromov width w2p(M0

μ) is given as a piecewise linear
function by

w2p(M0
μ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cvol =
√

μ
p if μ ∈

[
1,

p−2+
√

p2−4p
2

)
,

an−1μ+an

2(an+an−1)−1 if μ ∈
[

γn

γn−1
, γn−1

γn−2

)
, n ≥ 2,

1 if μ ∈ [p, ∞) .

The computations of the obstructing classes, as well as the stability num-
bers are immediate consequences of the whole argument and thus only
appear at the end of this subsection.
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To start with, we know from Lemma 3.1, that the vector

vp−3 =
(
λp−3 ; λp−3 − 1, c×5, (1 − c)×(2p−5)

)

is ordered whenever k ≥ 4, μ ≥ 1, and c ∈ (1/2, min{cvol, 1}]. Thus, we can
perform a RC move to get

vp−2 =
(
λp−2 ; λp−2 − 1, c×3, (1 − c)×(2p−3)

)
.

If vp−2 is ordered, then another RC move gives

vp−1 =
(
λp−1 ; λp−1 − 1, c×1, (1 − c)×(2p−1)

)
,

which is not necessarily ordered, but which is non-negative and whose defect
is always zero. The vector vp−1 is thus reduced, and we conclude that the
(2p)th generalized Gromov width is w2p(M0

μ) = min{cvol, 1}.
If vp−2 is not ordered, then

(3.3) v̂p−2 =
(
λp−2 ; c×3, λp−2 − 1, (1 − c)×(2p−3)

)

is ordered with defect d′ := 3c − λp−2 > d0 = 2c − 1 > 0. Performing a
Cremona move and reordering the resulting vector gives

v̂
(2)
1 :=

(
λp−2 − d′ ; λp−2 − 1, (1 − c)×(2p−3), (c − d′)×3

)
,

which is of the same form as v1. This new vector is non-negative if and only
if c− d′ ≥ 0. Since d′ > d0, we have 1− c = c− d0 > c− d′, so that c− d′ is
a new upper bound for w2p(M0

μ). The defect of v̂
(2)
1 is d

(2)
0 = d′ − d0 > 0, so

the vector is not reduced and we can perform a RC move that results in a
vector v

(2)
2 of the same form as v2. We can repeat this process until we reach

the vector

v
(2)
p−2 =

(
λp−2−d′−(p−3)d(2)

0 ; λp−2−1−(p−3)d(2)
0 , (1−c)×3, (c−d′)×(2p−3)

)
,

which is of the same type as vp−2. Again, we have the following alternative:
if v

(2)
p−2 is non-negative and ordered, the algorithm gives a reduced and non-

negative vector after one more step. Otherwise, the algorithm enters a new
cycle that starts with a vector v

(3)
1 of the same form as v1. We claim that

we get all the possible obstructions to the embedding of k = 2p balls in M0
μ

by iterating this simple procedure.
For consistency, let us write v

(1)
p−2 for the vector v̂p−2 obtained in (3.3).

We now define

v
(i)
p−2 =

(
Ai ; B3

i , Ci, D
×(2p−3)
i

)
, i = 1, 2.

Since Ai = Bi + Ci + Di, those vectors are completely determined by the
triples (Bi, Ci, Di). Using this shorthand notation, the automorphism of
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DK(1, k +1) that takes the vector v
(1)
p−2 to v

(2)
p−2 is represented by the matrix

T =

⎛
⎝ 0 0 1
−p + 3 p − 2 0
−1 1 1

⎞
⎠

of determinant one. For each integer n ≥ 0, we define

(3.4) Vn+1 := (Bn+1, Cn+1, Dn+1) = Tn(B1, C1, D1).

The sequence Vn can be understood by looking at the Jordan normal form
of T . When p = 4, the matrix T has a single eigenvalue 1 and can be written
as E · Δ · E−1 where

Δ =

⎛
⎝1 1 0

0 1 1
0 0 1

⎞
⎠ and E =

⎛
⎝1 0 0

1 1 1
1 1 0

⎞
⎠ .

Hence, the orbit of (B1, C1, D1) is contained in a plane on which T acts as
a shear map.

For p ≥ 5, we can write T = E · Δ · E−1 where

Δ =

⎛
⎝1 0 0

0 λ 0
0 0 λ

⎞
⎠ and E =

⎛
⎝1 λ λ

1 p − 3 p − 3
1 1 1

⎞
⎠ ,

and where

λ =
p − 2 +

√
p2 − 4p

2
, λ =

p − 2 −
√

p2 − 4p

2
.

Since λλ = 1, the orbit of a point (B, C, D) ∈ R
3 under repeated multipli-

cation by Δ is contained in the standard hyperbola

{yz = CD, x = B} .

It follows that the orbit of (B1, C1, D1) under repeated multiplication by T
traces a hyperbola contained in an affine plane generated by the eigenvectors
(λ, p − 3, 1) and (λ, p − 3, 1). For all p ≥ 4, the orbit of an initial triple
(B1, C1, D1) may be reduced to a two-dimensional system by the change of
variables

Rn = Bn − Cn and Sn = Cn − Dn.

In particular, R1 and S1 are then given by

R1 = 1 − μ + (p − 1)(2c − 1) and S1 = μ − 1 − (p − 2)(2c − 1),

and we can write (
Rn+1

Sn+1

)
= M

(
Rn

Sn

)
,

where M is the matrix

(3.5) M =
(

(p − 3) −1
−(p − 4) 1

)
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Figure 1. The volume curve (R(c, c2p), S(c, c2p)) (solid red
curve), eigendirections, and an orbit under iterates of M
(dashed blue curve) are graphed for the value p = 5. In gen-
eral, the intersections of the volume curve with the vertical
axis occur at c = 1 and c = (p − 2)/p which correspond,
respectively, to μ = p and μ = (p − 2)2/p. The tangency
point with positive slope occurs at cλ, which corresponds
to μ = λ. We have packing obstructions for points on the
volume curve between μ = p and μ = λ, while we have full
packings for points on the volume curve between μ = λ and
μ = 1 ≥ (p − 2)2/p.

with eigenvalues λ and λ. When p ≥ 5, the orbit of a general point (R1, S1)
under repeated multiplication by M lies along a hyperbola whose asymp-
totes extend in the eigendirections of λ and λ. A quick computation gives
eigenvectors (1, λ − 1) and

(
1, λ − 1

)
. Note that the asymptote S = (λ−1)R,

corresponding to the eigenvalue λ, has positive slope, while the asymptote
S = (λ − 1)R has negative slope.

Lemma 3.8. Given p ≥ 4 and μ ≥ 1, let c ∈ (1/2, cvol]. Then the initial
point (R1(c, μ), S1(c, μ)) sits in a convex region determined by a parabola
tangent to the lines S = (λ − 1)R and S = (λ − 1)R. The orbit of the point
satisfies Sn > 0 for all n. Moreover,

• if R1 ≤ 0 then Rn ≤ 0 for all n,
• if R1 > 0 then there exists N > 0 such that Rn ≤ 0 if and only if

n ≥ N .

Proof. Assume first p ≥ 5. Then all the points (R(c, μ), S(c, μ)) for which
c ≤ cvol =

√
μ/p sit in the convex region determined by the parametrized

parabola (R(c), S(c)) :=
(
R(c, c2p), S(c, c2p)

)
; see Figure 1 below. All is left

to show is the tangency of this parabola to the lines S = (λ − 1)R and
S = (λ − 1)R.
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Let us show the tangency to S = (λ − 1)R; the other one is similar.
The value cλ for which the slope of the parabola is λ − 1 at the point
(R(cλ), S(cλ)) is

(3.6) cλ =
(p − 1)λ − 1

pλ
= cvol(λ) :=

√
λ/p

and it is immediate to check that the point (R(cλ), S(cλ)) is on the line
S(c) − (λ − 1)R(c) = 0, that is

(3.7) S(cλ) − (λ − 1)R(cλ) =
λ2 + (p − 2)λ − 1

pλ
= 0.

This proves the first assertion. To prove the second statement, we observe
that if the point in the upper plane lies above the two asymptotes, so does its
hyperbolic orbit. Thus Sn > 0. On the other hand if the point (R1, S1) is in
the first quadrant, then its corresponding hyperbola intersects the vertical
axis. Since the orbit does not have accumulation points, that finishes the
proof in the case p ≥ 5. When p = 4, the matrix (3.5) becomes

(3.8) M =
(

1 −1
0 1

)
,

which shears the points in the first quadrant horizontally toward the left.
The conclusion follows readily. �

For the initial vector v0 = (μ+1−c ; μ−c, c×(2p−1), 1−c) to belong to the
closure of the symplectic cone, it is necessary that all triples (Bn, Cn, Dn)
be non-negative. Before we investigate the positivity of these coordinates
using the two dimensional picture, we will take a short necessary excursion
into the standard theory of recurrent sequences. By the Cayley–Hamilton
theorem, the vectors Vi = (Bi, Ci, Di) must satisfy the recurrence relation
defined by the characteristic polynomial of T , namely

(3.9) Vn+3 = (p − 1)Vn+2 − (p − 1)Vn+1 + Vn.

It follows that any linear combination of the coefficients Bi, Ci, and Di

satisfies the same recurrence as well. In particular, we have

Dn+3 = (p − 1)Dn+2 − (p − 1)Dn+1 + Dn

with initial conditions

D0 = 0 D1 = 1 − c, D2 = (p + μ − 1) + (1 − 2p)c,

D3 = (p − 1)(p + μ − 2) + (−2p2 + 4p − 1)c.

In fact, since the matrix T is unimodular and has eigenvalues 1, λ, λ, any
affine combination of sequences that satisfy the relation will satisfy it too.
One more subtle relation is the following lemma:
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Lemma 3.9. If two sequences xn, yn satisfy a recurrence of type (3.9) then
the sequence

(3.10) φn = xnyn − xn+n0yn−n0

satisfy the same recurrence.

Proof. We first consider the case p ≥ 5. We will use the shorthand [λ]n for
the vectors [λn, λ n, 1] = [λn, λ−n, 1]. Since the three eigenvalues 1, λ, and
λ are distinct, a sequence yn satisfies the recurrence (3.9) if, and only if
yn = [d] · [λ]n for some row vector [d] = [d1, d2, d3]. Then the sequence

φn = ([d] · [λ]n)
(
[d′] · [λ]n

)− (
[d] · [λ]n+n0

) (
[d′] · [λ]n−n0

)
.

Note that the terms containing the powers λ2n and λ−2n will cancel out;
one can easily check that an expansion of the rest of the expression will be
a new linear combination

φn = [d′′] · [λ]n

and thus verifies the recurrence (3.9).
When p = 4, the characteristic polynomial of the recurrence has a single

root of order three. In that case, the general theory of recurrences implies
that a sequence satisfies (3.9) if, and only if, it is given by a quadratic
polynomial in n. The lemma can be easily verified. �

Let us write now Dn = αn − βnc, the coefficients αn and βn must satisfy
the recurrence (3.9) with initial conditions

α1 = 1, α2 = p + μ − 1, α3 = (p − 1)(p + μ − 2),

and
β1 = 1, β2 = 2p − 1, β3 = 2p2 − 4p + 1.

Thus, all components Dn(c, μ) depend linearly on c so there is a sequence
of positive numbers wn, n ≥ 1 such that Dn(c, μ) > 0 if and only if c ≤ wn.
The sequence wn is obtained as follows:

(3.11) c ≤ wn =
αn

βn
,

with the first initial few given by

w1 = 1, w2 =
p + μ − 1
2p − 1

, w3 =
(p − 1)(p + μ − 2)

2p2 − 4p + 1
.

The sequence {wn} satisfies several identities. For our purpose, one of
the most useful is the following alternative definition whose equivalence
with (3.11) can be easily checked by an easy induction argument:

(3.12) wn(μ) =
an + an−1μ

2(an + an−1) − 1
,
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where {an} is an increasing sequence that satisfies the recurrence (3.9) with
initial conditions

a0 = 0, a1 = 1, a2 = p − 1, a3 = (p − 1)(p − 2).

The following lemma translates the results obtained by studying the two
dimensional linear system M in the variables (R, S) into conclusions about
the three dimensional linear system T in the variables (B, C, D).

Lemma 3.10. Fix p ≥ 4, μ ≥ 1 and c so that 1/2 ≤ c ≤ cvol. Additionally,
restrict to only those pairs (c, μ) for which (B1, C1, D1) is in the first octant.
The following facts hold:

(1) The orbit (Bn, Cn, Dn) of (B1, C1, D1) remains in the first octant as
long as the coordinate Dn remains positive. Thus, the vector vp−2(c, μ)
is in the symplectic cone CK if and only if Dn(c, μ) ≥ 0 for all n ∈ N.

(2) The sequence Dn has an almost monotone behavior, that is, only one
of the following statements holds:
• The sequences Dn(c, μ) and wn(μ) are strictly increasing. Addi-

tionally, cvol(μ) ≤ wn(μ) for all n ∈ N

• There exists a natural number N > 1 such that Dn(c, μ) and wn(μ)
are decreasing for n ≤ N and increasing for n ≥ N .

Proof. The proofs are immediate. By Lemma 3.8 Sn = Cn − Dn is always
positive. It immediately follows that Dn > 0 implies Cn > 0. Moreover, since
Bn = Dn−1, it immediately follows that Bn > 0.

For part (2), recall that the volume condition implies S1 > 0 and
D2 = D1 − (B1 − C1) = D1 − R1.

In the case that R1 > 0, using Lemma 3.8 again, there exists N > 0 such
that Rn ≤ 0 if and only if n ≥ N . Since Dn+1 = Dn − Rn, the sequence
Dn is decreasing for n ≤ N and increasing for n ≥ N . If R1 ≤ 0 then
as explained in the proof of Lemma 3.8 the orbit (Rn, Sn) approaches the
asymptote S = (λ−1)R in the second quadrant, hence Rn remains negative
for all n. This implies that Dn is always increasing.

Clearly, wn(μ) has the same behavior as the sequences Dn(c, μ). More-
over, in the case when D1 < 0, since the sequence wn(μ) is increasing, it is
sufficient to show that cvol ≤ w1 = 1, which is clear. �

We can now state the main result of this section, namely

Corollary 3.11. The (2p)th generalized Gromov width of the trivial bundle
M0

μ is

w2p

(
M0

μ

)
= min

i∈N

{cvol, wi(μ)}

where the sequence wi has at most one minimum.
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Proof. Let us first assume that the sequence {wn(μ)} attains a minimum
at n = N > 1. From Lemma 3.10, that minimum is positive, and setting
c = wN (μ) in the initial vector

v0 =
(
μ + 1 − c ; μ − c, c×(2p−1), 1 − c

)

the algorithm produces a sequence of vectors

v
(n)
p−2 =

(
An ; B3

n, Cn, D×(2p−3)
n

)
,

which, by Lemma 3.10, are all non-negative. For all n ≤ N those vectors
are ordered since Rn = Bn − Cn > 0. However, for n > N , we have Rn =
Bn − Cn < 0, which shows that, after reordering, v

(n)
p−2 becomes

v̂
(N)
p−2 =

(
Ai ; Ci, B

3
i , D

×(2p−3)
i

)
.

Applying a RC move then yields a reduced, non-negative vector. Conse-
quently, w2p(μ) ≥ wN (μ). Since, by construction, each wn(μ) gives an upper
bound on the width w2p(μ), we conclude that w2p(μ) = wN (μ).

If the sequence {wi(μ)} is increasing, then cvol < wi(μ) for all i ≥ 1.
In particular, μ must belong to the interval [1, λ]. Setting c = cvol(μ) in
v0, Lemma 3.10 shows that the algorithm still produces a sequence of non-
negative vectors

v
(n)
p−2 =

(
An ; B3

n, Cn, D×(2p−3)
n

)
.

As before, those vectors are ordered until Rn = Bn − Cn < 0. Since R1 ≥ 0
whenever μ ≥ (p − 2)2/p, and that 1 ≥ (p − 2)2/p for p ≥ 4, Lemma 3.10
shows that there exists N ≥ 1 such that Rn < 0 for all n > N . As in the
previous case, this implies that the algorithm produces a reduced vector
after finitely many steps. Therefore, w2p(μ) = cvol. �

In order to write w2p(μ) as a piecewise linear function, our next goal is to
find an optimal interval In ⊂ [1,∞) on which wn(μ) is the minimum in the
sequence {wi(μ)}.
Lemma 3.12. Let p ≥ 4 be fixed. Then there exists a sequence {γn} given
by

γ−1 = 0, γ0 = 1, γ1 = p

γn+3 = (p − 1)γn+2 − (p − 1)γn+1 + γn(3.13)

such that

wn+1 ≤ wn ⇐⇒ μ ≤ γn

γn−1
.
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Proof. For ease of writing we will use the notation βn = 2(an−1 + an) − 1
which was previously introduced. Note that wn+1 ≤ wn is equivalent with
an+1+anμ

βn+1
≤ an+an−1μ

βn
. This, in turn, translates into

(3.14) μ ≤ anβn+1 − an+1βn

anβn − an−1βn+1
.

We can prove, by using the Lemma 3.9 twice, that both the numerator
sequence and denominator sequence satisfy the recurrence (3.9). We will
then define

γn := anβn+1 − an+1βn.

We leave it to the reader to check that the initial condition are those listed
in the statement. To show that the numerator satisfies the recurrence (3.13),
one uses Lemma 3.9 with xn = an, yn = βn+1 and n0 = −1. For the denom-
inator, the same Lemma 3.9 with xn = an, yn = βn and n0 = 1 yields that
the sequence made with the numerators in (3.14) satisfies the recurrence as
well. To show that the denominator is just the numerator sequences with an
index shift of 1 it is sufficient to verify this for n = 1, 2, 3 using the given
initial conditions for an; we leave this as an exercise. �

The sequence of quotients
(

γn

γn−1

)
n∈N

is monotone decreasing and

converges to λ. The following computational lemma will be used both for
the next results as well as in Section 5.

Lemma 3.13.
(an + an−1)2

p
− an + an−1

p
= anan−1.(3.15)

β2
n = 4panan−1 + 1.(3.16)

Proof. To see how this holds first note that from the recurrence (3.9) for the
sequences an, βn, γn we obtain the general formulae

an =
1

4 − p

(
−1 +

p +
√

p2 − 4p

2p
λn +

p −
√

p2 − 4p

2p
λ

n

)
,

βn =
1

4 − p

(
−p + 2λn + 2λ

n
)

,

γn =
1

4 − p

(
−2 + λn+1 + λ

n+1
)

.

Using this equations as well as the fact that λλ = 1 one can verify by
a straightforward but lengthy computation the relation (3.16). The rela-
tion (3.15) is just an algebraic reformulation of relation (3.16) obtained
by completing the square. Finally, we should point out that in the case
p = 4, the sequences are easy quadratic polynomials, namely an = n2,
βn = (2n−1)2, γ = (n+1)2 and the relations above are easily verifiable. �
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Lemma 3.14. Let p ≥ 4 and n ≥ 0 be a fixed natural numbers. Then
(1)

wn(μ) = min
i∈N

{wi(μ)} ⇐⇒ μ ∈
[

γn

γn−1
,

γn−1

γn−2

]
,

(2)

wn(μ) < cvol(μ) ⇐⇒ μ ∈
[

γn

γn−1
,

γn−1

γn−2

]
.

Proof. The first statement is an easy combination of Lemmas 3.10 and 3.12.
For the second part note that the relation is equivalent with an+1+anμ

βn+1
≤
√

μ
p

if and only if μ ∈
[

γn

γn−1
, γn−1

γn−2

]
. Thus is sufficient to verify that γn

γn−1
and

γn−1

γn−2
are the two roots of the quadratic equation.

(3.17)
(an + an−1μ)2

β2
n

=
μ

p
.

But using the identity (3.16), the two roots of this equation are of the form
(βn±1)2

4pa2
n−1

. We claim that the general formulae for an, βn, γn can be used to
verify the relations

(3.18) (βn + 1)2γn−2 = 4pγn−1a
2
n−1, (βn − 1)2γn−1 = 4pγna2

n−1.

We will omit the computation and simply observe that the two presentations
of the roots are equal. �
Remark 3.15. The automorphism φn produced by the reduction algorithm
when μ ∈ In is given by

(3.19) φn :=
[
BCA(RC)p−3

]n−1
RC,

where R and C are defined in Remark 3.15 and where A and B are the
permutation matrices

A = (1 ; 5, 2, 3, 4, 6, . . . , k + 2) B = (1 ; k, k + 1, k + 2, 5, . . . , k − 1).

Remark 3.16. The piecewise linear function w2p(μ) approximates cvol(μ)
from below on the interval (λ,∞). Each function wn(μ) defines a line in
the RS plane, namely (R(μ, wn(μ)), S(μ, wn(μ)). That line intersects the
volume curve in two points. Any choice of a point in the region delimited
by the volume curve and that line yields a vector v0 outside the symplectic
cone. Each point in the region bounded by the axis R = 0, the lines wn,
and the portion of the volume curve between μ = 1 and μ = λ gives, after
reduction, a non-negative reduced vector, see Figure 2 below.

Observe that Proposition 3.7 follows as an immediate consequence of
Corollary 3.11 and Corollary 3.14. Moreover, the computations of the pack-
ing numbers and of the stability numbers are easy consequences of Corol-
lary 3.11.
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Figure 2. The volume curve (R(c, c2p), S(c, c2p)) (solid red
curve), together with the lines traced by w1(μ) = 1 (orange),
w2(μ) (blue), and w3(μ) (green) in the RS plane. The piece-
wise linear function w2p(μ) approximates cvol(μ) from below
on the interval (λ,∞).

Corollary 3.17. Let k = 2p ≥ 8 and consider μ ≥ 1. Then the kth packing
numbers of M0

μ are

p2p(M0
μ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if μ ∈
[
1,

p−2+
√

p2−4p
2

)

p
μ

(an−1μ+an)2

(2(an+an−1)−1)2
if μ ∈

[
γn

γn−1
, γn−1

γn−2

)
, n ≥ 2

p
μ if μ ∈ [p, ∞)

Corollary 3.18. The even stability number of M0
μ is Neven(M0

μ) =

2
⌈
μ + 2 + 1

μ

⌉
.

Proof. In the range k ≥ 8, the stability number J(μ) is obtained by solving
for p in the equation cvol(μ) = λ, which gives

J(μ) = max
{

8, 2
⌈
μ + 2 +

1
μ

⌉}
= 2

⌈
μ + 2 +

1
μ

⌉
, whenever μ ≥ 1.

On the other hand, Proposition A.1 shows that we also have full packings for
the sporadic pairs (μ, k) ∈ {(1, 2), (2, 4), (4/3, 6), (3, 6)}. However, since
J(4/3) = 10 and J(3) = 12, we conclude that Neven(M0

μ) = J(μ). �

Combining the above results with the Remark 3.15 and the strategy
presented in Section 2.4, we can present the obstruction curves for this case
as well:
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Corollary 3.19. Using our identification of the k-fold blow-up of M0
μ with

Xk+1, a set of exceptional classes in H2(X2p+2; Z) giving the obstructions to
the embedding of 2p balls into M0

μ is
(
1 ; 1×2, 0×(2p)

)
when μ ∈ [p, ∞) ;

(
dn ; zn, yn, x×(2p−2)

n , tn

)
when μ ∈

[
γn

γn−1
,

γn−1

γn−2

]
,

where the coefficients are given recursively in terms of the sequence {an} by

xn =
2(an + an−1) − 1 + (−1)n

2p
,

dn = an + an−1 − xn, zn = an − xn,

yn = xn − (−1)n, tn = an−1 − xn.

For μ ∈ [1, λ), the only obstruction is given by the volume condition.

Proof. On each interval In the reduction algorithm defines an automorphism
φn ∈ DK(1, 2p + 1) such that φ∗

nEk+1 is an obstructing exceptional class.
From the description of φn given in Remark 3.15, one can see that those
classes must be of the form

En :=
(
dn ; zn, yn, x×(2p−2)

n , tn

)
.

In order to prove that the formulae for the coefficients given above yield
obstructing exceptional classes, we only need to check that (i) En ·En = −1,
(ii) K · En = 1, and (iii) v0 · En = Dn(μ, c). Indeed, we have

En · En = d2
n − z2

n − y2
n − (2p − 2)x2

n − t2n

= 2anan−1 − 2px2
n + 2xn(−1)n − 1

= 2anan−1 − (2(an + an−1) − 1)2 + 1
2p

− 1

= 2
(

anan−1 − (an + an−1)2

p
+

(an + an−1)
p

)
− 1

= −1,

where the last equality follows from Lemma 3.13. Similarly,

K · En = 3dn − zn − yn − (2p − 2)xn − tn

= 2(an + an−1) − 2p xn + (−1)n

= 2(an + an−1) − (2(an + an−1) − 1 + (−1)n) + (−1)n

= 1



�

�

�

�

�

�

�

�

PACKING NUMBERS 297

and

v0 · En = (μ + 1 − c)dn − (μ − c)zn − cyn − c(2p − 2)xn − (1 − c)tn
= μ(dn − zn) + (zn − yn − (2p − 2)xn + tn − dn)c + (dn − tn)

= an−1μ + an − (2 (an + an−1) − 1) c

= Dn(μ, c).

�

Remark 3.20. To illustrate the previous corollary, the obstructing classes
correponding to the intervals I2, I3, and I4 are of types(

p − 1 ; p − 2, 0, 1×(2p−2), 0
)
,(

p2 − 3p + 3 ; (p − 2)2, p − 1, (p − 2)×(2p−2), 1
)

(
(p − 2)2 + (p − 2)3 ; (p − 1)(p − 2)(p − 3), (p − 1)(p − 3),

× (
(p − 2)2

)×(2p−2)
, p − 2

)
.

Remark 3.21. Note that the arguments in Corollary 3.19 explain why
we expressed the functions wn(μ) using the formula (3.12). Namely, the
sequence {an} establishes a direct connection between the bounds wn(μ) and
Biran’s result (1.1) presented in terms of the Diophantine equations (1.2).
As expected, a consequence of finding obstructing classes that give the pack-
ing numbers is that we can provide the solutions for the Diophantine mini-
mizing problem described in (1.2). When k is odd, the relation between the
generalized Gromov widths and the Diophantine equations is particularly
easy to see. Indeed, for a fixed k = 2p + 1, and any n ≥ 2, let us take
n1 = 1 and n2 = p. Then the Diophantine equations (1.2) have solutions
mi = 1, i = 1, 2p + 1. These solutions correspond exactly to the coefficients
of our obstructing curves from Corollary 3.6 when translated back to the
base of the homology of S2 × S2. Thus, our results could be interpreted as
providing the infimum from the relation (1.1) without going through the
extremely difficult task of solving all other possible Diophantine equations
involved. We should also remark that similar solutions can be provided for
all other cases that we discuss in the paper.

4. Embeddings of k ≥ 8 disjoint balls in the non-trivial
bundle M1

µ

This section is dedicated to providing the proofs of Theorem 1.6 and
its immediate corollaries. As explained in Section 2.4, given k ≥ 8, and
μ > 0, our goal is to find the largest capacity c for which the vector
v0 =

(
μ + 1 ; μ, c×k

)
belongs to the closure of the symplectic cone. As before,
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the volume condition gives an upper bound on wk, namely

wk ≤ cvol =

√
2μ + 1

k
.

Because μ can take values in (0, 1), we cannot assume c ≤ μ, so that v0 may
not be ordered.

Lemma 4.1. Let k ≥ 8 and suppose wk(μ) ≥ μ. Then μ ≤ 1/2. Conse-
quently, for μ ≥ 1/2, we can assume c ≤ wk ≤ μ.

Proof. The inequality wk(μ) ≥ μ implies that cvol ≥ μ, which is equivalent
to μ ∈

(
0, 1+

√
k+1

k

)
. Now, 1+

√
k+1

k is a decreasing function of k that takes
the value 1/2 at k = 8. �

Assuming μ ≥ 1/2, the vector v0 is ordered and positive, with defect
d0 = 2c− 1, so that v0 is reduced whenever c ≤ 1/2. Consequently, we have
the lower bound wk ≥ 1/2. We note, in particular, that for μ = 1/2 and
k = 8, we have cvol = 1/2 = μ, which shows that

w8(1/2) = 1/2.

For c > 1/2, applying a sequence of RC moves leads to vectors vn of the
form

vn =
(
μ + 1 − nd0 ; μ − nd0, c

×(k−2n), (1 − c)×(2n)
)

.

Lemma 4.2. Given k ≥ 8, let write k = 2p or k = 2p + 1 depending on
the parity of k. Choose any μ ≥ 1/2 and c ∈ (1/2, min{1, cvol, μ}]. Then the
following holds:

• If k ≥ 9, then the vector vp−2 is ordered and positive.
• If k = 8, the vector v2 is ordered and positive whenever μ ≥ 7

4 .

Proof. The vector vp−2 is ordered if and only if μ− (p−2)(2c−1) ≥ c. Since
we must have c ≤ cvol =

√
(2μ + 1)/k, it is sufficient to assume c = cvol, in

which case we get

f(μ) := k(μ + p − 2)2 − (2μ + 1)(2p − 3)2 ≥ 0.

When k = 2p + 1 is odd, the discriminant of this polynomial is 2(7− 2p), so
that f has no real roots whenever p ≥ 4 and hence must be positive. When
k = 2p the discriminant is 2(9 − 2p), showing that f has real roots only for
p = 4, that is, for k = 8. In that case, the roots are {1/2, 7/4}. �

Now let assume μ ∈ (0, 1/2). As before, the vector v0 = (μ + 1 ; μ, c×k) is
ordered only if μ ≥ c, in which case its defect is 2c− 1. Hence, v0 is positive
and reduced whenever 0 < c < μ ≤ 1/2. On the other hand, when c > μ, the
reordering of v0 gives the vector v̂0 = (μ + 1 ; c×k, μ) with defect 3c− μ− 1.
Hence, that vector is positive and reduced whenever 0 < μ < c ≤ (μ + 1)/3.
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Now, we have cvol ≤ (μ + 1)/3 if and only if kμ2 + 2(k − 9)μ + (k − 9) ≥ 0,
which is true whenever k ≥ 9. Therefore,

Lemma 4.3. Assume k ≥ 9 and μ ∈ (0, 1/2]. Then wk(M1
μ) = cvol, that is,

we have full packing of M1
μ by k equal balls. For k = 8 and μ ∈ (0, 1/2], we

have the lower bound μ ≤ w8(M1
μ) with equality when μ = 1/2.

We now discuss the following cases separately:
• k = 2p + 1 ≥ 9 and μ > 1/2,
• k = 2p ≥ 10 and μ > 1/2,
• k = 8.

4.1. The odd case k = 2p + 1 ≥ 9 and µ > 1/2. By Lemma 4.2, the
vector

vp−2 =
(
μ + 1 − (p − 2)d0 ; μ − (p − 2)d0, c

×5, (1 − c)×(2p−4)
)

is ordered and positive. A RC move leads to

vp−1 =
(
μ + 1 − (p − 1)d0 ; μ − (p − 1)d0, c

×3, (1 − c)×(2p−2)
)

,

which is positive but not necessarily ordered.
If vp−1 is ordered, that is, if μ − (p − 1)d0 ≥ c, then its defect is

d0 = 2c − 1 > 0 and another RC move yields

vp =
(
μ + 1 − pd0 ; μ − pd0, c, (1 − c)×(2p)

)
,

which, again, is positive but not necessarily ordered. However, since μ−(p−
1)d0 ≥ c and (c − 1) = c − d0 implies μ − pd0 ≥ (1 − c), its defect is

(μ − pd0) + c + (1 − c) − (μ + 1 − pd0) = 0,

so that vp is positive and reduced.
If vp−1 is not ordered, that is, if μ − (p − 1)d0 < c, then the reordered

vector is

v̂p−1 =
(
μ + 1 − (p − 1)d0 ; c×3, μ − (p − 1)d0, (1 − c)×(2p−2)

)

with defect dp−1 = (2p+1)c−μ−p > d0. Hence, applying a Cremona move
and a reordering gives

vp =
(
2λp−1 − 3c ; λp−1 − 1, (1 − c)×(2p−2), (λp−1 − 2c)×3

)
,

where we have set λp−1 = μ+1− (p−1)d0. The vector vp is always ordered,
and it is non-negative if and only if λp−1 − 2c ≥ 0, which is equivalent to

c ≤ p + μ

2p
.
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The defect of vp is dp = 1+c−λp−1, which is positive if and only if we assume
vp−1 not ordered. Thus, vp is not reduced, and we can apply a sequence of
(p − 3) RC moves to obtain the vector

v2p−3 =
(
2λp−1 − 3c − (p − 3)dp ;

× λp−1 − 1 − (p − 3)dp, (1 − c)×4, (λp−1 − 2c)×(2p−3)
)
.

That vector is ordered if λp−1 − 1− (p− 3)dp ≥ (1− c), which is equivalent
to

c ≤ (p − 2)μ + p2 − 3p + 1
p(2p − 5)

.

For c = cvol, this becomes(
2p3 − 7p2 + 4p + 4

)
u2 + 36p3 − 2

(
2p4 − 11p3 + 16p2 − 3p + 2

)
u

+ 2p5 − 15p4 − 26p2 − 4p + 1 ≥ 0,

which has a double root for p = 4 and no real roots for p ≥ 5. Hence, v2p−3

is ordered for all c ≤ cvol. A RC move applied to v2p−3 then yields

v2p−2 =
(
2λp−1 − 3c − (p − 2)dp ;

× λp−1 − 1 − (p − 2)dp, (1 − c)×2, (λp−1 − 2c)×(2p−1)
)
,

which is positive but not necessarily ordered.
Assuming v2p−2 ordered, a last RC move gives

v2p−1 =
(
2λp−1 − 3c − (p − 1)dp ; λp−1 − 1 − (p − 1)dp, (λp−1 − 2c)×(2p+1)

)
,

which is positive with defect d2p−1 = λp−1 − 1 − c = −dp. Hence, v2p−1 is
reduced.

If v2p−2 is not ordered, then the reordered vector is

v̂2p−2 =
(
2λp−1 − 3c − (p − 2)dp ;

× (1 − c)×2, λp−1 − 1 − (p − 2)dp, (λp−1 − 2c)×(2p−1)
)

and another Cremona move and reordering gives

v2p−1 =
(
2λp−1 − 3c − (p − 1)dp ; (λp−1 − 2c)×(2p+1), λp−1 − 1 − (p − 1)dp

)
,

which is non-negative only if λp−1 − 1 − (p − 1)dp ≥ 0, which is equivalent
to

c ≤ p(p + μ − 1)
2p2 − p − 1

.

Its defect is d2p−1 = 3(λp−1−2c)− (2λp−1−3c− (p−1)dp) which is positive
if c ≥ (p−2)u+p2−3p+1

2p2−5p
, that is, if v2p−3 is not ordered. So, v2p−1 is again

reduced.
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Summing up, we see that the algorithm produces a non-negative reduced
vector provided c is not greater than any of the upper bounds cvol, 1, p+μ

2p ,

and p(p+μ−1)
2p2−p−1

.

Proposition 4.4. Let k = 2p+1 ≥ 9 and μ ∈ (1/2,∞). Then the (2p+1)th
generalized Gromov width of M1

μ is

w2p+1(M1
μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cvol if μ ∈
[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
,

p(p+μ−1)
2p2−p−1

if μ ∈
[

p3−2p2+1−(p−1)
√

2p+1
p2 , p(p−1)

p+1

)
,

p+μ
2p if μ ∈

[
p(p−1)

p+1 , p
)

,

1 if μ ∈ [p, ∞) .

Proof. This follows readily from the fact that w2p+1 = min
{

cvol, 1, p+μ
2p ,

p(p+μ−1)
2p2−p−1

}
. �

Corollary 4.5. Let k = 2p + 1 ≥ 9 and consider μ ≥ 1/2. The (2p + 1)th
packing number of M1

μ is

p2p+1(M1
μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if μ ∈
[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
,

p2(p+μ−1)2

(2μ+1)(p−1)2
if μ ∈

[
p3−2p2+1−(p−1)

√
2p+1

p2 , p(p−1)
p+1

)
,

(2p+1)
(2u+1)

(
p+μ
2p

)2
if μ ∈

[
p(p−1)

p+1 , p
)

,

2p+1
2μ+1 if μ ∈ [p, ∞) .

Corollary 4.6. The odd stability number of M1
μ is

Nodd(μ) =

⎧⎪⎪⎨
⎪⎪⎩

7 if μ ∈ {1
7 , 3

8

}
,

9 if μ ∈ (0, 1) \ {1
7 , 3

8

}
,

2
⌈

u+2+
√

(u+2)2+4
√

2u+1
2

⌉
+ 1 if μ ∈ [1,∞) .

Proof. By Proposition A.2, the pairs (μ, k) for which we have full packings
by k = 2p + 1 ≤ 7 balls are {(1, 3), (1/7, 7), (3/8, 7), (3, 7)}. On the other
hand, for μ ∈ (0, 1/2], Lemma 4.3 shows that we have full packings whenever
k ≥ 9. These two facts together prove our claim for μ ∈ (0, 1/2]. When
μ ∈ (1/2,∞), the largest root of the polynomial in p

(2p + 1)
(
p4 − 2p3μ + p2μ2 − 4p3 + 4p2μ + 4p2 − 2μ − 1

)
obtained by setting

c2
vol =

p2(p + μ − 1)2

(2p2 − p − 1)2
,



�

�

�

�

�

�

�

�

302 BUSE AND PINSONNAULT

is

r(μ) =
μ + 2 +

√
(μ + 2)2 + 4

√
2μ + 1

2
.

The integer J(μ) := max{9, 2�r(μ)� + 1} gives the odd stability number in
the range k ≥ 9. The results follows by comparing J(μ), μ ≥ 1/2, with the
exceptional full packings by k ≤ 7 balls listed above. �

Corollary 4.7. The exceptional classes in H2(X2p+2; Z) that give the
obstructions to the embedding of 2p + 1 ≥ 9 balls into M1

μ, μ ≥ 1/2, are
of type (

1 ; 1×2, 0×2p
)

for μ ∈ [p, ∞),
(
p ; p − 1, 1×2p, 0

)
for μ ∈

[
p(p − 1)
p + 1

, p

)
,

(
p(p − 1) ; p(p − 2), (p − 1)×(2p+1)

)

for μ ∈
[
p3 − 2p2 + 1 − (p − 1)

√
2p + 1

p2
,

p(p − 1)
p + 1

)
.

For μ ∈
[
1/2, p3−2p2+1−(p−1)

√
2p+1

p2

)
, the only obstruction is given by the

volume condition.

Proof. As in Corollary 3.6, this follows from applying to the vector
(0 ; 0×(2p+1),−1) the adjoint of the automorphism φ produced by the
algorithm on each interval. That automorphism is

φ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(RC)p for μ ∈ [p, ∞),

(RC)p−1BCA(RC)p−1 for μ ∈
[

p(p−1)
p+1 , p

)
,

BCS(RC)p−2BCA(RC)p−1 for μ ∈
[

p3−2p2+1−(p−1)
√

2p+1
p2 , p(p−1)

p+1

)
.

�

4.2. The even case k = 2p ≥ 10 and µ > 1/2. Let d0 = 2c − 1. By
Lemma 4.2, the vector

vp−2 =
(
μ + 1 − (p − 2)d0 ; μ − (p − 2)d0, c

×4, (1 − c)×(2p−4)
)

is ordered and positive. A RC move leads to

vp−1 =
(
μ + 1 − (p − 1)d0 ; μ − (p − 1)d0, c

×2, (1 − c)×(2p−2)
)

,

which is positive but not necessarily ordered. In any case, its defect is still
d0 so that a RC move yields

vp =
(
μ + 1 − pd0 ; μ − pd0, (1 − c)×2p

)
,
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which is non-negative only if μ − pd0 ≥ 0, which is equivalent to

c ≤ p + μ

2p
.

If vp is non-negative and ordered, then its defect is zero, so that vp is reduced.
If vp is non-negative but not ordered, then its reordering gives

v̂p =
(
μ + 1 − pd0 ; (1 − c)×2p, μ − pd0

)
,

whose defect is dp = 3 − 3c − (μ + 1 − pd0). That defect is positive only if

c >
p + u − 2
2p − 3

.

However, that would imply

cvol =
√

2μ + 1
2p

>
p + u − 2
2p − 3

,

which is impossible for k = 2p ≥ 10. Hence, v̂p is also reduced.
The previous discussion shows that the algorithm produces a non-negative

reduced vector provided c is not greater than any of the upper bounds cvol,
1, and p+μ

2p .

Proposition 4.8. Let k = 2p ≥ 10 and μ ∈ (1/2,∞). Then the (2p)th
generalized Gromov width of M1

μ is

w2p(M1
μ) =

⎧⎪⎪⎨
⎪⎪⎩

cvol if μ ∈ [1/2, p −√
2p
)
,

p+μ
2p if μ ∈ [p −√

2p, p
)
,

1 if μ ∈ [p, ∞) .

Proof. This follows readily from the fact that w2p = min
{

cvol, 1, p+μ
2p

}
. �

Corollary 4.9. Let k = 2p ≥ 10 and consider μ ≥ 1/2. The (2p)th packing
number of M1

μ is

p2p(M1
μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if μ ∈ [1/2, p −√
2p
)
,

(p+μ)2

(2p)(2μ+1) if μ ∈ [p −√
2p, p

)
,

2p
2μ+1 if μ ∈ [p, ∞) .

In particular, the even stability number of M1
μ is Neven(μ) = 2p, where

p =
⌈
μ + 1 +

√
2μ + 1

⌉
.

Proof. The stability number is obtained by solving for p in the polynomial
c2
vol − (p+μ)2

(2p)2
. Since this is a degree two polynomial with negative leading

term, choosing the largest root gives the result. �
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Corollary 4.10. The exceptional classes that give the obstructions to the
embedding of 2p ≥ 10 balls into M1

μ, μ ≥ 1/2, are of type(
1 ; 1×2, 0×(2p−1)

)
for μ ∈ [p, ∞)

(
p ; p − 1, 1×2p

)
for μ ∈

[
p −

√
2p, p

)
.

For μ ∈ [
1/2, p −√

2p
)
, the only obstruction is given by the volume

condition.

Proof. The obstructing classes are φ∗(E2p+1) where

φ =

{
(RC)p for μ ∈ [p, ∞),
D(RC)p for μ ∈ [p −√

2p, p
)
,

where D is the permutation (1, k + 2, 2, . . . , k + 1). �

4.3. The case k = 8. When k = 8, Lemmas 4.2 and 4.3 show that
the behavior of the algorithm depends on whether μ ≤ 1/2 or 1/2 ≤ μ.
In the first case, the lower bound μ ≤ w8(μ) implies that one must start
with the ordered vector

(
μ + 1 ; c×8, μ

)
, while in the second case, the upper

bound w8(μ) ≤ μ show that the initial vector is
(
μ + 1 ; μ, c×8

)
. Moreover,

for μ < 7
4 , the initial steps are sensitive to the actual value of μ. In fact, for

μ ∈ (0, 7
4), the branching pattern of the algorithm becomes surprisingly hard

to analyze. Consequently, we use a different approach that gives directly the
exceptional classes defining the obstructions to the embedding of eight balls
of capacity c in M1

μ. This approach relies on the classical fact that the set
of exceptional classes of CP

2# 9CP
2 can be described in terms of the affine

root lattice of type E8 and, as such, it only applies to the case k = 8.
To begin with, we show that the exceptional classes leading to embedding

obstructions must be “almost parallel” to the vector w =
(
μ + 1 ; μ, (cvol)×8

)
,

see also section 2 in [14].

Lemma 4.11. The classes that may give obstructions to the embeddings of
eight equal balls in M1

μ are of the forms

(i) (d ; m, � − 1, �×7),
(ii) (d ; m, �×8),
(iii) (d ; m, � + 1, �×7).

Proof. Fix μ and c ∈ (0, cvol] and define v0 =
(
μ + 1 ; μ, c×8

)
and w =(

μ + 1 ; μ, (cvol)×8
)
. By definition of cvol we have w · w = 0. Suppose an

exceptional class E = (e0 ; e1, . . . , e8) defines an obstruction, that is, suppose
v0 ·E ≤ 0. Then we must have w ·E ≤ 0 as well. If we define ε = (0, ε1, . . . , ε8)
by setting

E =
e0

μ + 1
w + ε
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we can write

w · E =
e0

μ + 1
w · w +

e0

μ + 1
w · ε =

e0

μ + 1
w · ε ≤ 0

and

−1 = E · E =
(

e0

μ + 1

)2

w · w + 2
(

e0

μ + 1

)
w · ε + ε · ε.

Those two equations imply that ‖ ε ‖2= −ε · ε ≤ 1. Now, we observe that
‖ ε ‖ is simply the Euclidean distance between the vectors e0

μ+1w and E.
In particular, the distance between the truncated vectors e0

μ+1(cvol, . . . , cvol)
and (e2, . . . e8) is bounded above by one, that is,

8∑
i=2

(
ei − e0cvol

μ + 1

)2

≤ 1.

Since the coefficients of E are integers, that implies the coefficients
{e2, . . . , e8} must all be equal to some integer �, with at most one exception,
in which case the other coefficient must be �± 1. Since the product v0 ·E is
constant under permuting the coefficients {e2, . . . , e8}, we can assume that
E is of the form (d ; m, �− 1, �×7), (d ; m, �×8), or (d ; m, � + 1, �×7) for some
positive integers d and m. �

In order to list the exceptional classes of types (i), (ii), and (iii) above, it
is useful to describe the set E9 of all exceptional classes in X9 = CP

2# 9CP
2

in a more concrete way. To this end, recall that the (−2)-homology classes
αi are defined of the standard basis {L, E1, . . . , E9} by

α0 := L − E1 − E2 − E3,

αi := Ei − Ei+1, 1 ≤ i ≤ 7

and that the Poincaré dual of the first Chern class is given by

K := 3L − E1 − · · · − E9.

We now define the root lattice Q8 ⊂ H2(X9; Z) by setting

Q8 := ⊕7
i=0Zαi � Z

8.

It is known (see, for instance, [6]) that there exists a natural bijection T :
Q8 → E9 between the root lattice and the set of exceptional classes, namely

T (α) = E9 − α − 1
2
(α · α)K,

whose inverse is given by

T−1(E) = E9 − E + (1 + E · E9)K.

Under this bijection, the curves of types (i), (ii), and (iii) take a very simple
form, and that allows us to write them explicitely.
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Lemma 4.12. The classes that may give obstructions to packings by 8 balls
belongs to three families that can be parametrized as follows:

(i) (n(12n − 1) ; n(4n − 3), 4n2 − 1, (4n2)×7),
(ii) (4n(3n + 2) ; 4n2 − 1, (n(4n + 3)×8),
(iii) ((3n+2)(4n+3) ; n(4n+3), 2(n+1)(2n+1)+1, (2(n+1)(2n+1))×7).

Proof. We first consider classes of type (d; m, � − 1, �×7). The bijection
E9 → Q8 � Z

8 maps any such class to a vector of the form

(−d + 3� + 3, 2d − 6� + 2, d − 3� + 3, 5, 4, 3, 2, 1) ∈ Z
8.

Writing n = 3� − d, that vector becomes

(n + 3, 2 − 2n, 3 − n, 5, 4, 3, 2, 1) ∈ Z
8

showing that classes of type (d ; m, � − 1, �×7) form a 1-parameter family
indexed by n ∈ Z. Applying the inverse bijection, we obtain an explicit
parametrization of elements of E9, namely

(
n(12n − 1) ; n(4n − 3), 4n2 − 1, (4n2)×7

)
, n ∈ Z.

Similarly, one can check that classes of the types (d ; m,
�×8) and (d ; m, � + 1, �×7) correspond to vectors

(n + 3, 1 − 2n, 3 − n, 5, 4, 3, 2, 1) and (n + 3,−2n, 3 − n, 5, 4, 3, 2, 1)

in Z
8. The formulae in (ii) and (iii) follow readily. �

The previous two lemmas show that a necessary and sufficient condition
for v0 =

(
μ + 1 ; μ, c×8

)
, with 0 < c < cvol, to belong to the symplectic cone

of X9 is the positivity of the symplectic areas of the classes of types (i),
(ii), and (iii). Note that for n = 0, we obtain curves of types

(
0 ; 0,−1, 0×7

)
,(

0 ;−1, 0×8
)
, and

(
6 ; 0, 3, 2×7

)
. The first two give the trivial lower bound

w8(μ) > 0, while the third gives the upper bound w8(μ) ≤ 6μ+6
17 . For n ∈

Z \ {0}, we get three families of upper bounds for w8, namely

u1(μ, n) =
2n(4n + 1)μ + 12n2 − n

32n2 − 1
,

u2(μ, n) =
(8n2 + 8n + 1)μ + 12n2 + 8n

8n(4n + 3)

and

u3(μ, n) =
2(4n2 + 7n + 3)μ + 12n2 + 17n + 6

32n2 + 48n + 17
.
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Therefore,

w8

(
M1

μ

)
= min

n∈Z\{0}

{
cvol =

√
2μ + 1

8
, u1(μ, n), u2(μ, n), u3(μ, n),

× u3(μ, 0) =
6μ + 6

17

}
,

which proves Theorem 1.4.
In order to describe w8(μ) explicitly as a piecewise linear function, we

introduce the functions

s1(n) =
4n(3n − 2)

24n2 + 8n + 1
, s2(n) =

4n(3n + 2)
24n2 + 40n + 17

, s3(n) =
8n2 + 8n + 1
16(n + 1)2

defined respectively on Z, Z, and Z \ {−1}. For convenience, we extend the
domain of s3(n) to Z by setting s3(−1) = ∞. Simple but rather tedious
computations show that

u1(μ, n) = u2(μ, n) ⇐⇒ μ = s1(n),

u2(μ, n) = u3(μ, n) ⇐⇒ μ = s2(n),

u3(μ, n) = u1(μ, n + 1) ⇐⇒ μ = s3(n)

and that

u1(μ, n) = u2(μ, n) < cvol for μ = s1(n),

u2(μ, n) = u3(μ, n) < cvol for μ = s2(n),

u3(μ, n) = u1(μ, n + 1) = cvol for μ = s3(n).

Moreover, for n ≥ 0, the si(n) form interlocking increasing sequences which
converge to 1/2 as n → ∞,

0 = s2(0) <
1
16

= s3(0) < · · · < s1(n) < s2(n) < s3(n)

< s1(n + 1) < · · · < 1/2,

while for negative n ≤ −1, the si(n) form interlocking decreasing sequences
which also converge to 1/2 as n → −∞,

1/2 < · · · < s3(n − 1) < s1(n) < s2(n) < s3(n) < · · · < 4

= s2(−1) < ∞ = s3(−1).

We conclude that on the interval (0, 4], the upper bounds ui(μ, n) are never
greater than cvol. On the other hand, by Lemma 4.2, the conclusions of
Proposition 4.8 hold whenever μ ≥ 7

4 . In particular, we know that w8(μ) =
1 = u3(μ,−1) whenever μ ≥ 4. Together with the fact that w8(1/2) = 1/2,
this gives a complete description of w8

(
M1

μ

)
, namely
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Theorem 4.13. The generalized Gromov width w8(M1
μ) is the piecewise

linear function defined by

w8(M1
μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u2(μ, n) if μ ∈ (s1(n), s2(n)] ,
u1(μ, n) if μ ∈ (s3(n − 1), s1(n)] ,
u3(μ, n − 1) if μ ∈ (s2(n − 1), s3(n − 1)) ,

cvol =
√

2μ+1
8 if μ ∈ {s3(n − 1), 1

2 , s3(−(n + 1))
}

,

u1(μ,−n) if μ ∈ (s3(−(n + 1)), s1(−n)] ,
u2(μ,−n) if μ ∈ (s1(−n), s2(−n)] ,
u3(μ,−n) if μ ∈ (s2(−n), s3(−n)) .

where n ≥ 1,

Let define the set S ⊂ (0,∞) by setting

S =
{

s3(n − 1),
1
2
, s3(−(n + 1))

}

=
{

8n2 − 8n + 1
16n2

,
1
2
,

8n2 + 8n + 1
16n2

}
, n ≥ 1.

Note that S ⊂ (0, 17/16]. Theorem 4.13 shows that M1
μ admits a full packing

by eight balls if, and only if, μ ∈ S. This last result allows us to complete
our computations of the stability numbers of M1

μ.

Corollary 4.14. The even stability number of M1
μ is

Neven

(
M1

μ

)
=

⎧⎪⎨
⎪⎩

8 if μ ∈ S,

10 if μ ∈ (0, 3
2

] \ S,

2
⌈
μ + 1 +

√
2μ + 1

⌉
if μ ∈ [3

2 , ∞)
.

Proof. By Proposition A.2, the only pair (μ, k) for which we have full pack-
ings by k = 2p ≤ 6 balls is (1/4, 6), and we observe that 1/4 ∈ S. On the
other hand, for μ ∈ (0, 1/2], Lemma 4.3 shows that we have full packings
whenever k ≥ 9. We conclude that for μ ∈ (0, 1/2] \ S the even stability
number is equal to 10, while it is equal to 8 for μ ∈ S ∩ (0, 1/2].

When μ ∈ (1/2,∞), the largest root of the polynomial in p

2p
(
p2 − 2(μ + 1)p + μ2

)
obtained by setting

c2
vol =

(p + μ)2

(2p)2
.

is
r(μ) = μ + 1 +

√
2μ + 1
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The integer J(μ) := max{10, 2�r(μ)�} gives the even stability number in
the range k ≥ 10. It is easy to see that on S ∩ (1/2, 3/2], J(μ) = 10. The
results follow readily. �

Combining Corollary 4.6 with Corollary 4.14, we finally get the general
stability number of the twisted bundle, namely

Corollary 4.15. The general stability number of M1
μ is

Nstab

(
M1

μ

)
=

⎧⎪⎨
⎪⎩

8 if μ ∈ S,

9 if μ ∈ (0, 3
2

)
,

Neven − 1 if μ ∈ [3
2 , ∞)

.

5. Embedding ellipsoids in polydisks and comparison with ECH
capacities

5.1. Embedding ellipsoids in polydisks. Using a recent result of Müller
our results about ball packings can be translated into the following

Corollary 5.1. Let k be any integer greater than 8 and let a, s, t be any
positive real numbers with s < t. Set μ = a/s. Then the following statements
are equivalent:

i) E(a, ka) ↪→ P (s, t)
ii) If k = 2p + 1 then

a

s
≤

⎧⎪⎪⎨
⎪⎪⎩

cvol =
√

2μ
2p+1 if μ ∈ [1, p + 1 −√

2p + 1
)
,

μ+p
2p+1 if μ ∈ [p + 1 −√

2p + 1, p + 1
)
,

1 if μ ∈ [p + 1, ∞) .

If k = 2p then

a

s
≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cvol =
√

μ
p if μ ∈

[
1,

p−2+
√

p2−4p
2

)
,

an−1μ+an

2(an+an−1)−1 if μ ∈
[

γn

γn−1
, γn−1

γn−2

)
, n ≥ 2,

1 if μ ∈ [p, ∞) .

Proof. For a generic almost complex structure J on M0
μ, μ = t/s, we can

arrange that the image of an embedding of k disjoint equal balls into M0
μ

misses the union of a fiber F and some generic section S of S2 × S2 in
the homology class [S2 × {∗}]. Hence, we can view such an embedding
as an embedding into the polydisk P (1, μ) � M0

μ \ {F ∪ S}. Moreover,
by [17] Remark 2.1.E, we know that the embedding problems for M0

μ and
M0

μ \ {F ∪ S} are equivalent.
In [15], D. McDuff proved that the existence of an embedding of k balls of

equal sizes c in the ball B4(1) is equivalent to the existence of a symplectic
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embedding of an ellipsoid E(c, kc) in the same ball. Recently, Müller [18]
used similar ideas to prove an analogous result for the embeddings of ellip-
soids into polydisks, see for instance Proposition 10 in [9]. According to her
results, if one has a symplectic embedding

(5.1) Φ : �kintB(wk) ∪ B(1) ∪ B(μ) −→ B(1 + μ)

then one obtains an embedding of E(wk, k · wk) → P (1, μ). But it is clear
that the problem of finding such embedding Φ reduces to proving that the
vector v0 = (μ + 1 − c ; μ + 1, c×(k−1), 1 − c) belongs to the symplectic cone
of Xk+1. Hence, the equivalence between (i) and (ii) follows. �

5.2. Comparison with ECH capacities. In a recent series of papers, M.
Hutching’s defines the ECH capacities for Liouville domains (Y, ξ) and, more
generally, for Liouville domains with corners. The purpose of this section is to
establish a connection between our results and ECH capacities of ellipsoids
and polydisks. Let us first give a brief overview of the necessary notations
and results existing in the literature. The ECH capacities form a sequence
ck(Y, ξ) which represents the spectrum of a filtered version of ECH, in which
the filtering is defined using a certain action functional. The construction
of this homology theory, as well as its mains properties, are discussed in
Hutchings [7–9]. We will consider here the case of a Liouville domain given
by an ellipsoid E(a, b) and that of a Liouville domain with corners given as a
polydisk P (s, t). We will denote by Nk(a, b) the sequence of ECH capacities
ck(E(a, b)), and by Mk(s, t) the sequence ck(P (s, t)). For our purpose, it is
sufficient to recall the following results:

Theorem 5.2 (see M. Hutchings [7, 9]). (i) E(a, b) ↪→ P (s, t) if,
and only if N (a, b) ≤ M(s, t).

(ii) For an ellipsoid E(a, b), the elements of the sequence N (a, b) are
obtained by arranging in increasing order (with repetitions) all the
numbers of the type am + bn with m, n natural numbers.

(iii) For a polydisk P (s, t), the ECH capacities are organized in a sequence
M(s, t) whose ith element is defined as

(5.2) Mi(ν, μ) = min{νm + μn | (m + 1)(n + 1) ≥ i + 1, (m, n) ∈ N × N}.
Note that the reverse implication in statement (i) of this theorem is a

consequence of how the invariants are defined by Hutchings. The direct
implication was recently proved by M. Hutchings in [9] using Müller’s [18]
result cited above, as well as a strategy provided by McDuff in [16], which
proves sharpness of the ECH invariants for embeddings of ellipsoids into
ellipsoids.

The computations of the generalized Gromov widths provides explicit and
comprehensive ranges of parameters a, b, s, t for which such embeddings exist
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in the case the ratio a/b is an integer 8. Our Corollary 1.3 gives an alter-
native proof of the direct implication in (i) in Theorem 5.2 under the same
integral condition. (For smaller values of k one can trace the results using
Appendix A). This alternative proof sheds some insight on the difficulties
and intricacies involved in computing explicitly the ECH invariants. We note
that such computation is needed if one wants to find optimal values a, b, s, t
for which embeddings E(a, b) ↪→ P (s, t) exist, without making use of the
reduction algorithm.

Proposition 5.3. Let k ≥ 8 be an integer. The following are equivalent:
(i) E(a, ka) ↪→ P (s, t),
(ii) N (a, ka) < M(s, t),
(iii) a

sN (1, k) < M(1, t
s),

(iv) If k = 2p + 1 then a
s ≤ wk = min{1, cvol,

μ+p
2p+1}. If k = 2p then

a
s ≤ wk = minn∈N{1, cvol, wn}. Moreover, by Theorem 1.1, the precise
value of this minimum is given by the index n of the interval In in
which μ = t

s lies.

Proof. Note that (i) =⇒ (ii) is the inverse implication of point i) from
Hutching’s theorem 5.2, and that (ii) =⇒ (iii) is straightforward as all
ECH capacities satisfy a rescaling property. The implication (iv) =⇒ (i)
is covered by Corollary 1.3.

We will show here the remaining implication, namely that (iii) implies
(iv). So let us assume that a

sN (1, k) < M(1, μ). The fact that a
s ≤

min{1, cvol} is straightforward as the ECH capacities respect volume and
because the first entries of N (1, k) and M(1, t

s) are 1. Let us prove the rest
of the inequalities.

Let us consider the case k = 2p. Recall that for any n > 1, wn =
an+an−1μ

2(an+an−1)−1 . We will introduce the sequence xn satisfying the identity
2(an + an−1) − 1 = 2pxn + (−1)n+1. One can easily verify, using the recur-
rence (3.9) for the sequence an, that the numbers xn are in fact natural
numbers satisfying the relation

xn+3 = (p − 1)(xn+2 − xn+1) + xn + (−1)n+1.

Therefore

(5.3) xn =
2(an + an−1) − 1 + (−1)n

2p
.

For each n > 1 we define the index in to be

(5.4) in := (an + 1)(an−1 + 1) − 1.

Then it is clear from (5.2) that

Min(1, μ) = an + an−1μ.
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Therefore our assumption is equivalent with

(5.5)
a

s
≤ an + an−1μ

Nin(1, k)
.

We claim that for our choice of in , we get that

(5.6) Nin(1, k) = 2pxn + (−1)n+1 = 2(an + an−1) − 1,

hence the right-hand side of (5.5) is exactly wn. The remaining of the proof
will be to justify the value of the inth ECH capacity of E(1, k) from rela-
tion (5.6). To see this, first observe that for any integer k, N (1, k) is given
by

(5.7)
(
1, . . . k − 1, k, k, k + 1, k + 1, . . . 2k − 1, 2i − 1, (2k)×3, . . .

. . . (3k − 1)×3, . . . , (jk)×(j+1), . . . , ((j + 1)k − 1)×(j+1), . . . ,
)
.

In particular, any number of the form kx−1 will appear as a value of Ni(1, k)
exactly when

(5.8) kx(x + 1)/2 − x ≤ i ≤ kx(x + 1)/2 − 1

and any number of the form kx+1 will appear as a value of Ni(1, k) exactly
when

(5.9) kx(x + 1)/2 + x + 1 ≤ i ≤ kx(x + 1)/2 + 2x + 2.

Equation (5.6) will then follow from the following claim used in conjunction
with (5.8) when n is even and with (5.9) when n is odd:

2pxn(xn + 1) + (−1)nxn +
1 + (−1)n

2
= in.

To prove this identity we first observe that it is equivalent, via the identi-
ties (5.3) and (5.4), with the identity

(5.10)
(an + an−1)2

p
− an + an−1

p
= anan−1.

But this was proved in Lemma 3.13.
Let us now consider the case when k = 2p + 1. In this case, we pick the

index i = 2p + 1. We get that N2p+1(1, k) = (2p + 1) by (5.9). On the
other hand, for k = 2p + 1 the condition in equation (5.2) is satisfied with
equality if (m, n) = (p, 1) and it implies that M2p+1(1, μ) = μ + p. Hence,
the inequality a

sN2p+1(1, k) ≤ M2p+1(1, μ) is equivalent with

a

S
≤ μ + p

2p − 1

and the result follows. This concludes the proof. �
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Remark 5.4. Note that one can think of this Proposition as one step for-
ward towards proving Corollary 1.3 (thus the equivalence (i) ⇔ (iv) ) with-
out our results regarding the reduction algorithm, by making use instead of
both implications available from Theorem 5.2. Indeed, one could conjure the
numbers Nin(1, k) and Min(1, μ) (albeit we believe it difficult without the
previous knowledge on all recurrences and results obtained form the algo-
rithm) and obtain the implication (i) ⇒ (iv). But the reverse of this impli-
cation requires that one shows that the entire vector a

sN (1, k) < M(1, μ)
for the proposed values for and that would mean computing all the ECH
capacities for the two objects. But our main results does, in addition pro-
viding insight to what particular values should we pick for a/s, circumvent
an attempt to compute all values of the entries in the ECH capacities, by
showing that the embeddings exist for the proposed values a/f = wk(μ).

We conclude, therefore, with the following two questions:

• Can one give a simpler proof of Theorem 1.1 using exclusively the
computation of ECH capacities introduced by M. Hutchings 5.2 ?

• Is there a way to reduce the computations of the generalized Gromov
widths of the twisted bundle M1

μ to a comparison of suitable sequences
of ECH capacities ?

6. Appendix A: Embeddings of 1 ≤ k ≤ 7 disjoint balls in M i
µ

For 1 ≤ k ≤ 7, the set EK ⊂ H2(Xk+1; Z) of exceptional homology classes of
the (k+1)-fold blow-up of CP

2 is finite. It consists of classes of the following
types:

(0 ;−1) ,
(
1 ; 1×2

)
,

(
2 ; 1×5

)
,(

3 ; 2×1, 1×6
)
,

(
4 ; 2×3, 1×5

)
,

(
5 ; 2×6, 1×2

)
,

(
6 ; 3, 2×7

)
.

It follows that the symplectic cone CK of Xk+1 is defined by finitely many
inequalities. In particular, an easy computation yields the packing numbers
pk(M i

μ), 1 ≤ k ≤ 7. Using the same normalization as before, we obtain:

Proposition A.1. For the normalized product bundle M0
μ = (S2×S2, μσ⊕

σ), the packing numbers pk(M0
μ), 1 ≤ k ≤ 7 are given by

p1(M0
μ) =

1
2μ

p2(M0
μ) =

1
μ

,

p3(M0
μ) =

⎧⎨
⎩

3
2μ

(μ+1
3

)2 if μ ∈ [1, 2)

3
2μ if μ ∈ [2,∞)
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p4(M0
μ) =

⎧⎨
⎩

2
μ

(μ+1
3

)2 if μ ∈ [1, 2),

2
μ if μ ∈ [2,∞).

p5(M0
μ) =

⎧⎨
⎩

5
2μ

(μ+2
5

)2 if μ ∈ [1, 3)

5
2μ if μ ∈ [3,∞)

p6(M0
μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
μ

(2μ+2
7

)2 if μ ∈ [1, 4
3),

3
μ

(μ+2
5

)2 if μ ∈ [43 , 3),

3
μ if μ ∈ [3,∞).

p7(M0
μ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

7
2μ

(4μ+4
15

)2 if μ ∈ [1, 8
7),

7
2μ

(3μ+4
13

)2 if μ ∈ [87 , 11
8 ),

7
2μ

(μ+3
7

)2 if μ ∈ [11
8 , 4),

7
2μ if μ ∈ [4,∞).

In particular, the pairs (μ, k), 1 ≤ k ≤ 7, for which we have full packings of
M0

μ are: {
(1, 2), (2, 4),

(
4
3
, 6
)

, (3, 6),
(

8
7
, 7
)}

,

Proposition A.2. For the normalized twisted bundle M1
μ, the packing num-

bers pk(M1
μ), 1 ≤ k ≤ 7 are given by

p1(M1
μ) =

1
2μ + 1

p2(M1
μ) =

⎧⎨
⎩

2
2μ+1

(μ+1
2

)2 if μ ∈ (0, 1),

2
2μ+1 if μ ∈ [1,∞),

p3(M1
μ) =

⎧⎨
⎩

3
2μ+1

(μ+1
2

)2 if μ ∈ (0, 1)

3
2μ+1 if μ ∈ [1,∞)

p4(M1
μ) =

⎧⎨
⎩

4
2μ+1

(μ+2
4

)2 if μ ∈ (0, 2),

4
2μ+1 if μ ∈ [2,∞),

p5(M1
μ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5
2μ+1

(2μ+2
5

)2 if μ ∈ (0, 2
3 ]

5
2μ+1

(μ+2
4

)2 if μ ∈ (2
3 , 2]

5
2μ+1 if μ ∈ (2,∞)
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p6(M1
μ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6
2μ+1

(2μ+2
5

)2 if μ ∈ (0, 1
4 ],

6
2μ+1

(2μ+3
7

)2 if μ ∈ (1
4 , 3

5 ],

6
2μ+1

(μ+3
6

)2 if μ ∈ (3
5 , 3],

6
2μ+1 if μ ∈ (3,∞),

p7(M1
μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

7
2μ+1

(3μ+3
8

)2 if μ ∈ (0, 1
7 ],

7
2μ+1

(4μ+5
13

)2 if μ ∈ (1
7 , 3

8 ],

7
2μ+1

(4μ+6
15

)2 if μ ∈ (3
8 , 6

11 ],

7
2μ+1

(3μ+6
14

)2 if μ ∈ ( 6
11 , 3

2 ],

7
2μ+1

(μ+3
6

)2 if μ ∈ (3
2 , 3],

7
2μ+1 if μ ∈ (3,∞).

In particular, the pairs (μ, k), 1 ≤ k ≤ 7, for which we have full packings of
M1

μ are: {
(1, 3),

(
1
4
, 6
)

,

(
1
7
, 7
)

,

(
3
8
, 7
)

, (3, 7)
}

.
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