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SYMMETRY OF A SYMPLECTIC TORIC MANIFOLD

Mikiya Masuda

The action of a torus group T on a symplectic toric manifold (M, ω)
often extends to an effective action of a (non-abelian) compact Lie
group G. We may think of T and G as compact Lie subgroups of the
symplectomorphism group Symp(M, ω) of (M, ω). On the other hand,
(M, ω) is determined by the associated moment polytope P by the
result of Delzant [4]. Therefore, the group G should be estimated in
terms of P or we may say that a maximal compact Lie subgroup of
Symp(M, ω) containing the torus T should be described in terms of P .
In this paper, we introduce a root system R(P ) associated to P and
prove that any irreducible subsystem of R(P ) is of type A and the root
system Δ(G) of the group G is a subsystem of R(P ) (so that R(P ) gives
an upper bound for the identity component of G and any irreducible
factor of Δ(G) is of type A). We also introduce a homomorphism D from
the normalizer NG(T ) of T in G to an automorphism group Aut(P ) of
P , which detects the connected components of G. Finally, we find a
maximal compact Lie subgroup Gmax of Symp(M, ω) containing the
torus T such that Δ(Gmax) = R(P ) and D is onto.

1. Introduction

A symplectic toric manifold is a compact connected symplectic manifold
(M, ω) with an effective Hamiltonian action of a torus group T of half
the dimension of the manifold M . Delzant [4] proves that M is equivari-
antly diffeomorphic to a smooth projective toric variety with the restricted
T -action. Moreover he classifies symplectic toric manifolds by showing that
the correspondence from symplectic toric manifolds modulo equivalence to
their moment polytopes is one-to-one. Therefore, all geometrical information
on (M, ω) is encoded in the moment polytope P associated with (M, ω).

The T -action on (M, ω) often extends to an effective action of a (non-
abelian) compact Lie group G. We may think of T and G as compact Lie
subgroups of the symplectomorphism group Symp(M, ω) of (M, ω). Since
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the T -fixed point set in M is non-empty and dim T = 1
2 dim M , there is no

torus subgroup of Symp(M, ω) containing T properly. This means that T is
a maximal torus of G.

In this paper, we introduce a root system R(P ) associated to the moment
polytope P and a homomorphism

D : NG(T ) → Aut(P ),(1.1)

where NG(T ) denotes the normalizer of T in G and Aut(P ) denotes an
automorphism group of P . It turns out that the root system R(P ) gives
information on the identity component G0 of G and the homomorphism D
induces an injective homomorphism

G/G0 ∼= NG(T )/NG0(T ) → Aut(P )/D(NG0(T )),

so that D detects the connected components of G. Here is a summary of our
results.

Theorem 1.1. Let (M, ω) be a symplectic toric manifold with a Hamiltonian
action of a torus T of half the dimension of the dimension of M and let P
be the associated moment polytope. Then the following hold:

(1) Any irreducible subsystem of R(P ) is of type A.
(2) If G is a compact Lie subgroup of Symp(M, ω) containing the torus

T , then the root system Δ(G) of G is a subsystem of R(P ), so that
any irreducible factor of Δ(G) is of type A by (1) above.

(3) Let G be as in (2) above. If Δ(G) = R(P ) and the homomorphism D
in (1.1) is surjective, then G is maximal among compact Lie subgroups
of Symp(M, ω), i.e., G is not properly contained in a compact Lie
subgroup of Symp(M, ω).

(4) There exists a compact Lie subgroup Gmax of Symp(M, ω) containing
the torus T such that the assumption in (3) above is satisfied.

Remark 1.1. By (3) above, the group Gmax in (4) above, which contains
the torus T , is maximal among compact Lie subgroups of Symp(M, ω).
However, the author does not know whether any maximal compact Lie sub-
group of Symp(M, ω) containing T is conjugate to Gmax in Symp(M, ω),
where the torus T is fixed. Related to this question, it is proved in [8] that
when dim M = 4, the number of conjugacy classes of 2-dimensional tori in
Symp(M, ω) is finite.

Our work is motivated by the work of Demazure [5] (see also [3] or [11,
Section 3.5]). He introduces a root system R(Δ) for a complete non-singular
fan Δ and proves that it agrees with the root system of the automorphism
group Aut(X(Δ)) of the compact smooth toric variety X(Δ) associated
with Δ, where Aut(X(Δ)) is known to be an algebraic group, and that
Rs(Δ) := R(Δ)∩(−R(Δ)) is the root system of the reductive (or semisimple)
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part of Aut(X(Δ)). The symplectic toric manifold (M, ω) is equivariantly
diffeomorphic to a smooth projective toric variety X with the restricted
T -action as mentioned before and the fan ΔX of the X is the so-called normal
fan derived from the moment polytope P associated with (M, ω), where
normal vectors vi’s to facets of P are edge vectors in the fan ΔX . One sees
that our root system R(P ) agrees with Rs(ΔX). Demazure also describes the
connected components of Aut(X(Δ)) in terms of the automorphism group
Aut(Δ) of the fan Δ. The automorphism group Aut(P ) of P can be regarded
as a counterpart to Aut(Δ); in fact, Aut(P ) can be regarded as a subgroup
of Aut(Δ). We remark that the root systems R(P ) and R(Δ) depend only on
the vectors vi’s but Aut(P ) and Aut(Δ) are not determined by the vectors.

This paper is organized as follows. In Section 2 we review an explicit
construction (called the Delzant construction in [6]) of a symplectic toric
manifold (M, ω) with moment polytope P . In Section 3 we rewrite the con-
struction in terms of equivariant (co)homology and also recall some facts on
the equivariant cohomology of M . In Section 4 we make some observations
on roots of a compact Lie subgroup G of Symp(M, ω) containing the torus T .
Based on the observations, we introduce the root system R(P ) and prove
the assertions (1) and (2) in Theorem 1.1 (see Proposition 5.1, Theorem 5.1
and Corollary 5.1). In Section 6 we find a connected compact Lie subgroup
G of Symp(M, ω), which attains the equality Δ(G) = R(P ). In Section 7
we introduce the homomorphism D in (1.1) for an arbitrary subgroup G of
Symp(M, ω) containing T and observe that D detects the connected com-
ponents of G when G is a compact Lie group. The assertions (3) and (4) in
Theorem 1.1 are proved in Section 8 (see Theorem 8.1).

Throughout this paper, (M, ω) will denote a symplectic toric manifold
with moment polytope P , where a Hamiltonian T -action on (M, ω) is incor-
porated, although it is often not mentioned explicitly. The argument devel-
oped in this paper works for torus manifolds introduced in [7] with some
modification. We will discuss this in a forthcoming paper.

2. Delzant construction

By the result of Delzant mentioned in the Introduction, a symplectic toric
manifold (M, ω) is determined by the associated moment polytope P and
is explicitly constructed from P . We will review the construction in this
section. The details can be found in [6].

Let μ : M → t∗ be a moment map associated with (M, ω) so that μ(M) =
P , where t∗ is the dual of the Lie algebra t of T . The moment map μ is
uniquely determined by (M, ω) up to parallel translations in t∗. We identify
t with R

n and t∗ with (Rn)∗ and express

(2.1) P = {u ∈ (Rn)∗ | 〈u, vi〉 ≥ ai (i = 1, . . . , m)}
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where vi ∈ Z
n is primitive, 〈 , 〉 is a natural pairing (i.e., evaluation) and

ai ∈ R. Without loss of generality, we may assume that there is no redundant
inequality in (2.1) so that the intersection of P with the hyperplane defined
by 〈u, vi〉 = ai is a facet (i.e., codimension 1 face) of P for each i, which we
denote by Pi. So there are exactly m facets in P . The moment polytope P
is non-singular, which means that P is simple and whenever n facets of P
meet at a vertex, the n vectors vi’s normal to the n facets form a basis of
Z

n. A non-singular polytope is called a Delzant polytope in [6].
Let e1, . . . , em be the standard basis of Z

m and consider the linear map
π∗ : Z

m → Z
n sending ei to vi for i = 1, . . . , m. Since P is non-singular, π∗

is surjective and we have an exact sequence

(2.2) 0 → Ker π∗
ι∗−→ Z

m π∗−→ Z
n → 0

where ι∗ is the inclusion. Taking the dual of this sequence, we obtain an
exact sequence

(2.3) 0 ← (Ker π∗)∗ ι∗←− (Zm)∗ π∗
←− (Zn)∗ ← 0

and one easily sees that

(2.4) π∗(u) =
m∑

i=1

〈u, vi〉e∗
i for any u ∈ (Zn)∗,

where e∗
1, . . . , e

∗
m denote the dual basis of e1, . . . , em.

The map π∗ (resp. π∗) extends to a linear map from R
m onto R

n (resp.
from (Rn)∗ to (Rm)∗) and we use the same notation for the extended map.
We define π∗

a : (Rn)∗ → (Rm)∗ by

π∗
a(u) := π∗(u) −

m∑

i=1

aie
∗
i =

m∑

i=1

(〈u, vi〉 − ai)e∗
i .

The map π∗
a embeds P into the positive orthant of (Rm)∗. The fiber product

of π∗
a and the (moment) map

(2.5) Φ: C
m → (Rm)∗

sending z = (z1, . . . , zm) to 1
2
∑m

i=1 |zi|2e∗
i is

(2.6)

{
(z, u) ∈ C

m × (Rn)∗ | 1
2

m∑

i=1

|zi|2e∗
i = π∗

a(u)

}
.

Since π∗
a is injective and ι∗(π∗

a(u)) = −
∑m

i=1 aiι
∗(e∗

i ) for any u, the first
projection from C

m × (Rn)∗ onto C
m maps the fiber product (2.6) diffeo-

morphically onto

(2.7) ZP :=

{
z ∈ C

m |
m∑

i=1

(
1
2
|zi|2 + ai

)
ι∗(e∗

i ) = 0

}
.
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Note that

(2.8) ZP = Φ−1(π∗
a(P )).

Remark 2.1. The manifold ZP is called the moment-angle manifold of P
and its topology is intensively studied in [2]. It is also studied in [1] from
the viewpoint of real algebraic geometry.

We identify R/Z with the unit circle S1 of the complex numbers C through
the exponential map x → exp

(
2π

√
−1x

)
and set

T := (S1)n.

The map π∗ in (2.2) induces an epimorphism

V : (S1)m → T

and we make an identification

(2.9) (S1)m/ Ker V = T

through the map V. An element c = (c1, . . . , cn) ∈ Z
n defines a homomor-

phism

(2.10) λc : S1 → T

sending g to (gc1 , . . . , gcn) and we note that

(2.11) V(g1, . . . , gm) =
m∏

i=1

λvi(gi) for (g1, . . . , gm) ∈ (S1)m.

An element b = (b1, . . . , bn) in Z
n also defines a homomorphism

χb : T → S1

sending (h1, . . . , hn) to
∏n

i=1 hbi
i . Then we have

(2.12) (χb ◦ λc)(g) = g〈b,c〉 for g ∈ S1

where 〈b, c〉 =
∑n

i=1 bici. Since the intersection of the kernels of χb : T → S1

for all b is trivial, it follows from (2.11) and (2.12) that

(2.13) KerV =

{
(g1, . . . , gm) ∈ (S1)m |

m∏

i=1

g
〈u,vi〉
i = 1 for ∀u ∈ Z

n

}
.

Remark 2.2. The elements b and u above are taken from Z
n but we will

see that it would be better to regard them as elements of (Zn)∗ through the
product 〈 , 〉.

The group (S1)m acts on C
m by componentwise multiplication and this

action leaves ZP invariant. The map Φ in (2.5) induces a homeomor-
phism from the quotient C

m/(S1)m onto the positive orthant of (Rm)∗ and
Φ(ZP ) = π∗

a(P ). The action of (S1)m restricted to Ker V is free on ZP and
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the quotient ZP / Ker V is known to be isomorphic to the given M . The
standard symplectic form

ω0 :=
√

−1
2

m∑

i=1

dzi ∧ dz̄i

on C
m is invariant under the linear action of the unitary group U(m). The

form ω0 descends to the given ω on M . In fact, if

q : ZP → M = ZP / Ker V

denotes the quotient map, then ω satisfies

(2.14) ω0|ZP
= q∗(ω)

and is uniquely determined by this identity, where the left-hand side denotes
the restriction of ω0 to ZP . The action of (S1)m on ZP induces an action
of T = (S1)m/ Ker V on M = ZP / Ker V and this T -action on M preserves
the symplectic form ω.

As remarked before, the equation 〈u, vi〉 = ai defines the facet Pi of P for
each i = 1, . . . , m, and

ZPi := Φ−1(π∗
a(Pi)) and Mi := q(ZPi)

are, respectively, closed smooth submanifolds of ZP and M of real codimen-
sion 2. We call Mi’s the characteristic submanifolds of M . We see from (2.7)
or (2.8) that

ZPi = ZP ∩ {zi = 0}
and hence it follows from (2.10) and (2.11) that

Lemma 2.1. For each i the characteristic submanifold Mi is fixed pointwise
by the S1-subgroup λvi(S

1) of T .

3. Equivariant cohomology

It is more convenient and natural to interpret the Delzant construction in
terms of equivariant (co)homology. We will discuss it and also recall some
facts on equivariant cohomology in this section. Recall that the equivariant
homology and cohomology of a space X with an action of the torus T are,
respectively, defined as

HT
∗ (X) := H∗(ET ×T X) and H∗

T (X) := H∗(ET ×T X),

where ET → BT = ET/T is a universal principal T -bundle and ET ×T X
is the quotient of ET × X by the T -action given by

(3.1) t(e, x) = (et−1, tx) for (e, x) ∈ ET × X and t ∈ T .
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Let (M, ω) be a symplectic toric manifold and let Mi’s (i = 1, . . . , m) be
the characteristic submanifolds of M . Since the ω restricted to Mi is again
a symplectic form, the form ω and its restriction to Mi define orientations
on M and Mi. Since M and Mi are oriented and the inclusion map from Mi

to M is equivariant, it defines an equivariant Gysin homomorphism

H∗
T (Mi) → H∗+2

T (M),

which raises the cohomological degree by 2 because the codimension of Mi

in M is 2. We denote by τi the image of the unit element 1 ∈ H0
T (Mi) by

the equivariant Gysin homomorphism. The cohomological degree of τi is 2.
We may think of τi as the Poincaré dual of the cycle Mi in the equivariant
setting. Since a cup product

∏
i∈I τi for I ⊂ [m] := {1, . . . , m} is the Poincaré

dual of ∩i∈IMi, we see that

(3.2)
∏

i∈I

τi = 0 if ∩i∈IMi = ∅.

It turns out that H∗
T (M) is generated by τi’s as a ring and that the relations

in (3.2) are the only relations among τi’s, i.e., we have

Lemma 3.1. H∗
T (M) = Z[τ1, . . . , τm]/

(∏
i∈I τi | ∩i∈IMi = ∅

)
as rings.

In particular, τi’s are a free additive basis of H2
T (M) and the following

easily follows from this fact.

Lemma 3.2 (see [10, Lemma 1.5] for example). Let π : ET ×T M → BT
be the projection on the first factor. Then for each i = 1, . . . , m, there is a
unique element vi ∈ H2(BT ) such that

(3.3) π∗(u) =
m∑

i=1

〈u, vi〉τi for any u ∈ H2(BT ),

where 〈 , 〉 denotes the natural pairing between cohomology and homology.

The Leray–Serre spectral sequence of the fibration

(3.4) M
ι−→ ET ×T M

π−→ BT

collapses because Hodd(M) = Hodd(BT ) = 0. Therefore H∗
T (M) = H∗

(BT ) ⊗ H∗(M) as H∗(BT )-modules and hence H∗(M) is the quotient of
H∗

T (M) by the ideal generated by π∗(u) for u ∈ H2(BT ). This together
with Lemmas 3.1 and 3.2 implies the following well-known fact.

Proposition 3.1. We set

(3.5) μi := ι∗(τi) ∈ H2(M).

Then H∗(M) is the quotient of a polynomial ring Z[μ1, . . . , μm] by the ideal
generated by the following two types of elements:

(1)
∏

i∈I μi for I ⊂ [m] with ∩i∈IMi = ∅.
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(2)
∑m

i=1〈u, vi〉μi for u ∈ H2(BT ).

A homomorphism f : S1 → T induces a continuous map Bf : BS1 →
BT . We fix a generator κ of H2(BS1) ∼= Z. Then the correspondence f →
(Bf)∗(κ) defines an isomorphism

(3.6) Hom(S1, T ) ∼= H2(BT )

and we denote by λv the element of Hom(S1, T ) corresponding to v ∈
H2(BT ). The identity in Lemma 3.2 implies the following.

Lemma 3.3 (see [10, Lemma 1.10] for example). For the elements vi ∈
H2(BT ) (i = 1, . . . , m) defined in Lemma 3.2, λvi(S

1) is the circle subgroup
of T which fixes Mi pointwise.

This lemma corresponds to Lemma 2.1. More precisely, one can see that
the vi’s defined in Lemma 3.2 can be identified with the vi’s in Section 2
through an identification

H2(BT ) = Z
n,

(see [10] for example). Taking the dual of this identification, we obtain an
identification

H2(BT ) = (Zn)∗.

Then (2.1) can be rewritten as

(3.7) P = {u ∈ H2(BT ; R) | 〈u, vi〉 ≥ ai (i = 1, . . . , m)},

where 〈 , 〉 denotes the natural pairing between cohomology and homology
as before.

Lemma 3.4. The exact sequences in (2.2) and (2.3) can be regarded as exact
sequences derived from the fibration (3.4), namely, (2.2) can be regarded as

(3.8) 0 → H2(M) ι∗−→ HT
2 (M) π∗−→ H2(BT ) → 0

and (2.3) as

(3.9) 0 ← H2(M) ι∗←− H2
T (M) π∗

←− H2(BT ) ← 0.

Proof. If we identify H2
T (M) with (Zm)∗ through the identification of τi

with e∗
i for i = 1, . . . , m, then (3.3) agrees with (2.4) and this implies the

lemma. �

Through the identifications in Lemma 3.4, (2.7) turns into

(3.10) ZP =

{
z ∈ C

m |
m∑

i=1

(
1
2
|zi|2 + ai

)
μi = 0

}
,

where μi’s are the elements of H2(M) defined in (3.5).
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4. Roots of a compact Lie subgroup of Symp(M, ω)

If g ∈ Symp(M, ω) normalizes the torus T , then ρg defined by

(4.1) ρg(t) := gtg−1

is a group automorphism of T and the diffeomorphism g of M is
ρg-equivariant. Let Eρg be a homeomorphism of ET induced from ρg. It
is ρg-equivariant, i.e., Eρg(et) = Eρg(e)ρg(t) for e ∈ ET and t ∈ T .
Therefore, the homeomorphism of ET × M sending (e, x) to (Eρg(e), gx) is
ρg-equivariant and induces a homeomorphism of ET ×T M . Hence we obtain
a ring automorphism of H∗

T (M), denoted by g∗, which preserves the subal-
gebra π∗(H∗(BT )). It easily follows from the definition of g∗ that

(4.2) g∗ ◦ π∗ = π∗ ◦ ρg
∗ on H∗(BT ),

where ρg
∗ is an automorphism of H∗(BT ) induced from ρg.

Since the diffeomorphism g of M is ρg-equivariant, it permutes the char-
acteristic submanifolds Mi’s. Moreover, since g preserves the form ω, it pre-
serves the orientations on M and Mi’s induced from ω. These imply that
there is a permutation σ on [m] such that

(4.3) g∗(τi) = τσ(i) for any i.

With these understood

Lemma 4.1. Let ρg∗ be an automorphism of H∗(BT ) induced from ρg. Then
ρg∗(vσ(i)) = vi for any i.

Proof. Applying g∗ to the left- and right-hand sides of the identity (3.3), it
follows from (4.2) and (4.3) that we have

(4.4) π∗(ρg
∗(u)) = g∗(π∗(u)) =

m∑

i=1

〈u, vi〉g∗(τi) =
m∑

i=1

〈u, vi〉τσ(i),

while it follows from (3.3) applied to ρg
∗(u) instead of u that we have

π∗(ρg
∗(u)) =

m∑

i=1

〈ρg
∗(u), vi〉τi =

m∑

i=1

〈ρg
∗(u), vσ(i)〉τσ(i)

=
m∑

i=1

〈u, ρg∗(vσ(i))〉τσ(i).

(4.5)

Comparing (4.4) with (4.5) and noting that τσ(i)’s are free over Z, we obtain

〈u, vi〉 = 〈u, ρg∗(vσ(i))〉 for any i,

but since this identity holds for any u ∈ H2(BT ), the desired identity in the
lemma follows. �
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The following lemma is due to M. Wiemeler and will play a key role in
the subsequent argument.

Lemma 4.2. [12, Lemma 2.1]. If g induces the identity on H2(M) and ρg
∗

is a reflection on H2(BT ), then the σ in (4.3) permutes exactly two elements
in [m] and fixes the others.

Proof. Since ρg
∗ is a reflection, its trace is n − 2. On the other hand, since

g induces the identity on H2(M) by assumption, the trace of g∗ on H2
T (M)

must be m − 2 by (3.9). However, H2
T (M) is freely generated by τi’s over Z

and g∗ permutes the generators by (4.3), so the lemma follows. �

Dualizing the isomorphism (3.6), we obtain an isomorphism

(4.6) Hom(T, S1) ∼= H2(BT ).

For u ∈ H2(BT ), we denote by χu ∈ Hom(T, S1) the element corresponding
to u through the isomorphism (4.6).

Now we take a compact Lie subgroup G of Symp(M, ω) containing T and
denote by G0 the identity component of G. As remarked in the Introduction,
the torus T is a maximal torus of G.

Definition 4.1. A root of G is a non-zero weight of the adjoint representa-
tion of T on g⊗C, where g denotes the Lie algebra of G. We think of a root
of G as an element of H2(BT ) through the isomorphism (4.6) and denote
by Δ(G) the root system of G, that is the set of roots of G. Needless to say,
Δ(G) depends only on the identity component G0.

For α ∈ Δ(G), we denote by Tα the identity component of the kernel
of χα : T → S1. Since α is non-zero, Tα is a codimension 1 subtorus of T .
Let G0

α be the identity component of the subgroup of G0 which commutes
with Tα. The group NG0

α
(T )/T is of order two and let g ∈ NG0

α
(T ) be a

representative of the non-trivial element in NG0
α
(T )/T . The automorphism

ρg of T is independent of the choice of the representative g, so we may denote
it by ρα. It is of order two, its fixed point set contains the codimension 1
subtorus Tα and ρ∗

α(α) = −α. We note that ρ∗
α is the Weyl group action

associated with α ∈ Δ(G).
Similarly, ρα∗ is a reflection on H2(BT ) and we note that

(4.7) Fix(ρα∗) = H2(BTα) = Kerα.

Lemma 4.3. For α ∈ Δ(G), there are i, j ∈ [m] such that

(4.8) 〈α, vi〉 = −〈α, vj〉(�= 0) and 〈α, vk〉 = 0 for any k �= i, j.
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Proof. Let g ∈ NG0
α
(T ) be a representative of the non-trivial element in

NG0
α
(T )/T . Since g is in G0, it is homotopic to the identity so that g induces

the identity on H2(M). Moreover, ρ∗
g = ρ∗

α is a reflection as observed above.
Therefore there are i, j ∈ [m] such that

g∗(τi) = τj , g∗(τj) = τi, g∗(τk) = τk for any k �= i, j

by Lemma 4.2. It follows from Lemma 4.1 that

(4.9) ρα∗(vi) = vj , ρα∗(vj) = vi, ρα∗(vk) = vk for any k �= i, j

and hence 〈α, vk〉 = 0 for k �= i, j by (4.7). Finally, since ρ∗
α(α) = −α, we

have
〈α, vi〉 = −〈ρ∗

α(α), vi〉 = −〈α, ρα∗(vi)〉 = −〈α, vj〉,
proving the lemma. �

Lemma 4.4. For α, β ∈ Δ(G) we have

ρ∗
α(β) = β − 〈β, vi〉 − 〈β, vj〉

〈α, vi〉
α = β − 〈β, vj〉 − 〈β, vi〉

〈α, vj〉
α.

Proof. It follows from (4.9) that

〈ρ∗
α(β) − β, vi〉 = 〈β, ρα∗(vi)〉 − 〈β, vi〉 = 〈β, vj〉 − 〈β, vi〉,

〈ρ∗
α(β) − β, vj〉 = 〈β, ρα∗(vj)〉 − 〈β, vj〉 = 〈β, vi〉 − 〈β, vj〉,

〈ρ∗
α(β) − β, vk〉 = 〈β, ρα∗(vk)〉 − 〈β, vk〉 = 0 for k �= i, j.

This together with (4.8) shows that the three terms in the lemma take a
same value on each v�. Since v�’s span H2(BT ), the desired identity in the
lemma follows. �

Let aβ,α be the constant defined by

(4.10) ρ∗
α(β) = β − aβ,αα.

By Lemma 4.4 we have

(4.11) aβ,α =
〈β, vi〉 − 〈β, vj〉

〈α, vi〉
=

〈β, vj〉 − 〈β, vi〉
〈α, vj〉

.

The following is well known (see [9, 9.4] but aβ,α is denoted 〈β, α〉 in the
book):

(1) aβ,α is an integer,
(2) aβ,α �= 0 if and only if aα,β �= 0,
(3) 0 ≤ aβ,αaα,β ≤ 3 if β �= ±α.

We set
Nα := |〈α, vi〉| = |〈α, vj〉|.
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We say that α and β are joined if ρ∗
α(β) �= β (i.e., aβ,α �= 0). By (2) above,

ρ∗
α(β) �= β if and only if ρ∗

β(α) �= α.

Lemma 4.5. If α and β are joined, then Nα = Nβ.

Proof. Since N−α = Nα, we may assume β �= ±α. Then aβ,α is a non-zero
integer, so it follows from (4.11) that |aβ,α| ≥ 2 if Nα �= Nβ (note that since
β �= ±α, either 〈β, vi〉 or 〈β, vj〉 is 0 by Lemma 4.3). Changing the role of
α and β, we also have that |aα,β | ≥ 2 if Nα �= Nβ. But this contradicts the
above fact (3) that 0 ≤ aβ,αaα,β ≤ 3 if β �= ±α. �

Δ(G) decomposes into a direct sum of irreducible root systems. Since we
are concerned with the isomorphism type of Δ(G) as a root system, we may
assume that Nα = 1 for any α by Lemma 4.5.

5. The root system of a moment polytope

Remember that the correspondence from symplectic toric manifolds to their
moment polytopes (which are non-singular) is one-to-one. Motivated by the
observation made in Section 4, we make the following definition.

Definition 5.1. For a non-singular polytope P described in (3.7), we define

R(P ) := {α ∈ H2(BT ) | 〈α, vi〉 = 1, 〈α, vj〉 = −1 for some i, j,

and 〈α, vk〉 = 0 for k �= i, j},

and call it the root system of P . (It will be proved below that R(P ) is
actually a root system.)

Remark 5.1. The root system R(P ) depends only on the vi’s and not on
the constants ai’s used to describe the moment polytope P in (3.7).

Example. We identify H2(BT ) with Z
n and denote by {ei}n

i=1 the standard
basis of Z

n and by {e∗
i }n

i=1 the basis of (Zn)∗ dual to {ei}n
i=1. Remember

that m is the number of facets of P .
(1) Let m = n + 1 and take vi = ei for 1 ≤ i ≤ n and vn+1 = −

∑n
i=1 ei.

Then

R(P ) = {±e∗
i (1 ≤ i ≤ n), ±(e∗

i − e∗
j ) (1 ≤ i < j ≤ n)}

and this is a root system of type An. Note that the manifold M is the
complex projective space CPn of complex dimension n in this case.

(2) Let n = 2, m = 4 and take v1 = e1, v2 = e2, v3 = −e1 + ae2 and
v4 = −e2 where a is an arbitrary integer. If a = 0, then P is a rectangle and

R(P ) = {±e∗
1, ±e∗

2},

which is of type A1 × A1, and if a �= 0, then P is a trapezoid with two right
angle corners and

R(P ) = {±e∗
1},
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which is of type A1. Note that the manifold M is a Hirzebruch surface in
this case.

(3) If n = 2 and m ≥ 5, then one easily checks that R(P ) is empty.

For α ∈ R(P ) with 〈α, vi〉 = 1 and 〈α, vj〉 = −1, we define a reflection rα

on H2(BT ) by

rα(v) := v − 〈α, v〉(vi − vj),

which interchanges vi and vj and fixes vk’s for k �= i, j, and define its dual
reflection r∨

α on H2(BT ) by

〈r∨
α(β), v〉 := 〈β, rα(v)〉 = 〈β, v − 〈α, v〉(vi − vj)〉.

This shows that

(5.1) r∨
α(β) = β − (〈β, vi〉 − 〈β, vj〉)α.

In particular, r∨
α(±α) = ∓α. One can easily check that r∨

α preserves R(P ).
Comparing Lemma 4.4 with (5.1) and noting that we may assume Nα = 1
for any α, we see that ρα

∗ agrees with r∨
α and hence we obtain the following.

Proposition 5.1. R(P ) is a root system and if P is the moment polytope
associated with a symplectic toric manifold (M, ω) and G is a compact Lie
subgroup of Symp(M, ω) containing the torus T , then the root system Δ(G)
of G is a subsystem of R(P ).

We define a symmetric scalar product ( , ) on H2(BT ) by

(5.2) (β, γ) :=
m∑

�=1

〈β, v�〉〈γ, v�〉.

One easily sees from the definition of R(P ) that

(α, α) = 2 for α ∈ R(P ),

(α, β) = 0 or ± 1 for α, β ∈ R(P ) with β �= ±α.
(5.3)

The group generated by the reflections r∨
α (α ∈ R(P )) is called the

Weyl group of R(P ).

Lemma 5.1. The scalar product ( , ) is invariant under the Weyl group
of R(P ).

Proof. It suffices to check that (r∨
α(β), r∨

α(γ)) = (β, γ) for α ∈ R(P ) and
β, γ ∈ H2(BT ). By definition there are i, j ∈ [m] such that 〈α, vi〉 = 1,
〈α, vj〉 = −1 and 〈α, vk〉 = 0 for k �= i, j. We denote 〈η, v�〉 by η� for
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η ∈ H2(BT ). Then since (α, η) = ηi − ηj , it follows from (5.1) that

(r∨
α(β), r∨

α(γ)) = (β − (βi − βj)α, γ − (γi − γj)α)

= (β, γ) − (βi − βj)(α, γ) − (γi − γj)(β, α)

+ (βi − βj)(γi − γj)(α, α)

= (β, γ) − (βi − βj)(γi − γj) − (γi − γj)(βi − βj)

+ 2(βi − βj)(γi − γj)

= (β, γ),

proving the lemma. �

For α, β ∈ R(P ) we define an integer aβ,α by

(5.4) r∨
α(β) = β − aβ,αα,

similarly to (4.10). If 〈α, vi〉 = 1 and 〈α, vj〉 = −1, then

(5.5) aβ,α = 〈β, vi〉 − 〈β, vj〉

by (5.1). Another description of aβ,α is the following.

Lemma 5.2. aβ,α = (α, β) for α, β ∈ R(P ). In particular, aβ,α = aα,β.

Proof. Since r∨
α(α) = −α and r∨

α is of order 2, it follows from Lemma 5.1
that

(α, r∨
α(β) + β) = (r∨

α(α), r∨
α(r∨

α(β) + β)) = (−α, β + r∨
α(β))

and hence (α, r∨
α(β)+β) = 0. This together with (5.3) and (5.4) implies the

lemma. �

Theorem 5.1. Any irreducible subsystem of R(P ) is of type A.

Proof. Let Φ be an irreducible subsystem of R(P ). The Cartan matrix C(Φ)
of Φ is (aβ,α) where α and β run over elements in a basis of Φ. The diagonal
entiries of C(Φ) are all 2 by (5.3) and C(Φ) is symmetric by Lemma 5.2.
Therefore, Φ must be either of type A, D or E (see [9, p. 59]).

Suppose that Φ is of type D or E. Then there are elements α, β, γ, δ in
the basis of Φ such that

(5.6) aβ,α = aγ,α = aδ,α = −1.

As before, let vi, vj be the elements such that 〈α, vi〉 = 1 and 〈α, vj〉 = −1.
It follows from (5.5) and (5.6) that the values which β, γ, δ take on vi and vj

must be either (−1, 0) or (0, 1). Therefore two of β, γ, δ, say β and γ, must
take the same values on vi and vj , say (0, 1). (The same argument below
will work for (−1, 0).) Let vk be the other element on which β takes a non-
zero value. Then rβ(vj) = vk and since 〈β, vj〉 = 1, we have 〈β, vk〉 = −1.
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Moreover, since 〈γ, vj〉 = 1 and β �= γ, we have 〈γ, vk〉 = 0. Therefore,

〈r∨
β (γ) − γ, vj〉 = 〈γ, rβ(vj)〉 − 〈γ, vj〉 = 〈γ, vk〉 − 〈γ, vj〉 = −1,

〈r∨
β (γ) − γ, vk〉 = 〈γ, rβ(vk)〉 − 〈γ, vk〉 = 〈γ, vj〉 − 〈γ, vk〉 = 1.

Since β takes 1 on vj and −1 on vk, the above shows that r∨
β (γ) − γ = −β

and hence aγ,β = 1 by (5.4). However aγ,β must be non-positive because β
and γ are in the basis of Φ and β �= γ. This is a contradiction. Thus Φ is
neither of type D nor E and hence of type A. �

We conclude this section with the following corollary which follows from
Proposition 5.1 and Theorem 5.1.

Corollary 5.1. If G is a compact Lie subgroup of Symp(M, ω) containing
the torus T , then any irreducible factor of Δ(G) is of type A.

6. Connected maximal compact Lie subgroup of Symp(M, ω)

In this section we shall observe that the equality Δ(G) = R(P ) is attained
for some compact connected Lie subgroup G of Symp(M, ω).

As discussed in Section 2, we may think of M as ZP / Ker V and ω as the
form induced from the standard form ω0 on C

m, where

(6.1) ZP =

{
z ∈ C

m |
m∑

i=1

(
1
2
|zi|2 + ai

)
μi = 0

}

from (3.10) and

(6.2) KerV =

{
(g1, . . . , gm) ∈ (S1)m |

m∏

i=1

g
〈u,vi〉
i = 1 for ∀u ∈ H2(BT )

}

from (2.13) through the identification H2(BT ) = Z
n discussed in Section 3.

Lemma 6.1. Let α be an element of R(P ) such that 〈α, vi〉 = 1, 〈α, vj〉 = −1
and 〈α, vk〉 = 0 for k �= i, j. Then μi = μj in (6.1) and gi = gj in (6.2).

Proof. It follows from (3.3) that π∗(α) = τi−τj . Applying ι∗ to the both sides
of this identity, we get the former identity in the lemma because ι∗ ◦ π∗ = 0
by (3.9) and μ� = ι∗(τ�) by (3.5). If we take the α as u in (6.2), then the
condition

∏m
i=1 g

〈u,vi〉
i = 1 reduces to gig

−1
j = 1 and this proves the latter

statement in the lemma. �
The purpose of this section is to prove the following.

Proposition 6.1. There is a closed connected subgroup G̃ of the unitary
group U(m), which leaves ZP invariant and contains Ker V in its center
(so that the action of G̃ induces an effective action of G̃/ Ker V on M =
ZP / Ker V) and Δ(G̃/ Ker V) = R(P ).
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Proof. Let Φ be an irreducible factor of R(P ). It is of type A by Theorem 5.1.
Suppose that the rank of Φ is r − 1. Then it follows from Lemma 6.1 that
there is a subset I(Φ) := {i1, . . . , ir} of [m] such that μi1 = · · · = μir and
gi1 = · · · = gir for g = (g1, . . . , gm) ∈ Ker V. Therefore the action of U(m)
on C

m restricted to the subgroup

U(Φ) := {(xij) ∈ U(m) | xij = δij unless both i and j are in I(Φ)},

where δij = 1 if i = j and 0 otherwise, leaves ZP invariant and U(Φ)
commutes with Ker V. We note that the root system of U(Φ) is (isomorphic
to) Φ.

Now we decompose R(P ) into sum of irreducible factors Φ1, . . . ,Φs. Then
the subsets I(Φ1), . . . , I(Φs) of [m] are disjoint. We consider the subgroup G̃
of U(m) generated by

∏s
i=1 U(Φi) and (the diagonal subgroup) (S1)m. Since

(S1)m contains Ker V, so does G̃. It follows from the observation above that
G̃ commutes with Ker V and the action of U(m) on C

m restricted to G̃ leaves
ZP invariant so that the action descends to an effective action of G̃/ Ker V
on M . Since the action of G̃ on ZP preserves the standard form ω0|ZP

, the
induced action of G̃/ Ker V on M preserves the form ω on M , see (2.14).
Finally, Δ(G̃/ Ker V) = R(P ) by construction. �

7. Automorphisms of a moment polytope

Since the dual of the Lie algebra of T can be naturally identified with
H2(BT ; R), we think of the moment map μ associated with (M, ω) as taking
values in H2(BT ; R) and P = μ(M). When g ∈ Symp(M, ω) normalizes the
torus T , we associated the ρg of Aut(T ) to g in Section 4, where

(7.1) ρg(t) = gtg−1 for t ∈ T

and Aut(T ) denotes the group of automorphisms of T . The moment map
associated to (M, ω) with the T -action twisted by ρg is given by ρg

∗ ◦ μ, so
the image of M by the map is ρg

∗(P ). Since g preserves the form ω, the
images of M by μ and ρg

∗ ◦ μ are congruent modulo parallel translations in
H2(BT ; R). Motivated by this observation, we define

Aut(P ) := {ρ ∈ Aut(T ) | ρ∗(P ) ≡ P},

where ≡ denotes congruence modulo parallel translations in H2(BT ; R).

Remark 7.1. As remarked before, the root system R(P ) depends only on
the vi’s and not on the constants ai’s used to define the moment polytope P
in (2.1) or (3.7). However, Aut(P ) actually depends on the ai’s. For instance,
Aut(P ) for a square P is (a dihedral group) of order 8 while Aut(P ) for a
(non-square) rectangle P is of order 4.
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The correspondence g → ρg defines a homomorphism

(7.2) D : NG(T ) → Aut(P ),

where G is any subgroup of Symp(M, ω) containing T (e.g., G may be the
entire group Symp(M, ω)) and NG(T ) denotes the normalizer of T in G. If
g ∈ T , then ρg is the identity; so T is in the kernel of D.

Lemma 7.1. If G is a compact Lie subgroup of Symp(M, ω) containing the
torus T , then the kernel of D is exactly T .

Proof. We note that g ∈ NG(T ) permutes the characteristic submanifolds
Mi’s of M . Suppose that g ∈ NG(T ) is in the kernel of D. Then g maps Mi

to itself for each i. Let x be a T -fixed point in M . Then x =
⋂

i∈I Mi for
some I ∈ [m] with cardinality n, so that x is fixed by g. We decompose the
tangent space τxM of M at x into

τxM =
⊕

i∈I

τxM/τxMi.

The differential dg : τxM → τxM preserves each real 2-dimensional eigenspace
τxM/τxMi since g fixes x and maps Mi to itself for each i. The symplectic
form ω determines an orientation on τxM/τxMi for each i and dg preserves
the orientation on τxM/τxMi since g preserves the form ω.

Since G is compact, there exists a G-invariant Riemannian metric on M so
that we may assume that dg is an orthogonal transformation on τxM/τxMi

but since dg preserves the orientation on it, dg on τxM/τxMi is a rotation
and hence there exists t ∈ T such that dg = dt, i.e., d(gt−1) is the identity on
τxM . On the other hand, since gt−1 is contained in G and G is compact, the
fixed point set of gt−1 is a closed submanifold of M . The connected compo-
nent of this submanifold containing x is of codimension 0 because d(gt−1) is
the identity on τxM . Since M is connected, the connected component must
agree with M and this means g = t, proving the lemma. �

Corollary 7.1. Let G be a compact Lie subgroup of Symp(M, ω) containing
the torus T and let G0 be the identity component of G. Then

G/G0 ∼= D(NG(T ))/D(NG0(T )) ⊂ Aut(P )/D(NG0(T )),

where D is the map in (7.2) and NG0(T ) is the normalizer of T in G0.

Proof. Since T is a maximal torus of G and maximal tori in G are conjugate
to each other because G is compact, the inclusion NG(T ) → G induces an
isomorphism

(7.3) NG(T )/NG0(T ) ∼= G/G0.

This fact together with Lemma 7.1 implies the corollary. �
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We shall construct a cross section of the homomorphism D in (7.2) when
G = Symp(M, ω). We recall the description (3.7) of P :

(7.4) P = {u ∈ H2(BT ; R) | 〈u, vi〉 ≥ ai (i = 1, . . . , m)}.

Let ρ ∈ Aut(P ). Since ρ∗(P ) ≡ P , we have

ρ∗(P ) = P + u0 for some u0 ∈ H2(BT ; R).

On the other hand, we have

ρ∗(P ) = {ρ∗(u) ∈ H2(BT ; R) | 〈u, vi〉 ≥ ai (i = 1, . . . , m)}

by definition and this can be rewritten as

(7.5) ρ∗(P ) = {u ∈ H2(BT ; R) | 〈u, ρ∗
−1(vi)〉 ≥ ai (i = 1, . . . , m)}.

Since ρ∗(P ) ≡ P , it follows from (7.4) and (7.5) that there exists a permu-
tation σ on [m] such that

(7.6) ρ∗
−1(vi) = vσ(i) for any i ∈ [m]

so that

ρ∗(P ) = {u ∈ H2(BT ; R) | 〈u, vσ(i)〉 ≥ ai (i = 1, . . . , m)}.

Therefore,

〈u, vσ(i)〉 ≥ aσ(i) ⇐⇒ u ∈ P

⇐⇒ u + u0 ∈ ρ∗(P )

⇐⇒ 〈u + u0, vσ(i)〉 ≥ ai

⇐⇒ 〈u, vσ(i)〉 ≥ ai − 〈u0, vσ(i)〉

and this shows that

(7.7) aσ(i) = ai − 〈u0, vσ(i)〉 for any i.

We make one more observation on the permutation σ.

Lemma 7.2. There is a ring automorphism of H∗(M) sending μi to μσ(i)
for each i.

Proof. Since σ is induced from the automorphism ρ of P , we note that
∩i∈IPi = ∅ if and only if ∩j∈σ(I)Pj = ∅ for I ⊂ [m]. Furthermore, we note
that ∩i∈IPi = ∅ if and only if ∩i∈IMi = ∅. Therefore, Lemma 3.1 ensures
that sending τi to τσ(i) for each i induces a ring automorphism of H∗

T (M),
which we denote by f .
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Applying f to the both sides of (3.3), we have

(7.8) f(π∗(u)) =
m∑

i=1

〈u, vi〉f(τi) =
m∑

i=1

〈u, vi〉τσ(i),

while it follows from (3.3) applied to ρ∗(u) instead of u that we have

π∗(ρ∗(u)) =
m∑

i=1

〈ρ∗(u), vi〉τi =
m∑

i=1

〈ρ∗(u), vσ(i)〉τσ(i)

=
m∑

i=1

〈u, ρ∗(vσ(i))〉τσ(i) =
m∑

i=1

〈u, vi〉τσ(i),(7.9)

where we used (7.6) at the last identity. Comparing (7.8) with (7.9), we
obtain the identity f(π∗(u)) = π∗(ρ∗(u)) for any u ∈ H2(BT ) and this
shows that the ring automorphism f of H∗

T (M) preserves the subalgebra
π∗(H∗(BT )). Therefore f induces a ring automorphism f̄ of H∗(M) by
Proposition 3.1. Since f(τi) = τσ(i) and μi = ι∗(τi) by (3.5), we have f̄(μi) =
μσ(i) which proves the lemma. �

We now define the unitary transformation Fρ of C
m by

(7.10) Fρ(z1, . . . , zm) := (zσ(1), . . . , zσ(m)).

It preserves ZP because

z ∈ ZP ⇐⇒
∑ (

1
2
|zσ(i)|2 + aσ(i)

)
μσ(i) = 0 (by (3.10))

⇐⇒
∑ (

1
2
|zσ(i)|2 + ai − 〈u0, vσ(i)〉

)
μσ(i) = 0 (by (7.7))

⇐⇒
∑ (

1
2
|zσ(i)|2 + ai

)
μσ(i) = 0 (by (2) in Proposition 3.1)

⇐⇒
∑ (

1
2
|zσ(i)|2 + ai

)
μi = 0 (by Lemma 7.2)

⇐⇒ Fρ(z) ∈ ZP (by (3.10) and (7.10)).

Let φ be the automorphism of (S1)m defined by

(7.11) φ(g1, . . . , gm) := (gσ(1), . . . , gσ(m)).

Then the map Fρ is φ-equivariant.

Lemma 7.3. Let V : (S1)m → T be the homomorphism in (2.11). Then
V ◦ φ = ρ ◦ V. In particular φ preserves Ker V.
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Proof. Noting that ρ(λv(g)) = λρ∗(v)(g), we see from (7.11), (2.11) and (7.6)
that

V
(
φ(g1, . . . , gm)

)
= V(gσ(1), . . . , gσ(m)) =

m∏

i=1

λvi(gσ(i))

=
m∏

i=1

λρ∗(vσ(i))(gσ(i)) = ρ

(
m∏

i=1

λvσ(i)(gσ(i))

)

= ρ

(
m∏

i=1

λvi(gi)

)
= ρ

(
V(g1, . . . , gm)

)
.

This proves the lemma. �

Since M = ZP / Ker V and Fρ is φ-equivariant, Fρ induces a diffeomor-
phism F̄ρ of M by Lemma 7.3. By definition Fρ is a unitary transformation
on C

m, so F̄ρ preserves the symplectic form ω and hence F̄ρ ∈ Symp(M, ω).
Finally, we need to prove the following.

Lemma 7.4. F̄ρ normalizes T and D(F̄ρ) = ρ.

Proof. We view an element g = (g1, . . . , gm) of (S1)m as a diffeomorphism
of ZP ⊂ C

m. Then Fρ ◦ g ◦ F−1
ρ = φ(g). This identity decends to an identity

(7.12) F̄ρ ◦ V(g) ◦ F̄−1
ρ = V(φ(g)) in Symp(M, ω).

Since T = V((S1)m), the identity (7.12) shows that F̄ρ normalizes T .
Let t ∈ T . Then

(7.13) t = V(g) =
m∏

i=1

λvi(gi) for some g ∈ (S1)m,

where (2.11) is used for the latter identity. Using (7.13) together with the
definition of D (see also (7.1)), (7.12), (7.11) and (7.6), we have

(D(F̄ρ))(t) = F̄ρ ◦ t ◦ F̄−1
ρ = F̄ρ ◦ V(g) ◦ F̄−1

ρ = V(φ(g))

= V(gσ(1), . . . , gσ(m)) =
m∏

i=1

λvi(gσ(i)) =
m∏

i=1

λρ∗(vσ(i))(gσ(i))

= ρ

(
m∏

i=1

λvσ(i)(gσ(i))

)
= ρ

(
m∏

i=1

λvi(gi)

)
= ρ(V(g)) = ρ(t)

and this proves the latter statement in the lemma. �
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8. Maximal compact Lie subgroup of Symp(M, ω)

The purpose of this section is to prove the following.

Theorem 8.1. If a compact Lie subgroup G of Symp(M, ω) containing the
torus T satisfies the following two conditions:

(1) Δ(G) = R(P ), and
(2) the map D in (7.2) is surjective,

then G is maximal among compact Lie subgroups of Symp(M, ω) containing
the torus T . Moreover, there is a compact Lie subgroup Gmax of Symp(M, ω),
which satisfies conditions (1) and (2) above.

Proof. What we prove for the former part of the theorem is that if a compact
Lie subgroup H of Symp(M, ω) contains the G in the theorem, then H = G.

Since G is a subgroup of H, the root system Δ(G) of G is a subsystem
of the root system Δ(H) of H. On the other hand, since H is a compact
Lie subgroup of Symp(M, ω) containing T , Δ(H) is a subsystem of R(P ).
Therefore, it follows from condition (1) in the theorem that Δ(G) = Δ(H)
and this shows that G0 = H0 where the superscript 0 denotes the identity
components as before.

Since G is a subgroup of H, NG(T ) is a subgroup of NH(T ). It follows
from Lemma 7.1 and the condition (2) in the theorem that NG(T ) = NH(T )
and this together with the isomorphism (7.3) for G and H implies G = H
because G0 = H0.

The proof of the latter part of the theorem is as follows. Let G̃max be
the subgroup of U(m) generated by G̃ in Proposition 6.1 and Fρ’s in (7.10)
(regarded as elements of U(m)) for ρ ∈ Aut(P ). The identity component
of G̃max is G̃. The action of G̃max on C

m leaves ZP invariant and induces
an effective action of Gmax := G̃max/ Ker V on M preserving ω. The group
Gmax contains the torus T and satisfies the two conditions in the theorem
by Proposition 6.1 and Lemma 7.4. �

Note added in proof.

After the paper was accepted for publication, the author was informed from
Professor D. McDuff that Proposition 5.5 in her paper with S. Tolman
“Polytopes with mass linear functions. I, Int. Math. Res. Not. IMRN 2010,
no. 8, 1506–1574” is essentially the same as our Theorem 1.1 concerning the
identity component of the compact Lie subgroup G or Gmax.
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[5] M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona,
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