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NON-DISPLACEABLE CONTACT EMBEDDINGS AND
INFINITELY MANY LEAF-WISE INTERSECTIONS

Peter Albers and Mark McLean

We construct using Lefschetz fibrations a large family of contact
manifolds with the following properties: any bounding contact embed-
ding into an exact symplectic manifold satisfying a mild topological
assumption is non-displaceable and generically has infinitely many leaf-
wise intersection points. Moreover, any Stein filling of dimension at least
six has infinite-dimensional symplectic homology.

1. Introduction and main results

Symplectic homology was introduced by Floer and Hofer in [FH94]. It is
one of the most powerful tools in symplectic topology with far reaching
applications. On the other hand it is very difficult to compute. In this article
we construct a large family of contact manifolds which under some mild
topological assumption give rise to infinite-dimensional symplectic homology
for each strong filling. From this we derive that Hamiltonian diffeomorphisms
generically have infinitely many leaf-wise intersection points and thus in
particular, the contact embedding is not displaceable.

To state the main results we begin with the following construction of
contact manifolds. We denote by D

2(δ) := {z ∈ C | |z| < δ} and by D
2 the

closed unit disk. Let π : ˜E −→ D
2 be a Lefschetz fibration of dimension

greater than 2 with at least one critical point and fibers which are Liouville
domains, see Definitions 2.1 and 2.4. Without loss of generality we assume
that 0 ∈ D

2 is a regular value of π. We prove in Proposition 5.1 that E := ˜E\
π−1(D2(δ)) can be made into a convex Lefschetz fibration over the annulus
A := D

2\D
2(δ). After appropriate smoothing of the codimension two corners

of the boundary of E we obtain a contact manifold (Σ, ξ). The family of
contacts manifolds arising from this construction will be considered below.
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Let (M, ω = dλ) be an exact symplectic manifold which is convex at
infinity, that is, outside a compact set M is symplectomorphic to the positive
part of the symplectization of a compact contact manifold.

Theorem 1.1. With the above notation let ι : Σ ↪→ M be a contact embed-
ding, that is, ker(ι∗λ) = ξ. Moreover, we assume that ι(Σ) bounds some
compact region V and that the canonical map H1(V ) � H1(Σ) is surjective.
For a generic embedding ι and a generic compactly supported Hamiltonian
diffeomorphism φ ∈ Hamc(M, ω) there exist infinitely many leaf-wise inter-
sections (with respect to φ and Σ).

We recall that x ∈ ι(Σ) is a leaf-wise intersection with respect to φ ∈
Hamc(M, dλ) if φ(x) ∈ Lx, where Lx ⊂ ι(Σ) is the leaf of the Reeb flow of
λ|Σ through x, see [Mos78, AF08b].

Corollary 1.1. Under the same assumptions as in Theorem 1.1 the contact
hypersurface ι(Σ) is not displaceable in M .

Proof. Suppose for a contradiction that ι(Σ) is displaced by a Hamiltonian φ.
Since this is an open condition we may assume that ι and φ are generic. This
contradicts Theorem 1.1 since leaf-wise intersection points are in particular
intersection points ι(Σ) ∩ φ

(

ι(Σ)
)

. �
We recall that a strong symplectic filling V of a contact manifold Σ is an

exact symplectic manifold (V, ω = dλ) with boundary ∂V = Σ such that the
vector field ω-dual to λ points outward along Σ.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, any strong
symplectic filling V of Σ has infinite-dimensional symplectic homology.

Remark 1.1. It follows from the proof of Theorem 1.1 that the above con-
struction can be generalized to convex Lefschetz fibrations over a surface
with boundary such that the monodromy map around one boundary com-
ponent is isotopic to the identity.

Remark 1.2. The homological condition H1(V ) � H1(Σ) is too strong. It is
only used in the proof of Proposition 6.1 where we need that a certain closed
one form extends. Moreover, this homological condition is automatically
satisfied if the bounded region is a Stein domain of dimension at least six.

Example 1.1. Let ˜E be an affine variety, which is not a product. A closed
embedding ˜E ↪→ C

N induces a Lefschetz fibration ˜E −→ C with fiber being
˜E ∩ H where H ⊂ C

N is a generic hypersurface. Moreover, since ˜E is not a
product, the Lefschetz fibration necessarily has singularities. Then Σ is the
boundary of the natural Liouville domain whose completion is ˜E \ H.

Another source of examples comes from closed integral symplectic man-
ifolds by removing two transverse Donaldson hypersurfaces (induced from
the same ample line bundle).
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Idea of the proof. To prove Theorem 1.1, we first prove Theorem 1.2. This is
done by showing that there is an infinite-dimensional subgroup in symplectic
homology generated by Reeb orbits of Σ contained in a particular set of
homotopy classes, see Theorem 3.1. This calculation involves confining Floer
trajectories to a subset with a pseudo-convex boundary. These Reeb orbits
are concentrated near the fiber over zero in ˜E. We then use work by Cieliebak
et al. [CFO09] and Albers and Frauenfelder [AF08b, AF08a] to conclude
Theorem 1.1.

Organization of the article. In Section 2, we recall the basic definitions which
enter in our construction. In Section 3, we introduce the notion of being
nice at infinity and state the crucial Theorem 3.1. This theorem is proved
in Section 4. In Section 5, we show that the above examples are in fact nice
at infinity. Finally in Section 6, we prove Theorems 1.1 and 1.2.

2. Main Definitions

In this section we recall some definitions and properties. We rely mostly on
[McL09].

Definition 2.1. A compact exact symplectic manifold (M, dλ) with bound-
ary is called a Liouville domain if (∂M, λ|∂M ) is a contact manifold and if
the vector field Z defined by the equation ιZdλ = λ is transverse to ∂M and
pointing outward. Z is called the Liouville vector field.

Definition 2.2. The completion of a Liouville domain (M, dλ) is the sym-
plectic manifold

(2.1) ̂M := M ∪∂M (∂M × [1,∞)),

where we extend the symplectic form by d(rλ|∂M ), r ∈ [1,∞), over the
cylindrical end.

Definition 2.3. A Liouville deformation from (M, dλ0) to (˜M, d˜λ) is a
smooth family (M, dλt), t ∈ [0, 1], such that (M, dλ1) is exact symplecto-
morphic to (˜M, d˜λ), i.e. the symplectomorphism pulls back ˜λ to λ1 + df for
some function f .

Next we sketch the definition of symplectic homology SH∗(M, λ) of a
Liouville domain (M, dλ), see [Oan04] for more details. We assume that the
contact form λ|∂M is non-degenerate. For a ∈ R let ̂Ha : ̂M → R be a func-
tion such that on the cylindrical end it satisfies ̂Ha(x, r) = ar. For generic a

and for a small time-dependent perturbation ̂Ha
t , Hamiltonian Floer homol-

ogy HF∗( ̂Ha
t ) is well defined. The underlying complex CF∗( ̂Ha

t , J) is gen-
erated by periodic orbits P( ̂Ha

t ) of ̂Ha
t and the differential is defined by

counting rigid perturbed J-holomorphic cylinders.



274 P. ALBERS AND M. MCLEAN

When a < b, there is a natural map HF∗( ̂Ha
t ) → HF∗( ̂Hb

t ). Symplectic
homology is by definition the direct limit

(2.2) SH∗(M, λ) := lim−→
a

HF∗( ̂Ha
t ) .

It is independent of all choices and is an invariant of ̂M up to exact sym-
plectomorphism; see [Sei08, Section 7b].

Definition 2.4. A smooth map π : E −→ S is a convex Lefschetz fibration
with Liouville form Θ and fiber F if the following holds:

(1) E is a manifold with boundary and codimension 2 corners such that
the boundary can be decomposed as ∂E = ∂hE ∪ ∂vE.

(2) There exists a one-form κ so that (S, dκ) is a two-dimensional Liouville
domain.

(3) The map π satisfies the following conditions:
(a) π has finitely many critical points of a certain local model, see

[McL09, Definition 2.12] for details.
(b) Outside the critical set π is a submersion with typical fiber F ,

where F is a smooth manifold with boundary.
(c) There exists an open set Nh ⊂ E and open neighborhood N∂F ⊂

F of ∂F such that

(2.3) E|Nh := Nh ∼= S × N∂F ,

as a fiber bundle with respect to π and the projection map to S.
(4) The vertical boundary is given by ∂vE = E|∂S := π−1(∂S) and

∂vE −→ ∂S is a fiber bundle.
(5) There exists a one-form Θ on E such that

(a) dΘ is a symplectic form,
(b) the Liouville vector field Z is transverse to ∂E and pointing out-

wards,
(c) (F, θF := Θ|F ) is a Liouville domain,
(d) on Nh we have

(2.4) Θ|Nh = π∗κ + pr∗2θF ,

where pr2 is the projection pr2 : S × N∂F −→ N∂F .

In [McL09, Section 2.2] it has been shown that a convex Lefschetz fibra-
tion π : E → S with fiber F admits a completion π̂ : ̂E → ̂S with fiber ̂F .
Moreover, [McL09, Section 2.4] has proven that in the definition of symplec-
tic homology SH∗( ̂E) one can use functions of the form ̂Ha = π̂∗Ha

̂S
+p̂r∗2Ha

̂F

on the cylindrical end of ̂E where p̂r2 : ̂S × (

∂F × [1,∞)
) → ∂F × [1,∞) is

the natural extension of pr2 from the previous definition.
The symplectic form dΘ induces a connection on E by taking the

dΘ-orthogonal plane field to the vertical tangent spaces. The parallel
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transport maps of this connection preserve the symplectic form. The
monodromy map associated to a loop γ : S1 → S avoiding the critical
values of π in the base is the symplectomorphism Fγ(0) → Fγ(0) induced by
parallel transport around γ.

3. Exact symplectic manifolds nice at infinity

Definition 3.1. We define the annulus A := [−1, 1] × S1 with coordi-
nates (s, ϑ).

Definition 3.2. Let π : E −→ A be a convex Lefschetz fibration with
Liouville form Θ and fiber F . We say π is trivial over an end if the following
is satisfied:

(1) On U+ := (−ε, 1] × S1 we require

(3.1) E|U+
∼= U+ × F,

as a fiber bundle with respect to π.
(2) For Θ we require that on U+ we have

(3.2) Θ|U+ = π∗(sdϑ) + pr∗2θF ,

where pr2 is by abuse of notation the projection pr2 : U+ × F −→ F .

Definition 3.3. Let (E , dΛ) be an exact symplectic manifold with boundary
with codimension 2 corners and let K be a compact subset of E . Then we
call the triple (E , Λ,K) nice at infinity with fiber F if the following holds:
There exists a convex Lefschetz fibration π : E −→ A with Liouville form
Θ and fiber F , which is trivial over an end. Moreover, there is a compact
subset K ⊂ E with the following properties:

(1) K does not intersect the sets Nh, π−1(U+), and ∂vE.
(2) E \K is exact symplectomorphic to E\K via a symplectomorphism Ψ.
(3) The one-form Ψ∗ (

(π∗dϑ)|E\K
)

extends to a closed one-form β on E .

Remark 3.1. After smoothing the corners of E it becomes a Liouville
domain. In particular, we can associate symplectic homology SH∗(E , Λ) to it.

Theorem 3.1. Let (E , Λ,K) be nice at infinity with fiber F . If SH∗(F, θF ) 	=
0 then

(3.3) dim SH∗(E , Λ) = ∞.

4. Proof of Theorem 3.1

We start with some preliminary considerations.

Remark 4.1. Let (F, dθF ) be a compact symplectic manifold with convex
boundary. Then F admits a completion ̂F := F ∪∂F

(

∂F × [1,∞)
)

with one
form θ

̂F
:= r · θF |∂F on F × [1,∞) where r is the radial coordinate.
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Let (E, dΘ) be as in Definition 3.2 with fiber F . Then in [McL09, Section
2.2] the completion π̂ : ̂E −→ ̂A = R × S1 of E is defined and has the
following properties.

(1) On the region (−ε,∞) × S1 we have

(4.1)
(

̂E|(−ε,∞)×S1 , Θ
) ∼=

(

(−ε,∞) × S1 × ̂F , π̂∗(sdϑ) + pr∗2(θ ̂F
)
)

.

(2) On the region (−∞,−2) × S1 we have

(4.2)
(

̂E|(−∞,−2)×S1 , Θ
) ∼= (

(−∞,−2) × M(φ), θφ

)

,

where θφ = ταφ, τ ∈ (−∞,−2), and (M(φ), αφ) is the mapping torus
of the monodromy map φ around the loop {−1}×S1 ⊂ A with some
contact form αφ; see last paragraph in Section 2 for the definition of
monodromy. Moreover, it contains the trivial bundle

(4.3)
(

(−∞,−2) × S1 × ( ̂F \ F ), π̂∗(sdϑ) + pr∗2(θ ̂F
)
)

,

as a subbundle.
(3) On the region [−2,−ε]×S1 the bundle ̂E contains the trivial subbun-

dle

(4.4)
(

[−2,−ε] × S1 × ( ̂F \ F ), π̂∗(sdϑ) + pr∗2(θ ̂F
)
)

,

which extends the previous trivial bundle together with the trivial
bundle from (4.1) in the obvious manner.

Definition 4.1. Let (E , dΛ) be as in Definition 3.3. Then we define the
completion ̂E as

(4.5) ̂E := ( ̂E \ K) ∪ K.

On the completion ̂F for a ≥ 1 we define the function

(4.6) Ha
̂F
(x) :=

⎧

⎪

⎨

⎪

⎩

0, x ∈ F,

fa(r), x = (y, r) ∈ ∂F × [1, 2],
ar, x = (y, r) ∈ ∂F × [2,∞],

where fa is a smooth function with f ′
a ≥ 0, f ′′

a ≥ 0 making Ha
̂F

into a smooth
function, see Figure 1.

Similarly, we define a function Ha
0 : S1 × R −→ R by

(4.7) Ha
0 (s, t) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−as, s ∈ (−∞,−2],
fa(−s), s ∈ [−2,−1],
0, s ∈ [−1,−ε],
ga(s), s ∈ [−ε, 1],
as, s ∈ [1,∞],
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Figure 1. The function Ha
̂F
.

where ga is a smooth function with g′a ≥ 0, g′′a ≥ 0 making Ha
0 into a smooth

function, see Figure 2. Moreover, we require

(4.8) g′a(s) = 1
2 , s ∈ [−ε/2, 0].

We choose g′a(s) = 1
2 on [−ε/2, 0] to ensure that Ha

0 has no periodic orbits
in this region.

Definition 4.2. We call a function ̂H : ̂E −→ R adapted to the completion
if there exists a ≥ 1 such that the following holds:

Figure 2. The function Ha
0 .
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(1) On the region ̂E|(−ε,∞)×S1 we have

(4.9) ̂H = π̂∗Ha
0 + pr∗2H

a
̂F
.

(2) On the region ̂E|(−∞,−1)×S1 , we have

(4.10) ̂H = π̂∗Ha
0 + pr∗2H

a
̂F
,

which makes sense since Ha
̂F

= 0 in the region of ̂E where the fibration
is non-trivial.

(3) On the region ̂E|(−1,−ε)×S1 , we have

(4.11) ̂H = pr∗2H
a
̂F
,

with the same understanding as above.
(4) Everywhere else we choose ̂H such that it has only constant periodic

orbits, which are non-degenerate.
This definition naturally extends to functions ̂H : ̂E −→ R, since the regions
denoted (1)–(3) are disjoint from K (cf. Definition 3.3 for the notation).

The real number a ≥ 1 is called the asymptotic slope of ̂H.

Proof of Theorem 3.1. Let (E , dΛ) be nice at infinity with fiber F and com-
pletion π̂ : ̂E −→ ̂A = R × S1. After a small perturbation of ∂F we
may assume that the contact manifold (∂F, θF |∂F ) has only non-degenerate
Reeb orbits. In particular, it has discrete period spectrum, i.e., the set
{T ∈ R | T is the period of a Reeb orbit} is a discrete subset of R.

We choose a function ̂Ha : ̂E −→ R, which is adapted to the completion.
The Hamiltonian ̂Ha has asymptotic slope a which is not in the spectrum.
On the regions denoted in (1)–(3) in Definition 4.2 the Hamiltonian func-
tion ̂Ha is degenerate. For an open and dense set of asymptotic slopes the
only degeneracy of ̂Ha comes from the fact that ̂Ha is autonomous, since
(∂F, θF |∂F ) is non-degenerate. Then after a small time-dependent perturba-
tion localized near the periodic orbits we obtain a non-degenerate Hamil-
tonian function ̂Ha

t . This can be done so that on the region ̂E|(−ε,∞)×S1 the
Hamiltonian function ̂Ha

t is still a sum of two Hamiltonian functions as in
equation (4.9) but now with time-dependent summands

(4.12) ̂Ha
t (·) = π̂∗Ha

0 (t, ·) + pr∗2H
a
̂F
(t, ·).

Moreover, for a sufficiently small perturbation the perturbed orbits remain
in the same homotopy class as the unperturbed orbit. The Hamiltonian
function ̂Ha

t defines the Hamiltonian vector field X
̂Ha

t
via ω(X

̂Ha
t
, ·) = d ̂Ha

t .
Thus, after the perturbation the non-constant periodic orbits are con-

tained in ̂E \ K. Those orbits contained in the region ̂E|(−ε/4,∞)×S1 project
via π̂ to loops in R × S1 with negative winding (measured with respect to
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dϑ). The orbits contained in the region ̂E|(−∞,−1)×S1 project to loops with
positive winding. There are no orbits in the region ̂E|[−ε/2,0]×S1 by equation
(4.8). Finally, the orbits contained in the region ̂E|(−1,−ε/4)×S1 project to
contractible loops in R × S1.

We divide the set P( ̂Ha
t ) of periodic orbits of ̂Ha

t as follows:

(4.13) PI :=
{

x ∈ P( ̂Ha
t )

∣

∣

∣

∣

∫

S1

x∗β > 0
}

,

where β is the one-form from Definition 3.3. We set PII := P( ̂Ha
t ) \ PI.

We define CFa
I to be the sub-complex of the symplectic homology complex

CF( ̂Ha
t ) generated by PI. Analogously, we define CFa

II. In fact, Stokes’ the-
orem implies that the condition

∫

S1 x∗β > 0 is preserved under the Floer
differential, thus CF( ̂Ha

t ) splits as a direct sum

(4.14) CF( ̂Ha
t ) = CFa

I ⊕ CFa
II .

We denote by HF( ̂Ha
t ) = HFa

I ⊕ HFa
II the corresponding homology groups.

To finish the proof of Theorem 3.1 we will show that dim HFa
I = ∞.

For this we show that

(4.15) PI = {x ∈ P( ̂Ha
t ) | x(t) ∈ ̂E|(−ε/4,∞)×S1 ∀t ∈ S1}.

Indeed, since
∫

S1 x∗β > 0 the orbit x is non-constant, thus x is contained in
̂E \ K. Thus, we compute using notation from Definition 3.3

0 <

∫

S1

x∗β =
∫

S1

x∗Ψ∗ (

(π∗dϑ)|E\K
)

=
∫

S1

(π ◦ Ψ ◦ x)∗dϑ = winding of the projection of x.(4.16)

Thus, equality (4.15) follows.
Next we prove that any Floer cylinder u : R × S1 −→ ̂E connecting

two periodic orbits in PI is entirely contained in ̂E|(−ε/4,∞)×S1 . This follows
from the maximum principle [AS07, Lemma 7.2]. We consider the Liouville
vector field Z defined by the equation dΛ(Z, ·) = Λ. We claim that Z is
transversal to the hypersurface Γ := {− ε

4} × S1 × F and points into the

region ̂E\
(

̂E|(−ε/4,∞)×S1

)

, see Figure 3. Assuming this claim for the moment
it follows immediately that Γ is of contact type and thus [AS07, Lemma
7.2] implies that

(4.17) im (u) ∩
(

̂E \
(

̂E|(−ε/4,∞)×S1

))

⊂ Γ .

Thus, it remains to prove that Z has the claimed properties. Since
(̂E|(−ε,0)×S1 , Λ) is (exact symplectomorphic to) a product and by equation
(4.1) the Liouville vector field Z projects to the Liouville vector field of the
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Figure 3. The completion ̂E. The objects Z, Γ, etc. will be
introduced later.

one-form sdϑ on (−ε, 0) × S1. Since s < 0 the Liouville vector field Z has
the required properties.

Since any Floer cylinder connecting two periodic orbits in PI is entirely
contained in ̂E|(−ε/4,∞)×S1 we can compute HFa

I inside

(4.18)
(

̂E|(−ε/4,∞)×S1 , Θ
) ∼=

(

(

(−ε/4,∞) × S1
) × ̂F , π̂∗(sdϑ) + pr∗2(θ ̂F

)
)

,

with respect to the Hamiltonian function ̂Ha
t (·) = π̂∗Ha

0 (t, ·) + pr∗2Ha
̂F
(t, ·).

Thus,

(4.19) HFa
I = HF(Ka

0 (t, ·)) ⊗ HF(Ha
̂F
(t, ·))

on the Liouville domain
(

(R×S1)× ̂F , sdϑ+θ
̂F

)

, where Ka
0 : S1×(R×S1) −→

R is defined as

(4.20) Ka
0 (t, s, ϑ) =

{

Ha
0 (t, s, ϑ), s ≥ − ε

4 ,

1
2s, else.
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Now, taking the direct limit over a → ∞ we obtain from HFa
I and

equation (4.19)

(4.21) SHI = G ⊗ SH∗(F, θF ),

where G is the part of the homology of the free loop space of S1 consist-
ing of loops with positive winding number, see [Vit96, SW06, AS06]. In
particular, if SH(F, θF ) 	= 0

(4.22) dim SHI = ∞.

This concludes the proof. �

5. Rephrasing the construction

Let π : ˜E −→ D
2 be a convex Lefschetz fibration and D(δ) := {z ∈ C | |z| <

δ}. We assume without loss of generality that 0 ∈ D
2 is a regular value.

Proposition 5.1. Let E := ˜E \ π−1(D2(δ)), then the map π : E −→ A ∼=
(D2 \D

2(δ)) can be given the structure of a convex Lefschetz fibration which
is trivial over an end.

Proof. We assume that (after a Liouville deformation) the Lefschetz fibra-
tion ˜E is trivial over D

2(2δ), that is

(5.1)
(

˜E|D2(2δ), ˜Θ|D2(2δ)

) ∼= (

D
2(2δ) × F, π∗(1

2r2dϕ) + pr∗2θF

)

,

where (r, ϕ) are polar coordinates on D
2. We choose a smooth function

ρ : [0, 1] → R such that

(5.2) ρ(r) =

⎧

⎪

⎨

⎪

⎩

−1, r = δ,

0, r = 3
2δ,

1, r = 2δ

and such that ρ′ > 0. Then for κ � 0 sufficiently large the one-form Θ on
E defined by

(5.3) Θ := ˜Θ + κπ∗(ρ(r)dϕ
)

is a Liouville form; see Definition 2.4. Then for a suitable δ < δ′ < 3
2δ the

region ˜E \ π−1(D2(δ′)) is a convex Lefschetz fibration with a trivial end.
Now we choose an orientation reversing diffeomorphism � : [δ′, 1]→ [−1, 1]

mapping [δ′, 2δ] to [−ε, 1] for suitable ε > 0. Then ˜Θ + κπ∗(ρ(�−1(s))dϑ
)

with ϑ = −ϕ is a Liouville form for the Lefschetz fibration over the annulus
A = [−1, 1]×S1 � (s, ϑ) giving a Lefschetz fibration trivial over an end; see
Definition 3.2. �
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6. Proof of Theorems 1.1 and 1.2

We use the notation from Theorem 1.1.

Proposition 6.1. The Liouville domain (V, dλ) has infinite-dimensional
symplectic homology

(6.1) dim SH∗(V, λ) = ∞.

Proof. Recall that (Σ, α) is a contact-type hypersurface in the exact sym-
plectic manifold (E, dα) obtained by smoothing the codimension two corners
of ∂E. Furthermore, (Σ, ι∗λ) is the contact manifold induced by the embed-
ding into M with the same contact structure: ξ = ker α = ker λ. Thus,
(after rescaling α) there exists an exact symplectic cobordism with nega-
tive end (Σ, ι∗λ) and positive end (∂E, α). We attach V to the negative
end of this cobordism creating an exact symplectic manifold (E , dΛ) with
codimension 2 corners which is nice at infinity with fiber F according to Def-
inition 3.3. Condition (3) in Definition 3.3 is satisfied due to the assumption
H1(V ) � H1(Σ) in Theorem 1.1. This is illustrated in Figure 4.

By assumption the Lefschetz fibration ˜E has at least one critical point,
and thus each fiber contains an exact Lagrangian sphere, the vanishing cycle.
It follows immediately from [Vit99, Theorem 4.3] that SH∗(F ) 	= 0. Thus,
by Theorem 3.1 with K := V

(6.2) dim SH∗(E , Λ) = ∞.

Since (̂E , Λ) is exact symplectomorphic to (̂V , λ), they have isomorphic sym-
plectic homology groups. �

Proof of Theorem 1.1. Theorems 1.2 and 1.5 in [CFO09] give us a long
exact sequence

(6.3) · · · → SH−∗(V ) a→ SH∗(V ) → RFH∗(V, Σ) → · · · .

Proposition 1.3 in [CFO09] then asserts that the map a factors through
some finite-dimensional vector space. Thus, dim SH∗(V ) = ∞ implies that

Figure 4. The exact symplectic manifold (E , dΛ).
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dim RFH∗(V, Σ) = ∞. Finally, Proposition 3.1 in [CFO09] states that

(6.4) RFH∗(V, Σ) ∼= RFH∗(M, Σ) .

It follows from [AF08b, Proposition 2.4, Theorem 2.14] and [AF08a,
Theorem 2.5] that for generic ι and φ the number of leaf-wise intersections
is at least as big as dim RFH∗(V, Σ) = ∞. �

Proof of Theorem 1.2. Let V be a strong filling of Σ such that the canonical
map H1(V ) � H1(Σ) is surjective. Then Σ has a contact embedding into
the completion ̂V of V satisfying all the assumptions of Theorem 1.1. Thus,
Proposition 6.1 applies. �
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