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REAL POINTS OF COARSE MODULI SCHEMES OF
VECTOR BUNDLES ON A REAL ALGEBRAIC CURVE

Florent Schaffhauser

We examine a moduli problem for real and quaternionic vector bun-
dles on a smooth complex projective curve with a fixed real structure,
and we give a gauge-theoretic construction of moduli spaces for semi-
stable such bundles with fixed topological type. These spaces embed
onto connected subsets of real points inside a complex projective vari-
ety. We relate our point of view to previous work by Biswas et al.
[BHH10], and we use this to study the Gal(C/R)-action [E ] �→ [σ∗E ]
on moduli varieties of stable holomorphic bundles on a complex curve
with given real structure σ. We show in particular a Harnack-type the-
orem, bounding the number of connected components of the fixed-point
set of that action by 2g + 1, where g is the genus of the curve. In fact,
taking into account all the topological invariants of σ, we give an exact
count of the number of connected components, thus generalizing to
rank r > 1 the results of Gross and Harris on the Picard scheme of a
real algebraic curve [GH81].
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1. Introduction

Let (X,OX) be a scheme of finite type over R such that M := X(C) is an
irreducible, smooth complex projective curve. We shall call such a scheme,
a real algebraic curve. The complex conjugation of C induces a continuous
action of the group G := Gal(C/R) on the complexified scheme

(XC := X ×Spec R Spec C, OXC
:= OX ⊗R C) .

M is the set of closed points of XC, so the Galois action on XC induces
an involution σ of M , whose tangent map is C-antilinear. In differential
geometric terms, M is a compact, connected Riemann surface (with an
integral Kähler metric, which we take to be of unit volume), and σ is
an anti-holomorphic, involutive isometry of M . The quotient space M/σ
is the set of closed points of X = XC/G. We denote p the projection
p : XC −→ X = XC/G. Then G acts on the sheaf p∗OXC

, and one has
OX � (p∗OXC

)G. Similarly, if OM denotes the sheaf of holomorphic func-
tions on M , G acts on p∗OM by

(σ · f)(x) = f(σ(x)),

where f is any holomorphic function defined on a σ-invariant open subset
of M (in particular, f is real-valued on Mσ, the fixed-point set of σ in M).
In differential geometric terms, the ringed space (M/σ, (p∗OM )G) is called
a Klein surface [AG71]. The boundary of M/σ is diffeomorphic to X(R),
the set of real points of X. In particular, it might be empty. Topologically,
Mσ = X(R) is a disjoint union of k circles embedded in M = X(C). By
Harnack’s theorem, one has 0 ≤ k ≤ g + 1, where g is the genus of M .
We note that M/σ topologically is a compact connected real surface which,
necessarily, is either non-orientable or has non-empty boundary (it can be
both, but orientable surfaces without boundary are excluded). In Figure 1,
we denote |X| the set of closed points of a scheme X, and Proj R the
homogeneous spectrum of a graded ring R.

For any r ≥ 1 and any integer d, we denote Mr,d
X the coarse moduli

scheme parametrizing S-equivalence classes of semi-stable vector bundles
of rank r and degree d on M = X(C), and N r,d

X the open sub-scheme of
Mr,d

X parametrizing isomorphism classes of stable bundles of rank r and
degree d on M . We recall that N r,d

X = Mr,d
X if, and only if, r∧d = 1. As X is

defined over R, so are the moduli schemes Mr,d
X and N r,d

X , and, in the present
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Figure 1. X = P
1
R

= Proj (R[X0, X1]).

paper, we are interested in the topology of the set N r,d
X (R) as a subset of the

complex variety N r,d
X (C), endowed with its complex topology. We recall that,

for g ≥ 2, N r,d
X (C) is a smooth, connected, complex quasi-projective variety

of dimension r2(g − 1) + 1 (in particular, the dimension does not depend
on d). Our main result is a precise count of the connected components of
N r,d
X (R), which nicely generalizes the results of Gross and Harris on the

Picard scheme of a real algebraic curve [GH81]. Note that in the r = 1 case,
more is known: any given connected component of PicdX(R) = M1,d

M,σ(R) is
a real g-dimensional torus R

g/Zg, g being the genus of X.
To be able to state our result, let us recall the topological classification of

real algebraic curves, first obtained by Felix Klein [Kle63]. Given an alge-
braic curve X defined over R, let us denote g(X) the genus of X, k(X) the
number of connected components of X(R), and a(X) the number defined by

a(X) = 0 if X(C) \X(R) is not connected,

a(X) = 1 if X(C) \X(R) is connected.

Equivalently, a(X) = 0 if X(C)/G is orientable, and a(X) = 1 if X(C)/G
is non-orientable; for that reason, a(X) sometimes called the orientability
index of X. Given two real algebraic curves X and X ′, Klein’s classification
theorem says that there exists a Galois-equivariant homeomorphism between
X(C) and X ′(C) if, and only if,

g(X) = g(X ′), k(X) = k(X ′), and a(X) = a(X ′).

The classification of real compact connected surfaces shows that this is in
fact equivalent to X(C)/G and X ′(C)/G being homeomorphic. Moreover,
one has:

• 0 ≤ k(X) ≤ g(X) + 1 (Harnack’s theorem),
• if k(X) = 0 then a(X) = 1, and if k(X) = g + 1 then a(X) = 0,
• if a(X) = 0, then k(X) ≡ (g + 1) (mod 2),
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and Klein proved that all triples (g(X), k(X), a(X)) satisfying the conditions
above occur for some real algebraic curve X. Our main result then is as
follows.

Theorem 1.1. Let X ↔ (M,σ) be a real algebraic curve of topological type
(g, k, a), g ≥ 2, and let N r,d

X be the coarse moduli scheme parametrizing iso-
morphism classes of stable holomorphic vector bundles of rank r and degree
d on X(C). We consider the real structure induced on the smooth, connected,
complex quasi-projective variety N r,d

X (C) by the functor E �−→ σ∗E.

(1) Assume that k > 0.
(a) If r ≡ 1 (mod 2), then N r,d

X (R) is non-empty and has 2k−1 con-
nected components. For fixed r and d, these connected components
are pairwise homeomorphic.

(b) If r ≡ 0 (mod 2) and d ≡ 1(mod 2), then N r,d
X (R) is non-empty

and has 2k−1 connected components.
(c) If r ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d

X (R) is non-empty
and has 2k−1 + 1 connected components.

(2) Assume that k = 0.
(a) If r(g − 1) ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d

X (R) is non-
empty and has 2 connected components. For fixed r and d, and if
g ≡ 1 (mod 2), these two connected components are homeomor-
phic.

(b) If r(g−1) ≡ 0 (mod 2) and d ≡ 1 (mod 2), then N r,d
X (R) is empty.

(c) If r(g − 1) ≡ 1 (mod 2), then N r,d
X (R) is non-empty and has 1

connected component.

As a corollary to the above result combined with Harnack’s theorem, we
obtain an upper bound, depending only on the genus of X, on the number
of connected components of N r,d

X (R).

Corollary 1.2. Given a real algebraic curve X of genus g, the number of
connected components of N r,d

X (R) is lower than 2g + 1.

We recall that, when g, r and d remain fixed while k or a (the real structure
of X) changes, N r,d

X (C) stays the same topologically, but the topology of the
connected components of N r,d

X (R) may change (see Section 6.3 of [BHH10]).

2. Vector bundles on a real algebraic curve

2.1. Real and quaternionic vector bundles. Our motivation to study
real points of coarse moduli schemes of vector bundles comes from an
attempt at formulating a moduli problem for vector bundles on a real alge-
braic curve. The fundamental tool in that endeavour is the notion of real
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space, which is due to Atiyah [Ati66]. In the special context of real alge-
braic geometry (from which the notion of real space originates), Atiyah’s
observation is that the category of real algebraic vector bundles on a real
algebraic curve X is equivalent to the category of holomorphic vector bun-
dles on M = X(C), endowed with a C-antilinear involution covering the
natural involution σ of M .

Definition 2.1 (Real vector bundles). A real vector bundle on (M,σ)
is a pair (E , σ̃) where E is a holomorphic vector bundle and σ̃ : E −→ E is
an anti-holomorphic map satisfying the following conditions:

(1) the diagramme

E σ̃−−−−→ E
⏐

⏐

�

⏐

⏐

�

M
σ−−−−→ M

is commutative;
(2) the map σ̃ is C-antilinear;
(3) σ̃2 = IdE .

We shall refer to the map σ̃ as the real structure of E . It induces a
C-linear isomorphism ϕ, covering the identity ofM , between σ∗E and E . This
isomorphism satisfies σ∗ϕ = ϕ−1 and, as a matter of fact, giving a C-linear,
invertible homomorphism ϕ : σ∗E → E satisfying σ∗ϕ = ϕ−1, is equivalent
to giving an anti-holomorphic, fibrewise C-antilinear, invertible bundle map
σ̃ : E −→ E covering σ and squaring to the identity. A homomorphism of
real holomorphic vector bundles is a homomorphism of holomorphic vector
bundles (covering the identity map of M and) commuting to the respective
real structures. One may observe that the two equivalent categories of real
algebraic vector bundles on X and real holomorphic vector bundles (in the
sense of Atiyah) on M = X(C), are equivalent to a third one, namely the
category of dianalytic vector bundles (complex vector bundles which admit
an atlas whose transition maps are either holomorphic or anti-holomorphic)
on the Klein (=dianalytic) surface M/σ, as shown in [Sch11]. In that sense,
and provided that one accepts to work in the dianalytic category, study-
ing vector bundles on a compact surface, which is either non-orientable or
has non-empty boundary is equivalent to studying vector bundles on a real
algebraic curve. At any rate, what is starting to shape here is that real
holomorphic vector bundles define real points of the moduli schemes N r,d

X .
But, as it turns out, there might be real points of a slightly different type,
because of the presence of non-trivial automorphisms for stable vector bun-
dles on M . Indeed, a real vector bundle E on M certainly is self-conjugate
(meaning that σ∗E � E), but the converse is not true, even if E only has
scalar automorphisms, and this leads to the notion of quaternionic vectors
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bundles (or symplectic vectors bundles, as they are called in [Dup69] and
in [Har78]).

Definition 2.2 (Quaternionic vector bundles). A quaternionic vec-
tor bundle on (M,σ) is a pair (E , σ̃) where E is a holomorphic vector
bundle and σ̃ : E −→ E is an anti-holomorphic map satisfying the following
conditions:

(1) the diagramme

E σ̃−−−−→ E
⏐

⏐

�

⏐

⏐

�

M
σ−−−−→ M

is commutative;
(2) the map σ̃ is C-antilinear;
(3) σ̃2 = −IdE .

We shall refer to the map σ̃ as the quaternionic structure of E . It
induces a C-linear isomorphism ϕ, covering the identity of M , between σ∗E
and E . This isomorphism satisfies σ∗ϕ = −ϕ−1 and, as a matter of fact,
giving a C-linear, invertible homomorphism ϕ : σ∗E → E satisfying σ∗ϕ =
−ϕ−1, is equivalent to giving an anti-holomorphic, fibrewise C-antilinear,
invertible bundle map σ̃ : E −→ E covering σ and squaring to minus the
identity. A homomorphism of quaternionic holomorphic vector bundles is a
homomorphism of holomorphic vector bundles (covering the identity map
of M and) commuting to the respective quaternionic structures. One may
observe here that, when Mσ = ∅, the complex rank of a quaternionic bundle
is allowed to be odd, while when Mσ �= ∅, it must be even, for the fibres of
E|Mσ → Mσ are left modules over the field of quaternions. In the present
work, stability always means slope stability (see Definition 2.5).

Proposition 2.3 ([BHH10]). Assume that E is a stable holomorphic bun-
dle on M , and that σ∗E � E. Then E is either real or quaternionic, and it
cannot be both.

Proof. We recall that a stable bundle only has scalar automorphisms,
because its endomorphism ring is a field (a non-zero morphism between
stable bundles of equal slope is an isomorphism) that contains C as a sub-
field (the sub-field of scalar endomorphisms), and its elements are algebraic
over C by the Cayley–Hamilton theorem, so they are contained in C. We
then proceed with the proof of the Proposition. A C-linear isomorphism
ϕ : σ∗E �−→ E covering IdM is the same as a C-antilinear map σ̃ : E → E
covering σ. As σ2 = IdM , the map σ̃2 is a C-linear map covering IdM . Since
E only has scalar automorphisms, this implies that σ̃2 = λ ∈ C

∗. Replac-
ing σ̃ with σ̃/

√|λ| if necessary, we may assume that |λ| = 1. Moreover,
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λσ̃ = (σ̃2)σ̃ = σ̃(σ̃2) = σ̃(λ·) = λσ̃, so λ = λ. As a consequence, λ = ±1,
making E real or quaternionic. If σ̃′ is another C-antilinear map covering σ,
then, as E only has scalar automorphisms, σ̃′ ◦ σ̃ = ν ∈ C

∗, so

(σ̃′)2(σ̃)2 = σ̃′(ν·)σ̃ = ν σ̃′σ̃ = |ν|2IdE ,

with |ν|2 > 0. Therefore, σ̃ and σ̃′ are either both real or both quaternionic.
�

As the Galois action on N r,d
X (C) is induced by the functor E �→ σ∗E ,

which preserves rank, degree, and slope stability of a holomorphic vector
bundle, we see that real points of N r,d

X may consist of real and quaternionic
vector bundles alike. The precise situation will become clearer after we have
identified the connected components of N r,d

X (R).

2.2. Topological classification. Any attempt at finding moduli for real
and quaternionic bundles on X(C) begins with the determination of some
discrete invariants specifying a topological (or smooth) type for those bun-
dles. Such a classification result was obtained by Biswas, Hurtubise and
Huisman in [BHH10] (Propositions 4.1, 4.2 and 4.3). We formulate their
result in the additional presence of a smooth Hermitian metric on the vector
bundles that we consider. In this context, a real or quaternionic structure
σ̃ on a Hermitian, smooth complex vector bundle E is assumed to be an
isometry.

Theorem 2.4 ( [BHH10]). One has:
• For real bundles:

– if Mσ = ∅, then real Hermitian bundles on (M,σ) are topologically
classified by their rank and degree. It is necessary and sufficient for
a real Hermitian bundle of rank r and degree d to exist that

d ≡ 0 (mod 2).

– if Mσ �= ∅ and (E, σ̃) is real, then (Eσ̃ → Mσ) is a real vector
bundle in the ordinary sense, on the disjoint union

Mσ = γ1 � · · · � γn
of at most (g + 1) circles, and we denote

w(j) := w1(Eσ̃
∣

∣

γj
) ∈ H1(S1; Z/2Z) � Z/2Z

the first Stiefel–Whitney class of Eσ̃ →Mσ restricted to γj.
Then real Hermitian bundles on (M,σ) are topologically classified
by their rank, their degree and the sequence (w(1), . . . , w(n)). It is
necessary and sufficient for a real Hermitian bundle with given
invariants r, d and (w(1), . . . , w(n)) to exist that

w(1) + · · · + w(n) ≡ d (mod 2).
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• For quaternionic bundles:
Quaternionic Hermitian bundles on (M,σ) are topologically classified
by their rank and degree. It is necessary and sufficient for a topological
quaternionic bundle of rank r and degree d to exist that

d+ r(g − 1) ≡ 0 (mod 2).

2.3. Stability. As a next step into the moduli problem for algebraic vector
bundles on a real algebraic curve, it certainly is necessary to have a notion
of stability at our disposal in order to proceed. In the context of vector
bundles on a curve, slope stability probably is the obvious choice, but it is
perhaps not so clear whether one should test that condition over all sub-
bundles of E , or over real sub-bundles only (that is, over sub-bundles on
which σ̃ induces a real structure). This is an important matter because, as
it turns out, different choices at this stage lead to different answers later.
We therefore devote some time to analysing the different notions of stability
for real and quaternionic bundles, and comparing them.

The slope of a non-zero holomorphic vector bundle E is the quotient

μ(E) :=
deg E
rk E

of its degree by its rank.

Definition 2.5 (Stability conditions for real and quaternionic bun-
dles). Let (E , σ̃) be a real (resp. quaternionic) holomorphic vector bundle
on (M,σ). We call a sub-bundle of E non-trivial if it is distinct from {0}
and from E . Then (E , σ̃) is said to be:

(1) Stable, if for any non-trivial σ̃-invariant sub-bundle F ⊂ E , the slope
stability condition

μ(F) < μ(E)

is satisfied.
(2) Semi-stable, if for any non-trivial σ̃-invariant sub-bundle F ⊂ E ,

one has
μ(F) ≤ μ(E).

(3) Geometrically stable, if the underlying holomorphic bundle E is
stable, that is, if, for any non-trivial sub-bundle F ⊂ E , one has

μ(F) < μ(E).

(4) Geometrically semi-stable, if the underlying holomorphic bundle
E is semi-stable, that is, if for any non-trivial sub-bundle F ⊂ E , one
has

μ(F) ≤ μ(E).
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Various comments are in order. First, we notice that, when (E , σ̃) is real,
it is of the form E = E(C) for some algebraic vector bundle E −→ X defined
over the reals, and geometric stability means stability of the bundle E(C)
of geometric points of E. Geometric stability is, for instance, the notion of
stability chosen in [HN75] (Section 1.1, p. 217). Second, we see that (3) ⇒
(1), and (4) ⇒ (2). We prove below that (2) ⇒ (4), but (1) �⇒ (3).

Proposition 2.6. Let (E , σ̃) be a semi-stable real (resp. quaternionic) vector
bundle on (M,σ). Then (E , σ̃) is geometrically semi-stable.

Proof. Let ϕ : σ∗E −→ E be the isomorphism determined by the real (resp.
quaternionic) structure on E . Assume that (E , σ̃) is not geometrically semi-
stable, and let F be the destabilising bundle of E (the unique maximal
rank bundle among sub-bundles of E the slope of which is maximal). Then
ϕ(σ∗F) and F are sub-bundles of E which have the same rank and degree.
By unicity of F , one has ϕ(σ∗F) = F . So F is σ̃-invariant, and therefore
μ(F) ≤ μ(E), which contradicts the assumption that F is the destabilising
bundle for E . �

Proposition 2.6 is actually a (very) special case of a result by Lang-
ton [Lan75], Proposition 3), who proves, under very general assumptions
(for instance, if the field extension under consideration is separable and
algebraic), that semi-stability is a notion invariant under base change for
torsion-free coherent sheaves on a non-singular projective variety.

To show that (1) does not necessarily imply (3), we identify all bun-
dles (E , σ̃), which are stable in the real (resp. quaternionic) sense. We note
that when F is any holomorphic vector bundle, there is a commutative dia-
gramme

σ∗F σ̃−−−−→ F
⏐

⏐

�

⏐

⏐

�

M
σ−−−−→ M

where σ̃ is an invertible, C-antilinear map covering σ and such that

σ̃ ◦ σ̃−1 = IdF , and σ̃−1 ◦ σ̃ = Idσ∗F .

Therefore, on F ⊕ σ∗F , we may define

σ̃+ =
(

0 σ̃
σ̃−1 0

)

and σ̃− =
(

0 −σ̃
σ̃−1 0

)

.

σ̃+ and σ̃− are C-antilinear maps from F ⊕ σ∗F to itself, covering σ, and
satisfying

σ̃+ ◦ σ̃+ =
(

IdF 0
0 Idσ∗F

)

= IdF⊕σ∗F
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and

σ̃− ◦ σ̃− =
(−IdF 0

0 −Idσ∗F

)

= −IdF⊕σ∗F .

In other words, (F ⊕ σ∗F , σ̃+) is a real bundle, and (F ⊕ σ∗F , σ̃−) is a
quaternionic bundle. We also note that, if (E , σ̃) is any real (resp. quater-
nionic) bundle, the bundle End(E) � E∗ ⊗ E of endomorphisms of E always
has a real structure given by

ξ ⊗ v �−→ (ξ ◦ σ̃−1) ⊗ σ̃(v).

If we still denote σ̃ this real structure, the bundle of real (resp. quaternionic)
endomorphisms of (E , σ̃) is the bundle

(

End(E)
)σ̃ of σ̃-invariant elements of

End(E).

Proposition 2.7. Let (E , σ̃E) be a stable real (resp. quaternionic) vector
bundle.

(1) Then either (E , σ̃E) is geometrically stable, or there exists a holo-
morphic vector bundle F , stable in the holomorphic sense, such that
E = F ⊕ σ∗F . In the latter case, if (E , σ̃) is real then σ∗F �= F and
σ̃E = σ̃+, and if (E , σ̃) is quaternionic, then σ̃E = σ̃−.

(2) In the geometrically stable case, the set of real (resp. quaternionic)
endomorphisms of (E , σ̃E) is

(

End(E)
)σ̃E = {λIdE : λ ∈ R} �R R,

and, if E = F ⊕ σ∗F , then

(End(E))σ̃E = {(λIdF , λIdF ) : λ ∈ C} �R C.

Note that the isomorphisms given in part (2) of the Proposition are iso-
morphisms of real vector spaces. Also, a real (resp. quaternionic) bundle
which is stable in the real (resp. quaternionic) sense but not geometrically
stable, is necessarily of even rank.

Proof. Let (E , σ̃E) be a stable real (resp. quaternionic) vector bundle.

(1) Assume that (E , σ̃E) is not geometrically stable. Then there exists
a non-trivial sub-bundle F of E satisfying μ(F) ≥ μ(E). Since, by
Proposition 2.6, E is semi-stable in the holomorphic sense, we in fact
have μ(F) = μ(E) and F is also semi-stable. As (E , σ̃E) is real (resp.
quaternionic), there is a canonical isomorphism ϕ : σ∗E −→ E , which
allows us to identify σ∗F with a sub-bundle of E . We denote E ′ the
sub-bundle generated by the σ̃E -invariant subsheaf F ∩σ∗F of E , and
E ′′ the sub-bundle generated by the σ̃E -invariant subsheaf F + σ∗F
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of E . Then we have an exact sequence

0 −→ E ′ −→ F ⊕ σ∗F −→ E ′′ −→ 0,

where the map F ⊕ σ∗F −→ E ′′ is a morphism of real (resp. quater-
nionic) bundles when F ⊕ σ∗F is endowed with the real structure
σ̃+ (resp. the quaternionic structure σ̃−). Assume now that E ′ and
E ′′ are non-trivial sub-bundles of E . Since E ′ and E ′′ are σ̃E -invariant
sub-bundles of E and E is stable in the real (resp. quaternionic) sense,
one has

d′

r′
:= μ(E ′) < μ(E) and

d′′

r′′
:= μ(E ′′) < μ(E).

But

μ(E) = μ(F) =:
d

r

so d′r < dr′ and d′′r < dr′′, and therefore

d′r + d′′r < dr′ + dr′′.

Moreover, since deg(σ∗F) = deg(F) and rk(σ∗F) = rk(F), the exact
sequence above implies that d′ + d′′ = 2d and r′ + r′′ = 2r, so

d′ + d′′

r′ + r′′
=

2d
2r

=
d

r
,

and therefore d′r+d′′r = dr′+dr′′, contradicting the strict inequality
above. So E ′ = {0} and E ′′ = E , which means that E � F ⊕ σ∗F as
a real (resp. quaternionic) bundle. The bundle F necessarily is sta-
ble as a holomorphic bundle, otherwise a non-trivial sub-bundle F ′
of F satisfying μ(F ′) ≥ μ(F) gives a non-trivial, σ̃±-invariant sub-
bundle F ′⊕σ∗F ′ of (E , σ̃E) with slope equal to μ(F ′) ≥ μ(F) = μ(E),
contradicting the fact that (E , σ̃E) is stable as a real (resp. quater-
nionic) bundle (note that σ̃|σ∗F ′ maps σ∗F ′ to F ′ by definition of
σ∗F ′). Moreover, when (E , σ̃E) is real, σ∗F is not isomorphic to F ,
otherwise the diagonal embedding F −→ F ⊕ σ∗F � F ⊕ F would
provide a σ̃+-invariant sub-bundle, contradicting the stability of E as
a real bundle. We note that, in the quaternionic case, the diagonal
embedding does not provide a σ̃−-invariant sub-bundle and so does
not contradict the stability of E as a quaternionic bundle. Indeed,
we now give an example of a stable quaternionic bundle of the form
(F ⊕ σ∗F , σ̃−) with F stable as a holomorphic bundle and satisfying
σ∗F � F : consider a real-line bundle (L, σ̃) on a real algebraic curve
(M,σ) satisfying Mσ �= ∅, then σ∗L � L and (L ⊕ L, σ̃−) is a stable
quaternionic bundle, for a sub-bundle contradicting this would be a
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quaternionic line bundle on (M,σ) and there are no quaternionic line
bundles on (M,σ) when Mσ �= ∅.

(2) If (E , σ̃E) is geometrically stable, then

End(E) = {λIdE : λ ∈ C} � C,

and the real structure of End(E) acts as λ �−→ λ on such endor-
mophisms, so

(

End(E)
)σ̃E = {λIdE : λ ∈ R} �R R.

If (E , σ̃E) is stable but not geometrically stable, then E = F ⊕ σ∗F
for some F stable in the holomorphic sense (so σ∗F is also stable in
the holomorphic sense), and

End(E) = {(λIdE , μIdE) : (λ, μ) ∈ C ⊕ C} � C ⊕ C.

The real structure of End(E) acts as (λ, μ) �−→ (μ, λ) on such endo-
morphisms, so

(End(F ⊕ σ∗F))σ̃E = {(λ, λ) : λ ∈ C} �R C.

�

Proposition 2.7 also proves that a bundle E which admits a stable but not
geometrically stable real structure σ̃+, also admits the stable quaternionic
structure σ̃−. The example in the last part of the proof of (1) shows that the
converse is not necessarily true. As a final observation, we point out that,
when r ∧ d = 1, a bundle (E , σ̃) which is stable in the real or quaternionic
sense, necessarily is geometrically stable (as it is geometrically semi-stable,
which implies that it is geometrically stable when r ∧ d = 1). The previous
results suggest that, if we want to think of real points of Mr,d

X as moduli
of real and quaternionic bundles, we should restrict our attention, either to
the case where r ∧ d = 1, or to the open sub-scheme N r,d

X , whose complex
points are isomorphism classes of geometrically stable bundles. The next
result formalises this point of view.

Proposition 2.8. Let (E , σ̃) and (E ′, σ̃′) be two geometrically stable real
(resp. quaternionic) bundles, and assume that E and E ′ are isomorphic as
holomorphic vector bundles. Then E and E ′ are isomorphic as real (resp.
quaternionic) vector bundles.

Proof. The assumption of the Proposition is that ϕ : E ′ �−→ E . Replacing
σ̃′ with ϕσ̃′ϕ−1 if necessary, we may assume that σ̃ and σ̃′ are two distinct
real structures on the same vector bundle E . Then σ̃σ̃′ is C-linear and, as E
is stable, this implies that σ̃σ̃′ = λ ∈ C

∗. This in turn implies that

σ̃ = λ(σ̃′)−1 = ±λ(σ̃′) = ±λσ̃−1(λ·) = ±λ(±σ̃)(λ·) = |λ|2σ̃,
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so λ = eiθ for some θ ∈ R, whence one obtains

σ̃ = eiθσ̃′ = ei θ
2 σ̃′(e−i θ

2 ·),
showing that σ̃ and σ̃′ are conjugate by an automorphism of E . �

Thus, not only do real points of N r,d
X represent isomorphism classes of

geometrically stable bundles which admit either a real or a quaternionic
structure (by Proposition 2.3), but, in addition, this real or quaternionic
structure is unique up to real or quaternionic isomorphism. Moreover, the
automorphism group of a geometrically stable real or quaternionic bundle
is equal to R

∗ by Proposition 2.7. So we see that N r,d
X (R) has many of the

good properties that one might expect from a coarse moduli space for objects
defined over the field of real numbers.

2.4. Jordan–Hölder filtrations. Seshadri has shown [Ses67] that, if E is
a semi-stable holomorphic bundle, it admits a holomorphic Jordan–Hölder
filtration

{0} ⊂ E0 ⊂ E1 ⊂ · · · ⊂ El = E ,

the successive quotients of which are stable bundles of slope μ(E). The asso-
ciated graded object

gr(E) = E1/E0 ⊕ · · · ⊕ El/El−1

is a direct sum of stable bundles of equal slope and is called a poly-stable
bundle (necessarily, the slope of such a direct sum is equal to the slope of any
of its terms). Its graded isomorphism class does not depend on the choice of
the filtration, and is called the S-equivalence class of E . In this subsection,
we analyse the corresponding situation for semi-stable real and quaternionic
bundles. We begin with a definition.

Definition 2.9. Let (E , σ̃) be a real (resp. quaternionic) bundle. A real
(resp. quaternionic) Jordan–Hölder filtration of (E , σ̃) is a filtration

{0} = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E
by σ̃-invariant holomorphic sub-bundles, whose successive quotients are sta-
ble in the real (resp. quaternionic) sense.

Let us now study Jordan–Hölder filtrations of semi-stable real and quater-
nionic bundles of fixed slope μ. We denote Bunss,μ the category of semi-
stable holomorphic bundles of slope μ. It is an Abelian category. In par-
ticular, if u : E1 −→ E2 is a morphism of semi-stable bundles of slope μ,
Keru and Imu are semi-stable bundles of slope μ and there is an isomor-
phism E/Keru � Imu. Moreover, Bunss,μ is Artinian, Noetheriean, stable
by extensions and the simple objects of Bunss,μ are the stable bundles of
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slope μ, which in particular implies the existence of Jordan–Hölder filtrations
in the holomorphic sense for semi-stable bundles of slope μ [Ses67,VLP85].

Theorem 2.10. Let Bun R
ss,μ (resp. Bun H

ss,μ) denote the category of semi-
stable real (resp. quaternionic) bundles of slope μ on (M,σ). By Proposi-
tion 2.6, it is a strict sub-category of the category Bunss,μ of semi-stable
holomorphic bundles of slope μ. Moreover:

(1) If u : (E1, σ̃1) −→ (E2, σ̃2) is a morphism of real (resp. quaternionic)
bundles, then the bundles Keru and Imu are semi-stable real (resp.
quaternionic) bundles of slope μ, and the isomorphism E/Keru �
Imu is an isomorphism of real (resp. quaternionic) bundles. As a
consequence, Bun R

ss,μ (resp. Bun H
ss,μ) is an Abelian category.

(2) The Abelian category Bun R
ss,μ (resp. Bun H

ss,μ) is Artinian, Noetherian
and stable by extensions. If (E , σ̃) is stable in the real (resp. quater-
nionic) sense, then its endomorphism ring (End E)σ̃ is a field which
is an algebraic extension of R, so it is either R or C.

(3) The simple objects of Bun R
ss,μ (resp. Bun H

ss,μ) are the real (resp.
quaternionic) bundles of slope μ on (M,σ) that are stable in the
real (resp. quaternionic) sense. In particular, a semi-stable real (resp.
quaternionic) bundle (E , σ̃) admits a real (resp. quaternionic) Jordan–
Hölder filtration.

Proof.
(1) Since Bun R

ss,μ (resp. Bun H
ss,μ) is a sub-category of the Abelian cate-

gory Bunss,μ, it suffices to prove that, if u : (E1, σ̃1) −→ (E2, σ̃2) is a
morphism of real (resp. quaternionic) bundles, then the semi-stable
bundles of slope μ, Keru and Imu, are in fact real (resp. quaternionic)
bundles, so they are objects of Bun R

ss,μ (resp. Bun H
ss,μ). This follows

from the fact that Keru is σ̃1-invariant and Imu is σ̃2-invariant.
(2) Because the rank of a vector bundle is finite, it is obvious that decreas-

ing and increasing sequences of sub-bundles are stationary. Moreover,
it follows from (1) that, if u : (E1, σ̃1) −→ (E2, σ̃2) is a non-zero mor-
phism between stable real (resp. quaternionic) bundles of equal slope,
then u is an isomorphism. In particular, (End E)σ̃ is a field, which
contains R as the sub-field of scalar endomorphisms. Since the char-
acteristic polynomial of an element in (End E)σ̃ has real coefficients,
the Cayley–Hamilton Theorem implies that the elements of the field
(End E)σ̃ are algebraic over R.

(3) Let (E , σ̃) be a stable real (resp. quaternionic) bundle of slope μ. Then
it does not admit a non-trivial sub-object in Bun R

ss,μ (resp. Bun H
ss,μ),

for such a sub-object would have slope μ, contradicting the fact that
E is stable in the real (resp. quaternionic) sense. So (E , σ̃) is a sim-
ple object in Bun R

ss,μ (resp. Bun H
ss,μ). Conversely, if (E , σ̃) is a simple
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object in Bun R
ss,μ (resp. Bun H

ss,μ) and F is a non-trivial σ̃-invariant
sub-bundle of E , then μ(F) < μ(E), because μ(F) ≤ μ(E) by the semi-
stability of E and μ(F) �= μ(E) by the simplicity of E . So (E , σ̃) is in
fact stable in the real (resp. quaternionic) sense. The existence of a
real (resp. quaternionic) Jordan–Hölder filtration is then proved in the
usual way: since increasing sequences are stationary, there is a strict
sub-object F of (E , σ̃) which is not contained in any strict sub-object.
This F in turn contains such a strict sub-object, and one constructs
in this way a decreasing sequence of sub-objects of E . As this sequence
is stationary, we get a filtration, whose successive quotients are sim-
ple by construction (of course, in this particular category, there is a
somewhat simpler proof by induction on the rank).

�

The point to make here is that we need to include the real (resp. quater-
nionic) bundles which are stable but not necessarily geometrically stable
in order to guarantee the existence of real (resp. quaternionic) Jordan–
Hölder filtration for semi-stable real (resp. quaternionic) bundles: a sim-
ple real (resp. quaternionic) bundle might only be stable in the real (resp.
quaternionic) sense and not geometrically stable, so a semi-stable real (resp.
quaternionic) bundle (E , σ̃E) might only admit a Jordan–Hölder filtration
whose successive quotients are stable in the real (resp. quaternionic) sense.
As an example, consider the bundle (E , σ̃E) � (F ⊕ σ∗F , σ+), with F stable
as holomorphic bundle and such that σ∗F �� F . Then (E , σ̃E) is stable as a
real bundle, so it admits a real Jordan–Hölder filtration of length one, while
it admits no Jordan–Hölder filtration the successive quotients of which are
geometrically stable real bundles (note that the diagonal embedding is not
C-linear when σ∗F �� F). Moreover, any holomorphic Jordan–Hölder filtra-
tion of E � F ⊕ σ∗F has length two, showing that it does not coincide with
the real Jordan–Hölder filtration in general.

The graded object associated to a real (resp. quaternionic) Jordan–Hölder
filtration of a semi-stable real (resp. quaternionic) bundle (E , σ̃) is a poly-
stable object in the sense of the following definition.

Definition 2.11 (Poly-stable real and quaternionic bundles). A real
(resp. quaternionic) vector bundle (E , σ̃) on (M,σ) is called poly-stable if
there exist real (resp. quaternionic) bundles (Fj , σ̃j)j of equal slope, stable
in the real (resp. quaternionic) sense, such that

E � F1 ⊕ · · · ⊕ Fk
and

σ̃ = σ̃1 ⊕ · · · ⊕ σ̃k.
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By Proposition 2.7, a poly-stable real (resp. quaternionic) bundle is
poly-stable in the holomorphic sense. We recall that the holomorphic
S-equivalence class of a semi-stable holomorphic bundle E is, by defini-
tion [Ses67], the graded isomorphism class of the poly-stable bundle gr(E)
associated to any Jordan–Hölder filtration of E .

Corollary 2.12. The S-equivalence class, as a holomorphic bundle, of a
semi-stable real (resp. quaternionic) bundle (E , σ̃) contains a poly-stable real
(resp. quaternionic) bundle in the sense of Definition 2.11. Any two such
objects are isomorphic as real (resp. quaternionic) poly-stable bundles.

In particular, there is a well-defined notion of real (resp. quaternionic)
S-equivalence class for a semi-stable real (resp. quaternionic) bundle (E , σ̃).

Definition 2.13 (Real and quaternionic S-equivalence classes). The
graded isomorphism class, in the real (resp. quaternionic) sense, of the poly-
stable real (resp. quaternionic) bundle gr(E , σ̃) associated to any real (resp.
quaternionic) Jordan–Hölder filtration of (E , σ̃), is called the real (resp.
quaternionic) S-equivalence class of (E , σ̃).

Proof of Corollary 2.12. The first part follows from the existence of a real
(resp. quaternionic) Jordan–Hölder filtration in the sense of Theorem 2.10.
As for the second part, it is enough to show that two real (resp. quaternionic)
bundles (E1, σ̃1) and (E2, σ̃2), which are stable in the real (resp. quaternionic)
sense and isomorphic as holomorphic bundles, are in fact isomorphic as
real (resp. quaternionic) bundles. Because the holomorphic Jordan–Hölder
filtrations of E1 and E2 must have equal lengths, there are exactly two cases
to consider before proceeding by induction:

• (E1, σ̃1) � (F1 ⊕ σ∗F1, σ̃
±) and (E2, σ̃2) � (F2 ⊕ σ∗F2, σ̃

±), with Fi
geometrically stable (and not isomorphic to σ∗Fi in the real case);

• E1 and E2 are geometrically stable.

In the first case, the existence of an isomorphism of real (resp. quaternionic)
bundles between (E1, σ̃1) and (E2, σ̃2) is immediate because, since E1 and
E2 are poly-stable and isomorphic as holomorphic bundles, one has F1 �
F2 or F1 � σ∗F2. In the second case, the assumption is that there is an
isomorphism ϕ : E2

�−→ E1 of geometrically stable holomorphic bundles, and
this is exactly the situation of Proposition 2.8. �

We point out that a same poly-stable object may admit, however, both
a real and a quaternionic structure, showing that it belongs both to a real
and to a quaternionic S-equivalence class (for instance, F ⊕σ∗F admits the
real structure σ̃+ and the quaternionic structure σ̃−). A final instructive
example is given as follows.
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Example 2.14. Let (L, σ̃) be a real (resp. quaternionic) line bundle on
(M,σ). Then L⊕L admits two non-conjugate, non-stable, real (resp. quater-
nionic) structures, namely

σ̃ ⊕ σ̃ and σ̃+ =
(

0 σ̃
σ̃ 0

)

.

We note that σ̃+ is indeed quaternionic when σ̃ is quaternionic. The two
non-conjugate poly-stable real (resp. quaternionic) structures σ̃⊕ σ̃ and σ̃+

are, however, S-equivalent in the real (resp. quaternionic) sense. Indeed,

gr(L ⊕ L, σ̃ ⊕ σ̃) = (L, σ̃) ⊕ (L, σ̃)

and (L⊕L, σ̃+) admits the real (resp. quaternionic) Jordan–Hölder filtration

{0} ⊂ LΔ ⊂ L⊕ L,
where LΔ is the image of the diagonal embedding

L −→ L⊕ L,
u �−→ (u, u).

In particular, (LΔ, σ̃
+|LΔ

) is isomorphic to (L, σ̃) as a real (resp. quater-
nionic) bundle. Moreover, the map

(L ⊕ L)/LΔ −→ L,
(v, w) �−→ i(v − w)

is an isomorphism of real (resp. quaternionic) bundles with respect to σ̃+

and σ̃, so

gr(L ⊕ L, σ̃+) � (L, σ̃) ⊕ (L, σ̃).

We conclude the present subsection by pointing out that the occurrence of
stable objects that are direct sums of stable holomorphic bundles (here, F⊕
σ∗F with F geometrically stable) has appeared before in related contexts,
such as the study of orthogonal and spin bundles on a curve [Ram81], or,
more recently, the study of U(p, q)–Higgs bundles on a curve [BGPG03].

2.5. Real points of moduli schemes of semi-stable vector bundles.
We proposed, in section 2.3, a notion of moduli (real points of N r,d

X ) for
geometrically stable real and quaternionic bundles, which includes the usual
“good case” where r ∧ d = 1 (the coprime case): in this case, Mr,d

X (C) =
N r,d
X (C), and points of Mr,d

X (R) = N r,d
X (R) are in bijection with isomor-

phism classes of geometrically stable real and quaternionic bundles of rank
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r and degree d. But when r and d are not coprime, there are holomorphic
vector bundles on X(C) which are semi-stable but not stable, and Mr,d

X (C)
is defined as the set of S-equivalence classes of semi-stable vector bundles of
rank r and degree d. As the functor E �−→ σ∗E preserves the rank and degree
of a holomorphic vector bundle, it sends a holomorphic Jordan–Hölder filtra-
tion {0} = E0 ⊂ E1 ⊂ · · · ⊂ El = E of E to the holomorphic Jordan–Hölder
filtration

{0} = σ∗E0 ⊂ σ∗E1 ⊂ · · · ⊂ σ∗El = σ∗E

of σ∗E , so it induces an involution

[gr(E)] �−→ [gr(σ∗E)]

of the moduli variety Mr,d
X (C), which is precisely the Gal(C/R)-action

induced by the real structure of X. If E is stable as a holomorphic bun-
dle, then gr(E) � E , so, if E is a real point of N r,d

X ⊂ Mr,d
X , then Proposition

2.3 shows that E is either real or quaternionic, and cannot be both. More-
over, by Proposition 2.8, the real (resp. quaternionic) structure thus defined
on E is unique up to real (resp. quaternionic) isomorphism. The situation is
not quite as nice, however, when E is semi-stable but not stable, and satisfies
gr(σ∗E) � gr(E). Let us for instance analyse the case where the holomorphic
Jordan–Hölder filtration of E has length two. Then we write

gr(E) = F1 ⊕F2 ,

where F1 and F2 are stable holomorphic bundles of equal slope. So σ∗F1 ⊕
σ∗F2 is isomorphic to F1⊕F2 if and only if one of the following two options
occurs:

• σ∗F1 � F1 and σ∗F2 � F2. This implies that each Fi is either real or
quaternionic, and cannot be both. Their direct sum, however, might
be of neither type, for instance if (F1, σ̃1) is real, (F2, σ̃2) is quater-
nionic, and F1 ⊕F2 is endowed with the C-antilinear map σ̃1 ⊕ σ̃2.

• σ∗F1 � F2 and σ∗F2 � F1. Then E = F ⊕ σ∗F , and this semi-stable
holomorphic bundle may be endowed with the real structure

σ̃+
E =

(

0 σ̃
σ̃−1 0

)

,

or the quaternionic structure

σ̃−E =
(

0 −σ̃
σ̃−1 0

)

,
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where σ̃ is the invertible C-antilinear map

σ∗F σ̃−−−−→ F
⏐

⏐

�

⏐

⏐

�

M
σ−−−−→ M.

So, in sum, S-equivalence classes of semi-stable real or quaternionic bundles
always are fixed points of the involution [gr(E)] �−→ [gr(σ∗E)], but the con-
verse is not true: there may be fixed points which are S-equivalence classes of
semi-stable holomorphic bundles that are neither real nor quaternionic (for
instance the direct sum of a stable real bundle and a stable quaternionic bun-
dle of equal slope), and there may be fixed points which are S-equivalence
classes of semi-stable holomorphic bundles that admit both real and quater-
nionic structures. So we see that real points of Mr,d

X only give a good notion
of moduli for semi-stable real and quaternionic bundles when r ∧ d = 1, in
which case such bundles are in fact stable. For arbitrary r and d, a real point
of Mr,d

X is not necessarily the real (resp. quaternionic) S-equivalence class
of a semi-stable real (resp. quaternionic) bundle. The gauge-theoretic con-
struction that we present in the next section, however, gives a nice notion
of moduli space for a larger class of real (resp. quaternionic) bundles than
just the geometrically stable ones, namely those that are semi-stable and
real (resp. quaternionic) and have a fixed topological type: in Theorem 3.7,
we show that real (resp. quaternionic) S-equivalence classes of such bun-
dles are in bijection with the points of certain Lagrangian quotients defined
using anti-symplectic involutions of the space of unitary connections on a
fixed real (resp. quaternionic) Hermitian bundle. As a consequence of the
construction, these Lagrangian quotients embed onto connected subsets of
real points of Mr,d

X and, if we restrict our attention to geometrically sta-
ble bundles, we obtain in this fashion (Theorem 3.8) exactly the connected
components of N r,d

X (R).

3. The differential geometric approach

3.1. The momentum map picture. We now recall the general framework
in which we shall prove our result. It is commonly known as the Atiyah–
Bott–Donaldson momentum map picture, and the foundational, key result in
this approach is Donaldson’s formulation of the Narasimhan–Seshadri the-
orem [NS65,Don83]. If one chooses a Hermitian metric on a fixed smooth
complex vector bundle of rank r and degree d on the compact Riemann sur-
face M , holomorphic structures on E correspond bijectively to G C

E -orbits of
unitary connections on E (we denote GE the group of unitary automorphisms
of E and G C

E the group of all complex linear automorphisms of E, respec-
tively called the gauge group and the complex gauge group). Explicitly,
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the holomorphic sections of the holomorphic bundle (E, dA) defined by a uni-
tary connection A are the elements of ker d(0,1)

A , the kernel of the (0, 1) part
of the covariant derivative

dA : Ω0(M ;E) −→ Ω1(M ;E) = Ω1,0(M ;E) ⊕ Ω0,1(M ;E).

The space AE of all unitary connections on E is an infinite-dimensional
affine space, whose group of translations is Ω1(M ; u(E)), and, provided that
one considers L2

1 connections with L2 curvature instead of C∞ such objects,
AE is a Banach manifold with a Kähler structure: its complex structure is
induced by the Hodge star of M , and the symplectic form is given by

ωA(a, b) =
∫

M
−tr(a ∧ b)

for all a, b ∈ TAAE � Ω1(M ; u(E)). Likewise, if one considers L2
2 gauge

transformations, the gauge group is a Banach Lie group, acting on AE by

u(A) = A+ (dA u)u−1.

As noted by Atiyah and Bott, this action is Hamiltonian, the momentum
map being the curvature map

F : AE −→ Ω2(M ; u(E))
A �−→ FA

.

In what follows, we denote ∗ the Hodge star of M . In particular, it sends a
section of u(E) to an element in Ω2(M ; u(E)).

Theorem 3.1 (Donaldson [Don83]). A holomorphic vector bundle E of
rank r and degree d on M is stable if, and only if, the corresponding G C

E -orbit
O(E) of unitary connections on E contains an irreducible, minimal Yang–
Mills connection, meaning a unitary connection A such that:

(1) StabG C

E
(A) = C

∗,
(2)

FA = ∗

⎛

⎜

⎝

i2π dr
. . .

i2π dr

⎞

⎟

⎠
.

Moreover, such a connection is unique up to a unitary automorphism of E.

Connections satisfying Condition (2) are absolute minima of the Yang–
Mills functional A �→ ∫

M ‖FA‖2 on E, and the last part of the theorem
says that if A and A′ are two irreducible, minimal Yang–Mills connections
which are G C

E -conjugate, then they are GE-conjugate. Poly-stable bundles of
rank r and degree d are seen to be those which admit a unitary connection
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having curvature FA = ∗i2π dr IdE , so the set of S-equivalence classes of semi-
stable vector bundles is in bijection with gauge orbits of minimal Yang–Mills
connections. In other words,

Mr,d
X (C) � F−1

({

∗i2πd
r

IdE

})

/GE ,

a Kähler quotient obtained from the infinite-dimensional manifold AE .

3.2. Real structures on spaces of unitary connections. We now come
to the heart of this paper: the existence of a finite family of real structures
(anti-symplectic, involutive isometries) of the space AE , along with compat-
ible involutions of the gauge group GE and the space Ω2(M ; u(E)) (which
may be identified to (Lie(GE))∗), all of them determined by the choice of a
real or quaternionic Hermitian structure σ̃ on E, and such that the associ-
ated Lagrangian quotients

Lσ̃ :=
(

F−1

({

∗i2πd
r

IdE

}))σ̃
/Gσ̃E

are the connected components of Mr,d
X (R) when r ∧ d = 1. The key, albeit

easy, property of the various involutions that we shall consider, is that their
fixed points are precisely the unitary connections that define real or quater-
nionic holomorphic structures on the fixed real or quaternionic Hermitian
bundle (E, σ̃). It should be noted that it is also an involution that shall char-
acterize unitary connections defining quaternionic holomorphic structures,
as opposed to an automorphism squaring to minus the identity.

Let (E, σ̃) be a real or quaternionic Hermitian bundle of rank r and degree
d (σ̃2 = +IdE or −IdE), and let ϕ : σ∗E → E be the corresponding isomor-
phism (σ∗ϕ = ϕ−1 or σ∗ϕ = −ϕ−1). For any unitary connection A ∈ AE ,
we define A to be the connection given by

dAs = ϕ(dσ∗A(ϕ−1s))

for any smooth global section s of E (observe that this formula is similar to
the gauge action, except that ϕ is not an endomorphism of E, and σ∗A is
the connection induced by A on σ∗E). Thus, starting from a map

dA : Ω0(M ;E) −→ Ω1(M ;E),

we obtain a new map

dA : Ω0(M ;E) −→ Ω1(M ;E),

which, locally, is given by

dAs = ds+ ϕσ∗Aϕ−1.
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This transformation is involutive, for

ϕ(σ∗(ϕσ∗Aϕ−1))ϕ−1 = (ϕσ∗ϕ)A(σ∗ϕ−1 ϕ−1)

= (±IdE)A(±IdE)
= A,

as the minus signs cancel out in the quaternionic case.

Proposition 3.2. The involution A �→ A is an anti-symplectic isometry of
AE.

Proof. The tangent map to A �→ A is

Ω1(M ; u(E)) −→ Ω1(M ; u(E))
a �−→ ϕσ∗aϕ−1,

which is C-antilinear. Moreover, as tr(XY ) is real-valued on anti-Hermitian
matrices and σ is an orientation-reversing isometry of M , one has:

ωA(a, b) =
∫

M
−tr(a ∧ b)

=
∫

M
σ∗(−tr(a ∧ b))

= −
∫

M
−tr(a ∧ b)

= −ωA(a, b).

�

We now observe that, when E has a real structure, so do all the spaces
Ωk(M ;E), and when E has a quaternionic structure, so do all the spaces
Ωk(M ;E). In both cases, these structures may be written, in slightly abusive
notation (pulling back the differential form followed by applying the real or
quaternionic structure),

Ωk(M ;E) −→ Ωk(M ;E)
η �−→ σ̃ ◦ η ◦ σ.

Definition 3.3 (Real and quaternionic connections). Let (E, σ̃) be a
real Hermitian bundle. A unitary connection

dA : Ω0(M ;E) −→ Ω1(M ;E)

is called real if it commutes to the respective real structures of Ω0(M ;E)
and Ω1(M ;E). Likewise, a unitary connection on a quaternionic Hermit-
ian bundle (E, σ̃) is called quaternionic if it commutes to the respective
quaternionic structures of Ω0(M ;E) and Ω1(M ;E).
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The point of this definition is that, if dA is real, then the real structure
of Ω0(M ;E) leaves ker d(0,1)

A invariant, so (E, σ̃, dA) is a real holomorphic
bundle (its space of holomorphic sections has a real structure). Likewise, if
dA is quaternionic, then the quaternionic structure of Ω0(M ;E) induces a
quaternionic structure on ker d(0,1)

A , so (E, σ̃, dA) is a quaternionic holomor-
phic bundle. The observation is then as follows.

Proposition 3.4. Let (E, σ̃) be a real (resp. quaternionic) smooth Hermit-
ian bundle, and let

A �−→ A

be the involution of AE associated to σ̃. Then a unitary connection A on E
is real (resp. quaternionic) if and only if A = A.

Proof. Let us assume that σ̃ is a real structure. The key observation is that,
for any s ∈ Ω0(M ;E),

dA(σ̃ ◦ s ◦ σ) = σ̃(dAs)σ,

which follows from the definition of A. Since A is real if and only if

dA(σ̃ ◦ s ◦ σ) = σ̃(dAs)σ,

we obtain that A is real if, and only if, dA = dA. The exact same proof
works, if σ̃ is a quaternionic structure. �

It remains to prove that the involution A �→A preserves the fibre
F−1

({∗i2π dr IdE
})

of the momentum map, and takes a gauge orbit to a
gauge orbit. This is classically proved by showing the existence of an invo-
lution of GE , inducing an involution of (LieGE)∗ � Ω2(M ; u(E)), both of
which are compatible with A �→ A. We define

GE −→ GE
u �−→ ϕσ∗uϕ−1

and
Ω2(M ; u(E)) −→ Ω2(M ; u(E))

R �−→ ϕσ∗Rϕ−1,

where ϕ is, as earlier, the isomorphism ϕ : σ∗E �−→ E determined by the
real or quaternionic structure of E. Note that σ∗u and σ∗R define endo-
morphisms of σ∗E, so the proposed formulae make sense. In the following,
we simply denote u �→ u and R �→ R the involutions above. It is a simple
matter to verify that the second involution is induced by the first one under
the identification (LieGE)∗ � Ω2(M ; u(E)).
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Proposition 3.5. One has the following compatibility relations

(1) between the involution A �→ A and the gauge action:

u(A) = u (A),

(2) and between the involution A �→ A and the momentum map of the
gauge action:

FA = FA.

Proof.

(1) One has

u(A) = A+ (dAu)u−1

= A+ (dAu)u−1

= A+ (dAu)u
−1

= u (A).

(2) For all s ∈ Ω0(M ;E), one has

dA(dAs) = dA[σ̃(dA(σ̃ ◦ s ◦ σ))σ]

= σ̃[dA(dA(σ̃ ◦ s ◦ σ))]σ.

As the two-form FA is determined by the operator dA ◦ dA, and FA
by dA ◦ dA, the above relation between these operators translates to

FA = FA.

�

As ∗i2π dr IdE ∈ Ω2(M ; u(E)) is a fixed point of R �→ R, compatibility
relation (1) shows that the involution A �→ A induces an involution of
F−1

({∗i2π dr IdE
})

, and we denote
(

F−1

({

∗i2πd
r

IdE

}))σ̃

the fixed-point set of this involution. It consists of minimal Yang–Mills con-
nections which are fixed by the involution A �→ A (and so are either real
or quaternionic, depending on the type of σ̃). Compatibility relation (2)
shows that the group G σ̃

E of gauge transformations which commute to the
real or quaternionic structure of E (called the real or quaternionic gauge
group) acts on the set (F−1

({∗i2π dr IdE
})

)σ̃, and the next result, perhaps
our most important observation, shows that the intersection of the GE-orbit
of a poly-stable real or quaternionic connection with A σ̃

E , is a single G σ̃
E -orbit.
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Proposition 3.6. Let A,A′ be two connections which satisfy A = A and
A′ = A′, and assume that A and A′ define real (resp. quaternionic) struc-
tures which are poly-stable. Then A and A′ lie in the same GE-orbit if, and
only if, they lie in the same G σ̃

E -orbit.

Proof. By Propositions 2.7 and 3.4 combined with Donaldson’s theorem,
a connection A defines a poly-stable real (resp. quaternionic) structure, if
and only if it is a direct sum A = A1 ⊕ · · · ⊕ Ak of unitary connections Ai
such that each Ai is either an irreducible minimal Yang–Mills connection
satisfying Ai = Ai, or is of the form Bi ⊕ σ∗Bi, with Bi an irreducible
minimal Yang–Mills connection. So it suffices to prove the proposition in
each of these two cases. The “if” part of the proposition is obvious. To
prove the only if’ part, let us assume that A′ = u(A) for some u ∈ GE . Then

u(A) = A′ = A′ = u(A) = u (A) = u (A).

Let us first treat the case where A and A′ are irreducible connections. Then
u−1u ∈ (GE ∩ C

∗) = S1, so u−1 u = eiθ for some θ ∈ R. Put then v = ei θ
2u.

Then
v(A) = u(A) = A′

and
v = e−i θ

2u = e−i θ
2 eiθu = ei

θ
2u = v,

so v ∈ G σ̃
E . Consider now the case where A = B ⊕ σ∗B and A′ = B′ ⊕ σ∗B′.

Then u ∈ GE such that u(A) = A′ is of the form w ⊕ σ∗w, where w is a
unitary gauge transformation. Moreover, the stabilizer of A = B ⊕ σ∗B in
GE is isomorphic to S1 ×S1, so now u−1u = eiθ⊕ e−iθ for some θ ∈ R. Then

v := (ei θ
2w) ⊕ (e−i θ

2σ∗w)

satisfies
v(B ⊕ σ∗B) = u(B ⊕ σ∗B) = B′ ⊕ σ∗B′,

and

v = (e−i θ
2 ⊕ ei θ

2 )(w ⊕ σ∗w) = (e−i θ
2 ⊕ ei θ

2 )(eiθ ⊕ e−iθ)(w ⊕ σ∗w) = v,

so again v ∈ G σ̃
E . �

Proposition 3.6 implies that the map

Lσ̃ −→ F−1

({

∗i2πd
r

IdE

})

/GE ,

taking the G σ̃
E -orbit of a real (resp. quaternionic) minimal Yang–Mills con-

nection to its GE-orbit, is injective. Moreover, the involution A �−→ A

induces the Galois action [E ] �−→ [σ∗E ] on Mr,d
X (C), so the Lagrangian
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quotient Lσ̃ indeed embeds into Mr,d
X (R). The next result gives the gauge-

theoretic construction of moduli spaces of real and quaternionic vector bun-
dles alluded to in the introduction and at the end of Section 2.

Theorem 3.7. Let (E, σ̃) be a real (resp. quaternionic) smooth Hermitian
bundle of rank r and degree d. Then G σ̃

E -orbits in (F−1
({∗i2π dr IdE

})

)σ̃

correspond bijectively to real (resp. quaternionic) S-equivalence classes of
semi-stable real (resp. quaternionic) holomorphic vector bundles that are
smoothly isomorphic to (E, σ̃).

In other words, the points of the Lagrangian quotient

Lσ̃ =
(

F−1

({

∗i2πd
r

IdE

}))σ̃

/G σ̃
E

are in bijection with real (resp. quaternionic) S-equivalence classes of
semi-stable real (resp. quaternionic) holomorphic vector bundles that are
smoothly isomorphic to (E, σ̃), making this Lagrangian quotient a moduli
space for such bundles in a reasonable sense.

Proof. The statement will follow from Propositions 3.4 and 3.6 combined
with Donaldson’s theorem. Let (E , σ̃E) be a semi-stable real (resp. quater-
nionic) holomorphic bundle which is smoothly isomorphic to (E, σ̃). Then,
by Theorem 2.10, (E , σ̃) admits a real (resp. quaternionic) Jordan–Hölder
filtration, for which gr(E) is a real (resp. quaternionic) poly-stable bundle
of the form

(E1, σ̃1) ⊕ · · · ⊕ (El, σ̃l)

with each (Ei, σ̃i) stable in the real (resp. quaternionic) sense, and (E, σ̃) is
smoothly isomorphic to the direct sum

(E1, σ̃1) ⊕ · · · ⊕ (El, σ̃l) ,

where Ei is the underlying smooth bundle of Ei. We want to show that
there is associated to such a poly-stable real (resp. quaternionic) bundle a
uniquely defined G σ̃

E -orbit in (F−1
({∗i2π dr IdE

})

)σ̃, where σ̃ has now been
smoothly identified with σ̃1 ⊕ · · · ⊕ σ̃l. By Proposition 2.7, a stable real
(resp. quaternionic) bundle (E , σ̃E) is either geometrically stable, or of the
form E = F ⊕ σ∗F , with F stable as a holomorphic bundle. In the latter
case, the real (resp. quaternionic) structure on F is given by

σ̃+ =
(

0 σ̃
σ̃−1 0

) (

resp. σ̃− =
(

0 −σ̃
σ̃−1 0

))

,
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where σ̃ is the invertible C-antilinear map

σ∗F σ̃−−−−→ F
⏐

⏐

�

⏐

⏐

�

M
σ−−−−→ M.

In the geometrically stable case, the holomorphic structure on E is defined,
by Donaldson’s theorem, by an irreducible, minimal Yang–Mills connection
A which, by Proposition 3.4, satisfies A = A. When E = F ⊕ σ∗F , the
stable holomorphic structure on F is defined, by Donaldson’s theorem, by an
irreducible, minimal Yang–Mills connection B on F (the underlying smooth
bundle of F), and the holomorphic structure of E is defined by the unitary
connection

A :=
(

B 0
0 σ̃−1Bσ̃

)

on E = F ⊕ σ∗F . This connection has curvature ∗i2π dr IdE , and it satisfies

A =
(

0 ±σ̃
σ̃−1 0

)(

B 0
0 σ̃−1Bσ̃

)(

0 σ̃
±σ̃−1 0

)

=
(

B 0
0 σ̃−1Bσ̃

)

= A.

This shows the existence of a surjective map from (F−1
({∗i2π dr IdE

})

)σ̃ to
the space of real (resp. quaternionic) S-equivalence classes of semi-stable
real (resp. quaternionic) holomorphic structures on (E, σ̃). By Donaldson’s
theorem, two connections

A,A′ ∈ F−1

({

∗i2πd
r

IdE

})

define the same S-equivalence class, if and only if, they lie in the same
GE-orbit , so, combining with Proposition 3.6, two connections A,A′ in
(F−1

({∗i2π dr IdE
})

)σ̃ define the same S-equivalence class (as a holomor-
phic bundle), if and only if, they lie in the same G σ̃

E -orbit. �

The last part in the proof above means that the G C
E -orbit of a real (resp.

quaternionic) minimal Yang–Mills connection contains a unique G σ̃
E -orbit.

This fact is a real analogue of the Kempf–Ness theorem, and it is not nec-
essarily true for arbitrary real (resp. quaternionic) connections.

3.3. Connected components of the set of real points of the moduli
scheme. Our results so far enable us to give the following description of the
connected components of N r,d

X (R).
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Theorem 3.8. Let E be a Hermitian vector bundle of rank r and degree d
and denote I the set of gauge conjugacy classes of Hermitian real or quater-
nionic structures on E. Then

N r,d
X (R) =

⊔

[σ̃]∈I
Lsσ̃,

where Lσ̃ is the Lagrangian quotient
(

F−1

({

∗i2πd
r

IdE

}))σ̃
/G σ̃

E

constructed in the previous subsection, and Lsσ̃ is the intersection of
Lσ̃ ⊂ Mr,d

X (R) with N r,d
X (R). Moreover, the Lsσ̃ are non-empty and con-

nected. In particular, the set of connected components of N r,d
X (R) is in bijec-

tion with the set of topological types of real and quaternionic structures on
E.

Proof. By Theorem 3.7, points of Lsσ̃ are real (resp. quaternionic) classes
of geometrically stable real (resp. quaternionic) holomorphic structures on
(E, σ̃), and, by Proposition 2.3,

N r,d
X (R) =

⋃

[σ̃]∈I
Lsσ̃.

Assume first that [E ] ∈ Lsσ̃ ∩Lsσ̃′ for distinct σ̃, σ̃′. By Proposition 2.3, σ̃ and
σ̃′ are both real or both quaternionic structures. Moreover, by Proposition
2.8, (E , σ̃) and (E , σ̃′) are isomorphic as real (resp. quaternionic) bundles.
This implies that (E, σ̃) and (E, σ̃′) are isomorphic as (smooth) Hermitian
real (resp. quaternionic) vector bundles. In particular, σ̃ and σ̃′ are gauge
conjugate on E so Lsσ̃ = Lsσ̃′ , proving that the union of all Lsσ̃ for [σ̃] ∈ I is
disjoint.

Conversely, assume that σ̃′ = ψσ̃ψ−1 for some ψ ∈ GE . Let us denote ασ̃
and ασ̃′ the involutions A �→ A induced by σ̃ and σ̃′, respectively. We also
denote ϕσ̃ : σ∗E → E and ϕσ̃′ : σ∗E → E the isomorphisms between σ∗E
and E induced by σ̃ and σ̃′, and τσ̃ and τσ̃′ the involutions u �→ u of GE
induced by σ̃ and σ̃′, respectively. Then ασ̃′ = vασ̃v

−1 and τσ̃′ = vτσ̃′v−1,
where v = ψτσ̃(ψ−1) ∈ GE . Indeed,

ϕσ̃′ = ϕψσ̃ψ−1 = ψ ϕσ̃ σ∗ψ
−1 : σ∗E �−→ E,

so

ασ̃′(A) = ϕσ̃′ σ∗Aϕ′−1
σ̃

= (ψ ϕσ̃ σ∗ψ
−1)σ∗A (σ∗ψ ϕ−1

σ̃ ψ−1)

= ψ (ϕσ̃ σ∗ψ
−1
ϕσ̃)ϕ−1

σ̃ σ∗Aϕ−1
σ̃ (ϕσ̃ σ∗ψ ϕ−1

σ̃ )ψ−1

= (ψτσ̃(ψ−1))ασ̃(A) (ψτσ̃(ψ−1))−1.
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Moreover, for any u ∈ GE ,

τσ̃′(u) = ϕσ̃′ σ∗uϕ−1
σ̃′

= (ψ ϕσ̃ σ∗ψ
−1)σ∗u (σ∗ψ ϕ−1

σ̃ ψ−1)

= ψ (ϕσ̃ σ∗ψ
−1
ϕ−1
σ̃ )ϕσ̃ σ∗uϕ−1

σ̃ (ϕσ̃ σ∗ψ ϕ−1
σ̃ )ψ−1

= (ψτσ̃(ψ−1)) τσ̃(u) (ψτσ̃(ψ−1))−1.

So ασ̃′ = vασ̃v
−1 and τσ̃′ = vτσ̃v

−1, where v ∈ GE is of the form ψτσ̃(ψ−1)
(a symmetric element). This readily implies that the gauge transformation
A �→ vAv−1 establishes a bijection between Aασ̃

E and Aασ̃′
E , which in turn

induces a bijection between Lsσ̃ and Lsσ̃′ . But a gauge transformation on AE

is in fact the identity on Mr,d
X (C) = F−1

({∗i2π dr IdE
}) /GE , so Lsσ̃′ = Lsσ̃.

Therefore, we have proved that

N r,d
X (R) =

⊔

[σ̃]∈I
Lsσ̃.

It is nice to observe that this is a direct, simple consequence of the general
theory of anti-symplectic involutions on Hamiltonian spaces. There remains
to study the non-emptiness and the connectedness of the Lsσ̃. Non-emptiness
of Lsσ̃ is equivalent to the existence of an irreducible, minimal Yang–Mills
real (resp. quaternionic) connection on (E, σ̃). But minimal Yang–Mills con-
nections are absolute minima of the Yang–Mills functional and Daskalopou-
los has shown that the gradient flow of this functional converges [Das92].
Moreover, as

∫

M
‖FA‖2 =

∫

M
‖FA‖2 =

∫

M
‖FA‖2,

the gradient flow of this functional takes a real or quaternionic connec-
tion to a real or quaternionic connection, so the limiting connection is of
the same type as the original one when following gradient flows. This is
used in [BHH10], where Biswas et al. also compute the Morse indices of
non-minimal critical sets of the Yang–Mills functional restricted to real and
quaternionic connections, to show that, what in our notation is Lsσ̃, is non-
empty and connected (Theorem 6.7 in [BHH10]). Note, however, that their
point of view is different from ours, as they do not show that their moduli
spaces of real and quaternionic vector bundles embed onto connected subsets
of real points inside N r,d

X (C), nor do they obtain a presentation of them as
Lagrangian quotients. As the Lsσ̃ are connected and closed, with dimension
that of N r,d

X (R), these are exactly the connected components of N r,d
X (R),

and counting those connected components amounts to counting the possible
topological types of real and quaternionic vector bundles. �
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Corollary 3.9. Let r ∧ d = 1. Then

Mr,d
X (R) =

⊔

[σ̃]∈I
Lσ̃ .

Moreover, the Lσ̃ are non-empty and connected. In particular, the set of
connected components of Mr,d

X (R) when r∧d = 1 is in bijection with the set
of topological types of real and quaternionic structures on E.

Note that, by Corollary 2.12 and Theorem 3.7, the intersection, when
r ∧ d �= 1, of Lσ̃ and Lσ̃′ for non-conjugate σ̃, σ̃′ on the smooth bundle E,
can only be non-empty if one of them is real and the other one quaternionic
(in Example 2.14, the smooth extension of (L ⊕ L, σ̃+) introduced there
splits, so the underlying Hermitian bundle is indeed isomorphic to that of
(L ⊕ L, σ̃ ⊕ σ̃); in particular, there is indeed only one topological type of
quaternionic structure). Moreover, the intersection of an Lσ̃ with an Lσ̃′ , if
non-empty, is contained in the strictly semi-stable locus of Mr,d

X (C). We can
now prove our main result.

Proof of Theorem 1.1. By Theorem 2.4, the topological type of a quater-
nionic vector bundle is determined by its rank and degree, so there is at most
one connected component corresponding to quaternionic bundles. When
k(X) = 0 (that is, when X has no real points), there may be at most
one connected component of real bundles, and it happens, if and only if, d
is even. Combined with Theorem 2.4, this gives part (2) of our main result
(Theorem 1.1). To obtain part (1), the part when k(X) > 0, it suffices to
count the topological types of real bundles, that is, the number of solutions
to the equation

w1 + w2 + · · · + wk(X) = d mod 2

in Z/2Z, which is 2k(X)−1. Precisely, the connected components of N r,d
X (R)

can be described as follows.

(1) Assume that k > 0.
(a) If r ≡ 1 (mod 2), then N r,d

X (R) has 2k−1 real components and
no quaternionic component (recall that if k > 0, the rank of a
quaternionic bundle must be even). We prove below that any two
of these components are homeomorphic.

(b) If r ≡ 0 (mod 2) and d ≡ 1 (mod 2), then N r,d
X (R) has 2k−1 real

components and no quaternionic component.
(c) If r ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d

X (R) has 2k−1 real
components and 1 quaternionic component.

(2) Assume that k = 0.
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(a) If r(g − 1) ≡ 0 (mod 2) and d ≡ 0 (mod 2), then N r,d
X (R) has one

real and one quaternionic component. We prove below that these
two components are homeomorphic when g ≡ 1(mod 2).

(b) If r(g−1) ≡ 0 (mod 2) and d ≡ 1 (mod 2), then N r,d
X (R) is empty.

(c) If r(g− 1) ≡ 1 (mod 2), then N r,d
X (R) has one real component if d

is even, and one quaternionic component if d is odd.
To finish the proof, it only remains to show that certain identified con-

nected components of N r,d
X (R) are homeomorphic.

(1) Assume that k > 0, and consider a real holomorphic line bundle
(LR, σ̃LR

) of degree 0 on X(C), with real invariants (w(1), . . . , w(k)) ∈
(Z/2Z)k such that w(1) + · · · + w(k) = 0. If (E , σ̃) is a real bundle
on X(C), of rank r and degree d, so is E ⊗ LR, and, over the jth
connected component of X(R), one has

w1(E σ̃j ⊗ (LR)
σ̃LR

j ) = w1(E σ̃j ) + (r mod 2)w(j).

In particular, when r is odd, the functor E �→ E ⊗LR induces a home-
omorphism between the connected component of N r,d

X (R) containing
E and that containing E⊗LR: by choosing an LR with the appropriate
topological invariants (w(1), . . . , w(k)), one may pass from a given con-
nected component of N r,d

X (R) to any given other. When r is even, the
map induced by the functor E �→ E⊗LR preserves any given connected
component of Mr,d

X (R), so we do not know if they are homeomorphic.
We also note that, when k > 0, there are no quaternionic line bundles,
which prevents one from applying the same technique.

(2) Assume that k = 0, r(g − 1) even and d even. Then there exists
a quaternionic line bundle (LH, σ̃LH

) of degree 0 on X(C) if, and
only if, g is odd. The functor E �→ E ⊗ LH then induces the desired
homeomorphism between the real and quaternionic components in
that case (note that now E ⊗ LH is quaternionic, as σ̃ ⊗ σLH

squares
to σ̃2 ⊗ σ2

LH
= IdE ⊗ (−IdLH

)).
This completes the proof of Theorem 1.1, thus generalizing to rank r > 1
the results of Gross and Harris on the Picard scheme of a real algebraic
curve [GH81]. �
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(4) 14(2) (1981), 157–182.

[Har78] R. Hartshorne, Stable vector bundles and instantons, Commun. Math. Phys.
59 (1978), 1–15.

[HN75] G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces
of vector bundles on curves, Math. Ann. 212 (1974/75), 215–248.

[Kle63] F. Klein, On Riemann’s theory of algebraic functions and their integrals. A
supplement to the usual treatises. Translated from the German by Frances
Hardcastle. Dover Publications Inc., New York, (1963).

[Lan75] S. G. Langton, Valuative criteria for families of vector bundles on algebraic
varieties, Ann. of Math. (2) 101 (1975), 88–110.

[NS65] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a
compact Riemann surface, Ann. Math. (2) 82 (1965), 540–567.

[Ram81] S. Ramanan, Orthogonal and spin bundles over hyperelliptic curves, Proc.
Indian Acad. Sci., Math. Sci. J. 90 (1981), 151–166.

[Sch11] F. Schaffhauser, Moduli spaces of vector bundles over a Klein surface, Geom.
Dedicata 151(1) (2011), 187–206.

[Ses67] C. S. Seshadri, Space of unitary vector bundles on a compact Riemann surface,
Ann. Math. (2) 85 (1967), 303–336.

[VLP85] J.-L. Verdier and J. Le Potier, (eds), Modules des fibrés stables sur les courbes
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Óscar Garćıa-Prada, Olivier Guichard, Johannes Huisman, Arturo Prat-Waldron, Jan
Swoboda and Richard Wentworth, for discussions upon the topics dealt with in the present
paper. Special thanks go to Melissa Liu for her very careful reading of the paper and her
precious comments. I also acknowledge to the Max Planck Society, for supporting my stay
at the Max Planck Institute for Mathematics in Bonn, where the first version of this paper
was written. Finally, I would like to thank the referee for pointing out a mistake in the first
version of the paper, and for many valuable comments on the notion of stability studied
in the present work.


