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THE CONLEY CONJECTURE FOR IRRATIONAL
SYMPLECTIC MANIFOLDS

Doris Hein

We prove a generalization of the Conley conjecture: every Hamil-
tonian diffeomorphism of a closed symplectic manifold has infinitely
many periodic orbits if the first Chern class vanishes over the second
fundamental group. In particular, this removes the rationality condi-
tion from similar theorems by Ginzburg and Gürel. The proof in the
irrational case involves several new ingredients including the definition
and the properties of the filtered Floer homology for Hamiltonians on
irrational manifolds. We also develop a method of localizing the filtered
Floer homology for short action intervals using a direct sum decompo-
sition, where one of the summands only depends on the behavior of the
Hamiltonian in a fixed open set.
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1. Introduction

1.1. Main results. In this paper, we prove that a Hamiltonian difffeomor-
phism of a symplectic manifold has infinitely many periodic orbits if the first
Chern class of the manifold vanishes over π2(M). This is a generalization of
a conjecture Conley stated in 1984 in [Co] for M = T 2n. This conjecture
was proved for the weakly non-degenerate Hamiltonian diffeomorphisms of
tori in [CZ] and of symplectically aspherical manifolds in [SZ]. In [FH],
the conjecture was proved for all Hamiltonian diffeomorphisms of surfaces
other than S2. In its original form, as stated in [Co] for M = T 2n, the
conjecture was established in [Hi] and the case of an arbitrary closed, sym-
plectically aspherical manifold was settled in [Gi]. This proof was extended
to symplectically rational manifolds M with c1(M)|π2(M) = 0 in [GG2].

The main result of this paper is the following theorem:

Theorem 1.1 (Conley Conjecture, the irrational case). Let (M2n, ω)
be a closed symplectic manifold with c1(M)|π2(M) = 0 and let ϕ be a Hamil-
tonian diffeomorphism on M such that the fixed points of ϕ are isolated.
Then ϕ has simple periodic orbits of arbitrarily large period.

In particular, this theorem implies all the results mentioned above. It also
implies that on such manifolds any Hamiltonian diffeomorphism has infin-
itely many periodic orbits as there are infinitely many one-periodic orbits
or we have simple periodic orbits of arbitrarily large period.

Remark 1.1. The requirements on the manifold for theorems of this type
have been relaxed more and more in the last years. However, the example
of an irrational rotation on S2 shows that the restrictions on the symplectic
manifold cannot be completely eliminated.

As in [GG2], it suffices to prove the result in the presence of a symplec-
tically degenerate maximum.
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Definition 1.1. An isolated capped k-periodic orbit x̄ of a k-periodic Hamil-
tonian H is called a symplectically degenerate maximum of H if

ΔH(x̄) = 0 and HFn(H, x̄) �= 0.

In this definition, we denote by HFn(H, x̄) the local Floer homology of H
at x̄ and let ΔH(x̄) be the mean index of x̄. We refer to [GG3] for details on
the local Floer homology and to [SZ] for the definition of the mean index.

This definition was first used in [Hi] when the concept of symplecti-
cally degenerate maxima was introduced. It was explicitly stated and fur-
ther investigated in [Gi, GG3]. See also Proposition 4.1 for the geometric
description of a symplectically degenerate maximum.

Theorem 1.2 (Degenerate Conley Conjecture, the irrational case).
Let (M2n, ω) be a closed symplectic manifold with c1(M)|π2(M) = 0 and let H
be a Hamiltonian on M such that the fixed points of ϕH are isolated. Assume,
in addition, that H has a symplectically degenerate maximum. Then the
Hamiltonian diffeomorphism ϕH generated by H has geometrically distinct
periodic orbits of arbitrarily large period.

Proof of Theorem 1.1. If there is no symplectically degenerate maximum, all
one-periodic orbits have non-zero mean index. As the mean index is inde-
pendent of cappings and grows linearly with iteration, the support of local
Floer homology is shifting away from the interval [0, 2n], i.e., the local Floer
homology in those degrees eventually becomes 0. The theorem follows then
by a standard argument as in [Gi, GG2, Hi, SZ]. If there is a symplectically
degenerate maximum, the theorem follows from Theorem 1.2. �

The proof of Theorem 1.2 is based on a Floer theoretical argument estab-
lishing

Theorem 1.3. Let (M, ω) be weakly monotone and closed. Assume that H
has a symplectically degenerate maximum at x̄ with AH(x̄) = c. Then for
every sufficiently small ε > 0, there exists some kε such that

HF(kc+δk, kc+ε)
n+1 (H(k)) �= 0 for every k > kε and some δk ∈ (0, ε).

Here H(k) denotes the one-periodic Hamiltonian H viewed as k-periodic
function for some integer k; see also Section 2.1. This theorem implies
Theorem 1.2 and thus also Theorem 1.1.

Proof of Theorem 1.2. Arguing by contradiction, we assume that for every
sufficiently large period all periodic orbits are iterated and let k be a suffi-
ciently large prime. Then every k-periodic orbit is an iterated one-periodic
orbit. By Theorem 1.3, there exists a capped k-periodic orbit ȳk with

1 ≤ ΔH(k)(ȳk) ≤ 2n + 1.
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We only have finitely many one-periodic orbits and c1(M)|π2(M) = 0. The
finitely many non-zero mean indices grow linearly with the order of iteration
and thus for sufficiently large k the indices of the iterations shift away from
the interval [1, 2n + 1]. The iterations of the orbits with mean index zero also
have mean index zero. Thus the orbit ȳk cannot be an iterated one-periodic
orbit in contradiction to the choice of k. �

The proof of Theorem 1.3 builds on a generalization of the methods from
the proof of the rational case in [GG2]. We define filtered Floer homology
for symplectically irrational manifolds and prove that this homology can be
localized for sufficiently small action intervals. The localization is realized by
a direct sum decomposition for the filtered Floer homology groups similar
to the one existing in the rational case. To this end, we use ideas from [Us]
to bound the energy of Floer trajectories.

1.2. Action and index gap. Theorem 1.3 can also be used to control
the behavior of actions and mean indices of periodic orbits; cf. [GG2]. To
state the results, we need to introduce some notation. We call the difference
AH(k)(x̄)−AH(k)(ȳ) the action gap between the two capped k-periodic orbits
x̄ and ȳ. Similarly, the mean index gap between the two orbits is the differ-
ence ΔH(k)(x̄)−ΔH(k)(ȳ). Both can be zero, even for geometrically distinct
orbits x and y. The action-index gap between x̄ and ȳ is the vector in R

2

whose components are the action gap and the mean index gap.
Recall also that an increasing sequence of integers ν1 < ν2 < · · · is called

quasi-arithmetic if the differences νi+1−νi are bounded by a constant, which
is independent of i.

Theorem 1.4 (Bounded gap theorem). Let H be a Hamiltonian on
a closed symplectic manifold (M2n, ω) with N ≥ 2n such that all periodic
orbits of ϕH are isolated.

Then there exists a capped one-periodic orbit x̄ of H, a quasi-arithmetic
sequence of iterations νi, and a sequence of capped νi-periodic orbits ȳi,
geometrically distinct from x̄νi, such that the sequence of action–index gaps

(AH(νi)(x̄
νi) −AH(νi)(ȳi), ΔH(νi)(x̄

νi) − ΔH(νi)(ȳi)
)

is bounded.

This is a generalization of a result in [GG2] where the theorem was
proved in the case of a symplectically rational manifold. The proof of the
present version follows the same path as the argument in [GG2], utilizing
the general form of Theorem 1.3. The new point is that we now use the
mean index bound, rather than the action bound as in [GG2], to show that
the orbits ȳi and the iterations of x̄ are geometrically distinct. As in the
rational case, this theorem implies the following corollary in the generalized
situation.
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Corollary 1.1. Let M and H be as in Theorem 1.4. Then there exists
a quasi-arithmetic sequence of iterations νi and sequences of geometrically
distinct νi-periodic orbits z̄i and z̄′i such that the sequence of action–index
gaps between z̄i and z̄′i is bounded.

1.3. Organization of the paper. In Sections 2.1 and 2.2, we set the nota-
tion and conventions used in this paper. Section 2.3 is devoted to the discus-
sion of the construction of filtered Floer homology. In particular, we focus on
the construction of filtered Floer homology that is necessary for degenerate
Hamiltonians on irrational symplectic manifolds. In Section 3, we establish
a localization of Floer homology via a direct sum decomposition in filtered
Floer homology. Finally, we prove Theorem 1.3 in Section 4 using the direct
sum decomposition from Proposition 3.1.

2. Preliminaries

In this section, we will set the notation used in this paper and review some
of the basic facts needed in order to prove the theorems.

2.1. Symplectic manifolds and Hamitonian flows. Let (M2n, ω) be a
closed symplectic manifold of dimension 2n with first Chern class c1(M) and
the minimal Chern number N . Throughout the paper we assume (M, ω) to
be weakly monotone, i.e., N ≥ n − 2 or [ω] |π2(M) = λc1(M)|π2(M) for some
non-negative constant λ. In particular we will focus on the first case as in
the latter case the manifold is rational and the theorems are already proved
in [GG2].

All considered Hamiltonians H on M are assumed to be one-periodic
in time, i.e., functions H : S1 × M → R, where S1 = R/Z and we will
set Ht(x) = H(t, x). A one-periodic Hamiltonian H can also be viewed as
k-periodic for any integer k. For our argument it is sometimes crucial to
keep track of the period, we are interested in. If a one-periodic Hamiltonian
H is viewed as k-periodic, we refer to it as the kth iteration of H and denote
it by H(k).

As the symplectic form ω is non-degenerate, the Hamiltonian equation
iXH

ω = −dH gives rise to a well-defined Hamiltonian vector field XH . The
time-1-map of the flow of the Hamiltonian vector field XH is called a Hamil-
tonian diffeomorphism and denoted by ϕH .

The composition ϕt
H ◦ϕt

K of two Hamiltonian flows is again Hamiltonian.
It is generated by

(K#H)t = Kt + Ht ◦ ϕ−t
K .

In general, this function need not be one-periodic, even if both H and K are
one-periodic Hamiltonians. But K#H will be one-periodic if both are one-
periodic and in addition K generates a loop of Hamiltonian diffeomorphisms.
This will always be the case in this paper.
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2.2. Capped periodic orbits and Floer homology. Let x : S1 → M
be a contractible loop. A capping of x is defined to be a map u : D2 → M
such that u|S1 = x. Two cappings are called equivalent if the integrals over
the symplectic form ω and the first Chern class c1(M) over the two capping
discs agree. We denote the pair (x, [u]) of a loop x with an equivalence class
of cappings [u] by x̄. In the symplectically aspherical case, all cappings are
equivalent.

2.2.1. Hamiltonian action and the mean index. The Hamiltonian
action functional is defined by

AH(x̄) = −
∫

u
ω +

∫

S1

Ht(x(t)) dt,

on the space of capped closed loops. This space is a covering space of the
space of contractible loops and the critical points of the action functional
are exactly the capped one-periodic orbits of the Hamiltonian vector field
XH . The set of critical values of the action is denoted by S(H) and called
the action spectrum of H.

In this paper, we only work with contractible periodic orbits and every
periodic orbit is assumed to be contractible, even if this is not explic-
itly stated.

A one-periodic orbit x of H is said to be non-degenerate if the linearized
return map dϕH : Tx(0)M → Tx(0)M does not have one as an eigenvalue. Fol-
lowing [SZ], we call an orbit weakly non-degenerate if at least one eigenvalue
is not equal to one and strongly degenerate otherwise. We refer to a Hamil-
tonian H as non-degenerate, if all its one-periodic orbits are non-degenerate.

In general, the mean index and the action depend on the equivalence
class of the capping u of the loop x. More concretely let A be an embed-
ded 2-sphere and denote by x̄#A the recapping of x̄ by attaching A. Then
we have

AH(x̄#A) = AH(x̄) −
∫

A
ω,

by the above formula for the Hamiltonian action. For the definition and
properties of the mean index, we refer the reader to [SZ]. A list of properties
of the mean index can also be found in [GG2]. Here we only mention that
the mean index Δ(x̄) depends on the capping via

Δ(x̄#A) = Δ(x̄) − 2c1(A).

The kth iteration of a capped orbit x̄ carries a natural capping and with
that capping it is denoted by x̄k. The mean index and the action both are
homogeneous with respect to iteration and satisfy the iteration formulas

AH(k)(x̄k) = kAH(x̄) and ΔH(k)(x̄k) = kΔH(x̄).
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2.2.2. Floer homology. Up to sign we define the Conley–Zehnder index
as in [Sa, SZ] and use the normalization such that for a non-degenerate
maximum γ of an autonomous Hamiltonian with small Hessian we have
μCZ(γ) = n; see [GG2].

We define the Floer homology for a non-degenerate Hamiltonian H as in
[Sa, SZ]. The homology is graded by the Conley–Zehnder index. The Floer
chain groups are generated by the capped one-periodic orbits of H and the
boundary operator is defined by counting solutions to the Floer equation

(2.1)
∂u

∂s
+ Jt(u)

∂u

∂t
= −∇Ht(u)

with finite energy. As is well known, Floer trajectories for a non-degenerate
Hamiltonian H with finite energy converge to periodic orbits x̄ and ȳ as s
goes to ±∞ and satisfy

E(u) = AH(x̄) −AH(ȳ) =
∫ ∞

−∞

∫

S1

∥
∥
∥
∥

∂u

∂s

∥
∥
∥
∥

2

dt ds.

The boundary operator counts Floer trajectories converging to periodic
orbits y and x as s → ±∞ and satisfying the condition [(capping of x̄)#u] =
[capping of ȳ]. This construction extends by continuity from non-degenerate
Hamiltonians to all Hamiltonians, see [Sa].

For two non-degenerate Hamiltonians H0 and H1, a homotopy from H0

to H1 induces a homomorphism of chain complexes, which gives an iso-
morphism between the Floer homologies HF∗(H0) and HF∗(H1), which is
independent of the choice of homotopy. This map is defined analogously to
the Floer boundary operator using a version of the Floer equation with the
homotopy Hs on the right hand side.

The local Floer homology HF∗(H, x̄) of a Hamiltonian H at a capped one-
periodic orbit x̄ is also defined as usual; see [Gi, GG2, GG3]. As the action
does not enter the argument, the definition goes through in the irrational
case. It is constructed using a small non-degenerate perturbation of the
Hamiltonian in a neighborhood of x. For a more detailed definition and a
discussion of the properties of local Floer homology see [Gi, GG2, GG3].

2.3. Filtered Floer homology. In this section, we give a definition of
filtered Floer homology for degenerate Hamiltonians on symplectically irra-
tional manifolds.

As the action decreases along Floer trajectories of a non-degenerate
Hamiltonian H, we also have well-defined chain complexes that only
involve orbits with action in an interval (a, b) if a and b are not in
the action spectrum S(H). This complex gives rise to the filtered Floer
homology HF(a, b)

∗ (H). This construction extends by continuity to degen-
erate Hamiltonians if the manifold is rational, since in this case the Floer
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homology is independent of the choice of a sufficiently small, non-degenerate
perturbation.

In the case of an irrational manifold, the action filtration of Floer homol-
ogy for degenerate Hamitonians cannot be unambigously defined simply
by continuity as the resulting groups depend very sensitively on the non-
degenerate perturbation. We thus use the following construction for the
filtered Floer homology, which in the case of a rational manifold gives the
same homology groups as continuity:

Let H be a fixed Hamiltonian on M . To define HF(a, b)
∗ (H), consider per-

turbations K of H with the following properties:
(P1) the Hamiltonian K is non-degenerate;
(P2) the boundary values a and b of the action interval are not in the action

spectrum S(K) of K;
(P3) we have K ≥ H.
For the remaining part of this section, we will always assume the above
properties whenever we speak of perturbations K of a Hamiltonian H.

The set of such perturbations is partially ordered by K1 ≤ K0 whenever
K1

t (x) ≤ K0
t (x) for all x ∈ M and t ∈ S1. Consider a monotone decreasing

homotopy Ks from K0 to K1. By condition (P1), both perturbations K0

and K1 are non-degenerate. Thus, we have an induced monotone homotopy
map between the Floer homology groups, which are well defined by (P1)
and (P2). In this case, this map is still a homomorphism, but it needs not
be an isomorphism. Those monotone homotopy maps give rise to transition
maps HF(a, b)

∗ (K) → HF(a, b)
∗ (K̃), whenever K ≥ K̃. Then we can define the

filtered Floer homology of H by

HF(a, b)
∗ (H) = lim−→ HF(a, b)

∗ (K)

as the direct limit of homology groups.

Remark 2.1. If H is non-degenerate and a and b are not in the action
spectrum S(H), this definition gives the ordinary filtered Floer homology of
H, as H can be viewed as the trivial perturbation of itself and thus as the
smallest of all considered perturbations K.

By construction of filtered Floer homology for non-degenerate Hamilto-
nians, we have a long exact sequence of filtered Floer homology groups

· · · → HF(a, b)
∗ (K) → HF(a, c)

∗ (K) → HF(b, c)
∗ (K) → HF(a, b)

∗−1 (K) → · · ·
for any non-degenerate Hamiltonian K with a, b, c /∈ S(K). The maps of
this exact sequence commute with the monotone homotopy map. Then, for
the limit function H, the analog sequence

· · · → HF(a, b)
∗ (H) → HF(a, c)

∗ (H) → HF(b, c)
∗ (H) → HF(a, b)

∗−1 (H) → · · ·
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is also exact. This can be proved by a standard diagram chasing argument
using the commutativity and the definition of the limit groups.

In the definition of the filtered Floer homology as a limit, we can also
restrict the family of perturbations by requiring other properties in addition
to (P1)–(P3). The restricted family of perturbations is sufficient to define
the limit if they form a cofinal set, i.e., for any perturbation satisfying (P1)–
(P3) we can find a smaller one with the additional properties. The limit
then does not depend on the perturbations that do not have the additional
properties.

In particular, we will later consider a cofinal set of perturbations for which
the filtered Floer homology splits into a direct sum decomposition that is
compatible with the monotone homotopy maps. Then we also have a direct
sum decomposition of the limit.

We can also define monotone homotopy maps for homotopies starting
from H. Due to condition (P3), the monotone homotopy map for a homotopy
starting from any perturbation K factors through all perturbations closer
to the limit function H than K. Then we define the monotone homotopy
map from HF(a,b)(H) as the limit of monotone homotopy maps from the
perturbations. The resulting map, still called monotone homotopy map, has
the same properties as the usual homotopy maps.

3. Direct sum decomposition in filtered Floer homology

3.1. The direct sum decomposition. In this section, we prove the exis-
tence of a direct sum decomposition of filtered Floer homology for short
action intervals. This decomposition enables us to restrict our attention to
the behavior of the Hamiltonian on a fixed open set.

To construct this direct sum decomposition, let K be a non-degenerate
Hamiltonian on M . Consider two open sets U and V such that U ⊂ V and
both sets are bounded by level sets of K. On the shell V̄ \ U , assume that
the Hamiltonian K is autonomous and does not have one-periodic orbits. In
particular, this implies that U and V are homotopy equivalent. Also fix an
almost complex structure J on M , which is compatible with ω.

Consider the splitting of Floer chain groups into the direct sum

(3.1) CF(a, b)
∗ (K) = CF(a, b)

∗ (K, U) ⊕ CF(a, b)
∗ (K; M, U),

where the first summand is generated by the one-periodic orbits in U with
capping equivalent to a capping contained in U . The second summand is
spanned by all the remaining capped orbits.

Proposition 3.1. Let the Hamiltonian K and the open sets U and V be
as above. There exists an ε > 0, depending only on J , the open sets U and
V and on K|V \U such that (3.1) gives rise to a direct sum decomposition
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of homology

(3.2) HF(a, b)
∗ (K) = HF(a, b)

∗ (K, U) ⊕ HF(a, b)
∗ (K; M, U),

whenever the action interval (a, b) is chosen such that b − a < ε.

To prove this, we need to show that for such Hamiltonians K no Floer
trajectory can connect orbits from different summands, if the action interval
is sufficiently small. The key to that is proving the following proposition,
which provides a lower bound on the energy for those Floer trajectories.

Proposition 3.2. Let K be a non-degenerate Hamiltonian and let U and V
be open sets that are both bounded by level sets of K. Assume furthermore
that K does not have one-periodic orbits in V̄ \U and is autonomous on this
shell. Let u : S1 × R → M be a Floer trajectory that intersects ∂U and ∂V .
Then there is a constant ε > 0, only depending on the open sets U and V ,
the restriction of the Hamiltonian K and the almost complex structure J to
V̄ \ U , such that E(u) > ε.

Proof of Proposition 3.1. Let x̄ and ȳ be two capped orbits in HF(a, b)
∗ (K).

Assume that x̄ and ȳ are connected by a Floer trajectory u, and let x̄ be in
HF(a, b)

∗ (K, U). We need to show that y is contained in U and the capping
of ȳ is equivalent to a capping in U .

By construction, V is homotopy equivalent to U and the capping of ȳ is
equivalent to u#(the capping of x̄). Thus it suffices to show that the Floer
trajectory u is contained in V . If u did leave V , it would have to intersect
both boundary components of V \ U , as u is converging to the orbit x,
which is contained in U . By Proposition 3.2, such a trajectory would have
to have energy E(u) > ε for some constant ε > 0. Thus, if we choose the
action interval (a, b) such that b − a is smaller than the lower bound ε in
Proposition 3.2, the Floer trajectory u has to be contained in V and we have
the desired direct sum in homology. �

Remark 3.1. In general, the direct sum decomposition from Proposition 3.1
need not be compatible with monotone homotopy maps. In some important
cases, however, this is the case. For example, consider two Hamiltonians K1

and K2 that agree on V \U up to a constant and assume K1 ≥ K2. Then the
above direct sum decomposition is compatible with the monotone homotopy
map HF(a, b)

∗ (K1) → HF(a, b)
∗ (K2). Indeed, the monotone homotopy map is

defined using a version of the Floer equation. If the two Hamiltonians agree
up to a constant, their Hamiltonian vector fields agree and this equation is
exactly the standard Floer equation. Thus the above proof of Proposition
3.1 also applies in this setting and shows that the monotone homotopy map
is compatible with the direct sum decomposition for sufficiently small action
intervals.
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Corollary 3.1. Let K be any Hamiltonian, not necessarily non-degenerate.
Assume that the open sets U and V are bounded by level sets of K. If the
Hamiltonian K is autonomous on V \ U and does not have periodic orbits
in this shell, then for sufficiently small action interval (a, b) the direct sum
decomposition (3.2) holds.

Proof. It suffices to construct a cofinal set of non-degenerate perturbations
of K, such that the direct sum decomposition (3.2) holds for all of those
Hamiltonians and is compatible with the monotone homotopy maps.

Consider the perturbations that differ from K on V \U only by a constant.
These form a cofinal set, since for every perturbation H ≥ K we can find a
smaller one with that additional property. We can choose these perturbations
to be non-degenerate, as K does not have periodic orbits in V̄ \U and there
are no restrictions on the perturbation outside V̄ \U . The connecting maps
between the Floer homologies of the perturbations are monotone homotopy
maps and respect the direct sum decomposition. Thus, we also have a direct
sum in the limit. �

3.2. Energy estimates and the proof of Proposition 3.2. To prove the
proposition, we need to find a lower bound for the energy of Floer trajectories
crossing the shell V \ Ū . The first lemma can be used to bound the time-
integral in the expression for the energy away from zero for the part of a
Floer trajectory in a compact set not containing one-periodic orbits.

Lemma 3.1. Let W be a bounded open set with smooth boundary and at
least two boundary components and let K be an autonomous Hamiltonian
on W̄ . Assume that K is constant on each boundary component and does
not have one-periodic orbits in W̄ . Then there exists a constant C1 > 0,
depending only on the almost complex structure J , the open set W and K
such that:

(i) For T ≤ 1, any path γ : [0, T ] → W̄ , which connects two distinct bound-
ary components of W , satisfies

∫ T

0
‖γ̇(t) − XK(γ(t))‖2 dt > C1.

(ii) Any loop γ : S1 → W̄ satisfies
∫

S1

‖γ̇(t) − XK(γ(t))‖2 dt > C1.

This lemma is a generalization of lemmas in [Us], but the existence of
similar lower bounds goes back to [Sa]. The proof given in Section 3.3,
however, differs from the proofs in [Sa, Us]. With W = V \ Ū , this lemma
implies the proposition if the area of u−1(W ) is small. If this area is not
small, we need the following lemma to relate the area of the domain and the
energy for certain parts of a Floer trajectory.
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Lemma 3.2 (Usher’s lemma). Let W be a bounded open set with smooth
boundary and at least two boundary components and let K be an autonomous
Hamiltonian on W̄ . Let S be a connected subset of the cylinder S1 × R and
let u : S → W̄ satisfy the Floer equation (2.1) with Hamiltonian K. Assume
that u(∂S) ⊆ ∂W . If u(S) intersects two distinct boundary components of
W , then there exists a constant C2, depending only on the domain W , the
Hamiltonian K and the complex structure J on W , such that

Area(S) + E(u) ≥ C2.

This lemma is a generalization of Lemma 2.3 in [Us]. We prove this lemma
in Section 3.4 and continue here with the proof of Proposition 3.2. Similarly
to the special case in [Us], both lemmas are used with W being the shell
between two open sets to bound the energy of certain Floer trajectories away
from zero.

Pick two open sets U ′ and V ′ bounded by level sets of K such that

U ⊂ U ′ ⊂ V ′ ⊂ V.

Denote the loop t �→ u(t, s) for fixed s by γs(t) and consider the set

Z =
{
s ∈ R | γs intersects V ′ \ U ′} .

Then for every s ∈ Z, we either have γs ⊆ V \ U or γs intersects one of
the boundary components of V \ U . In the first case, we can apply Lemma
3.1 (ii) to the Hamiltonian K and W = V \ Ū .

In the second case, the path γs also intersects one of the boundary com-
ponents of V ′ \U ′ and we can apply Lemma 3.1 (i) with W taken to be one
of the shells V \ V ′ or U ′ \ U . Denote by C the minimum of the constants
C1 from Lemma 3.1 for the shells V \ U , V \ V ′ and U ′ \ U .

Then we have the following estimate for the energy of u:

E(u) =
∫

R

∫

S1

‖∂su‖2 dt ds

≥
∫

Z

∫

S1

‖∂tu(s, t) − XK(u(s, t))‖2 dt ds

≥
∫

Z
C ds = C mLeb(Z).

If mLeb(Z) ≥ C2/2, where C2 is the constant from Lemma 3.2 for the
shell W = V ′ \ U ′, we have a lower bound CC2/2 for the energy of u.

If mLeb(Z) < C2/2, we choose S as one connected component of u−1(V ′ \
U ′), such that u(S) intersects both boundary components. Since u intersects
∂U and ∂V , such a set S exists and S ⊆ Z × S1. Then we have Area(S) ≤
mLeb(Z) ≤ C2/2 and u(∂S) ⊆ ∂(V ′ \ U ′). Now Lemma 3.2 applies with
W = V ′ \ Ū ′ and we find that

E(u) ≥ E(u|S) ≥ C2 − Area(S) ≥ C2/2.
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Thus with ε = min{CC2/2, C2/2} we have found a lower bound for the
energy in either case.

3.3. Proof of Lemma 3.1. By the Schwarz inequality, we have

∫ T

0
‖γ̇(t) − XK(γ(t))‖2 dt ≥

(∫ T

0
‖γ̇(t) − XK(γ(t))‖ dt

)2

for T ≤ 1 and it suffices to find a lower bound for the L1-norm.
To that end, for a path γ(t) in W̄ , we define the path η(t) = ϕ−t

K (γ(t)).
By the chain rule we have

γ̇(t) = dϕt
K(η(t))η̇(t) +

(
d

dt
ϕt

K

)
(η(t))

= dϕt
K(η(t))η̇(t) + XK(γ(t)).

Recall for part (i) that we assume K to be autonomous and constant on
the boundary components of W . The two boundary components of W are
preserved under the flow. Since γ connects two distinct boundary compo-
nents of W , the same is true for η. Denote the distance of these boundary
components by δ. Then we find the lower bound by the following calculation:

∫ T

0
‖γ̇(t) − XK(γ(t))‖ dt =

∫ T

0
‖dϕt

K(η(t))η̇(t)‖ dt

> c ·
∫ T

0
‖η̇(t)‖ dt

≥ c · d(η(0), η(T ))
≥ c · δ.

The constant c is positive since K is smooth and both t and η(t) are varying
in compact sets and K has no critical points in W̄ .

Similarly, we find for part (ii)

∫

S1

‖γ̇(t) − XK(γ(t))‖ dt =
∫ 1

0
‖dϕt

K(η(t))η̇(t)‖ dt

≥ c · d(η(0), η(1))

= c · d(
γ(0), ϕ−1

K (γ(0))
)
.

As W̄ is compact and ϕK is continuous with no one-periodic orbits in W̄ ,
this distance is bounded away from zero.

Thus in both parts we have found a lower bound and we set C1 to be the
minimum of those bounds.
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3.4. Proof of Usher’s lemma. For simplicity of notation, we assume that
W has exactly two boundary components. Recall that we want to prove the
existence of a lower bound for Area(S) + E(u), which is independent of u.
Since u is a solution of the Floer equation, the graph ũ : S → S1 × R × W̄
is a J̃-holomorphic curve for a certain almost complex structure J̃ , which is
tamed by ω̃ = ds∧ dt− dt∧ dK +ω. (For the precise definition of J̃ , see the
proof of Lemma 2.3 in [Us]). This almost complex structure J̃ depends only
on the almost complex structure J on W̄ and on the Hamiltonian K on W̄ .

For any subset S′ ⊆ S, this definition of ω̃ gives

∫

S′
ũ∗ω̃ =

∫

S′
ds ∧ dt +

∫

S′

∣
∣
∣
∣
∂u

∂s

∣
∣
∣
∣

2

Jt

ds dt = Area(S′) + E(u|S′).

Let Σ be a closed hypersurface in W , which separates the two boundary
components of W . By assumption, u intersects both boundary components.
Thus there exists a z0 ∈ S such that u0 = u(z0) ∈ Σ. We now choose a ball
B ⊆ W centered at u0 and a disk D ⊆ S1 × R with fixed radius centered
at z0.

Now we consider a ball B̃ centered at (z0, u0) and contained in D × B.
Since the radius of D is fixed, the radius of this ball B̃ depends only on the
radius of B and thus only on the open set W . Then we define

S̃ = {z ∈ S | ũ(z) ∈ B̃}.

By definition, the boundary of S̃ is mapped to the boundary of B̃. Indeed,
ũ(∂S) is contained in (∂S) × (∂W ) and therefore not in B̃ ⊆ D × B.

Let us now view the graph of u as a map ũ : S̃ → B̃. As B is contained
in W , where K is fixed, the complex structure J̃ on D×B depends only on
the ball B, the Hamiltonian K|W and the complex structure J on W .

By definition of S̃, the center (z0, u0) = ũ(z0) of B̃ is contained in the
image of ũ. Now ũ is considered to be a J̃-holomorphic curve in B̃, which
is passing through the center and has no boundary in the interior of B̃. For
this ũ, Proposition 4.3.1(ii) in [Si] applies and we have Area(S̃) + E(u|S̃) ≥
C2(u0).

This constant C2(u0) still depends on u, since the choice of the center u0

of the ball B depends on u. To obtain a constant that is independent of u,
we take the infimum over all possible u0 and define

C2 = inf{C2(u0) | u0 ∈ Σ}.

Since the hypersurface Σ is compact, this constant C2 is positive and inde-
pendent of u with Area(S) + E(u) ≥ Area(S̃) + E(u|S̃) ≥ C2 > 0.
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4. Proof of Theorem 1.3

4.1. Outline of the proof. The key to proving Theorem 1.3 is a geomet-
rical description of symplectically degenerate maxima given in Proposition
4.1. In particular, we can assume that the symplectically degenerate maxi-
mum is a constant orbit p with trivial capping. Furthermore, we can assume
that p is a strict local maximum of H and that H has arbitrarily small
Hessian at p.

Then we use the squeezing method from [BPS, Gi, GG1] and construct
Hamiltonians H+ and H− such that H− < H < H+. It suffices to show
that a linear homotopy from H+ to H− induces a non-zero map between
the filtered Floer homology groups of H± for the action interval in question,
since this map factors through the filtered Floer homology of H. Then the
Floer homology group of H cannot be trivial.

As functions of the distance from p, the functions H+ and H− are con-
structed similarly to the ones used in [Gi, GG2]; see Section 4.3 for details.

For the Hamiltonians H± we use the direct sum decomposition from
Proposition 3.1. By construction of H± and Remark 3.1, this will be compat-
ible with the limit construction of filtered Floer homology and the monotone
homotopy map for a homotopy from H+ to H−. To prove that the monotone
homotopy map is non-zero, it suffices to show that the restriction to one of
the summands is an isomorphism.

We will consider the summand HF∗(H±, U) for a neighborhood U of the
symplectically degenerate maximum p, as this depends only on the func-
tions restricted to U and the symplectic structure in U and is independent
of the ambient manifold. Thus we can view U as an open set in any sym-
plectic manifold and the theorem follows as in the symplectically aspherical
case in [Gi].

Remark 4.1. This process of localizing the problem is fundamentally dif-
ferent from the localization in the definition of local Floer homology. Here
we only fix the Hamiltonian on a shell V \U between two bounded open sets
U and V . Then we use the small action interval, and thus small energy of
Floer trajectories, to ensure that the trajectories do not leave V using the
energy bounds from Section 3.2.

For local Floer homology we do not directly restrict the action interval but
fix the Hamiltonian outside an open set U that only contains one isolated
one-periodic orbit x̄. Then we take a small non-degenerate perturbation
of the Hamiltonian to split this one-periodic orbit up into non-degenerate
periodic orbits. The actions of those are close to the action of x̄ and thus the
energy of Floer trajectories connecting them is small. As the Hamiltonian is
fixed outside U , this ensures that Floer trajectories between orbits in U stay
in U . Then the local Floer homology is defined by restricting the definition
of Floer homology to U .
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4.2. Geometric characterization of symplectically degenerate
maxima. In this section we state some geometric properties of symplec-
tically degenerate maxima. The existence of a symplectically degenerate
maximum enters the proof of Theorem 1.3 only via those properties.

For the formulation of the geometric characterization of a symplectically
degenerate maximum we first need to recall the definition of the norm of
a tensor with respect to a coordinate system. By definition, on a finite-
dimensional vector space the norm ‖v‖Ξ of a tensor v with respect to a
coordinate system Ξ is the norm of v with respect to the inner product for
which Ξ is an orthonormal basis. For a coordinate system ξ on a manifold
M near a point p, the natural coordinate basis in TpM is denoted by ξp.

Proposition 4.1 ([GG2, GG3]). Let x̄ be a symplectically degenerate max-
imum of a Hamiltonian H and let p = x(0) ∈ M . Then there exists a
sequence of contractible loops ηi of Hamiltonian diffeomorphisms such that
x(t) = ηt

i(p), i.e., each loop ηi sends p to x. Furthermore, the Hamiltonians
Ki given by ϕt

H = ηt
i ◦ϕt

Ki and the loops ηi satisfy the following conditions:

(K1) The point p is a strict local maximum of Ki
t for t ∈ S1.

(K2) There exist symplectic bases Ξi of TpM such that
∥
∥d2(Ki

t)p

∥
∥

Ξi → 0 uniformly in t ∈ S1.

(K3) The loop η−1
i ◦ ηj has identity linearization at p for all i and j (i.e.,

for all t ∈ S1 we have d
(
(ηt

i)
−1 ◦ ηt

j

)
p

= I), and is contractible to id in
the class of such loops.

A proof of this proposition and also of the fact that this description is
equivalent to the definition of symplectically degenerate maxima can be
found in [GG2, GG3]. It is also shown there that the conditions (K1) and
(K2) already imply (K3) as a formal consequence.

When the concept of symplectically degenerate maxima was introduced
in [Hi] by Hingston and in the first formal definition given in [Gi], this char-
acterization was used as a definition of symplectically degenerate maxima.

Remark 4.2. The loops η−1
i ◦ ηj are loops of Hamiltonian diffeomorphisms

fixing p. The construction in [Gi] shows that the loops ηi can be chosen such
that η−1

i ◦ ηj are supported in an arbitrarily small neighborhood of p.

4.3. The functions H+ and H−. By Proposition 4.1 above it suffices to
prove the theorem for the function K1 and the constant orbit p with trivial
capping as symplectically degenerate maximum. We keep the notation H for
K1. Fix a Darboux chart in a neighborhood W of p such that p is a strict
global maximum of H on W . We also fix now an almost complex structure
J on M that is compatible with ω.
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Figure 1. The functions H+ and F as functions of the
distance from p.

Let U and V be balls centered at p and contained in W . We then construct
the function H+ and an auxiliary function F to be of the form shown in
Figure 1.

More concretely, we fix balls

Br− ⊂ Br+ ⊂ Br ⊂ U ⊂ V ⊂ BR ⊂ BR− ⊂ BR+ � W.

Then the function H+ is defined to be radially symmetric around p with
the following properties:

• H+ ≥ H and H+ ≡ c = H(p) on Br− .
• On Br+ \ Br− the function H+ is monotone decreasing.
• On Br \ Br+ the function is constant.
• In the shell BR \ Br the function is monotone increasing, linear as a

function of the square of the distance from p with small slope α on
V \ U such that there are no one-periodic orbits in V \ Br.

• The function H+ is again constant on BR−\BR with a value less than c.
• It is monotone increasing on BR+ \ BR− .
• Outside BR+ the function H+ is constant and equal to its maximum.
Inside Br and outside BR the construction of H+ is exactly as in [Gi].

The linear part in V \ U ensures that Proposition 3.1 applies.
More concretely, we first choose some small constant α0 > 0, such that

α0/π is irrational. Then we fix the Hamiltonian H+ on Br and pick ε > 0
smaller than the energy bound from Proposition 3.1 for a Hamiltonian linear
with slope α0 on V \U . Using these choices we take a sufficiently large order
of iteration k as in [Gi, GG2]. Furthermore, we now fix H+ outside Br with
slope α = α0/k on V \ U . We thus have the direct sum decomposition of
filtered Floer homology by Proposition 3.1 for H

(k)
+ . At this point, we choose

some δk ∈ (0, ε/2), depending on k, to ensure that the action intervals
(kc + δk, kc + ε) and (kc − δk, kc + δk) are sufficiently small for the direct
sum decomposition.

Let us now turn to the construction of H− using the existence of a sym-
plectically degenerate maximum. The geometrical characterization of sym-
plectically degenerate maxima in Proposition 4.1 and Remark 4.2 imply that
we have
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• a loop ηt of Hamiltonian diffeomorphisms fixing p, which is supported
in U ;

• and a system of coordinates ξ on a neighborhood W of p;

such that the Hamiltonian K generating the flow η−t ◦ϕt
H has a strict local

maximum at p and maxt

∥
∥d2(Kt)p

∥
∥

ξp
is sufficiently small. The loop η is

contractible in the class of loops having identity linearization at p. Let Gt
s

be a Hamiltonian generating such a homotopy ηt
s, normalized by Gt

s(p) ≡ 0.
We then normalize K by the additional requirement that Kt(p) ≡ c (or
equivalently that H = G#K).

Then there exists a function F , depending on the coordinate system ξ,
such that

• ∥
∥d2Fp

∥
∥

ξp
is sufficiently small,

• F ≤ K and F (p) = c = H(p) is the global maximum of F .

To be more precise, in Br the function F is a bump function centered at
p, constant outside BR and differs from H+ only by a constant on V \ U .
The last condition is necessary to have the direct sum decompositions of
the filtered Floer homology groups of H+ and F be compatible with the
monotone homotopy map for a linear homotopy from H+ to F .

Then F s = Gs#F ≤ H+ is an isospectral homotopy with F 1 = F , i.e.,
a homotopy such that the action spectrum S(F s) is independent of s. We
define the function H− by

H− := G0#F ≤ G0#K = H.

Since η is supported in U , the function G0 is constant outside U . Then H−
differs from F and H+ only by the constant value of G on V̄ \U . Therefore
we also have the direct sum decomposition from Proposition 3.1 for H−. It
is compatible with the homomorphism induced by the homotopy F s and the
monotone homotopy map for a homotopy from H+ to H−.

4.4. The Floer homology of H± and the monotone homotopy map.
In the symplectically aspherical case, the filtered Floer homology groups
for F and H+ in the action intervals in question have been calculated in
[Gi, GG1]. Using this, we obtain an isomorphism

Z2
∼= HF(kc+δk, kc+ε)

n+1 (H(k)
+ , U) → HF(kc+δk, kc+ε)

n+1 (F (k), U) ∼= Z2,

by the same argument as in [Gi], since this summand behaves exactly like
the filtered Floer homology in the symplectically aspherical case. Then we
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have the commutative diagram

HF(kc+ε, kc+δk)
n+1 (H(k)

+ , U)

Ψ
��

∼=
������������������

HF(kc+ε, kc+δk)
n+1 (H(k)

− , U)
∼= �� HF(kc+ε, kc+δk)

n+1 (F (k), U),

where the horizontal map is induced by the isopsectral homotopy F s and
the other maps are monotone homotopy maps. As in the symplectically
aspherical case, the isospectral homotopy induces an isomorphism in this
summand of the filtered Floer homology. The commutativity is established
the same way as in the symplectically aspherical case. (Observe that it is
essential to use the “localized” Floer homology for all Hamiltonians in the
diagram. For the full filtered Floer homology groups, the standard argument
for the commutativity of the analogous diagram does not apply in the case of
a symplectically irrational manifold.) The diagonal map is an isomorphism
by the same argument as in [Gi] using the long exact sequence of filtered
Floer homology to go over to the action interval (kc − δk, kc + δk). By the
commutativity of this diagram, the map Ψ is also an isomorphism. Thus the
monotone homotopy map

HF(kc+δk, kc+ε)
n+1 (H(k)

+ ) → HF(kc+δk, kc+ε)
n+1 (H(k)

− )

is non-zero and this map factors through the Floer homology group of H,
which we want to show to be non-trivial. This proves Theorem 1.3.
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[GG3] V. L. Ginzburg and B. Z. Gürel, Local Floer homology and the action gap, J.
Symplectic Geom. 8 (2010), 323–357.

[Hi] N. Hingston, Subharmonic solutions of Hamiltonian equations on Tori, Ann. Math.
170 (2009), 529–560.



202 D. HEIN

[Sa] D. A. Salamon, Lectures on Floer homology, in ‘Symplectic geometry and topology’
(Y. Eliashberg and L. Traynor, eds.), IAS/Park City Mathematics series, 7, 1999,
143–230.

[SZ] D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian
systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303–1360.

[Si] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds,
in ‘Holomorphic curves in symplectic geometry’ (M. Audin and J. Lafontaine, eds.),
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