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IMMERSIONS IN A MANIFOLD WITH A PAIR
OF SYMPLECTIC FORMS

Mahuya Datta

Let N be a manifold with a pair of symplectic forms σ1, σ2, and M a
manifold with a pair of closed two-forms ω1 and ω2. For certain pairs of
symplectic forms on N , we prove the existence of smooth immersions
f : M → N such that f∗σi = ωi for i = 1, 2.

1. Introduction

Let (N, σ) be a symplectic manifold with the symplectic form σ and M a
manifold with a closed two-form ω. An immersion f : M → N is said to be
a symplectic immersion if f pulls back the form σ onto ω. All manifolds and
maps in this article are assumed to be smooth. The symplectic immersion
theorem of Gromov states that the symplectic immersions f : M → N satisfy
the C0 dense h-principle near the continuous maps f0 : M → N which pull
back the deRham cohomology class of σ onto that of ω [8, 3.4.2(A)]. The
aim of this paper is to generalize this theorem when the manifold N comes
equipped with a pair of symplectic forms σ1 and σ2 and M has a pair of
closed two-forms ω1 and ω2. An immersion f : M → N will be called a
bisymplectic immersion if it satisfies the relations f∗σ1 = ω1 and f∗σ2 = ω2.
The bisymplectic immersions are solutions to a system of first-order partial
differential equations (PDEs) on a manifold. In fact, we can associate a
first-order partial differential operator D defined on the space of C∞ maps
from M to N such that the bisymplectic maps are solutions to the equation
D = (ω1, ω2) for a given pair of closed two-forms ω1, ω2 on M . This takes us
into the theory of C∞ operators.

Generally, to solve a PDE we need to prove an appropriate implicit func-
tion theorem so as to obtain a local inversion of the operator D. The implicit
function theorem in the present case should ensure the C∞-smoothness (reg-
ularity) of the inversions. Gromov proves in [8, 2.3] that if an rth-order C∞
operator D is infintesimally invertible on an open subset U in the space
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of admissible maps defined by a dth-order differential relation for d ≥ r,
then the operator D restricted to U is an open map relative to the fine
C∞-topologies on the function spaces and there is a smooth local inversion.

In this case, the associated differential operator takes values in closed
forms only, so it cannot admit local inversion. However, we observe that
there is a first-order differential operator D̄ such that the solutions of the
associated PDE give rise to the solutions of the original equation (see
Section 4). Moreover, the operator D̄ is infinitesimally invertible on a set
of maps which are solutions to some open differential relation. Such maps
will be referred as (σ1, σ2)-regular maps in this paper (see Definition 2.3).
We observe in Section 2 that a generic map is (σ1, σ2)-regular under mild
dimension restriction. Applying the implicit function theorem of Gromov we
then derive the following result in Section 3.

Theorem A. Let σ1 =
∑2q

k=1 dxk ∧ dyk and σ2 =
∑q

k=1(dx2k−1 ∧ dy2k −
dx2k ∧ dy2k−1) be two linear symplectic forms on R

4q. Let M be a closed
manifold with two exact two-forms ω1 and ω2. If 2q ≥ 3 dimM and q is even,
then there exists a (σ1, σ2)-regular bisymplectic immersion f : M −→ R

4q.

We also partially answer a question of Gromov pertaining to inducing
square four-forms from a small perturbation of square symplectic forms.
Note that a symplectic immersion f : M → N (i.e., f∗σ = ω) satisfies
f∗(σ2) = ω2. Suppose we break the symmetry of σ2 by perturbing it a little
to Ω. Will it still be possible to induce the form ω2 by an immersion from the
perturbed four-form Ω?1 We take a linear symplectic form σ1 on R

2q and
some specific perturbation σ2 of σ1 which allow (σ1, σ2)-regular immersions.
If we set the wedge of two such forms as Ω then it is possible to induce the
square forms ω2 from Ω by means of immersions f : M → R

2q.

Theorem B. Let σ1 =
∑2q

k=1 dxk ∧ dyk and σ2 =
∑q

k=1 λk(dx2k−1 ∧ dy2k−1+
dx2k ∧ dy2k) be two linear symplectic forms on R

4q, where λk’s are distinct
real numbers. Then given any exact two-form ω on a closed manifold M ,
there exists an immersion f : M −→ R

4q such that f∗(σ1 ∧σ2) = ω2 for
2q ≥ 3 dimM .

We also prove the following h-principle in Section 4.

Theorem C. Suppose N is a smooth manifold with closed two-forms σ1

and σ2, and M is an open manifold with a closed two-form ω. Then in the
following two cases (a) and (b), the (σ1, σ2)-regular immersions f : M → N
which pull back both the forms σ1 and σ2 onto ω, satisfy the h-principle in
the space of continuous maps f0 : M → N such that f∗0 [σi] = [ω] for i = 1, 2.

(a) ω is the zero form on M .
(b) M is a symplectic manifold and ω is a symplectic form on M .

1The question was posed by Gromov in discussions with the author at the IHES in the
year 2005.
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The problem of inducing a pair of structures by maps were first considered
in [1] and later in [2–4]. In all these articles, one of the two structures was
a Riemannian metric, while the other structure was a contact form (in [1]),
a Riemannian metric (in [2, 3]) or a symplectic form (in [4]), and except
in [3], the authors exhibit the existence of C1-immersions which induce
the given pair of structures by adapting Nash’s technique [11]. In [3], on
the other hand, the authors prove the existence of Lipschitz solutions to the
given problem by the convex integration technique [8, 2.4]. In this paper,
we consider a pair of symplectic forms and prove the existence of smooth
immersions which induce a given pair of closed two-forms. We employ, in
contrast with earlier works, the analytic technique and the sheaf technique
in the theory of h-principle which we discuss in Appendix A.

2. (σ1, σ2)-Regular maps

In this section, we introduce the notion of (σ1, σ2)-regular maps into a mani-
fold N which comes with a pair of closed two-forms σ1 and σ2. The main
result of this section gives a sufficient condition for the existence of such
regular maps when σ1, σ2 is a symplectic pair.

Definition 2.1. Let σ1 and σ2 be a pair of linear two-forms on a vector
spaceW . A subspace V ofW is said to be (σ1, σ2)-regular (or simply regular)
if the linear map

(σ̃1, σ̃2) : W −→ Λ1(V ) × Λ1(V )

defined by

∂ �→ (∂.σ1|V , ∂.σ2|V )

is an epimorphism.

A necessary condition for the existence of regular subspaces is that
dimW ≥ 2 dimV . If V is a regular subspace of (W,σ1, σ2) then any subspace
of V is also regular.

Proposition 2.1. V is (σ1, σ2)-regular if and only if W = ker σ̃1 + ker σ̃2;
in other words, ker σ̃1 is transversal to ker σ̃2.

Proof. Let

σ̄1 = σ̃1|ker σ̃2 : ker σ̃2 −→ Λ1(V ) and σ̄2 = σ̃2|ker σ̃1 : ker σ̃1 −→ Λ1(V ).

Observe that ker σ̄1 = ker σ̄2 = ker(σ̃1, σ̃2) = ker σ̃1 ∩ ker σ̃2. If V is regular
then both σ̄1 and σ̄2 are surjective. The converse is also true. To see this
let (α1, α2) ∈ Λ1(V ) × Λ1(V ). Then there exist vectors ∂1 ∈ ker σ̃1 and
∂2 ∈ ker σ̃2 such that

σ̄2(∂1) = α2 and σ̄1(∂2) = α1.
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Hence, σ̃1(∂1+∂2) = α1 and σ̃2(∂1+∂2) = α2 which proves (σ1, σ2)-regularity
of V . Consequently, V is regular if and only if the following equalities hold:

dim ker σ̃1 = dimV + dim[ker σ̃1 ∩ ker σ̃2] = dim ker σ̃2,

which implies that

dim(ker σ̃1 + ker σ̃2) = dim ker σ̃1 + dim ker σ̃2 − dim[ker σ̃1 ∩ ker σ̃2]

= 2 dimV + dim ker(σ̃1, σ̃2)
= dimW. �

If σ1 and σ2 are two linear symplectic forms onW then we can characterize
the regularity condition as follows:

Corollary 2.1. Suppose σ1 and σ2 are two linear symplectic forms on W .
A subspace V is (σ1, σ2)-regular if and only if

V σ1 is transversal to V σ2 ,

where V σi = {w ∈W : σi(v, w) = 0 for all v ∈ V } is the symplectic comple-
ment of V relative to σi, i = 1, 2.

Proof. We may identify ker σ̃1 as the symplectic complement of V relative
to σ1. Similarly ker σ̃2 is the symplectic complement of V relative to σ2. �
Proposition 2.2. Let σ1 and σ2 be two linear symplectic forms on W . Let
A denote the unique vector space isomorphism W −→ W determined by
the relation σ2(v, w) = σ1(v,Aw) for all v, w ∈ W . A subspace V of W is
(σ1, σ2)-regular if and only if V +A(V ) has the maximum possible dimension.

Proof. We observe that V σ1 is transversal to V σ2 if and only if V σ1 is
transversal to A(V )σ1 . Since (V + A(V ))σ1 = V σ1 ∩ A(V )σ1 , we obtain
codim (V +A(V ))σ1 = 2n. Consequently, V +A(V ) has the maximum pos-
sible dimension, as σ1 is a symplectic form. �
Definition 2.2. Let W be a vector space with two linear two-forms σ1, σ2.
A linear map � : V →W from a vector space V to W will be called (σ1, σ2)-
regular if �(V ) is a regular subspace of W . Equivalently, the linear map

W → Λ1(V ) × Λ1(V ),

∂ �→ (�∗(∂.σ1), �∗(∂.σ2))

is an epimorphism.

Observation. Let p1 and p2 denote the projection maps of the product
vector space V ×W onto V and W , respectively. Suppose that σ1, σ2 are
two linear two-forms on W and ω1, ω2 are two linear two-forms on V . Let
σ̄1 = p∗1ω1 − p∗2σ1 and σ̄2 = p∗1ω2 − p∗2σ2. If � : V → W is (σ1, σ2) regular
then the graph map of �, �̄ : V → V ×W , is (σ̄1, σ̄2)-regular. This follows
from the relation that �̄∗(∂.σ̄i) = �∗(∂.σi) for all ∂ ∈W , i = 1, 2.
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Definition 2.3. Let σ1, σ2 be two closed two-forms on a manifold N . A
smooth immersion f : M −→ N is (σ1, σ2)-regular if the derivative map
dfx : TxM → Tf(x)N is (σ1(f(x)), σ2(f(x)))-regular for each x ∈ M . We
shall often refer the (σ1, σ2)-regular maps as regular maps.

Theorem 2.1. Consider two linear symplectic forms σ1 and σ2 on R
2q

which are related by σ2(v, w) = σ1(v,Aw) for some linear isomorphism A
of R

2q. Suppose that k is the maximum of the geometric multiplicities of
real eigenvalues of A. Then generic maps f : M → R

2q are (σ1, σ2)-regular
immersions for 2q ≥ max{3 dimM, 2 dimM + k}.

In particular, if A has no real eigenvalues then generic maps f : M → R
2q

are (σ1, σ2)-regular immersions for 2q ≥ 3 dimM .

Proof. Let dimM = n. Let Σ be the subset of the Grassmannian manifold
Grn(R2q) which consists of all n-planes T in R

q such that T ∩ A(T ) �= 0.
Then Σ is the union of two sets Σ′ and Σ′′ where

(1) Σ′ consists of all n-planes T in R
2q which contains an eigenvector of

A, where the eigenspaces of A are at most k-dimensional,
(2) Σ′′ consists of all n-planes T in R

2q which contains a two-dimensional
subspace spanned by a pair {v,Av} for some v ∈ T .

Since the geometric multiplicities of the eigenvalues of A are at the most k,
the dimension of Σ′ is less than or equal to k−1+(n−1)(2q−n). On the other
hand, the dimension of Σ′′ is less than or equal to (2q− 1)+ (n− 2)(2q−n).
Therefore, dim Σ = max(dim Σ′,dim Σ′′).

Let R denote the open subset of J1(M,R2q) consisting of one-jet of germs
of immersions from M to R

2q and let p : R −→ Grn(R2q) be the canonical
projection which maps an one-jet j1f (x), x ∈ M , onto the n-dimensional
subspace Im dfx in R

2q. A smooth map f : M −→ R
2q is a regular immersion

if and only if p ◦ j1f misses the set Σ, if and only if j1f misses the set p−1(Σ).
Now, observe that if 2q ≥ max{3n, 2n+ k} then codimΣ > n, and hence

the same is true for the codimension of p−1(Σ), since p is a submersion.
Therefore, by an application of the Thom Transversality Theorem [7] j1f
misses p−1Σ for a generic f . Thus, a generic map f : M −→ R

2q is regular
if 2q ≥ max{3n, 2n+ k}. �

Remark 2.1. If σ1 and σ2 are two symplectic forms on a manifold N ,
then there is a bundle isomorphism A : TN → TN satisfying the following
relation: σ2(v, w) = σ1(v,Aw) for all v, w ∈ TxN and x ∈ N . Suppose that

k = max
x∈M

{geometric multiplicities of the real eigenvalues of Ax}.

Then, we can obtain an exact analogue of Theorem 2.1 for maps f : M →
(N, σ1, σ2) with this k.
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Let σ1, σ2 be two linear symplectic forms on W and let A satisfy
σ2(v, w) = σ1(v,Aw) for all v, w ∈W . If {u1, . . . , uq, v1, . . . , vq} is a canoni-
cal symplectic basis for σ1 then relative to this basis A can be represented
by a matrix of the following form:

M(A) =
(
B C
D Bt

)

,

where B, C, D are q × q square matrices of which C and D are skew-
symmetric. Indeed, writing σ1 =

∑q
k=1 u

∗
k ∧ v∗k we have B = (σ2(uj , vi))i,j ,

C = (σ2(vi, vj))i,j and D = (σ2(ui, uj))i,j .
If M(A) is symmetric then all eigenvalues are real and if M(A) is skew-

symmetric then all eigenvalues are purely imaginary. We consider two special
cases under the above criteria. The first, when B is symmetric and C = D =
0, and the second, when B is skew-symmetric and C = D = 0.

Example 2.1. Let σ1 = u∗k ∧ v∗k. If σ2 =
∑q

k=1 λk u
∗
k ∧ v∗k, then M(A) is

symmetric. If q = 2n is even and σ2 =
∑n

k=1(u
∗
2k−1 ∧ v∗2k − u∗2k ∧ v∗2k−1),

then M(A) is skew-symmetric.

We can now easily deduce the following two corollaries from Theorem 2.1.

Corollary 2.2. Let σ1 =
∑q

i=1 dxi ∧ dyi and σ2 =
∑q

i=1 λidxi ∧ dyi be two
symplectic forms on R

2q, where the multiplicities of λi’s are less than equal
to k. Then a generic map f : M → R

2q is a (σ1, σ2)-regular immersion for
2q ≥ max{3 dimM, 2 dimM + k}.
Corollary 2.3. If q is even, say q = 2n and σ1 =

∑2n
i=1 dxi ∧ dyi and

σ2 =
∑n

k=1(dx2k−1 ∧ dy2k − dx2k ∧ dy2k−1), then generic maps f : M → R
2q

are (σ1, σ2)-regular immersions for 2q ≥ 3 dimM .

We end this section by formulating equivalent criteria for the symmetry
and the skew-symmetry conditions on M(A). The following is a standard
fact from symplectic geometry [9].

Lemma 2.1. Let W be a vector space with a linear symplectic form σ which
is invariant under an almost complex structure J . Define a bilinear form g
on W by

g(u, v) = σ(u, Jv) for all u, v ∈W.

Then
(1) σ(u, v) = g(Ju, v);
(2) g is a non-degenerate symmetric form;
(3) g is J-invariant.

The triple (g, J, σ) is such that given any two of these structures the third
structure is obtained uniquely by the relation g(u, v) = σ(u, Jv).
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Lemma 2.2. Let σ1 and σ2 be two linear symplectic forms on W . Let A
denote the unique vector space isomorphism W −→ W determined by the
relation σ2(v, w) = σ1(v,Aw). Let J be an almost complex structure on W
such that σ1 is invariant under J . Define g1 by g1(v, w) = σ1(v, Jw) for
v, w ∈W . Then the following are equivalent:

(1) σ2 is invariant under J .
(2) A commutes with J .
(3) A is symmetric relative to the symmetric form g1.

Therefore, under any of the above conditions, eigenvalues of A are all real
and they have even multiplicities.

Proof. (1) =⇒ (2): Since both σ1 and σ2 are J invariant, σ1(Ju, JAv) =
σ1(u,Av) = σ2(u, v) = σ2(Ju, Jv) = σ1(Ju,AJv) for all v, w. Now, the non-
degeneracy of σ1 implies that AJ = JA. Consequently the eigenvalues occur
in pairs.
(1) =⇒ (3): g1(Au, v) = σ1(Au, Jv) = −σ1(Jv,Au) = −σ2(Jv, u) =

σ2(u, Jv). Since σ2 is J-invariant, σ2(u, Jv) = σ2(v, Ju) and
hence we have g1(Au, v) = g1(u,Av).

(2) =⇒ (1): Since A commutes with J we obtain σ2(Jv, Jw) = σ1(Jv,
AJw) = σ1(Jv, JAw). Further, since σ1 is J-invariant, σ1(Jv,
JAw)= σ1(v,Aw) = σ2(v, w). Thus σ2 is J-invariant.

(3) =⇒ (1): For any v, w ∈ W , σ2(Jv, Jw) = σ1(Jv,AJw) = −g1(v,
AJw) = −g1(Av, Jw) (since A is symmetric with respect to
g1) = −g1(Jw, Av) = −σ1(w,Av) = σ2(v, w).

If A is symmetric with respect to g1 then there is a g1-orthonormal basis
u1, u2, . . . , u2n consisting of eigenvectors of A. Suppose Aui = λiui for i =
1, 2, . . . , 2n, where λi are real numbers. Consider u1 ∈ W . There exists at
least one un1 , n1 �= 1, such that σ2(u1, un1) �= 0. Using the relation between
σ1 and σ2 we obtain that λ1 = λn1 . Now, the g1-orthogonal complement
W1 of the span of u1 and un1 is spanned by the set {ui|i �= 1, i �= n1}.
Hence, we can repeat the above argument for the pair (W1, A|W1), where
dimW1 < dimW . Consequently, an induction on dimW proves that the
eigenvalues are real and repeated even number of times. �

Analogously, we can prove:

Lemma 2.3. Let σ1 and σ2 be two linear symplectic forms on W and A, J
and g1 be defined as in Lemma 2.2. Then the following are equivalent:

(1) σ2(v, Jw) = σ2(Jv,w) for all v, w ∈W ; in other words, J∗σ2 = −σ2.
(2) A anticommutes with J , that is, AJ = −JA.
(3) A is skew-symmetric relative to the symmetric bilinear form g1.

Therefore, under any of the above conditions, eigenvalues of A are purely
imaginary.
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3. Existence of immersions inducing a given pair of forms

In this section we study the existence of bisymplectic immersions in a mani-
fold (N, σ1, σ2), where σ1 = dτ1 and σ2 = dτ2 are two exact two-forms on N .
Let M be a manifold with a pair of exact two-forms ω1 = dα1 and ω2 = dα2.
Consider the differential operator

D : C∞(M,N) → Ω2(M) × Ω2(M)

which takes an f ∈ C∞(M,N) onto the pair (f∗σ1, f
∗σ2), where C∞(M,N)

denotes the space of smooth maps from M to N and Ω2(M) denotes the
space of two-forms on M . The bisymplectic immersions f : M → N are
solutions to the differential equation Df = (ω1, ω2) for the given pair of
two-forms on M . If f : M → N is a bisymplectic immersion, then f∗τ1 −α1

and f∗τ2 − α2 are closed one-form, and conversely.
Let us now consider the following first-order differential operator:

D̃ : C∞(M,N) × C∞(M) × C∞(M) −→ Ω1(M) × Ω1(M)

defined by

(f, φ1, φ2) �→ (f∗τ1 + dφ1, f
∗τ2 + dφ2),

where C∞(M) is the space of smooth real valued functions on M and Ω1(M)
is the space of one-forms on M . This operator is closely associated with the
operator D; indeed, if (f, φ1, φ2) is a solution of the equation D̃ = (α1, α2),
then clearly f satisfies the equations f∗σ1 = ω1 and f∗σ2 = ω2.

The linearization of D̃ at (f, φ1, φ2) is an operator

L : Γ∞(f∗TN) × C∞(M) × C∞(M) −→ Ω1(M) × Ω1(M),

which is given by

(∂, ψ1, ψ2) �→ (f∗(∂.σ1 + d(∂.τ1)) + dψ1, f
∗(∂.σ2 + d(∂.τ2)) + dψ2) ,

where ∂ is a vector field on N along f , and ψ1 and ψ2 are smooth functions
on M . L is right invertible if we can solve the following system of equations
in ∂, ψ1 and ψ2 for arbitrary one-forms g1 and g2 on M :

f∗(∂.σ1) = g1, f∗(∂.σ2) = g2,

f∗(∂.τ1) + ψ1 = 0, f∗(∂.τ2) + ψ2 = 0.

If f is (σ1, σ2)-regular (see Definition 2.3), then the first two equations can be
solved for ∂, the value of which is then inserted in the second set of equations
to obtain ψ1 and ψ2. Thus, L is right invertible by a zeroth-order operator
L−1 : (g1, g2) �→ (∂, ψ1, ψ2) when f is (σ1, σ2)-regular. Hence, D̃ is infinites-
imally invertible on (σ1, σ2)-regular immersions. Now, the (σ1, σ2)-regular
immersions are solutions to an open differential relation A ⊂ J1(M,N).
Consequently, the set of regular C∞ immersions, A, form an open subspace
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of C∞(M,N) in the fine C∞-topology. Hence, we obtain the following result
by an application of Theorem A.2 (see Section 5).

Proposition 3.1. The restriction of D̃ to the space of regular immersions
is an open map relative to the fine C∞-topologies on the function spaces.

We are now in a position to prove Theorem A.

Proof of Theorem A. Denote the coordinates on R
2q by x1, y1, . . . , xq, yq.

Suppose that q = 2n and let

σ̄1 =
2n∑

k=1

dxk ∧ dyk and σ̄2 =
n∑

k=1

(dx2k−1 ∧ dy2k − dx2k ∧ dy2k−1),

so that σ1 = σ̄1 ⊕ σ̄1 and σ2 = σ̄2 ⊕ σ̄2. Take a (σ̄1, σ̄2)-regular immersion
h : M −→ R

2q; such an h is guaranteed by Corollary 2.3 since 2q ≥ 3 dimM .
Define h′ : M −→ R

2q by h′(x) = (h1(x),−h2(x), . . . , h2q−1(x),−h2q(x)),
and set h̄ = (h, h′) : M → R

4q. Clearly, h̄ is (σ1, σ2)-regular and it pulls
back both σ1 and σ2 onto the zero form on M , that is, h̄∗σi = 0 for i = 1, 2.
Since both σ1 and σ2 are exact, we can write σ1 = dτ1 and σ2 = dτ2
for some one-forms τ1 and τ2 on R

2q, and this implies that h̄∗τ1 and h̄∗τ2
are closed one-forms on M . Therefore, if we define D̃ as above then its
image contains an ordered pair (c1, c2) of closed one-forms on M , where
ci = h̄∗τi for i = 1, 2. Since M is a closed manifold and D̃ is an open map
(by Proposition 3.1), for every pair of one-forms (α1, α2) on M there exists
a scalar λ > 0 such that (c1 +λα1, c2 +λα2) also belongs to the image of D̃.
This implies that, we have a triple (f̄ , φ1, φ2) such that f̄∗τ1+dφ1 = c1+λα1

and f̄∗τ2 + dφ2 = c2 + λα2, where f̄ : M → R
4q is a regular immersion and

φ1 and φ2 are smooth functions on M . Consequently, f̄∗(σ1) = λdα1 and
f̄∗(σ2) = λdα2. The required map f is then defined as f = λ−

1
2 f̄ .

Remark 3.1. Let (N, σ1, σ2) and (M,ω1, ω2) be as described in the begin-
ning of this section. Now, suppose that

• the pair (σ1, σ2) admits regular immersions M → N and
• there exists a diffeomorphism φ ofN such that φ∗σi = −σi for i = 1, 2.

If M is a closed manifold, then by setting h′ = φ◦h it may be seen as in the
proof of Theorem A that there exists a regular immersion f : M → N ×N
which satisfies f∗(σ1 ⊕ σ1) = ω1 and f∗(σ2 ⊕ σ2) = ω2.

Also, if we have
• a pair of closed two-forms σ1 and σ2 on N and
• a (σ1, σ2)-regular embedding f : M → N such that f∗σ1 = 0 = f∗σ2

then both σ1 and σ2 are exact on a tubular neighbourhood of image f in N .
Therefore, as in the above theorem, an arbitrary pair of exact forms on M
can be induced from the pair (σ1, σ2) by a regular immersion f̄ . Moreover,
we can choose f̄ sufficiently C0 close to f .
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The next result follows from the above remark, together with Corol-
lary 2.2.

Corollary 3.1. Let

σ1 =
2q∑

k=1

dxk ∧ dyk and σ2 =
q∑

k=1

λk (dx2k−1 ∧ dy2k−1 + dx2k ∧ dy2k)

be two symplectic forms on R
4q, where the multiplicity of each λk is less than

or equal to k. If M is a closed manifold, then for 2q≥ max{3 dimM, 2 dimM+
k}, there exists a smooth regular immersion f : M −→ R

4q such that
f∗(σ1) = ω1 and f∗(σ2) = ω2, where ω1 and ω2 are given exact two-forms
on M .

Theorem B is now immediate from the above corollary if we take ω1 =
ω2 = ω.

We end this section with the following result in h-principle.

Theorem 3.1. Let σ1, σ2 be two exact two-forms on a manifold N , and ω1

and ω2 two exact two-forms on M . Then (σ1, σ2)-regular maps f : M×R −→
N which pull back the forms σ1 and σ2 onto p∗ω1 and p∗ω2, respectively,
satisfy the h-principle.

We postpone the proof of this theorem as of now.

4. h-Principle of immersions inducing given pair of forms

In this section, we assume that σ1 and σ2 are arbitrary closed two-forms on
N and ω1, ω2 are two closed two-forms on M . We aim to see if the regular
maps f : M → N satisfying f∗σi = ωi, i = 1, 2 follow the h-principle.
We first note that such an f pulls back the deRham cohomology classes of
σ1 and σ2, respectively, onto those of ω1 and ω2. Therefore, the h-principle
can at most be C0-dense (Definition A.2)in the space of continuous maps
f0 : M → N such that f∗0 [σi] = [ωi] for i = 1, 2, in which case the solution
space, if non-empty, is dense in the space of such continuous maps f0. In
view of this we start with a smooth map f0 : M → N which satisfies these
cohomology conditions. Let p1 and p2 denote the projection maps of the
product manifold M × N onto M and N , respectively. Consider the two
product forms on M ×N :

σ̄1 =: p∗1ω1 − p∗2σ1 and σ̄2 =: p∗1ω2 − p∗2σ2.

Since the graph of f0 is an embedded submanifold of the product manifold
M × N , the cohomology condition on f0 implies that both σ̄1 and σ̄2 are
exact in a tubular neighbourhood Y of graph f0. Suppose, σ̄i = dτi for some
one-forms τi on Y , i = 1, 2.
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If f̄ : M → M ×N is a section of p1 then we will denote the underlying
map of f̄ , namely p2◦f̄ , by f . If f is (σ1, σ2)-regular then f̄ is (σ̄1, σ̄2)-regular
(see Observation in Section 2).

Let Γ∞(Y ) denote the sheaf of C∞ sections of the product bundle M ×
N →M whose images lie in Y . Define a differential operator D̄ as follows:

Γ∞(Y ) × C∞(M) × C∞(M) D̄−→ Ω1(M) × Ω1(M),

(f̄ , φ1, φ2) �→ (f̄∗τ1 + dφ1, f̄
∗τ2 + dφ2).

If D̄(f̄ , φ1, φ2) = 0 then f∗σ1 = ω1 and f∗σ2 = ω2.
Now, as we observed in the previous section, D̄ is infinitesimally invertible

at all triples (f̄ , φ1, φ2) for which p2 ◦ f̄ is (σ1, σ2)-regular. Consequently, D̄
is a first-order differential operator which admits a zeroth-order inversion of
defect 1 (see Section 5).

Let E denote the fibre bundle over M whose total space is Y × R × R

and the projection map π : E → M is defined by π(y, t, s) = p1(y), where
(y, t, s) ∈ Y ×R×R. The sections of E are in one-to-one correspondence with
triples (f̄ , φ1, φ2), where f̄ ∈ Γ∞(Y ) and φ1, φ2 ∈ C∞(M). Let G denote the
vector bundle Λ1(M)⊕Λ1(M), where Λ1(M) is the cotangent bundle of M .
The operator D̄ induces a sequence of bundle maps Δ̄α : E(α+1) → G(α),
α ≥ 0, satisfying the relations Δ̄α ◦ jα+1

(f̄ ,φ1,φ2)
= jα

D̄(f̄ ,φ1,φ2)
(see Section 5).

For each non-negative integer α, we now define a differential relation R̄α =
Δ̄−1

α (0). All these relations have the same C∞ solutions as the equation
D̄ = 0.

Let R̄2 be the subset of R̄2 consisting of all three-jets at x, x ∈M , which
can be represented by a local section (f̄ , φ1, φ2) of E such that p2 ◦ f̄ is
regular at x. Therefore, (f̄ , φ1, φ2) is a solution of R̄2 if

(1) f = p2 ◦ f̄ is (σ1, σ2)-regular, and
(2) f̄∗τ1 + dφ1 = 0 and f̄∗τ2 + dφ2 = 0, that is D̄(f̄ , φ1, φ2) = 0.

Let Φ̄ denote the solution sheaf of R̄2 and Ψ̄2 the sheaf of sections of R̄2.
The next result follows from Theorem A.2 and Proposition A.1 in

Section 5.

Proposition 4.1. Φ̄ is a microflexible sheaf. Moreover, the three-jet map
j3 : Φ̄ → Ψ̄2 is a local weak homotopy equivalence; in other words, R̄2

satisfies the local parametric h-principle.

Remark 4.1. Let Φ denote the sheaf of regular solutions of the original
differential equation, namely, Df ≡ (f∗σ1, f

∗σ2) = (ω1, ω2). Let R1 be the
subset of J2(M,N) consisting of two-jets of infinitesimal regular solutions
of order 1 of the differential equation D = (ω1, ω2) and Ψ1 the sheaf of
sections of R1. There is a canonical map p′ : Φ̄ → Φ which takes the triple
(f̄ , φ1, φ2) onto p2 ◦ f̄ . Then p′ induces a map p : R̄2 → R1 defined by
(j3

f̄
, j3φ1

, j3φ2
)(x) �→ j2

p2◦f̄ (x). To see this, we note that the exterior differential
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operator d determines, for each k ≥ 1, a sequence of bundle maps dα :
(Λk(M))(α+1) −→ (Λk+1(M))(α), α = 0, 1, 2, . . . such that dα ◦ jα+1

τ = jα
dτ ,

where τ is a k-form. Therefore, if j2
(f̄∗τ1+dφ1)

= 0 and j2
(f̄∗τ2+dφ2)

= 0 at x,
then applying d1 on both sides we get j1f∗σ1

(x) = j1ω1
(x) and j1f∗σ2

(x) =
j1ω2

(x), where f = p2 ◦ f̄ . Thus, f is an infinitesimal solution of order 1 of
the equation D = (ω1, ω2).

Further, we have the following commutative diagram which relates the
solution sheaves of the two differential equations:

where p∗ is the map induced by p. It can be proved following [5] that p :
R̄2 → R1 is a surjective submersion and the fibres of p are affine subspaces;
hence p has a section. These are, in fact, consequences of the following
sequence of vector bundles and maps which is exact by the formal Poincaré
Lemma:

· · · −→
(
Λk−2(M)

)(3) d2−→
(
Λk−1(M)

)(2) d1−→
(
Λk(M)

)(1) −→ · · · .
Since p has a section, p∗ is onto. It is now easy to see from the above
commutative square, that if R̄2 satisfies the h-principle, then R1 also satisfies
the h-principle.

We recall the following definitions from [8, 3.4.1(B)].

Definition 4.1. Let M be a smooth manifold with a closed two-form ω. A
vector field ∂ on M is said to be ω-isometric if the Lie derivative L∂ω = 0,
in other words, ∂.ω is a closed form. The vector field ∂ is said to be ω-exact
if there exists a zero-form α (i.e., a function on M) such that ∂.ω = dα.

A (local) isotopy δt : U →M is called exact if δ′t = dδt
dt is an exact vector

field on δt(U) for all t ∈ [0, 1] and there exists a homotopy of zero-forms αt

defined on δt(U) such that δ′t.ω = dαt.

Observation. The isotopy defined by a ω-isometric vector field consists of
diffeomorphisms which preserve the form ω. If δt is a ω exact diffeotopy
which fixes an open set U0 pointwise then the exact one-forms δ′t.ω vanish
on U0. This means that any primitive of δ′t.ω takes a constant real value
on U0. Hence, we can choose a primitive φt which also vanishes on the set
U0. We would like to remark here that diffeotopies with this property are
referred as strictly exact diffeotopy in [8, 3.4.1].

Lemma 4.1. Suppose that ω1 = ω2 = ω. Then the ω-exact diffeotopies of
M act on the sheaf Φ̄.
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Proof. We follow [8, 3.4.1(B)] to define an action of strictly ω-exact dif-
feotopies on Φ̄. First note that each diffeotopy δt : U → V of open subsets
of M lifts to a diffeotopy δ̄t : U ×N → V ×N by δ̄t(u, x) = (δt(u), x).

Suppose that, Y ′ ⊂ Y ∩ (U ×N) and δ̄t(Y ′) ⊂ Y for all t. Then δt has a
natural action on sections f̄ : V → V ×N whose images lie in Y . The action
is given by δt.f̄ = δ̄−1

t f̄ δt (see Example A.1 in Section 5).
Differentiating the homotopy of one-forms δ̄∗t τ1 with respect to t we obtain

Lδ̄′t
τ1 = δ̄′t.σ̄1 + d(δ̄′t.τ1) = p∗1(δ

′
t.ω) + d(δ̄′t.τ1).

If δt is strictly ω-exact, then there exists a homotopy of C∞ functions αt

along δt(U) such that δ′t.ω = dαt. Hence

(4.1) δ̄∗t τ1 = τ1 + dφt, where φt =
∫ t

0
(p∗1αt + δ̄′t.τ1)dt.

Further, if δt is constant on U0 for t ≤ t0, we can and we do choose φt = 0
for t ≤ t0.

Consider a triple (f̄ , φ, ψ) in Φ̄ so that f̄ : V → V × N has its image in
Y and f̄∗τ1 + dφ = 0, f̄∗τ2 + dψ = 0. If we define δt.f̄ = δ̄−1

t f̄ δt, then using
equation (4.1) we obtain

(δt.f̄)∗τ1 = δ∗t f̄
∗(δ̄−1

t )∗τ1
= δ∗t f̄

∗[τ1 − d(δ̄−1
t )∗φt]

= −δ∗t dφ+ d(δt.f̄)∗φt

= −d[δ∗t φ− (δt.f̄)∗φt].

Finally, since δt is strictly ω-exact diffeotopy, φ �→ δ∗t φ− (δt.f̄)∗φt defines
an action on the space of C∞ functions on M (for a fixed f̄). Indeed, if δt
is constant in t on a maximal open set U0 then we can choose φt = 0 on U0

and then δ∗t φ− (δt.f̄)∗φt is constant on U0.
Therefore, we can define the action of a strictly exact diffeotopy δt satis-

fying δ̄t(Y ′) ⊂ Y on Φ̄ by

δt.(f̄ , φ, ψ) = (δt.f̄ , δ∗t φ− (δt.f̄)∗φt, δ
∗
tψ − (δt.f̄)∗ψt),

where δt.f̄ = δ̄−1
t f̄ δt and φt, ψt satisfy the relations δ̄∗t τ1 = τ1 + dφt, δ̄∗t τ2 =

τ2 + dψt. �

Proposition 4.2. Suppose that ω1 = ω2 = ω, where ω is the zero-form or a
symplectic form on M . If M0 is a submanifold of M of positive codimension
then j3 : Φ̄|M0 → Ψ̄2|M0 is a weak homotopy equivalence.

Proof. In view of Theorem A.3 in Section 5 and Proposition 4.1 we need to
show that there is an appropriate class of (local) diffeotopies which act on
the sheaf Φ̄ and have the desired sharply moving property. We first consider
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the case when ω is a symplectic form. Recall that ω defines a canonical iso-
morphism Iω : TM → T ∗M which in turn defines a one-to-one correspon-
dence between vector fields and one-forms on M . Indeed, if ∂ is a vector
field on M then ∂.ω is a global one-form on M . The ω-exact (local) diffe-
topies are obtained by integrating the vector fields which correspond to the
exact one-forms under this correspondence. As we observed in Lemma 4.1,
these diffeotopies act on the sheaf Φ̄. It is also known that these diffeotopies
sharply move any submanifold of M of positive codimension (see [8, 3.4.2]).
This proves the proposition for the case when ω is symplectic.

If ω is the zero form, it is enough to observe that any local diffeotopy is
ω-exact. �

We are now in a position to prove Theorem C.

Proof of Theorem C. Since M is an open manifold, it admits a Morse func-
tion without any critical point of index equal to the dimension of M [10].
It then follows from Morse theory that, there is a simplicial complex K in
M of positive codimension which is a strong deformation retract of M . In
fact, M is isotopic to an arbitrarily small open neighbourhood of K. Now,
by the above proposition, the h-principle for Φ̄ localizes near K, and hence
the h-principle for the sheaf Φ also localizes near K (see Remark 4.1). This
means that a section of R1 can be homotoped to a solution f1 of the dif-
ferential equation D = (ω, ω) near K, where ω is either the zero-form or a
symplectic form on M .

To prove (a), take an isotopy φt such that φ1 brings M into the domain
of f1. Then the composition map f1 ◦ φ1 is a global solution of the equation
D = (0, 0).

To obtain global h-principle stated in (b) we observe that there is a homo-
topy of symplectic immersions φt : (M,ω) → (M,ω) such that φ0 = id and
φ1 mapsM intoK ([5, 6]). Composing f1 with φ1 we obtain a global solution
of the equation D = (ω, ω). �
Remark 4.2. If (M0, ω0) is a symplectic manifold then as a direct conse-
quence of the above theorem we obtain the h-principle with M = M0 × R

2

and ω = ω0 ⊕ dx∧ dy.
Proof of Theorem 3.1. Let ω1 = dα1 and ω2 = dα2 for some one-forms
α1, α2 on M . Let Φ̃ denote the sheaf of solutions of the differential equation
D̃ = (p∗α1, p

∗α2), where D̃ is defined as in Section 3. A diffeomorphism
λ : M × R → M × R is said to be fibre-preserving if p ◦ λ = λ,
where p : M × R → M is the projection onto the first factor. Hence
λ∗p∗αi = p∗αi, i = 1, 2, for such a λ. This allows us to define an action
of fibre-preserving diffeomorphisms on the sheaf Φ̃. Indeed, if D̃(f, φ1, φ2) =
(p∗α1, p

∗α2) and f is regular, then f∗τi + dφi = p∗αi, where σi = dτi for
i = 1, 2. If λ is a fibre-preserving diffeomorphism then we define an action
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by the following simple rule:

λ.(f, φ1, φ2) = (f ◦ λ, φ1 ◦ λ, φ2 ◦ λ).

(Note that if λt is a fibre-preserving diffeotopy, then the vector fields λ′t has
no component along M0. Hence, λ′t is ω-exact for any two-form ω of the form
p∗1ω0, where ω0 is a two-form on M .) Since we observed in Proposition 3.1
that D̃ is infinitesimally invertible on regular maps, the hypothesis of Theo-
rem A.4 is satisfied (by Theorem A.2 and Proposition A.1 in Section 5). This
proves that Φ̃ satisfies the h-principle. This h-principle then descends to the
desired h-principle for Φ by an argument similar to that in Remark 4.1. �

5. Appendix A. Preliminaries of h-principle

Here we briefly discuss the sheaf technique and the analytic technique in the
theory of h-principle following [8].

Let p : E −→M be a C∞-fibration, and let E(r) denote the r-jet space of
C∞-sections of E for r ≥ 1. Then the canonical projection p(r) : E(r) −→M
is also a fibration. We endow the space of sections of p and p(r) with the
C∞ and C0-compact open topologies, respectively. The canonical projection
maps E(r) → E(i) are denoted by pr

i .
A partial differential relation of order r for sections of E is a subset R of

E(r). A section f : M −→ E is said to be a solution of R if the r-jet map
jr
f (which is a section of p(r)) maps M into R. A section of p(r) is called

holonomic if it is the r-jet map of a solution of R.
We denote the space of solutions of R by SolR, while Γ(R) denotes the

space of sections of E(r) −→M whose images lie in R.

Definition A.1. A relation R is said to satisfy the h-principle if a section
of R can be homotoped within Γ(R) to a holonomic section.

R satisfies the parametric h-principle if the r-jet map jr : SolR −→ Γ(R)
is a weak homotopy equivalence.

Definition A.2. Let S be a subspace of the space of continuous sections
of E. A relation R ⊂ E(r) is said to satisfy the h-principle C0-dense in S
if for every f0 ∈ S, for every neighbourhood U of graph f0 and for every
section φ0 : M → R satisfying pr

0 ◦ φ0 = j0f0
, there exists a homotopy of

sections φt : M → R such that the image of pr
0 ◦ φt is contained in U and

φ1 is holonomic.

Let Φ denote the sheaf of solutions of a given relation R, and Ψ the
sheaf of sections of R. The topologies on Φ(U) and Ψ(U) are, respectively,
the C∞ and C0 compact open topologies. The r-jet map jr defines a sheaf
homomorphism from Φ to Ψ. This takes us into the realm of topological
sheaves.
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Sometimes, by an abuse of language, we say that the sheaf Φ satisfies
the h-principle without giving any reference to a partial differential relation.
But one should be careful at this point, since two subsets R and R′ possibly
in different jet spaces E(r) and E(s) may have the same set of solutions, but
one of the relations may satisfy the h-principle while the other may not. In
fact, given an rth-order relation R, we can form an sth-order relation R′
(for any s > r) by taking s-jets of Cs solutions of R.

We recall some general definitions and terminology from [8].

Definition A.3. Let F be a topological sheaf over M and A a compact set
in M . Then F(A) will denote the direct limit of the sets F(U), where U
runs over all open sets containing A.

However, these sets, F(A), will have only quasi-topological structures [8,
1.4.1]. A map f : P −→ F(A) on a polyhedron P is called continuous (in
the quasi-topological sense) if there exists an open set U ⊃ A such that each
fp is defined over U and the resulting map P −→ F(U) is continuous with
respect to the given topology on F(U).

Definition A.4. R satisfies the local parametric h-principle if for each x ∈
M , jr : Φ(x) −→ Ψ(x) is a weak homotopy equivalence.

Definition A.5. A topological sheaf F over M is flexible if the restriction
maps F(A) −→ F(B) are Serre fibrations for every pair of compact sets
(A,B), A ⊃ B. The restriction map F(A) −→ F(B) is called a microfibra-
tion if given a continuous map f ′0 : P −→ F(A) on a polyhedron P and a
homotopy ft, 0 ≤ t ≤ 1, of f ′0|B there exists an ε > 0 and a homotopy f ′t
of f ′0 such that f ′t |OpB = ft for 0 ≤ t ≤ ε. If for every pair of compact
sets the restriction morphism is a microfibration, then the sheaf F is called
microflexible.

The following topological result provides a sufficient condition for a sheaf
homomorphism to be a weak homotopy equivalence.

Theorem A.1 ([8, 2.2.1(B)]). Let F and G be two flexible sheaves over
M , and let α : F −→ G be a continuous sheaf homomorphism such that
α(x) : F(x) −→ G(x) is a weak homotopy equivalence for each x ∈M . Then
α is a weak homotopy equivalence.

Thus, if the solution sheaf Φ is flexible and if R satisfies the local para-
metric h-principle, then R satisfies the parametric h-principle (because Ψ is
always flexible [8, 1.4.2(A′)]).

The solution sheaf turns out to be non-flexible in many important prob-
lems, though microflexibility is a much more common property. For example,
when R is open the solution sheaf is easily seen to be microflexible; however,
many of the relations that are of special interest are fibrewise closed in the
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jet space. This is the case, when the solutions of R also arise as solutions
to some PDEs D(f) = g, where D is defined on sections of the fibre bundle
E taking values in the space of sections of a vector bundle. Gromov proves
that Φ (or possibly a subsheaf of Φ) is microflexible when the operator D
is infinitesimally invertible over an open subset of Γ∞(E) in the fine C∞
topology. On the other hand, he observes that there are higher order rela-
tions Rα ⊂ J (r+α), α = 0, 1, 2, . . . , that have the same solution space as R
and which satisfy the local parametric h-principle for α > α0, where α0 is
some positive integer.

To elaborate this let E −→M be a C∞-fibration and G −→M be a C∞
vector bundle over a manifold M . We denote by Eα and Gα, respectively,
the spaces of Cα sections of E and G with the fine Cα topologies, for α =
1, 2, . . . ,∞. Let D : Er −→ G0 be a C∞ differential operator of order r,
which means that D is given by a C∞ bundle map Δ : E(r) → G such
that D(f) = Δ ◦ jr

f . As a consequence, we obtain a sequence of bundle
maps Δα : E(r+α) → G(α) such that jα

D(f) = Δα ◦ jr+α
f , where α is any

non-negative integer.
Let V denote the subbundle of TE consisting of all vectors which are

tangent to the fibres of E over points of M . We shall refer V as the vertical
tangent bundle of E. For any section f of E, the vector space of Cβ sections
of the pullback bundle f∗V will be denoted by Eβ

f . The space Eβ
f is defined

as the infinite-dimensional tangent space of E at f . It is not difficult to see
that when E is a vector bundle, f∗V is canonically isomorphic to E and
therefore Eβ

f is isomorphic to Eβ .
The linearization Lf of D at f is a map Lf : Er

f −→ G0 which is defined
as follows:

Lf (y) = lim
t→∞

∂

∂t
D(ft)|t=0,

where ft is a differentiable curve in Er such that f0 = f and the tangent to
ft at t = 0 is y ∈ Er

f . Clearly, Lf is a linear differential operator of order r
in y and L(f, y) = Lf (y) is a differential operator of order r in both f and
y.

Let A ⊂ E(d) be an open relation of order d for some d ≥ r, and A denote
the space of solutions of the relation A. Clearly, A is contained in Ed, and
Aα+d = A ∩ Eα+d is an open subset of Eα+d in the fine Cα+d topology. A
solution of A will be referred as an A-regular section of E.

D is said to be infinitesimally invertible over the subset A ⊂ Ed if for
every f ∈ A there is a linear differential operator Mf : Gs −→ E0

f of a
certain order s (independent of f) such that the following properties are
satisfied:
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(1) The global operator

M : Ad × Gs −→ T (E0)

is a differential operator that is given by a C∞ map A⊕G(s) −→ V .
(2) L(f,M(f, g)) = g for all f ∈ Ad+r and g ∈ Gr+s, where M(f, g) =

Mf (g). In other words, Mf is a right inverse of Lf .
The integer d is called the defect of the infinitesimal inversion M [8, 2.3.1].

We now quote two results from [8] which are consequences of an Implicit
Function Theorem (due to Gromov) in the context of differential operators.

Theorem A.2 ([8, 2.3.2(B),(D′′)]). Suppose that D is a C∞ differential
operator of order r and it admits an infinitesimal inversion of defect d on A.

(i) The operator D : A∞ −→ G∞ is an open map in the respective fine
C∞ topologies.

(ii) The sheaf of A-regular solutions of the differential equation D = g
is microflexible, where g is a smooth section of G.

Definition A.6. A local section f of E, defined on a neighbourhood of
some x ∈ M , is said to be an infinitesimal solution of D = g of order α if
the α-jet of D(f) − g is zero at x.

Let Rα ⊂ E(α+r) consist of (α+r)- jets of infinitesimal solutions of D = g
of order α and let R0 be denoted as R. Since jα

D(f) = Δα ◦ jr+α
f , therefore,

Rα = (Δα)−1(jα
g ).

Define

Rα = Rα ∩ (pα+r
d )−1(A),

where pα+r
d : E(α+r) −→ E(d) is the canonical projection map for α ≥ d− r.

The relations Rα have the same C∞ solutions for all α ≥ d− r, namely the
C∞ solutions of the equation D(x) = g in A.

Let Φreg denote the sheaf of A-regular solutions of the equation D = g
with the C∞ compact open topology and let Ψα be the sheaf of sections of
Rα with C0 compact open topology.

Proposition A.1 ([8, 2.3.2(D′),(D′′)]). If D admits an infinitesimal inver-
sion of order s and defect d on A then the map J : Φreg −→ Ψα,
defined by J(φ) = jr+α

φ , is a local weak homotopy equivalence for each
α ≥ max(d + s, 2r + 2s). In other words, Rα satisfies the local paramet-
ric h-principle.

Thus we see that there is a large class of relations R which satisfy the
local h-principle and for which the solution sheaves are microflexible. The
following result of Gromov in [8, 2.2.3(C′)] is the central result in the theory
of h-principle as far as the sheaf technique is concerned:
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Theorem A.3. If Φ is a microflexible sheaf on a manifold M and N is an
embedded submanifold of positive codimension, then Φ|N is flexible, provided
there is a class of ‘acting diffeotopies’ D0 which ‘sharply moves N ’.

We now explain the notion of ‘acting diffeotopies’ and ‘sharply moving
diffeotopies’.
Action of diffeotopies: Let Φ be a topological sheaf over a manifold M and
U ′ an open subset of M . Consider a diffeotopy δt : U → U ′ that moves an
open subset U ⊂ U ′ inside U ′, where δ0 = id. Let Φ′ be a subset of Φ(U ′),
and the diffeotopy δt act on Φ′ by assigning a homotopy of sections δ∗t φ in
Φ(U) to every φ ∈ Φ′ such that δ∗0φ = φ|U and the following conditions are
satisfied:

(1) If two sections φ1 and φ2 in Φ′ are such that φ1(u′) = φ2(u′) for some
u′ ∈ U ′ and if δt0(u) = u′ for some u ∈ U , then δ∗t0φ1(u) = δ∗t0φ1(u).
In particular, if the two sections φ1 and φ2 restrict to the same section
on U , then (δt|U )∗φ1 = (δt|U )∗φ2.

(2) If U0 is a maximal open subset where δt is constant, (that is, δt(x) = x
for all x ∈ U0,) then δ∗t φ is also constant on U0 (that is δ∗t φ = φ on
U0).

(3) If the diffeotopy δt is constant for t ≥ t0, then δ∗t φ is also constant for
t ≥ t0 for some t0 ∈ [0, 1].

(4) If φp ∈ Φ′, p ∈ P , is a continuous family of sections then the family
δ∗t φp is jointly continuous in p and t.

Conditions (2) and (3) are natural in the sense that they make the action
compatible with the presheaf structure.

One must note that this is a partial action as δt need not in general act
on Φ(U). Further, there is no condition on the subset Φ′.

Example A.1. Let Φ denote the sheaf of sections of the product bundle
M × N over M . Then Diff(M), the pseudogroup of local diffeomorphisms
of M , has a natural action on Φ given by δ.f̄ = δ̄−1f̄ δ, where f̄ ∈ Φ and
δ̄ : U×N → V ×N is given by δ̄(x, y) = (δ(x), y). We can extend this action
to an action by diffeotopies of M . However, if we consider the subsheaf ΦY

of sections of M × N whose images lie in an open subset Y then ΦY is
not invariant under this action. In this case we get only a partial action by
diffeotopies: indeed, if δt is sufficiently C0-close to the identity map then it
acts on ΦY (U). More generally, if δt is a diffeotopy that moves U in M and if
there is an open subset Y ′ ⊂ (U ×N) such that δ̄t(Y ′) ⊂ Y for all t ∈ [0, 1],
then δt acts on the sheaf ΦY .

Definition A.7. We fix a metric d on M . Let M0 be a submanifold of M
of positive codimension which lies in an open subset U ′ of M . A class of
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diffeotopies D on M is said to sharply move M0 in M if given any hyper-
surface S in M0 and any positive numbers ε, we can obtain a diffeotopy
δt : OpM0 → U ′ in D which satisfies the following conditions:

(1) δ0 is the identity map;
(2) δt|Op v is identity for all v ∈M0 for which d(v, S) ≥ ε;
(3) d(δ1(S),M0) > r for some positive number r.

We end this section with the following result of h-principle.

Theorem A.4. Let M = M0 × R. Suppose that R satisfies the local para-
metric h-principle and the solution sheaf Φ of R is microflexible. If the
fibre-preserving diffeotopies of M act on Φ then R satisfies the h-principle.

Proof. Since the fibre-preserving diffeotopies of M sharply move the
submanifold M0, it follows from Theorem A.3 that a section of R can be
homotoped to a holonomic section jr

f over an open neighbourhood U of
M0 × {0} in M . Since M is split as M0 × R, we can deform M into U by a
smooth one-parameter family of embeddings Ft : M0 × R −→ M0 × R, 0 ≤
t ≤ 1, such that Ft is fibre-preserving and F1 takes M into U . Since Ft acts
on Φ, F ∗

1 f is a global solution of R. This proves the theorem. �
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