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NONCOMMUTATIVE INTEGRABILITY AND
ACTION–ANGLE VARIABLES IN CONTACT GEOMETRY

Božidar Jovanović

We introduce a notion of the noncommutative integrability within a
framework of contact geometry.

1. Introduction

In Hamiltonian mechanics solving by quadratures is closely related to
the regularity of dynamics that is described in the Arnold–Liouville the-
orem. A Hamiltonian system on 2n-dimensional symplectic manifold M is
called integrable if it has n-smooth Poisson-commuting, almost everywhere
independent integrals f1, f2, . . . , fn. Regular compact connected invariant
manifolds of the system are Lagrangian tori. Moreover, in a neighbor-
hood of any torus, there exist canonical action–angle coordinates (ϕ, I) =
(ϕ1, . . . , ϕn, I1, . . . , In), integrals fi depend only on actions I and the flow is
translation in ϕ coordinates [1].

Therefore, an integrable Hamiltonian system can be considered as a toric
Lagrangian fibration π : M → W (see Duistermaat [11]). This approach
is reformulated to contact manifolds (M,H) by Banyaga and Molino [2].
Instead of a toric Lagrangian fibration, one consider an invariant toric fibra-
tion transversal to the contact distribution H, such that intersection of tori
and H is a Lagrangian distribution with respect to the conformal class of
the symplectic structure on H (see Section 5).

Slightly different notion of a contact integrability is given recently by
Khesin and Tabachnikov [19]. They defined integrability in terms of the
existence of an invariant foliation F , called a co-Legendrian foliation (here
we refer to F as a pre-Legendrian foliation). F is transversal to H, G = F∩H
is a Legendrian foliation of M with an additional property that on every
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leaf F of F , the foliation G|F has a holonomy invariant transverse smooth
measure.1 It turns out that this condition implies the existence of a global
contact form α (see [19]) and G is a α-complete Legendrian foliation studied
by Libermann [27] and Pang [32]. Recall that a foliation F is α-complete if
for any pair f1, f2 of first integrals of F (where fi may be a constant), the
Jacobi bracket [f1, f2] is also a first integral of F (eventually a constant).

Due to the presence of symmetries, many Hamiltonian systems have more
than n noncommuting integrals. Illustrative examples are G-invariant geo-
desic flows on homogeneous spaces [4, 16]. An appropriate framework for
the study of these systems is noncommutative integrability introduced by
Nehoroshev [31] and Mishchenko and Fomenko [30] (see also [4,16,21,36]).
Here, we recall the Nehoroshev formulation: a Hamiltonian system on 2n-
dimensional symplectic manifold M is noncommutatively integrable if it
has 2n − r almost everywhere independent integrals f1, f2, . . . , f2n−r and
f1, . . . , fr commute with all integrals

{fi, fj} = 0, i = 1, . . . , 2n − r, j = 1, . . . , r.

Regular compact connected invariant manifolds of the system are isotropic
tori. In a neighborhood of a regular torus, there exist canonical generalized
action–angle coordinates such that integrals fi, i = 1, . . . , r depend only on
actions and the flow is translation in angle coordinates.

One of the basic examples of contact manifolds are unit co-sphere bundles
SQ ⊂ T ∗Q of Riemannian manifolds (Q, g). The restriction of a geodesic
flow to SQ is a contact flow of the Reeb vector field of the associated contact
form. It is clear that noncommutatively integrable geodesic flows, considered
as Reeb vector flows, have a geometrical structure that need to be described
by a noncommutative variant of integrability.

We introduce an appropriate concept of a contact noncommutative inte-
grability.

In the first part of the paper (Sections 3 and 4), foliations on contact
manifolds (M,H) are considered. We refer to a foliation F as pre-isotropic
if it is transversal to H and G = F ∩H is an isotropic subbundle of H.

Let F be a pre-isotropic foliation containing the Reeb vector field Z on
a co-oriented contact manifold (M, α). The foliation F is α-complete if and
only if E is completely integrable, where E = F⊥ is the pseudo-orthogonal
distribution of F and we have a flag of foliations G ⊂ F ⊂ E . Furthermore,
each leaf of G and F has an affine structure (Theorem 3.2).

Thus, if F has compact leaves, they are tori. Locally, in an invariant
neighborhood of any leaf, the foliation F can be seen as a fibration over
some base manifold. Also, affine translations provide an Abelian Lie algebra
of contact transformations with orbits that coincide with F .

1Throughout the paper we use the same notation for foliations and their integrable
distributions of tangent spaces.
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Next, we consider a pre-isotropic foliation F on a contact manifold (M,H)
with the mentioned properties of α-complete pre-isotropic foliations: F is
defined via submersion π : M → W and it is given an Abelian Lie algebra of
contact symmetries X with orbits equal to F . We refer to a triple (M,H,X )
as a complete pre-isotropic contact structure.

For a given complete pre-isotropic structure (M,H,X ), locally, there
always exists an invariant contact form α such that F is α-complete (Theo-
rem 4.1). Note, if F has the maximal dimension (i.e., it is pre-Legendrian)
and fibers of π are connected, (M,H,X ) is a regular completely integrable
contact structure studied by Banyaga and Molino [2]. The analysis above
lead us to the following definition (Section 5).

Let X be a contact vector field. We shall say that a contact equation

(1.1) ẋ = X

is contact noncommutatively integrable if there is an Abelian Lie algebra
of contact symmetries X , an open dense set Mreg ⊂ M , and a submersion
π : Mreg → W such that

(i) The contact vector field X is tangent to the fibers of π;
(ii) (Mreg,H,X ) is a complete pre-isotropic contact structure.
Analogs to the Mishchenko–Fomenko–Nehoroshev theorem, we prove that

in a neighborhood of any invariant torus, there exist canonical generalized
contact action–angle coordinates and (1.1) is a translation in angle vari-
ables, where frequencies depend only on actions and in which the contact
distribution H is presented by the canonical 1-form α0 (Theorem 5.1).

For the co-oriented case, we also formulate the statement involving
only integrals of a motion (Theorem 5.2): a contact equation (1.1) is
noncommutatively integrable if it possesses a collection of first integrals
f1, f2, . . . , f2n−r, that are all in involution with the constant functions and
with the first r integrals:

[1, fi] = 0, [fi, fj ] = 0, i = 1, . . . , 2n − r, j = 1, . . . , r.

Note that, besides integrable geodesic flows on homogeneous spaces
restricted to the unit co-sphere bundles [4, 16], a natural class of exam-
ples of contact flows integrable in a noncommutative sense are the Reeb
flows on K-contact manifolds (M2n+1, α) where the rank of the manifold is
less then n + 1 (see Yamazaki [35] and Lerman [23]).

Finally in Section 6, we consider a complete pre-isotropic contact structure
(M, α,X ) of the Reeb type, i.e., H is defined by a global X -invariant form α
and the Reeb vector field of α is π-vertical. Note that (M,H,X ) can be a
complete pre-isotropic structure with a global X -invariant contact form α,
which is not of the Reeb type (see Proposition 6.1). On the other hand, the
invariant foliation F of a complete pre-isotropic contact structure (M, α,X )
of the Reeb type is α-complete (Proposition 6.2). We describe the transition
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functions between the contact action–angle coordinates (Proposition 6.3)
and prove the statement on the existence of global action–action variables in
the case when π : M → W is a trivial principal T

r+1-bundle (Theorem 6.1).

2. Contact manifolds and the Jacobi bracket

In the definitions and notations, we mostly follow Libermann and Marle [25].
A contact form α on a (2n + 1)-dimensional manifold M is a Pfaffian

form satisfying α ∧ (dα)n �= 0. By a contact manifold (M,H) we mean a
connected (2n + 1)-dimensional manifold M equipped with a nonintegrable
contact (or horizontal) distribution H, locally defined by a contact form:
H|U = kerα|U , U is an open set in M .

Two contact forms α and α′ define the same contact distribution H on
U if and only if α′ = aα for some nowhere vanishing function a on U . The
condition α ∧ (dα)n �= 0 implies that the form dα|x is nondegenerate (sym-
plectic) structure restricted to Hx. The conformal class of dα|x is invariant
under the change α′ = aα. If V is a linear subspace of Hx, then we have
well-defined orthogonal complement orthH V ⊂ Hx with respect to dα|x, as
well as the notion of the isotropic (V ⊂ orthH V), coisotropic (V ⊃ orthH V)
and the Lagrange subspaces (V = orthH V) of Hx .

A contact diffeomorphism between contact manifolds (M,H) and (M ′,H′)
is a diffeomorphism φ : M → M ′ such that φ∗H = H′. If a local 1-parameter
group of a vector field X is made of contact diffeomorphisms, X is called an
infinitesimal automorphism of a contact structure (M,H) or a contact vector
field. Locally, if H = kerα, then LXα = λα, for some smooth function λ.

The existence of a global contact form α is equivalent to the coorientabil-
ity of H [15]. From now on we consider a co-oriented (or strictly) contact
manifold (M, α). The Reeb vector field Z is a vector field uniquely defined by

iZα = 1, iZdα = 0.

The tangent bundle TM and the cotangent bundle T ∗M are decomposed
into

(2.1) TM = Z ⊕H, T ∗M = Z0 ⊕H0,

where Z = RZ is the kernel of dα, Z0 and H0 = Rα are the annihilators of
Z and H, respectively. The sections of Z0 are called semi-basic forms.

According to (2.1), we have decompositions of vector fields and 1-forms

(2.2) X = (iXα)Z + X̂, η = (iZη)α + η̂,

where X̂ is horizontal and η̂ is semi-basic.
The mapping α� : X 	→ −iXdα carries X onto a semi-basic form. The

restriction of α� to horizontal vector fields is an isomorphism whose inverse
will be denoted by α�. The mapping

(2.3) Φ : N −→ C∞(M), Φ(X) = iXα
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establish the isomorphism between the vector space N of infinitesimal
contact automorphisms onto the set C∞(M) of smooth functions on M ,
with the inverse (see [24,25])

Φ−1(f) = fZ + α�( ̂df).

The vector field Xf = Φ−1(f) is called the contact Hamiltonian vector
field and

(2.4) ẋ = Xf

contact Hamiltonian equation corresponding to f . Note that

LXf
α = df(Z)α

and Xf is an infinitesimal automorphism of α (LXf
α = 0) if and only if df

is semi-basic. Note that Φ(Z) = 1, i.e., Z = X1.
The mapping (2.3) is a Lie algebra isomorphism, where on N we have

the usual bracket and the Jacobi bracket on C∞(M) defined by [f, g] =
Φ[Xf , Xg]:

X[f,g] = [Xf , Xg], X[1,f ] = [Z, Xf ].

Note that df is semi-basic, if and only if [1, f ] = [Z, Xf ] = 0.
Together with the Jacobi bracket, we have the associated Jacobi bi-vector

field Λ:
Λ(η, ξ) = dα(α�η̂, α�ξ̂).

Let Λ� : T ∗M → TM be the morphism defined by 〈Λ�
x(ηx), ξx〉 =

Λx(ηx, ξx), for all x ∈ M , ηx, ξx ∈ T ∗
xM . Then Xf may be written as

Xf = fZ + Λ�(df).
It can be easily checked that

[f, g] = dα(Xf , Xg) + fLZg − gLZf = Λ(df, dg) + fLZg − gLZf.

The derivation of functions along the contact vector field Xf can be
described by the use of the Jacobi bracket

(2.5) LXf
g = [f, g] + gLZf.

Thus, if df and dg are semi-basic, we have the following important
property of the Jacobi bracket [f, g].

Lemma 2.1. Suppose that df and dg are semi-basic. Then

[f, g] = dα(Xf , Xg) = Λ(df, dg)

and the following statements are equivalent:
(i) f and g are in involution: [f, g] = 0, i.e., Hamiltonian contact vector

fields Xf and Xg commute: [Xf , Xg] = 0.
(ii) g is the integral of the contact vector field Xf : LXf

g = 0.
(iii) f is the integral of the contact vector field Xg: LXgf = 0.
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Moreover, if Z is a simple foliation, i.e., there exists a surjective sub-
mersion π : M → P and the distribution Z consist of vertical spaces of
the submersion: Z = kerπ∗, then the base manifold P has a nondegenerate
Poisson structure {·, ·} such that [f, g] = π∗{f̄ , ḡ}, f = f̄ ◦π, g = ḡ◦π [6,25].

3. α-Complete pre-isotropic foliations

Let F be a foliation on a co-oriented contact manifold (M2n+1, α). The
pseudo-orthogonal distribution F⊥ is defined by

F⊥ = Z ⊕ Λ�(F0).

where F0 is the annihilator of F . It is locally generated by the Reeb vector
field Z and the contact Hamiltonian vector fields, that correspond to the
first integrals of F .

A foliation F is said to be α-complete if for any pair f1, f2 of first integrals
of F (where fi may be a constant), the bracket [f1, f2] is also a first integral
of F (eventually a constant).

Theorem 3.1 (Libermann [26]). A foliation F on (M2n+1, α) containing
the Reeb vector field Z is α-complete if and only if the pseudo-orthogonal
subbundle F⊥ is integrable, defining a foliation that is also α-complete and
(F⊥)⊥ = F . Then for any pair of integrals f, g of F and F⊥, respectively,
we have [f, g] = 0.

Let p be the rank of F0 and f1, . . . , fp be a set of independent integrals
of F in an open set U . Since kerΛ�

x = Rαx, dimF⊥
x is equal to p + 1 or p,

depending the forms α, df1, . . . , dfp are linearly independent or not. In the
later case, the form induced by α on the leaf passing through x vanishes at
x. Conversely, if α|F = 0, i.e., F ⊂ H, then dimF⊥ = p.

A foliation G is pseudo-isotropic if G ⊂ H [27].2 Then α is a section of
G0, the distribution G⊥ has the constant rank p and G⊥ is a vector bundle. A
Legendre foliation is a pseudo-isotropic foliation of maximum rank n. Then
dimG0 = dimG⊥ = n + 1.

By the analogy with a pre-isotropic embedding (see Lerman [22]), we
introduce:

Definition 3.1. A foliation F is pre-isotropic if
(i) F is transversal to H.
(ii) G = F ∩H is an isotropic subbundle of H.

Lemma 3.1. Condition (ii) is equivalent to the condition that G = F ∩ H
is a pseudo-isotropic foliation.

2Submanifolds G ⊂ M that are integral manifolds of H are also called isotropic sub-
manifolds, e.g., see [14]. Here we keep Libermann’s notation.
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Proof. Let (f1, . . . , fp) be a set of local integrals of F and let X, Y be sections
of G. Then α, df1, . . . , dfp are linearly independent and we have

dfi(X) = dfi(Y ) = α(X) = α(Y ) = 0,

dfi([X, Y ]) = LXLY fi − LY LXfi = 0,

dα(X, Y ) = LXα(Y ) − LY α(X) − α([X, Y ]) = −α([X, Y ]).

Therefore, G is an isotropic subbundle of H if and only if it is integrable. �

Theorem 3.2. Let F be a pre-isotropic foliation containing the Reeb vector
field Z.

(i) We have the flag of distributions (G,F , E):

(3.1) G = F ∩H ⊂ F ⊂ E = G⊥ = F⊥.

On the contrary, if F is a foliation containing the Reeb vector field Z and
(3.1) holds, then F is a pre-isotropic foliation.

(ii) The foliation F (or G) is α-complete, if and only if E is completely
integrable. Assume E is integrable and let f1, . . . , fp and y1, . . . , yr, 2n−p = r
be any sets of local integrals of F and E, respectively. Then:

[fi, yj ] = 0, [yj , yk] = 0, [fi, 1] = 0, [yi, 1] = 0.

(iii) Each leaf of an α-complete pre-isotropic foliation F as well as each
leaf of the corresponding pseudo-isotropic foliation G has an affine structure.

Figure 1. Illustration of Theorem 3.2: a torus F is a leaf
through x.
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Proof. (i) Let G = F ∩ H be isotropic. We have G0 = 〈F0, α〉 and ker Λ� =
Rα. Thus:

F⊥ = G⊥ = Z ⊕ Λ�(G0) = Z ⊕ Λ�(G0 ∩ Z0)

= Z ⊕ α�(G0 ∩ Z0) = Z ⊕ orthH G ⊃ Z ⊕ G = F .

(ii) This item follows directly from Theorem 1 and the fact that integrals
of E are also integrals of F . Note that dfi and dyj are semi-basic and Xfi ,
Xyj are infinitesimal automorphisms of α.

(iii) Let U be an open set where we have defined commuting integrals
y1, . . . , yr of E|U . Since E⊥ = F , the distribution F|U is generated by a
contact commuting vector fields Z, Xy1 , . . . , Xyr :

[Z, Xyi ] = 0, [Xyi , Xyj ] = 0.

The distribution G|U is generated by their horizontal parts X̂y1 , . . . , X̂yr

which also commute. Indeed, since G is integrable [X̂yi , X̂yj ] is a section of
G, in particular it is horizontal. Further

0 = [Xyi , Xyj ] = [yiZ + X̂yi , yjZ + X̂yj ](3.2)

= [yiZ, yjZ] + [X̂yi , X̂yj ] + yi[Z, X̂yj ] + yj [X̂yi , Z]

− LX̂yj
(yi)Z + LX̂yi

(yj)Z.

On the other hand, since LZyi = 0, we have

0 = [Z, Xyi ] = [Z, yiZ + X̂yi ] = [Z, yiZ] + [Z, X̂yi ](3.3)

= LZ(yi)Z + [Z, X̂yi ] = [Z, X̂yi ].

Therefore, taking the horizontal part in (3.2) we get

[X̂yi , X̂yj ] = 0.

Thus, locally we have parallelism both on F = 〈Z, X̂y1 , . . . , X̂yr〉 and
G = 〈X̂y1 , . . . , X̂yr〉. Now, let U ′ be an open set (U ∩ U ′ �= ∅) and let
y′1, . . . , y′r be commuting integrals of E|U ′ . Then, on U ∩ U ′ we have

y′i = ϕi(y1, . . . , yr), i = 1, . . . , r

dy′i =
∑

j

∂ϕi

∂yj
dyj .

From the definition X̂y′
i
= α�(̂dy′i) = α�(dy′i − (iZdy′i)α) = α�(dy′i), we get

the fiber-wise linear transformation

X̂y′
i
=

∑

j

∂ϕi

∂yj
X̂y′

j
, i = 1, . . . , r,

which shows that the parallelism of G and F is independent of the chart. �
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If F has the maximal dimension n+1 then F is pre-Legendrian, while G is
a Legendrian foliation. The existence of an affine structure is already known
for α-complete Legendre foliations [19,26,27,32]. This imposes restrictions
on the topology of the leaves. In particular, compact leaves of G and F are
tori.

Of particular interest is the case when F is a simple foliation, i.e., the
leaves of the foliation are fibers of the submersion. We will study such a
situation in the next section.

4. Complete pre-isotropic contact structures

In this section, a contact structure does not need to be co-oriented.
Let (M,H) be a (2n + 1)-dimensional contact manifold and let

(4.1) π : M → W

be a proper submersion on p-dimensional manifold W , p ≥ n. Define the
distribution F as the kernel of π∗ : TM → TW , i.e., the leaves of F are
fibers of π.

Definition 4.1. We shall say that (M,H,X ) is a complete pre-isotropic
contact structure if

(i) F is pre-isotropic, i.e., it is transversal to H and G = F ∩ H is an
isotropic subbundle of H, or, equivalently G is a foliation.

(ii) X is an Abelian Lie algebra of infinitesimal contact automorphisms
of H, which has the fibers of π as orbits.

In the case p = n (and connected fibers), we have a regular completely
integrable contact structure (M,H,X ) studied in Banyaga and Molino [2].

Suppose F is an α-complete foliation with compact leaves (according to
the presence of the affine structure, the leaves are tori). Locally, in a neigh-
borhood U of any fixed torus F the foliation is simple. There is a surjective
submersion π : U → W = U/F , F = ker π∗. We can define an Abelian Lie
algebra X of infinitesimal automorphisms of H by Z, Xy1 , . . . , Xyr where,
y1, . . . , yr are integrals of E = F⊥. Thus, we have well-defined complete
pre-isotropic contact structure (U,H,X ).

On the contrary, we also have:

Theorem 4.1. Let (M,H,X ) be a complete pre-isotropic contact structure
related to the submersion (4.1). Every point of M has an open, X -invariant
neighborhood U on which the contact structure can be represented by a local
contact form αU such that:

(i) αU is invariant by all elements of X ;
(ii) the restriction of F to U is αU -complete.

Proof. (i) The proof of item (i) is a modification of the proof given in [2]
for a regular completely integrable contact structure. From the definition,
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for every point x0 of M , there exist X ∈ X transverse to Hx0 . The vector
field X is then transverse to H in some neighborhood U2 of x0. Let α0 be
a contact form defining H in U1 ⊂ U2. Then α0(X) �= 0 on U1 and define
α = α0/α0(X).

Since X is Abelian, we have i[Y,X]α = 0, Y ∈ X . Also, iXα = 1 and
LY α = λα, for some function λ defined in U1. Thus

0 = i[Y,X]α = LY iXα − iXLY α = LY 1 − iX(λα) = −λ,

i.e., Y is an infinitesimal automorphism of α. Since α is invariant by X
and the orbits of X are the fibers of the submersion (4.1), the form α is
well-defined on U = π−1(π(U1)) as well.

(ii) The foliation F|U is α-complete if and only if E|U = F⊥|U is an
integrable distribution.

From the identity

0 = LXα = iXdα + diXα = iXdα

we get that X is the Reeb vector field of α on U . Denote Z = X.
Let X1, . . . , Xr ∈ X be vector fields such that Z, X1, . . . , Xr span the

foliation F|U . Therefore, the corresponding contact Hamiltonians

yi = Φ(Xi) = iXiα

are independent functions on U . Besides, yi are π-vertical:

0 = i[X,Xi]α = LXiXiα − iXiLXα = LXyi,

for all X ∈ X .
The corank of the distribution E|U is r = 2n − p. It is integrable and has

y1, . . . , yr as independent integrals. Indeed, by definition we have

(4.2) EU = 〈Xf | f = f̄ ◦ π, f̄ ∈ C∞(π(U))〉.
Since f = f̄ ◦π and yi are π-vertical we have, in particular, LZf = LZyi =

0 (the differential df and dyi are semi-basic on U). Now, by using LXyi
f = 0

and Lemma 2.1 we get

(4.3) LXf
yi = 0, i = 1, . . . , r.

The relations (4.2) and (4.3) prove the claim. �

5. Noncommutative contact integrability

Let us consider a contact vector field X and a contact equation

(5.1) ẋ = X

on a (2n + 1)-dimensional contact manifold (M,H).
First, recall a general definition of non-Hamiltonian integrability (e.g., see

[3,20, 36]), slightly adopted with respect to the notations above. Equation
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(5.1) is (non-Hamiltonian) completely integrable if there is an open dense
subset Mreg ⊂ M and a proper submersion

(5.2) π : Mreg → W

to a p-dimensional manifold W and an Abelian Lie algebra X of symmetries
such that:

(i) the contact vector field X is tangent to the fibers of π;
(ii) the fibers of π are orbits of X .

If (5.1) is completely integrable then Mreg is foliated on (r+1)-dimensional
tori with a quasi-periodic dynamics. In nonholonomic mechanics, usually, an
additional time reparametrization is required (e.g., see [12,17,20]).

However, the above definition does not reflect the underlying contact
structure.

Definition 5.1. We shall say that the contact equation (5.1) is noncom-
mutatively contact completely integrable if, in addition, (Mreg,H,X ) is a
complete pre-isotropic contact structure.

The regularity of the dynamics of integrable contact systems is described
in the following statement.

Theorem 5.1. Suppose that equation (5.1) is noncommutatively contact
completely integrable by means of the submersion (5.2) and commuting sym-
metries X . Let F be a connected component of the fiber π−1(w0). Then F is
diffeomorphic to a r + 1-dimensional torus T

r+1, r = 2n − p. There exists
an open X -invariant neighborhood U of F , an X -invariant contact contact
form α on U and a diffeomorphism φ : U → T

r+1 × D,

(5.3) φ(x) = (θ, y, x) = (θ0, θ1, . . . , θr, y1, . . . , yr, x1, . . . , x2s), s = n − r,

where D ⊂ R
p is diffeomorphic to WU = π(U), such that

(i) F|U is α-complete foliation with integrals y1, . . . , yr, x1, . . . , x2s, while
the integrals of the pseudo-orthogonal foliation E|U = F|⊥U are y1, . . . , yr.

(ii) α has the following canonical form

(5.4) α0 = (φ−1)∗α = y0dθ0 + y1dθ1 + · · · + yrdθr + g1dx1 + · · · + g2sdx2s,

where y0 is a smooth function of y and gi are functions of (y, x).
(iii) the flow of X on invariant tori is quasi-periodic

(5.5) (θ0, θ1, . . . , θr) 	−→ (θ0 + tω0, θ1 + tω2, . . . , θr + tωr), t ∈ R,

where frequencies ω0, . . . , ωr depend only on y.

Definition 5.2. We refer to local coordinates (θ, y) stated in Theorem 5.1
as a generalized contact action–angle coordinates.
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In the case when the contact manifold is co-oriented (H = kerα) and we
have the contact Hamiltonian equation (2.4), it is convenient to formulate
noncommutative integrability in terms of the first integrals and the Jacobi
bracket as well.

Theorem 5.2. Suppose we have a collection of integrals f1, f2, . . . , f2n−r of
equation (2.4) with the contact Hamiltonian either f = f1 or f = 1, where:

(5.6) [1, fi] = 0, [fi, fj ] = 0, i = 1, . . . , 2n − r, j = 1, . . . , r.

Let F be a compact connected component of the level set

{x | f1 = c1, . . . , f2n−r = c2n−r}
and assume

(5.7) df1 ∧ · · · ∧ df2n−r �= 0

on F . Then F is diffeomorphic to a r + 1-dimensional torus T
r+1. There

exists a neighborhood U of F with local generalized action–angle coordinates
(5.3) in which α has the form (5.4) and the dynamics is quasi-periodic (5.5).

Proof. Consider the mapping

π = (f1, . . . , f2n−r) : M → R
2n−r.

From (5.7) there exists a neighborhood U of F such that π|U is a proper
submersion to π(U). Let F be a foliation with leaves that are fibers of π.
Since dfi are semi-basic 1-forms, (5.7) implies df1 ∧ · · · ∧ df2n−r ∧ α �= 0.
Thus, F is transversal to H|U and the infinitesimal automorphisms of α

(5.8) Z, Xf1 , . . . , Xfr

are independent in U .
Further, from (2.5) and (5.6), we conclude

[Z, Xfi ] = 0, [Xfi , Xfj ] = 0, i = 1, . . . , 2n − r, j = 1, . . . , r,(5.9)
LZfi = 0, LXfj

fi = 0, LXfi
fj = 0,

The relations (5.9) provide that the commuting vector fields (5.8) belong
to F . From the dimensional reason, they span F . From (5.9) we also get
that f1, . . . , fr are integrals of the pseudo-orthogonal distribution E = F⊥.
When E is integrable. On the other hand, F ⊂ E implies that the distribution
G = F ∩H is isotropic (item (i) of Theorem 3.2).

Therefore, F is a complete pre-isotropic foliation with commuting sym-
metries (5.8). Now, the statement follows from Theorem 5.1. �

Proof of Theorem 5.1. Step 1 (local bi-fibrations). Since on each connected
component of the fiber π−1(w0), X induces a transitive action of R

r+1 (r =
2n − p), the connected components of π−1(w0) are r + 1-dimensional tori
T

r+1 (e.g., see Arnold [1]).
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Let us fix some connected component F of π−1(w0). Consider some X -
invariant connected neighborhood U of F and a X -invariant contact form
α defining the distribution H|U = kerα such that the corresponding Reeb
vector field Z belongs to X (see the construction given in Theorem 4.1).

Let y′i = iXiα be contact Hamiltonians of r independent contact vector
fields Xi ∈ X , F|U = 〈Z, X1, . . . , Xr〉. The functions y′1, . . . , y′r are then
integrals of the pseudo-orthogonal foliation as well (see the proof of Theorem
3). They are π-vertical, and by ȳ′i we denote the corresponding functions on
WU = π(U). Locally, for U small enough, the foliation E|U is also a fibration
ρU over an open set VU diffeomorphic to a ball in R

r with local coordinates
ȳ′ = (ȳ′1, . . . , ȳ′r) (the using of ȳ′i will be clear from the contexts). Therefore,
we have a bi-fibration

U
↙πU ρU ↘

WU VU

with pseudo-orthogonal fibers F|U and E|U .
Let x̄ = (x̄1, . . . , x̄2s) be any collection of independent functions, where

(ȳ′, x̄) are local coordinates on WU . Let xa = x̄a ◦ πU , a = 1, . . . , 2s. By the
use of the methods developed by Arnold [1], it follows that locally we have
a trivial toric fibration U ∼= T

r+1 × WU with coordinates

(ϕ0, . . . , ϕr, y
′
1, . . . , y

′
r, x1, . . . , x2s).

The angular variables (ϕ0, . . . , ϕr) are chosen such that

Yν = ∂/∂ϕν =
r

∑

μ=0

ΛνμXμ,

where the Reeb vector field Z of α is denoted by X0 and the invertible
matrix (Λνμ) ∈ GL(r + 1) depends only on (y′, x).

Step 2 (description of α). By construction, the functions y′j = iXjα are
ρU -basic. Since LXjα = 0, the 1-forms

iXjdα = −d(α(Xj)) = −dy′j , j = 1, . . . , r

are also ρU -basic.3 Besides, iX0dα = iZdα = 0. Therefore

(5.10) iYνdα =
r

∑

μ=0

ΛνμiXμdα = −
r

∑

μ=0

Λνμdy′μ, ν = 0, 1, . . . , r

3Let π : M → P be a surjective submersion. A 1-form ω is semi-basic if iXω = 0 for
all vertical vector fields X. It is basic if ω = π∗μ, where μ is a 1-form on P . In particular,
a basic form is semi-basic as well [25].
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are ρU -semi basic 1-forms. Here y′0 ≡ 1. In particular, dα does not contain
the terms with dϕν ∧ dϕμ. So α takes the form

(5.11) α =
r

∑

ν=0

yνdϕν +
r

∑

i=1

f̃idy′i +
2s

∑

a=1

g̃adxa,

where yν = yν(y′, x), ν = 0, . . . , r. Thus, it follows:

(5.12) iYνdα = −dyν +
r

∑

i=1

∂f̃i

∂ϕν
dy′i +

2s
∑

a=1

∂g̃a

∂ϕν
dxa.

By combining (5.10), (5.12) and the fact that the matrix (Λνμ) does not
depend on ϕ, we obtain that f̃i and g̃a are linear in angular variables. Since
they are periodic in ϕν , they only depend on (y′, x) and

(5.13) iYνdα = −dyν .

From (5.11) and (5.13) we find the Lie derivatives

LYνα = iYνdα + diYνα = −dyν + dyν = 0, ν = 1, . . . , r

and conclude that α is invariant with respect to the angle coordinates vector
fields ∂/∂ϕν = Yν .

Now, according to Lemma 5.1, the matrix (Λνμ) depends only on y′-
variables. Therefore, the 1-forms iYνdα (see (5.10)) as well as the functions
yν (see (5.13)) are ρU -basic. Note that yν = iYνα are contact Hamiltonians
of the contact vector fields Yν .

Among yν there are r independent functions at every point in U . With
eventually shrinking of U and a permutation of indexes, we can assume that
y1, . . . , yr are independent and y0 = y0(y1, . . . , yr) (i.e., ȳ1, . . . , ȳr are new
coordinates on VU ). As a result, the contact form reads

(5.14) α =
r

∑

ν=0

yνdϕν +
r

∑

i=1

fi(y, x)dyi +
2s

∑

a=1

ga(y, x)dxa.

Introducing the new angle variables

(5.15) (θ0, θ1, . . . , θr) = (ϕ0, ϕ1 − f1(y, x), . . . , ϕr − fr(y, x)),

the form (5.14) becomes

α =
r

∑

i=0

yidθi +
2s

∑

a=1

ga(y, x)dxa + df,

where f = f(y, x) =
∑r

i=1 yifi(y, x) is a πU -basic function. Due to the
translation (5.15), the coordinate vector fields of θ and ϕ coincide: ∂/∂θν =
∂/∂ϕν = Yν .
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Step 3 (Moser’s deformation, see, e.g., [2, 14]). Let

α0 =
r

∑

ν=0

yνdθν +
2s

∑

a=1

ga(y, x) dxa.

and Z = X0 be the Reeb vector field of α. It is πU -vertical and we have

iZα = iZα0 = 1, iZdα = iZdα0 = 0,

implying LZα = LZα0 = 0.
Following [2], consider the vector field Y = −fZ, where f is the πU -basic

function defined above. The flow φt of Y is a complete flow that preserves
the toric fibration. Define αt = α0 + tdf . Then we have

LY αt = LY α0 + tLY h = LY α0 = iY dα0 + d(iY α0) = −df = −∂αt/∂t.

Thus
d

dt
(φ∗

t αt) = φ∗
t

(

LY αt +
∂αt

∂t

)

= 0,

which implies that φ∗
1α1 = φ∗

1α = α0. Finally, the required change of vari-
ables is φ = φ−1.

Step 3 (linearization). Since the system is non-Hamiltonian completely
integrable, we have a quasi-periodic motion on invariant tori [3, 36]. The
special form of a linearization, where frequencies only depend on y1, . . . , yr

follows from Lemma 5.1 below. �

Remark 5.1. The action functions yν = iYνα constructed above have an
another interesting interpretation. Let γν(T ) be a cycle homologous to the
trajectories of the field ∂/∂θν restricted to any invariant torus T within U .
Then it follows

(5.16) yν |T =
1
2π

∫

γν(T )
α.

Indeed, since dα|T = 0 (the tangent space of T splits into an isotropic
horizontal part and RZ = ker dα) the value of the integral (5.16) is the
same for all γν(T ) in the same homology class. Then (5.16) simply follow
from (5.4). In the opposite direction, we can use (5.16) as a definition of yν .
By construction, the functions yν are πU -vertical. As in the symplectic case
(see Nehoroshev [31]), it can be proved that they are also ρU -vertical.

Remark 5.2. Let Z = z0(y)Y0 + · · ·+zr(y)Yr be the local expression of the
Reeb vector field. It is uniquely determined from the conditions iZα0 = 1,
iZdα0 = 0, i.e.,

(5.17) z0y0 + · · · + zryr = 1, z0dy0 + · · · + zrdyr = 0.

If z0 = 0 at some point y = ỹ, then z1dy1 + · · ·+zrdyr = 0 at ỹ. Since dyi,
i = 1, . . . , r are independent 1-forms, we get z1 = · · · = zr = 0 at ỹ which
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contradict (5.17). Therefore z0 �= 0 on VU . Now, by solving (5.17) we get

z0 =
1

y1
∂y0

∂y1
+ · · · + yr

∂y0

∂yr
− y0

, zi = − 1
z0

∂y0

∂yi
, i = 1, . . . , r.

Therefore, typically, the flow of the Reeb vector field is quasi-periodic and
everywhere dense in invariant tori. Also, typically, the induced pseudo-
isotropic foliation G = F ∩H has noncompact invariant manifolds.

Remark 5.3. Consider the 1-form γ =
∑2s

a=1 ga(y, x)dxa =α0 −
∑r

ν=0 yνdθν .
Since dα0 has the maximal rank, according to Darboux’s theorem [25], there
is a coordinate transformation qj = qj(y, x), pj = pj(y, x), j = 1, . . . , s such
that γ = p1dq1 + · · · + psdqs, i.e.,

α0 = y0dθ0 + y1dθ1 + · · · + yrdθr + p1dq1 + · · · + psdqs.

Lemma 5.1. Let (M,H,X ) be a complete pre-isotropic contact structure
and let U ⊂ M be an X -invariant set endowed with an X -invariant contact
form α. Suppose

(i) The foliation F|U = kerπ∗|U is α-complete and there exist everywhere
independent integrals y1, . . . , yr : U → R, of the pseudo-orthogonal foliation
E|U = F|⊥U .

(ii) Let X be a contact vector field tangent to the fibers of πU , commuting
with X .

Then X can be written as a fiber-wise linear combination

X = f0Z + f1X1 + · · · + frXr,

where functions f0, . . . , fr depend only on y, Z is the Reeb vector field of α
and Xi = Xyi are contact Hamiltonian vector fields of yi, i = 1, . . . , r.

Proof. Under the assumption (i), Z, X1, . . . , Xr are independent vector fields
that generate α-complete pre-isotropic foliation F|U .

Next, we shall prove that X commute with Z. Firstly, note that Z com-
mute with X .4 Indeed, let Y ∈ X . We have

(5.18) Φ([Y, Z]) = i[Y,Z]α = LY iZα − iZLY α = 0.

Since (2.3) is an isomorphism we get [Y, Z] = 0.
Secondly, note that any π-vertical vector field K (not need to be contact

field) that commute with X , commute with X as well. Indeed, any point in
U has a π-invariant neighborhood U ′ where K can be written as a linear
combination

∑r
ν=1 gνYν where gν are π-basic functions and (Y0, . . . , Yr) is a

4Here we consider slightly more general situation then it is needed for Theorem 5.1,
where, by construction of α, Z is already an element of X . However, we shall use the above
formulation for a proof of Proposition 6.2.
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collection of vector fields in X that generate F|U . Therefore

[X, K] =
r

∑

ν=0

[X, gνYν ] =
r

∑

ν=0

(gν [X, Yν ] + dgν(X)Yν) = 0.

From the above considerations it follows that X commute with Z. Let
f = iXα be the contact Hamiltonian of X. Since [Z, Xf ] = 0 we have
[1, f ] = 0 and df is a semi-basic form. Since X is πU -vertical, we have
LXf

g = 0, where g is any local integral of F . It is clear that dg is semi-basic
and applying Lemma 2.1 again, it follows LXgf = 0. When f is an integral
of the pseudo-orthogonal foliation E|U .

Under the assumptions of Lemma 5.1, integrals of E|U are functions
of y and we have f = f(y). Let fi = ∂f/∂yi, i = 1, . . . , r. The forms
df, dy1, . . . , dyr are semi-basic, so

X = Φ−1(f) = fZ + α�(df) = fZ +
r

∑

i=1

fiα
�(dyi)

= fZ +
r

∑

i=1

fi(Xi − yiZ) = f0Z + f1X1 + · · · + frXr,

where f0 = f − (y1f1 + · · · + yrfr). �

Remark 5.4. Let X be πU -horizontal contact vector field. From the proof
of the lemma, we see that commuting of X with X is equivalent to the
commuting with the Reeb vector field Z, i.e., with the condition that X is an
infinitesimal automorphisms of α. Also, the condition that F|U is α-complete
is equivalent to the condition that Z is a section of F|U , see Proposition 6.2
given below.

5.1. Discrete systems. Khesin and Tabachnikov defined integrability of
discrete

(5.1) Ψ : M → M,

and continuous contact systems (5.1) in terms of the existence of an invariant
complete pre-Legendrian foliation F , with additional property that on every
leaf F of F , the foliation G|F has a holonomy invariant transverse smooth
measure. It turns out that this condition implies the existence of a global
contact form α and that G is an α-complete Legendrian foliation [19].

As in [19], we can say that a discrete contact system (5.1) that preserves
the contact form α is integrable in a noncommutative sense if it possesses
an α-complete pre-isotropic invariant foliation F . Also, following the lines of
the proof of Lemma 3.5 [19], one can prove that α determines a holonomy
invariant transverse smooth measure of the foliation G = F ∩ H restricted
to the leaves of F .
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5.2. Examples. For s = 0, Theorem 4 recover contact action–angle coor-
dinates given by Banyaga and Molino [2]. If M is a compact manifold with
a regular effective contact action of T

n+1, then W is the sphere Sn and for
n ≥ 3, M is diffeomorphic to T

n+1 × Sn (see Lutz [28]).
Besides noncommutatively integrable geodesic flow restricted to the unit

co-sphere bundles [4, 16], a natural class of examples of contact flows inte-
grable in a noncommutative sense are the Reeb flows on K-contact man-
ifolds (M2n+1, α) where the rank of the manifold is less then n + 1 (see
Yamazaki [35] and Lerman [23]).

The regular and almost regular contact manifolds studied by Boothby
and Wang [6] and Thomas [33] provide the most degenerate examples with
dimW = dimM − 1.

The billiard system within an ellipsoid in the Euclidean space R
n is one of

the basic examples of integrable mappings (e.g., see [9, 34]). Similarly, the
billiard system inside an ellipsoid in the pseudo-Euclidean space R

k,n−k is
completely integrable as well. Here, the billiard system is described by a sym-
plectic transformation on the spaces of space-like and time-like geodesics,
while it is a contact transformation on the space of light-like geodesics (for
more details, see Khesin and Tabachnikov [18, 19]). The considered bil-
liard systems are defined within ellipsoids with different semi-axis. Further
properties of ellipsoidal billiards in the pseudo-Euclidean spaces have been
studied in [10], where description of periodical trajectories has been derived,
including the cases of symmetric ellipsoids. It can be proved that the billiard
systems, both in R

n and R
k,n−k, within symmetric ellipsoids are completely

integrable in the noncommutative sense (the geodesic flow on a symmet-
ric ellipsoid is considered in [8]). In particular, the billiard maps restricted
to the space of null geodesics are noncommutatively completely integrable
contact transformations.

6. Complete pre-isotropic structures of the Reeb type

In this section, we consider some global properties of the fibration (4.1).

Proposition 6.1. Let (M,H,X ) be a complete pre-isotropic contact struc-
ture and assume that H is co-oriented. Then there exists a global contact
form α representing H and invariant by elements of X .

Proof. We can cover W by open sets Wi such that we have contact 1-forms
αUi invariant by X on every Ui = π−1(Wi) (Theorem 3). Let λ̄i be the
partition of unity subordinate to covering {Wi}. Since H is oriented, for
all nonempty intersections Ui ∩ Uj , we have smooth positive functions aij ,
αUi = fijαUj |Ui∩Uj .

Define the 1-form α by α =
∑

i λiαUi , λi = λ̄i ◦ π. Then, on Uk we have

(6.1) α = akαUk
,
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where ak =
∑

i,Ui∩Uk �=∅ λifki > 0 is a π-basic function. When α is a contact
form that define H.

It remains to prove X -invariance of α. Let X ∈ X . Then LXλi = 0.
Further, by construction, X preserve all local contact forms αUi . Thus

LXα =
∑

i

(LXλi)αUi + λiLXαUi = 0. �

Let Z be the Reeb vector field of the globally X -invariant contact form
α. Then, as in (5.18), we get [Z, Y ] = 0, Y ∈ X . However, it turns out that
the foliation F = kerπ∗ not need to be α-complete since Z not need be a
section of F .

Recall that a contact toric action on a co-oriented contact manifold (M, α)
is of the Reeb type if the Reeb vector field corresponds to an element of the
Lie algebra of the torus [5]. Similarly, we give the following definition.

Definition 6.1. Let (M, α) be a co-oriented contact manifold with a com-
plete pre-isotropic contact structure defined by commuting infinitesimal
automorphisms X of α, such that the associated Reeb vector field Z is a
section of F = ker π∗. We refer to a triple (M, α,X ) with the above prop-
erty as a complete pre-isotropic structure of the Reeb type.

Proposition 6.2. Let (M, α,X ) be a complete pre-isotropic structure of the
Reeb type. Then the associated foliation F = ker π∗ is α-complete.

Proof. Locally, every leaf F of F has a π-invariant neighborhood U with local
generalized contact action–angle coordinates (5.3) in which H is represented
by the contact form α0 =

∑

ν yνdθν +
∑

a g(y, x)dxa and F|U is α0-complete
(Theorem 5.1). We need to prove that F is complete with respect to the
contact form α as well.

We have α|U = 1
a ·α0 for some nonvanishing function a : U → R. In what

follows, by Zα, Zα0 , Xα
f , Xα0

f and Φα, Φα0 we denote the Reeb vector fields,
contact Hamiltonian vector fields and the isomorphisms (2.3) with respect
to α and α0, respectively. They are related by

Xα
f = Φ−1

α (f) = Φ−1
α0

(af) = Xα0
af , Zα = Φ−1

α (1) = Φ−1
α0

(a) = Xα0
a

(see Proposition 13.7, [25]).
On the other hand, by the argument used in (5.18), with Φ replaced by

Φα, we get [Zα, X] = 0, X ∈ X . Therefore, we can apply Lemma 5.1 with
Zα = Xα0

a and α0, instead of X and α, concluding that a is a function of
actions variables y = (y1, . . . , yr) only.
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Let f be an integral of F . Since da and df are semi-basic, we get that the
contact Hamiltonian vector field

Xα
f = Φ−1

α (f) = Φ−1
α0

(af)

= (af)Zα0 + α�
0(adf + fda) = (af)Zα0 + aα�

0(df) + fα�
0(da)

= afZα0 + a(Xα0
f − fZα0) + f(Xα0

a − aZα0)

= aXα0
f + fZα − afZα0 ,

is a section of pseudo-orthogonal complement of F with respect to α0. Thus,
the pseudo-orthogonal complements of F with respect to α and α0 coincides.
This completeness the proof. �

Remark 6.1. Let us return to the construction of an invariant contact form
α given in Proposition 6.1. From the proof of Proposition 6.2, we obtain that
F = kerπ∗ is α-complete if the functions ak defined by (6.1) depend only on
actions variables. If this is not the case, suppose additionally that the Reeb
vector field Z is transversal to F at every point. Then we can consider the
foliation F̃ generated by X and Z. It can be proved that F̃ is α-complete.
Note that if n = p, i.e., (M,H,X ) is a regular completely integrable contact
structure, then ak depends only on action variables and F is α-complete.

Let (M, α,X ) be a complete pre-isotropic structure of the Reeb type and
assume the fibers of (4.1) are connected. Theorem 5.1 and Proposition 6.2
provide that π : M → W is a toric fibration. There is an open covering Wi

of W and local trivializations φi : Ui = π−1(Wi) → T
r+1 × Di,

φi(x) = (θi, yi, xi) = (θi
0, θ

i
1, . . . , θ

i
r, y

i
1, . . . , y

i
r, x

i
1, . . . , x

i
2s), s = n − r,

where Di ⊂ R
p is an open set diffeomorphic to Wi, such that

(i) the fibers of π are represented as the level sets of functions (yi, xi),
where the action variables yi are integrals of the pseudo-orthogonal
foliation E = F⊥ restricted to Ui;

(ii) α has the following canonical form:

αi = (φ−1
i )∗α = yi

0dθi
0 + yi

1dθi
1 + · · · + yi

rdθi
r + gi

1dxi
1 + · · · + gi

2sdxi
2s,

where yi
0 is a smooth function of yi and gi

a are functions of (yi, xi).
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Proposition 6.3. Suppose that the intersection of Wi and Wj, i.e., of Ui

and Uj is connected. Then on Ui ∩ Uj we have the following transition for-
mulas:

θj
ν =

r
∑

μ=0

M ij
νμ(θi

μ + F ij
μ (yi, xi)),(6.2)

yj
ν =

r
∑

μ=0

Kij
νμyi

μ, ν = 0, . . . , r,(6.3)

xj
a = Xij

a (yi, xi), a = 1, . . . , 2s,(6.4)

where matrixes Kij = (Kij
νμ) and M ij = (Kij

νμ) belong to GL(r + 1, Z),
M = (KT )−1, and functions Xij

a (yi, xi), F ij
ν (yi, xi) satisfy

(6.5) gi
a =

2s
∑

b=1

gj
b

∂Xij
b

∂xi
a

,
2s

∑

b=1

gj
b

∂Xij
b

∂yi
k

+
r

∑

ν=0

yi
ν

∂F ij
ν

∂yi
k

= 0.

Proof. Since yi and yj (respectively, (yi, xi) and (yj , xj)) are integrals of the
pseudo-orthogonal foliation E (respectively, of F) we have:

(6.6) θj
ν = Θij

ν (θi, yi, xi), yj
k = Y ij

k (yi), xj
a = Xij

a (yi, xi),

ν = 0, . . . , r, k = 1, . . . , r, a = 1. . . . , 2s.
Let us fix some invariant torus T = π−1(w0) within Ui ∩ Uj (w0 ∈ Wi ∩

Wj). From (5.16), we have

yj
ν |T =

∫

γj
ν(T )

α =
r

∑

μ=0

Kij
νμ

∫

γi
μ(T )

α =
r

∑

μ=0

Kij
νμyi

μ|T ,

where Kij ∈ GL(r + 1, Z) is a matrix which relates two different bases
of cycles (γj

0(T ), . . . , γj
r(T )) and (γi

0(T ), . . . , γi
r(T )) defined in Remark 5.1.

From (6.6) and the connectedness of Wi ∩ Wj the matrix Kij is constant.
This proves (6.3). Therefore

i
∂/∂θj

ν
dα = −dyj

ν = −
∑

μ

Kij
νμdyi

μ =
∑

μ

Kij
νμi∂/∂θi

μ
dα,

implying that ∂/∂θj
ν − ∑

μ Kij
νμ∂/∂θi

μ ∈ ker dα = RZ.
Let λZ be the difference of ∂/∂θj

ν and
∑

μ Kij
νμ∂/∂θi

μ. Then

λ = α(λZ) = α(∂/∂θj
ν −

∑

μ

Kij
νμ∂/∂θi

μ) = yj
ν −

∑

μ

Kij
νμyi

μ = 0.

Thus, from (6.6), permuting the indexes i and j, we obtain

∂

∂θj
ν

=
∑

μ

∂Θji
μ

∂θj
ν

∂

∂θi
μ

=
∑

μ

Kij
νμ

∂

∂θi
μ

,
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leading to the fact that Θji
μ is linear in θj

ν and that can be written into a
form

Θji
μ =

∑

ν

(

Kij
νμθj

ν + F ji
ν (yj , xj)

)

.

From the above expression we get (6.2), where
∑r

λ=0 Kij
λμM ij

λν = δνμ.
Replacing (6.3) and the differentials of (6.2), (6.4) into the identity

(6.7)
r

∑

ν=0

yi
νdθi

ν +
2s

∑

a=1

gi
a(y

i, xi)dxi
a =

r
∑

λ=0

yj
λdθj

λ +
2s

∑

b=1

gj
b(y

j , xj)dxj
b,

and comparing the terms with dxi
a and dyi

k we get (6.5). �
The study of toric fibrations within the symplectic geometry framework is

based on the papers of Duistermaat [11] (Lagrangian fibration) and Dazord
and Delzant [7] (isotropic fibrations). On the other side, Banyaga and Molino
defined characteristic invariants of regular and singular completely inte-
grable contact structures and proved a classification theorem: two completely
integrable contact structures with the same invariants are isomorphic [2]. For
contact toric actions and singular completely integrable contact structures,
see also [5,22,29], respectively.

Here, we consider the existence of global contact action–angle coordinates
by using the arguments already used in the paper.

The possibility of taking all matrices Kij and M ij equal to the iden-
tity reflects the fact that the fibration by the invariant tori is a principal
T

r+1-bundle. When this does not happen, it is said that we have nontrivial
monodromy [11].

Let W ′ ⊂ W , dimW ′ = dimW be a connected compact submanifold
(with a smooth boundary) and consider the fibration π : M ′ → W ′, M ′ =
π−1(W ′). It is obvious that the necessary condition for the existence of global
contact action–angle variables is that M ′ → W ′ is a trivial principal bundle.

The following sufficient, but not necessary, conditions for M ′ → W ′ to be
trivial are well known (e.g., see [13]):

(i) If W ′ is simply connected then π : M ′ → W ′ is a principal T
r+1

bundle.
(ii) In addition, if the second cohomology group H2(W ′, Z) vanish then

the principal bundle is trivial and M ′ is diffeomorphic to T
r+1 ×W ′.

Indeed, if W ′ is simply connected then the monodromy of the restricted
fibration π : M ′ → W ′ is trivial providing that π : M ′ → W ′ is a principal
T

r+1 bundle. For the second assertion, note that the Chern class of T
r+1 =

U(1) × · · ·U(1)-bundle is equal to

c = c(L0 ⊕ · · · ⊕ Lr) = (1 + c1(L0)) · · · (1 + c1(Lr)),

where Lν is the bundle associated to the νth factor U(1). They are all trivial
in the case H2(M, Z) = 0. When, T

r+1-bundle is also trivial.
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Now we can formulate the following statement.

Theorem 6.1 (Global contact action–angle variables). Let (M, α,X )
be a complete pre-isotropic structure of the Reeb type and let W ′ ⊂ W ,
dimW ′ = dimW be a connected compact submanifold (with a smooth bound-
ary) such that

(i) π : M ′ → W ′ is a trivial principal T
r+1 bundle, M ′ = π−1(W ′).

(ii) There exist everywhere independent functions x̄1, . . . , x̄2s defined is
some neighborhood of W ′ satisfying:

(6.8) 〈dx1, . . . , dx2s〉 ∩ E0 = 0,

where xa = x̄a ◦ π and E = F⊥ is the pseudo-orthogonal foliation of F .
Then there exist global action–angle variables (θ0, . . . , θr, y0, . . . , yr) and

functions ḡ1, . . . , ḡ2s : W ′ → R such that the contact form α on M ′ reads

(6.9) α0 = y0dθ0 + · · · + yrdθr + π∗(ḡ1dx̄1 + · · · + ḡ2sdx̄2s).

Remark 6.2. Proposition 3 and Theorem 6 are contact analogs of Proposi-
tion 1 and Theorem 2’ in Nehoroshev [31], respectively. In Theorem 2’ [31],
instead of the condition (i), the condition that W ′ is a simply connected
manifold with vanishing of the second cohomology class H2(W ′, R) is used.
A variant of the statement with noncompact invariant manifolds is proved
in [13].

Proof. Since π : M ′ → W ′ is a trivial principal T
r+1 bundle, there exist

global angles variables (ϕ1, . . . , ϕr). Repeating the arguments used in the
proof of Theorem 5.1, we get that the coordinate vector fields Yν = ∂/∂ϕν

preserve α and we can define actions as their contact Hamiltonians:

yν = Φ(Yν) = iYνα : M ′ → R, ν = 0, . . . , r.

They are redundant integrals of the pseudo-orthogonal foliation that sat-
isfy relations (5.17), where zν are the components of the Reeb vector field
Z with respect to vector fields Yν . The functions yν are π-basic and let ȳν

be the corresponding functions on W ′, yν = ȳν ◦ π. They are subjected to
the constrains

(6.10) z̄0ȳ0 + · · · + z̄ryr = 1, z̄0dȳ0 + · · · + z̄rdȳy = 0,

where zν = π ◦ z̄ν .
Moreover, according to the assumption (6.8), in a neighborhood of any

point w0 ∈ W ′, we can take r independent functions among ȳν that are
independent of x̄1, . . . , x̄2s providing a local coordinate chart.

Let {Wi} be a finite covering of W ′ such that on every Wi we can take
local coordinates (ȳi, x̄), where (ȳi

1, . . . , ȳ
i
r) is a subcollection of redundant

actions (ȳ0, . . . , ȳr).
As in Theorem 5.1 we get that the contact form in Ui = π−1(Wi) reads

(6.11) αi = αθ + π∗αi
y + π∗αi

x,



558 B. JOVANOVIĆ

where αθ =
∑r

ν=0 yνdϕν , αi
y =

∑r
k=1 f̄ i

k(ȳ
i, x̄)dȳi

k, αi
x =

∑2s
a=1 ḡi

a(ȳ
i, x̄)dx̄a.

Thus, on M ′ we have a unique decomposition α = αθ+π∗αy+π∗αx, locally
given by (6.11). It is obvious that we can write αx as αx =

∑2s
a=1 ḡadx̄a,

where ḡa : W ′ → R.
Next, consider the filtration

V1 = W1 ⊂ V2 = W1 ∪ W2 ⊂ · · · ⊂ VN = W1 ∪ · · · ∪ WN = W ′.

Applying Lemma 6.1 given below (N − 1) times we obtain functions
f̄0, . . . , f̄r : W ′ → R, satisfying the identities

f̄0dȳ0 + f̄1dȳ1 + · · · + f̄rdȳr = f̄ i
1dȳi

1 + . . . f̄rdȳi
r

on every Wi.
Therefore, after globally defined transformation

(θ0, θ1, . . . , θr) = (ϕ0 − f0, ϕ1 − f1, . . . , ϕr − fr), fν = f̄ν ◦ π,

the form α becomes

α =
r

∑

ν=0

yνdθν + π∗
2s

∑

a=1

ḡadx̄a + df,

where f =
∑

ν yνfν is a π-basic function. Now, as in Theorem 5.1, applying
Moser’s deformation for a compact manifold M ′ and family of forms αt =
α0 + tdf , we get the required statement. �

Lemma 6.1. Suppose that on W ′ we have an open set U with local coordi-
nates (ȳ1, . . . , ȳr) and an open set V endowed with 1-forms

γU = F1dȳ1 + · · · + Fνdȳr, γV = G1dȳ0 + · · · + Gνdȳr,

that are equal on the intersection U ∩ V . Then there exist functions
E0, . . . , Er defined on U ∪ V satisfying

γU = E0dȳ0 + · · · + Erdȳr|U , γV = E0dȳ0 + · · · + Erdȳr|V .

Proof. The statement is trivial if U ∩ V = ∅. Assume U ∩ V �= ∅. According
to constraints (6.10), the form γU does not change under the addition of
terms proportional to z̄0dȳ0 + · · · + z̄rdȳy. We are looking for a function
A : U → R that satisfies

(6.12) Az̄0 = G0, F1 + Az̄1 = G1, . . . Fr + Az̄r = Gr

on U ∩ V . Although it is overdetermined system, due to the condition that
γU = γV it has an unique solution. Indeed, on U we have z̄0 �= 0 and
∂ȳ0/∂ȳi = −z̄i/z̄0 (see Remark 5.2). Therefore, the equality γU = γV implies
the following compatibility conditions

(6.13) F1 = −G0
z̄1

z̄0
+ G1, . . . , Fr = −G0

z̄r

z̄0
+ Gr, ȳ ∈ U ∩ V.
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From (6.13), we obtain that A = G0/z̄0 : U ∩ V → R is a solution of
(6.12). Now we take an arbitrary extension of A from U ∩V to U and define

E0|U = A, E0|V = G0, Ei = Fi + Az̄i|U , Ei = Gi|V , i = 1, . . . , r.

�
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