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COMPACTNESS FOR HOLOMORPHIC CURVES WITH
SWITCHING LAGRANGIAN BOUNDARY CONDITIONS

K. Cieliebak, T. Ekholm, and J. Latschev

We prove a compactness result for holomorphic curves with boundary
on an immersed Lagrangian submanifold with clean self-intersection. As
an important consequence, we show that the number of intersections
of such holomorphic curves with the self-intersection locus is uniformly
bounded in terms of the Hofer energy.

1. Introduction

In this paper we prove a compactness result for holomorphic curves
with boundary on an immersed Lagrangian submanifold with clean self-
intersection along a compact submanifold K. In contrast with other com-
pactness results for curves with Lagrangian boundary conditions of which
we are aware, we do not a priori restrict the number of times the boundary
of the curve “switches branches” at K. In fact, we derive as an important
consequence of the compactness theorem that the number of intersections
of such holomorphic curves with K, and hence the number of “switches,”
is uniformly bounded in terms of the Hofer energy. This finiteness result
is an essential ingredient in the proof in [5] of the isomorphism of degree 0
Legendrian contact homology of the unit conormal bundle of a knot K ⊂ R

3

with the cord algebra defined in [16].
Consider a symplectic manifold (X, ω) and an immersed Lagrangian sub-

manifold L ⊂ X with clean self-intersection along a compact submanifold
K. Let J be an ω-compatible almost complex structure on X. We assume
that near K the structure J is integrable and L is real analytic. Let (S, j)
be a connected Riemmann surface with boundary ∂S. A holomorphic curve
f : (S, ∂S, j) → (X, L, J) is a continuous map f : S → X which maps ∂S
to L and is (j, J)-holomorphic in the interior. We allow (X, L, ω, J) to be
noncompact with cylindrical ends as in [9], and S to have punctures in the
interior as well as on the boundary (see Section 3 for the precise setup). How-
ever, we do not treat intersections of f |∂S with K — which we call switches
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— as boundary punctures. In particular, we do not impose any constraints
on the number and types of switches.

Our first result states that the compactness result in symplectic field the-
ory [3, 7] carries over to this setting. See Section 4 for the precise statement.

Theorem 1.1. Under suitable hypotheses on (X, L, ω, J) each sequence of
holomorphic curves fn : (Sn, ∂Sn, jn) → (X, L, J) of fixed signature and
uniformly bounded energy has a subsequence converging in the sense of [3]
to a stable holomorphic curve.

As a consequence, we obtain the following finiteness result for the number
of switches, which was the primary motivation for this work.

Theorem 1.2. In the situation of Theorem 1.1, suppose in addition that
(X, L, ω = dλ) is exact with convex end. Then for each s ∈ N and C > 0
there exists a constant κ(s, C) ∈ N such that every holomorphic disc f :
(Ḋ, ∂Ḋ, j) → (X, L, J) with at most s boundary punctures and energy ≤ C
has at most κ(s, C) switches.

The case s = 1 of this finiteness result is an essential ingredient in the
proof in [5] of the isomorphism of degree 0 Legendrian contact homology of
the unit conormal bundle of a knot K ⊂ R

3 with the cord algebra defined in
[16]. This isomorphism is constructed by counting one-punctured holomor-
phic discs in T ∗

R
3 with boundary on the immersed Lagrangian submanifold

L = NK ∪ R
3, where the conormal bundle NK ⊂ T ∗

R
3 of K and the zero

section R
3 intersect cleanly along the knot K.

Holomorphic discs with boundary on cleanly intersecting Lagrangian sub-
manifolds are also studied in [2], where what we call a switch is called a jump.
Besides being in the somewhat different setting of Hamiltonian Floer the-
ory, the compactness discussion in [2, section 6.1] assumes a fixed number of
switches, and so it does not yield any result similar to Theorem 1.2 above.

To put Theorem 1.2 into context, recall that in general energy bounds
are not enough to provide bounds on the topology of holomorphic curves.
Indeed, double branched covers of CP 1 exist for all genera, and by choosing
the branch points to lie on the equator and cutting the domain along preim-
ages of suitable segments connecting adjacent branch points, one obtains
existence of holomorphic curves of genus zero and arbitrarily many bound-
ary components, but of fixed energy.

Often, one can use index arguments to show that such phenomena disap-
pear after suitable perturbation. Indeed, for the Fredholm theory of holo-
morphic curves f : (S, ∂S) → (X, L) as above, it is convenient to puncture
the source S at points in ∂S that map to the clean intersection and call
such punctures Lagrangian intersection punctures. It turns out that to each
such puncture one can associate a winding number w ∈ 1

2N, and that the
contribution of a Lagrangian intersection puncture in a clean intersection
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of codimension d to the Fredholm index is 1 − wd (see the appendix for
more details). Consequently, this contribution is negative provided d ≥ 3,
and equal to 0 when d = 2 and w = 1

2 . It follows that for clean intersections
of codimension at least three one can control the number of switches using
transversality arguments. However, for codimension two — which is the most
interesting case from the point of view of smooth embedding theory [5] —
no such argument is available. Still, the result of this paper provides a bound
on the number of switches which is independent of codimension.

Similar remarks apply to the number of boundary circles r and the genus
g of S: If dim(L) = n satisfies n > 3 then the number of boundary circles
and the genus can be bounded using transversality arguments; this again
follows from the dimension formula for the corresponding moduli spaces
(see the appendix). However, if n = 3 the dimension is independent of g
and r and no such argument is available. Indeed, the contribution to the
Gromov–Witten invariant of a Calabi–Yau three-fold of multiple covers of
degree d and genus g of a fixed rational curve has been computed in [10];
it is nontrivial for any fixed d ≥ 2 and arbitrarily high genus g, so there
is no bound of the genus in terms of the degree. It would be interesting to
have similar formulae for multiple covers of genus zero and many boundary
components of a fixed (punctured) disc.

Our method of proof uses the integrability of J near K in an essential
way. It would be interesting to understand to what extend the conclusion of
Theorem 1.1 remains true for more general almost complex structures.

This work is organized as follows. In Sections 2 and 3 below, we collect
some mostly standard background material for the convenience of the reader.
The heart of the paper are Sections 4 and 5, which contain the proof of
Theorems 1.1 and 1.2, respectively. In the appendix, we discuss the index
formula in the setting we consider. This is not used in the proofs of the main
results, but rather included to support the discussion of context given above.

After the completion of this manuscript, we were kindly informed by the
authors of [13] about similar results obtained therein, see Remark 4.2 for
the exact relations to our Theorem 1.1.

2. Local theory

Let (S, j) be a connected Riemmann surface with boundary ∂S, possibly
noncompact. We will consider functions f : S → C satisfying the following
conditions:

(F1) f is continuous on S;
(F2) f is holomorphic on intS := S \ ∂S;
(F3) f maps ∂S to R ∪ iR.

We start with some elementary observations.
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Lemma 2.1. A function f satisfying (F1–3) is holomorphic on intS∪(∂S \
f−1(0)).

Proof. The function g := f2 : S → C is continuous on S, holomorphic
on intS and maps ∂S to R, so by the Schwarz reflection principle it is
holomorphic on all of S. Since the square root has holomorphic branches
outside zero, the result for f follows. �
Lemma 2.2. If f : S → C satisfying (F1–3) is not identically zero, then it
has only finitely many zeros in any compact subdomain S′ ⊂ S.

Proof. If not, then g = f2 is a holomorphic function for which g−1(0) has a
limit point, forcing it to vanish identically. �

For f : S → C satisfying (F1–3) and not identically zero, let γ be a path
in S which does not meet any zero of f . Define the winding number of f
along γ by

w(f, γ) :=
1
2π

∫
γ
f∗dθ,

where dθ denotes the angular form on C \ {0}.

Lemma 2.3. Suppose f : S → C satisfies (F1–3) and is not identically
zero. Let S′ ⊂ S be a compact subset with piecewise smooth boundary ∂S′ =
(S′ ∩ ∂S) ∪ Γ, where Γ is a union of disjoint arcs in S

not meeting any zero of f . Then

w(f,Γ) ≥ #(f−1(0) ∩ intS′) + 1
4#(f−1(0) ∩ S′ ∩ ∂S).

Proof. Around each zero p ∈ intS′ pick a small disc Dp ⊂ intS′ containing
no other zero. Then w(f, ∂Dp) = k ∈ N, where (z − p)k is the first non-
vanishing term in the power series expansion of f at p. Around each zero
q ∈ S′ ∩ ∂S pick a small half-disc D+

q ⊂ S′ \ (∂S′ ∩ intS) containing no
other zero and set ∂+D+

q := ∂Dq \ ∂S. Then w(f, ∂+D+
q ) = k/4 ∈ N/4,

where (z − q)k is the first nonvanishing term in the power series expansion
of the holomorphic function g = f2 at q. Now let S′′ be the region obtained
by removing from S′ all discs resp. half-discs around zeros of f . Since dθ is
closed and the angle f∗θ is constant along parts of ∂S containing no zeros,
Stokes’ theorem yields

0 = w(f, ∂S′′) = w(f,Γ) −
∑

p

w(f, ∂Dp) −
∑

q

w(f, ∂+D+
q ),

from which the lemma follows. �
Lemma 2.4. Let fn : S → C be a sequence of functions satisfying (F1–3),
and assume that there is a constant C > 0 such that for all n ≥ 1 and all
z ∈ S we have

(2.1) |fn(z)| ≤ C.
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Then there exists a subsequence fn′ of the fn, and a function f : S → C

satisfying (F1–3) such that

(i) fn′ → f in C0
loc on S, and

(ii) fn′ → f in C∞
loc on intS ∪ (∂S \ f−1(0)).

Proof. Consider the associated sequence of holomorphic functions gn := f2
n :

S → C. The assumptions imply that for all z ∈ S we have

|gn(z)| ≤ C2.

Hence by Montel’s theorem, after passing to a subsequence, the gn converge
in C∞

loc(S) to a limit function g : S → C which is holomorphic and maps ∂S
to R. By the same argument, after passing to a further subsequence, the fn

converge in C∞
loc(intS) to a holomorphic function f : intS → C satisfying

f2 = g|int S .
At points z ∈ ∂S with g(z) 	= 0 we extend f by taking the branch of√
g that agrees with f at interior points near z, and at points z ∈ ∂S with

g(z) = 0 we set f(z) := 0. The resulting function f : S → C satisfies
(F1–3). In particular, Lemma 2.1 applies to show that f is holomorphic on
intS ∪ (∂S \ f−1(0)).

C0
loc-convergence of the fn to f follows from the C0

loc-convergence of the gn

to g and continuity of the square root. It remains to show C∞
loc-convergence

fn → f on compact subsets of int S ∪ (∂S \ f−1(0)). If f ≡ 0 this holds
trivially, so suppose the f does not vanish identically. Fix a compact subset
S′ ⊂ intS ∪ (∂S \ f−1(0)). By Lemma 2.2, f has only finitely many zeros in
S′. Pick a compact subset S0 ⊂ S′ ∩ intS containing all the zeros and set
S1 := S′ \ intS0. On S0 the C∞-convergence fn → f was shown above, and
on S1 it follows from the C∞

loc-convergence gn → g and smoothness of the
square root away from zero. �

The following statement is a variant of a result known as Vitali’s theorem.

Lemma 2.5. Let fn : S → C be a sequence of functions satisfying the
assumptions of Lemma 2.4, and suppose there exists a compact subset A ⊂ S
such that each fn has at least n zeros in A. Then the limiting function f
vanishes identically.

Proof. Pick a compact subset S′ ⊂ S with piecewise smooth boundary ∂S′ =
(S′ ∩ ∂S) ∪ Γ such that A ⊂ S′ \ Γ. If f has infinitely many zeros in S′, then
by Lemma 2.2 it vanishes. Otherwise, after passing to a subsequence, we
may assume that f as well as each fn has only finitely many zeros in S′.
After slightly shrinking S′ we may assume that Γ avoids the countably many
zeros of f and the fn. Since A ⊂ S′ \ Γ and fn has at least n zeros in A,
Lemma 2.3 yields w(f,Γ) ≥ n/4. On the other hand, since fn|Γ converges
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smoothly to f |Γ, we have

w(fn, Γ) n→∞−→ w(f,Γ) < ∞,

contradicting the previous estimate. �

3. Global theory

3.1. Setup. For the global theory we consider the following setup.
(X) (X, J) is an almost complex manifold with cylindrical end R+ × M

adjusted to (ω, λ) in the sense of [3].
This means that X = X̄ ∪ (R+ × M) with ∂X̄ = M , (ω, λ) is a stable
Hamiltonian structure on M , ω extends to a symplectic form on X̄, and J
is compatible with ω on X̄ and with (ω, λ) on R+ × M . We allow X̄ to be
noncompact but impose the following condition.
(Y) There exists a compact subset Ȳ ⊂ X̄ such that every J-holomorphic

map f : S → X from a compact Riemann surface with boundary
satisfying f(∂S) ⊂ Y := Ȳ ∪ (R+ × (Ȳ ∩ M)) is entirely contained in
Y .

Note that condition (Y) is trivially satisfied (taking Ȳ = X̄) if X̄ is compact.
Our assumption on the Lagrangian is the following:
(L) L ⊂ Y ⊂ X is a properly immersed Lagrangian submanifold with

L ∩ (R+ × M) = R+ × Λ for a compact submanifold Λ ⊂ M satisfying
λ|Λ = ω|Λ = 0, and such that L has clean self-intersection along a
compact connected submanifold K ⊂ int Ȳ .

Here clean self-intersection means that at each point x ∈ K exactly two
branches L0, L1 of L meet and TxK = TxL0 ∩ TxL1. More precisely, L is
the image of a Lagrangian immersion f : L̃ → X with clean self-intersection
along the submanifold K̃ = f−1(K). Then f |K̃ : K̃ → K is a 2–1 covering
and the two branches of L near x ∈ K are the images under f of neighbour-
hoods of the preimages x0, x1 of x. Note that L may be two-sheeted near
K, i.e., the union of two embedded submanifolds intersecting in K (if K̃ is
disconnected), or one-sheeted (if K̃ is connected). We impose the following
condition on the almost complex structure near K.
(K) There exists a neighbourhood U of K on which J is integrable, a holo-

morphic embedding ι : KC ↪→ X of a complexification of K, and a
holomorphic projection τ : U → KC on a neighbourhood of K such
that τ ◦ ι = 1. Moreover, near every point x ∈ K there exist holomor-
phic coordinates in C

n = R
k ⊕ R

n−k ⊕ iRk ⊕ iRn−k sending x to 0, L0
to R

n and L1 to R
k ⊕ iRn−k.

In particular, this implies that L is real analytic near K with J-orthogonal
self-intersection along K, i.e., for every x ∈ K the intersection TxL0 ∩
J(TxL1) is (n − k)-dimensional. However, condition (K) is more restrictive
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than this. Indeed, not every pair of real analytic curves in C intersecting
orthogonally at the origin can be mapped to the coordinate axes by a local
biholomorphism (e.g., if one curve is the y-axis, then the existence of such
a biholomorphism imposes infinitely many constraints on the Taylor coeffi-
cients of the other curve as a graph over the x-axis).

Finally, we assume that the Reeb flow on M satisfies the following non-
degeneracy condition:
(R) No closed Reeb orbit meets Λ, and all closed Reeb orbits and Reeb

chords are nondegenerate.
Here a Reeb chord is a Reeb orbit γ : [0, T ] → M with γ(0), γ(T ) ∈ Λ. If
there are no closed Reeb orbits (e.g., for conormal lifts of K ⊂ R

n with
the flat metric) these conditions can be arranged by a perturbation of Λ. In
the contact case ω = dλ these conditions can be arranged by a perturbation
of λ.

Our main case of interest is described in the following example.

Example 3.1 (cotangent bundle). Here the symplectic manifold X = T ∗Q
is the cotangent bundle of a Riemannian manifold Q with the Liouville
one-form λ = p dq and symplectic form ω = dλ. M = S∗Q is the unit
cotangent bundle and J is the almost complex structure on T ∗Q induced
by the Riemannian metric, deformed outside S∗Q to make it cylindrical
as described in [6, Section 7]. K ⊂ Q is a compact submanifold and L =
Q ∪ NK, where Q is the zero section and NK the conormal bundle, and
Λ = NK ∩ S∗Q. Then Q and NK intersect cleanly along K. We assume
that Q = Q̄ ∪ (R+ × ∂Q̄) with compact Q̄ and K ⊂ int Q̄. Condition (Y)
can be arranged (with Y = T ∗Q̄) by making all level sets {r} × ∂Q̄ in
the cylindrical end R+ × ∂Q̄ totally geodesic. Their preimages in T ∗Q are
then foliated by the complex submanifolds {(r, s)} × T ∗Q̄ ⊂ T ∗(R+ × Q̄) ∼=
T ∗

R+×T ∗Q̄, hence Levi-flat, so holomorphic curves cannot touch them from
inside, see [6]. Condition (R) holds for a generic metric. Condition (K) can
be arranged by Proposition 3.1 below, or by Remark 3.2 if K has trivial
normal bundle and a neighbourhood which admits a flat metric (e.g., for a
one-knot in R

3).

3.2. Structure near K. In this subsection we show that condition (K)
can always be arranged by a deformation of the compatible almost complex
structure near K, provided that L is two-sheeted near K.

Proposition 3.1. Let L0, L1 be Lagrangian submanifolds of a symplectic
2n-manifold (X, ω) intersecting cleanly along a closed submanifold K of
dimension k. Then there exists an ω-compatible integrable complex struc-
ture J on a neighbourhood U of K such that condition (K) holds.

The proof of this proposition is based on three lemmata. The first one
provides a symplectic normal form for L0, L1 near K.
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Lemma 3.1. Let L0, L1 be Lagrangian submanifolds of a symplectic 2n-
manifold (X, ω) intersecting cleanly along a closed submanifold K of dimen-
sion k. Then there exists a symplectomorphism from a neighbourhood U of
K onto a neighbourhood of K in (T ∗L0, ωst) mapping L0 to the zero section
and L1 to the conormal bundle NK.

Proof. Consider the cotangent bundle π : T ∗L0 → L0 with its standard
symplectic form ωst. A standard application of Moser’s lemma gives a sym-
plectomorphism from a neighbourhood (U , ω) of K onto a neighbourhood of
K in (T ∗L0, ωst) mapping L1 to the conormal bundle NK and such that the
image L′

0 of L0 under this symplectomorphism is tangent to the zero section
L0 along K. Thus after shrinking the neighbourhood we may assume that
L′

0 is the graph of a closed one-form λ. Since λ vanishes along K it equals dh
for a function h whose differential vanishes along K. The Hamiltonian flow
of h◦π : T ∗L0 → R is given by φt(q, p) = (q, p+ t dqh). So the time-(-1)-map
φ−1 preserves NK and maps L′

0 to the zero section. �

Next, we construct a holomorphic model for L0, L1 near K for which con-
dition (K) holds. Consider a complex vector bundle E → M . A holomorphic
structure on E is given by the structure of complex manifolds on E and M
together with holomorphic local trivializations. By a Kähler structure on a
holomorphic vector bundle E we mean a fibrewise linear Kähler form ωE on
E.

Lemma 3.2. Let F → K be a real vector bundle over a compact manifold
K and E → TK the pullback of the complexified bundle F ⊗ C → K to the
tangent bundle TK. Then there exists a Kähler vector bundle structure on
E for which the total spaces of the subbundles F → K and iF → K are real
analytic, totally real and Lagrangian.

Proof. We first describe the real Kähler structures on the tautological bun-
dles over Grassmannians. For positive integers m < N consider the action of
GL(m, C) on C

m×N by left multiplication. We think of C
m×N as m-tuples

of (row) vectors in C
N and denote by (Cm×N )∗ the subset of linearly inde-

pendent tuples. The maximal compact subgroup U(m) ⊂ GL(m, C) acts
on C

m×N in a Hamiltonian way (for the standard symplectic structure on
C

m×N ) with moment map

μ : C
m×N → u(m), M �→ i

2
XX∗.

The quotient

GC := GC(m, N) = (Cm×N )∗/GL(m, C) = μ−1(i/2)/U(m)

is the Grassmannian of m-dimensional complex subspaces of C
N ; it inherits

the Kähler structure from C
m×N .
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Next consider the set

V := {(X, v) ∈ (Cm×N )∗ × C
N | v ∈ span(X)},

where span(X) ⊂ C
N denotes the complex subspace spanned by the m-

frame X = (X1, . . . , Xm). Since the condition v ∈ span(X) can be expressed
by complex equations — the vanishing of all (m + 1)-dimensional minors of
the matrix (X1, . . . , Xm, v) — V is a complex submanifold of C

m×N × C
N .

The quotient

γC := V/GL(m, C) → GC,

where GL(m, C) acts trivially on v ∈ C
N , is the tautological rank m vector

bundle over the Grassmannian GC. By construction, it inherits from C
m×N ×

C
N the structure of a Kähler vector bundle.
Complex conjugation σ(X, v) := (X̄, v̄) defines an anti-holomorphic

(i.e., σ ◦ i = −i ◦ σ) and anti-symplectic (i.e., σ∗ωst = −ωst) involution
of C

m×N . Since σ(UX, v) = Ūσ(X, v) it descends to an anti-holomorphic
and anti-symplectic involution on γC. Its fixed point set, the total space of
the tautological bundle

γR → GR := GR(m, N)

over the Grassmannian of real m-planes in R
N is therefore real analytic,

totally real and Lagrangian. The map I(X, v) := (X, iv) on C
m×N × C

N is
holomorphic and symplectic. Since it commutes with the action of GL(m, C)
and satisfies I ◦ σ = −σ ◦ I, it descends to a holomorphic and symplectic
map on γC which anti-commutes with σ. Thus the total space of the bundle

iγR := I(γR) → GR

(whose fibre over a real subspace W ⊂ R
N is the subspace iW ⊂ C

N ) is also
real analytic, totally real and Lagrangian.

Now let F → K be a real vector bundle of rank m over a compact manifold
K. Then for sufficiently large N there exists a continuous map φ : K → GR

such that F ∼= φ∗γR. We equip K with a real analytic structure. Complexi-
fication yields a complex structure on the total space of the tangent bundle
TK such that the zero section is real analytic (after replacing TK by a
neighbourhood of the zero section and identifying this again with TK). We
approximate φ by a real analytic embedding into GR (which is possible for
N large) and complexify this to a holomorphic embedding φC : TK ↪→ GC.
By construction, φ is covered by an injective bundle map Φ : F → γR. We
complexify it to an injective bundle map F ⊗ C → γC mapping iF to iγR

and extend it to an injective bundle map ΦC : E → γC covering φC. Now
the Kähler bundle structure on γC|φC(TK) pulls back under ΦC to a Kähler
bundle structure on E → TK with the desired properties. �
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Lemma 3.3. Let E → TK be as in Lemma 3.2 with dim K = k and
rank E = n − k. Then hypothesis (K) is satisfied for X = E, L0 = F
and L1 = iF .

Proof. For the holomorphic vector bundle τ : E → TK, the projection τ
and the inclusion ι : TK ↪→ E of the zero section are holomorphic. Next
consider x ∈ K. Pick a neighbourhood V of x in K and a real analytic
trivialization φ : F |V ↪→ R

k × R
n−k mapping x to 0. Complexify it to a

holomorphic embedding φC : N ↪→ C
k ×C

n−k of a neighbourhood N of F |V
in E. By uniqueness of analytic continuation, the restriction of φC to each
Ex ∩ N with x ∈ V is complex linear and we can extend it linearly to the
whole fibre Ex. Thus we may assume that N contains E|V . By construction,
φC maps F |V to R

k × R
n−k, and by complex linearity in the fibres it maps

iF |V to R
k × iRn−k. �

Proof of Proposition 3.1. Let (X, ω), L0, L1 and K be as in the proposition.
Let F → K be the normal bundle of K in L0 and denote by E → TK
the pullback bundle of F ⊗ C → K under the projection TK → K as
in Lemma 3.2. Then a neighbourhood of K in X is diffeomorphic to a
neighbourhood of K in E such that L0 corresponds to F and L1 to iF .
Lemma 3.2 provides a Kähler vector bundle structure on E, with Kähler
form ωE , for which F and iF are Lagrangian. By Lemma 3.1, the quadruples
(X, ω, L0, L1) and (E, ωE , F, iF ) are both isomorphic near K to the same
standard model. Hence there exists a symplectomorphism from a neigh-
bourhood U of K in (X, ω) to a neighbourhood of K in (E, ωE) mapping
L0 to F and L1 to iF . The holomorphic structure on E pulls back to an
ω-compatible integrable complex structure J on U , which satisfies condition
(K) by Lemma 3.3. �

Remark 3.1. Proposition 3.1 should also hold if L is one-sheeted near K,
but the proof will be more involved in that case.

Remark 3.2. Consider a submanifold K ⊂ Q and the immersed Lagrangian
L = Q ∪ NK ⊂ T ∗Q as in Example 3.1. Suppose that K has trivial normal
bundle and a neighbourhood which admits a flat metric (e.g., for a one-
knot in R

3). Choose J to agree with the (integrable!) complex structure
on a neighbourhood of K in T ∗Q induced by this metric. After a small
perturbation, we may assume that K ⊂ Q is real analytic. We claim that K
then satisfies condition (K).

To see this, pick linearly independent real analytic normal vector fields
v1, . . . , vn−k along K. They induce a real analytic embedding

I : K × B ↪→ Q, (q, s1, . . . , sn−k) �→ q + s1v1(q) + . . . + sn−kvn−k(q).

Here B is a small ball around the origin in R
n−k and the right-hand side is to

be understood in flat coordinates near q. Intrinsically, it can be described as
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moving from q for time s1 along the geodesic in direction v1(q), then for time
s2 along the geodesic in direction v2(q) (parallel transported to q + s1v1(q)),
etc. This embedding complexifies to a holomorphic embedding

IC : KC × BC ↪→ T ∗Q, (x, z1, . . . , zn−k)

�→ ι(x) + z1v
C
1 (x) + . . . + zn−kv

C

n−k(x),

where ι : KC ↪→ T ∗Q is the complexification of the inclusion K ↪→ Q and
vC
j is the complexification of vj viewed as a map K → R

n in flat local
coordinates. This shows the existence of the holomorphic embedding ι and
projection τ in (K). For the last property, note that the restriction of IC to
K × iB is given by

(q, it1, . . . , itn−k) �→ q + it1v1(q) + . . . + itn−kvn−k(q).

Thus IC maps K × iB to the conormal bundle L1 = NK and K × B to the
zero section L0 = Q, so the desired local coordinates in (K) are induced by
(IC)−1 and flat coordinates on Q.

For the remainder of this section, we consider (X, L, ω, J) satisfying con-
ditions (X), (Y), (L), (K) and (R) above.

3.3. Area and energy. Recall from [3] that the (Hofer) energy of a holo-
morphic curve f is defined as a sum of two terms,

E(f) := Eω(f) + Eλ(f).

When f = (fR, fM ) : (S, ∂S, j) → (R × M, R × Λ, J), we set

Eω(f) :=
∫

S
f∗

Mω, Eλ(f) := sup
ϕ∈C

∫
S
(ϕ ◦ fR)dfR ∧ f∗

Mλ,

where the supremum is taken over the set C of nonnegative functions ϕ :
R → R with ∫

R

ϕ(s) ds = 1.

Similarly, for a holomorphic curve f : (S, ∂S, j) → (X, L, J) we define its
ω-energy (or area)

Eω(f) :=
∫

f−1(X̄)
f∗ω +

∫
f−1(R+×M)

f∗
Mω

and its λ-energy

Eλ(f) := sup
ϕ∈C+

∫
f−1(R+×M)

(ϕ ◦ fR)dfR ∧ f∗
Mλ,

where the supremum is taken over the set C+ of all nonnegative functions
ϕ : R+ → R with ∫

R+
ϕ(s) ds = 1.
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Since the almost complex structure is compatible with ω and since J pairs
the symplectization- and the Reeb direction in the ends of X, it follows that
Eω(f) ≥ 0 and Eλ(f) ≥ 0 for any holomorphic f . Moreover, Eω(f) = 0
implies that either f is constant, or the image of f is contained in some
cylinder over a closed Reeb orbit or in some strip over a Reeb chord.

3.4. Monotonicity and removal of singularities.

Lemma 3.4 (Monotonicity Lemma). There exist constants εM , CM > 0
depending only on (X, L, ω, J) with the following property: For any non-
constant J-holomorphic map f : (S, ∂S) → (X, L) from a (possibly noncom-
pact) Riemann surface with boundary, passing through a point x ∈ Ȳ and
such that f−1(B(x, r)) is compact for some r < εM , we have

Eω(f) ≥ CMr2.

Proof. The proof in Proposition 4.7.2 in [18] carries over to the present
setting as follows. Since the metric is smooth and K is compact, there exist
constants C0, C1, C2, and εM > 0 with the following properties. For 0 <
r < εM and any x ∈ Ȳ : B(x, r) ∩ L is contained in a contractible subset of
B(x, C2r) ∩ L, for every pair of points y, z ∈ B(x, r) ∩ L there is a curve in
B(x, C2r)∩L of length at most C1d(y, z) connecting them, and every closed
curve γ in B(x, C2r) bounds a disc in B(x, C2r) of area at most C0�

2(γ),
where �(γ) denotes the length of γ.

Assume that x ∈ f(S). For r < εM , let Sr = f(S)∩B(x, r) and decompose
∂Sr = αr ∪ βr, where αr = ∂B(x, r) ∩ f(S) and βr = f(∂S) ∩ B(x, r). If r is
chosen generically then αr and βr are collections of smooth curves, with βr

possibly empty. For each non-closed component α′
r of αr we choose a curve

γ′
r in L ∩ B(x, C2r) which connects its endpoints and is of length at most

C1l(α′
r), where l(α′

r) is the length of α′
r. Then α′

r ∪ γ′
r is a closed curve in

B(x, C2r) of length at most (1 + C1)l(α′
r). Let γr denote the union of all

curves γ′
r. Then by assumption αr ∪ γr bounds a collection D of discs in

B(x, r) of total area at most Cl2(αr). Similarly, βr ∪ γr, if nonempty, is a
cycle in the contractible set B(x, C2r) ∩ L, and so it bounds a surface N in
L ∩ B(x, C2r). By Stokes’ theorem∫

Sr∪D∪N
ω = 0.

Clearly
∫
N ω = 0. Moreover, since ω is a calibration, |

∫
D ω| is bounded by

the area of D, and we conclude that∫
Sr

ω ≤ C �2(αr),

for some constant C. Consider the distance function ρ from x. Since the
norm of the gradient of ρ in the ambient manifold is 1 we conclude that
|∇ρ| ≤ 1 on Sr. So if we let a(ρ) denote the area of Sρ then, by Sard’s
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theorem and the coarea formula, we have a′(ρ) ≥ �(αρ) for almost every
ρ ≤ r. Consequently

d
√

a

dρ
=

a′(ρ)
2
√

a(ρ)
≥ 1

2
√

C ′
,

for some constant C ′. Integrating we find a(r) ≥ CMr2. �
Remark 3.3. Alternatively, Lemma 3.4 can be proved by using Proposi-
tion 4.7.2 in [18] outside K and condition (K) near K. This reduces the
lemma to the case of a holomorphic map f = (f1, . . . , fn) : (S, ∂S) →
(Cn, Rn∪R

k×iRn−k) passing through the origin, which can be proved by con-
sidering the componentwise square g := (f2

1 , . . . , f2
n) : (S, ∂S) → (Cn, Rn)

with smooth Lagrangian boundary condition.

Let D := {z ∈ C | |z| < 1} and D+ := {z ∈ D | Im(z) ≥ 0}.

Lemma 3.5 (Removal of singularities). (a) Let f : D \ {0} → X be contin-
uous and J-holomorphic in the interior with finite energy E(f) < ∞. If f
is bounded, then it extends to a continuous map D → X.

(b) Let f : (D+ \ {0}, D+ ∩ R \ {0}) → (X, L) be continuous and J-
holomorphic in the interior with finite energy E(f) < ∞. If f is bounded,
then it extends to a continuous map D+ → X.

Proof. Both cases follow from the argument given right after Theorem 4.1.2
in [15], using the Monotonicity Lemma 3.4 above. �

3.5. Asymptotics. We have the following descriptions of the asymptotic
behaviour of a holomorphic curve f : (S, ∂S) → (X, L) where (X, L, ω, J)
satisfies conditions (X), (Y), (L), (K) and (R) above near a nonremovable
puncture (cf. [3, Proposition 5.6]).

Proposition 3.1. (a) Let f : R+×S1 → (Y, J) be a holomorphic curve with
E(f) < ∞ and suppose the image of f is unbounded. Then f(s, t) ∈ R+ ×M
for all sufficiently large s, and there exists T > 0 and a periodic orbit γ of
the Reeb vector field of period T such that

lim
s→∞

πM ◦ f(s, t) = γ(Tt), lim
s→∞

πR ◦ f(s, t)
s

= T

in C∞(S1).
(b) Let f : (R+ × [0, 1], R+ × {0, 1}) → (Y, L, J) be a holomorphic curve

with E(f) < ∞ and suppose the image of f is unbounded. Then f(s, t) ∈
R+ × M for all sufficiently large s, and there exists T > 0 and a Reeb chord
γ of Λ ⊂ M of length T such that

lim
s→∞

πM ◦ f(s, t) = γ(Tt), lim
s→∞

πR ◦ f(s, t)
s

= T

in C∞([0, 1]).
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Proof. Case (a) is proved in [11]. Case (b) is proved in [1] in case dim(Y ) = 3
and the proof there carries over to the higher dimensional situation with only
minor changes. �

3.6. Quantization of energy.

Lemma 3.6. There exists a constant � > 0, depending only on (X, L, ω, J),
such that for every proper J-holomorphic map f : (S, ∂S) → (X, L)

Eω(f) ≥ �.

Proof. The proof of Lemma 4.2 in [7] for symplectizations directly carries
over to the relative case, giving the result for curves whose image is contained
in the end R+×M . For curves whose image meets X̄, the lower energy bound
is guaranteed by the Monotonicity Lemma 3.4. �
Lemma 3.7. For every E > 0 there exists a constant �(E) > 0, depending
only on (X, L, ω, J) and E, such that the area of every proper J-holomorphic
cylinder or strip f : (S, ∂S) → (X, L) with E(f) ≤ E and Eω(f) > 0 satisfies

Eω(f) ≥ �(E).

Proof. The proof of Lemma 10.9 in [3] resp. Lemma 4.6 in [7] carries over
to the relative case. �

3.7. Holomorphic cylinders and strips of small area. Finally, we need
the following generalization of a result of Hofer, Wysocki and Zehnder.

Proposition 3.2. Given E0, ε > 0 there are constants σ, c > 0 with the
following properties:
(a) For every R > c and every holomorphic cylinder f : [−R, R] × S1 →

R×M satisfying Eω(f) ≤ σ and E(f) ≤ E0 there exists either a periodic
Reeb orbit γ of period T > 0 such that πM ◦ f(s, t) ∈ Bε(γ(Tt)) or some
point p ∈ M such that πM ◦ f(s, t) ∈ Bε(p) for all s ∈ [−R + c, R − c]
and all t ∈ S1.

(b) For every R > c and every holomorphic strip f : ([−R, R] × [0, 1],
[−R, R]×{0, 1} → (R×M, R×Λ) satisfying the inequalities Eω(f) ≤ σ
and E(f) ≤ E0 there exists either a Reeb chord γ of length T > 0
such that πM ◦ f(s, t) ∈ Bε(γ(Tt)) or some point p ∈ Λ such that
πM ◦ f(s, t) ∈ Bε(p) for all s ∈ [−R + c, R − c] and all t ∈ [0, 1].

Proof. The proof of (a) in [12] (for the contact case) and [3] (for general
stable Hamiltonian structures) carries over to case (b). �

We will also use the following version of Lemma 5.14. of [3], whose proof
carries over to the relative case using the Monotonicity Lemma 3.4.

Lemma 3.8. Let un : ([−n, n] × [0, 1], [−n, n] × {1, 0}) → (X, L) be a
sequence of J-holomorphic strips with
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(i) limn→∞ Eω(un) = 0, and
(ii) limn→∞ un|{±n}×[0,1] = p± ∈ L in C∞([0, 1], X).

Then limn→∞ diam un([−n, n] × [0, 1]) = 0, and in particular p+ = p−. �

4. Compactness

In this section, we apply the above local theory to establish a compactness
result for holomorphic curves. We consider (X, L, ω, J) satisfying conditions
(X), (Y), (L), (K) and (R) from the previous section. Without loss of gener-
ality, we assume that the neighbourhood in condition (K) is U = Uε, where
Ur denotes the open r-neighbourhood of K in X with respect to the distance
induced by (ω, J).

4.1. C∞
loc-convergence. Consider a fixed connected Riemann surface (Σ, j)

of finite type, by which we mean the complement of a finite set of points
(the “punctures”) in a connected compact Riemann surface with boundary.
We assume that Σ is stable, meaning that its double is a stable punctured
Riemann surface in the usual sense. It follows that Σ admits a unique com-
plete hyperbolic metric hj compatible with j such that each component of
∂Σ is a geodesic (either closed or infinite).

Suppose fn : (Σ, ∂Σ, j),→ (Y, L, J) is a sequence of continuous maps
which are J-holomorphic on int Σ ∪ (∂Σ \ f−1

n (K)) and have finite energy.
Recall (Proposition 3.1) that if an interior puncture is a nonremovable sin-
gularity of the map fn, then fn will be asymptotic to a trivial cylinder over
a closed Reeb orbit in a neighbourhood of that puncture. Similarly, near
nonremovable boundary punctures fn is asymptotic to a trivial strip over a
Reeb chord. We make the following additional assumptions on our sequence:
(S1) Each puncture is either removable for all n ≥ 1 or nonremovable for

all n ≥ 1, and at nonremovable punctures the asymptotic Reeb chords
resp. closed Reeb orbits are independent of n.

(S2) There exists a constant C > 1 such that for all z ∈ int Σ and all n ≥ 1
we have

|∇fn(z)| ≤ C

ρ(z)
if fn(z) /∈ Uε/4,(4.1)

|∇(τ ◦ fn)(z)| ≤ C

ρ(z)
if fn(z) ∈ Uε.(4.2)

Here ρ(z) denotes the injectivity radius at z ∈ Σ in the hyperbolic
metric, the norm is computed with respect to the hyperbolic metric on
the domain and the metric determined by ω and J on the target, and
τ : Uε → T ∗K is the holomorphic projection appearing in condition
(K).

We denote by σt : R × M → R × M the map which shifts the R-component
by t.
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Proposition 4.1. For any sequence of maps fn : (Σ, ∂Σ, j) → (Y, L, J)
satisfying (S1) and (S2) there exists a subsequence, still denoted fn, such
that one of following holds:

(i) There exists a holomorphic map f : (Σ, ∂Σ, j) → (R × M, R × Λ, J),
and constants tn ∈ R, such that for any compact subset A ⊂ Σ there
exists N(A) such that for all n ≥ N(A) we have fn(A) ⊂ R+ × M
and σtn ◦ fn|A → f |A in C∞. In other words, the sequence of maps fn

converges in the SFT sense to a curve in the symplectization.
(ii) There exists a continuous map f : (Σ, ∂Σ, j) → (Y, L, J) which is

holomorphic on int Σ ∪ (∂Σ \ f−1(K)) such that fn → f in C0
loc on Σ,

and fn → f in C∞
loc on int Σ ∪ (∂Σ \ f−1(K)).

Proof. We fix an exhaustion B1 ⊂ B2 ⊂ B3 ⊂ · · · of Σ by closed subsets
Bj := {z ∈ Σ: d(z0, z) ≤ j}, where d(z0, z) denotes the distance between
some fixed point z0 and z. Since Bj is compact, the injectivity radius ρ is
bounded below on it by

ρj := minBjρ > 0.

So with Cj := C/ρj condition (S2) yields the following gradient bounds for
z ∈ Bj ∩ int Σ and all n:

|∇fn(z)| ≤ Cj if fn(z) /∈ Uε/4,(4.3)

|∇(τ ◦ fn)(z)| ≤ Cj if fn(z) ∈ Uε.(4.4)

We now distinguish two cases.

Case 1. The sequence fn(z0) is unbounded.

Then, after passing to a subsequence, we have fn(z0) ∈ R+ × M with R-
component going to infinity. By the gradient bounds on Bj , for each fixed j
we have fn(Bj) ⊂ R+×M for all sufficiently large n with R-component going
uniformly to infinity. Hence we can apply the usual compactness argument
with smooth Lagrangian boundary conditions R × Λ in the symplectization
R × M to obtain a limiting map f with image in R × M as in the first case
of the proposition.

Case 2. The sequence fn(z0) remains in a compact subset A ⊂ X.

By the gradient bounds on Bj , for each fixed j the images fn(Bj) remain
in the compact subset

Aj := {x ∈ X | d(x, A ∪ Ūε) ≤ Cj j}.

For each z ∈ Bj , we define the open ball

Sz := intB

(
z,

ε

4Cj

)
.

Now Bj is covered by a finite collection Sz1 , . . . , Szr of these sets.
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For each of the points zi, exactly one of the following two things happens:
(a) after passing to a subsequence nk, fnk

(zi) /∈ Uε/2 for all k ≥ 1, or
(b) there exists some N(zi) such that fn(zi) ∈ Uε/2 for all n ≥ N(zi).
If z1 is of type (a), then we pass to the subsequence fnk

, and if z1 is of type
(b) we pass to the subsequence fn with n ≥ N(z1). Repeating this for each
index i = 2, . . . , r, we arrive at the situation where for each zi either (a) or
(b) holds for all n ≥ 1.

Consider first zi of type (a). Then the gradient bounds imply that
fn(Szi) ∩ Uε/4 = ∅ for all n ≥ 1. So the maps fn : Szi → X have
smooth Lagrangian boundary conditions, and the usual compactness argu-
ment yields a subsequence which converges in C∞

loc (up to the boundary) to
a holomorphic limit map.

Next we consider zi of type (b). We claim that fn(Szi) ⊂ Uε for all n ≥ 1.
To see this, consider z ∈ Szi and a constant speed minimal geodesic γ :
[0, 1] → Σ from zi to z, set

t′ := sup
{

t ∈ [0, 1] : d(fn(γ(t)), K) ≤ ε

2

}
,

and compute

d(fn(z), K) ≤ ε

2
+ d(fn(γ(t′)), fn(z))

≤ ε

2
+

∫ 1

t′
|∇fn(γ(t))| |γ̇(t)| dt

≤ ε

2
+ d(zi, z)maxt∈[t′,1]|∇fn(γ(t))|

≤ ε

2
+

ε

4Cj
Cj

≤ ε.

This proves the claim. Now consider the holomorphic maps

τ ◦ fn : Szi → T ∗K,

where τ : Uε → T ∗K is the holomorphic projection in condition (K). These
maps have smooth Lagrangian boundary conditions on K, are uniformly
bounded, and have uniform gradient bounds by condition (4.4) above. So
the usual compactness argument yields a convergent subsequence. Denote
the limit map by g : Szi → T ∗K.

It remains to show convergence of the components transverse to T ∗K.
For this, note that by condition (K) each x ∈ T ∗K has a neighbourhood Ux

with a holomorphic embedding τ−1(Ux) ↪→ Ux ×C
n−k sending the branches

of L to K × R
n−k and K × iRn−k, where k = dimK. Cover the image of

τ by finitely many such neighbourhoods Ux1 , . . . , Uxs and denote by ν
 :
Ux × C

n−k → C the holomorphic projection onto the �th C-factor, � =
1, . . . , n−k. Pulling back the Uxm under g yields open subsets Szi,m ⊂ Szi and
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holomorphic functions ν
 ◦fn : Szi,m → C mapping the boundary Szi,m ∩∂Σ
to R∪ iR. Since the functions are also uniformly bounded, Lemma 2.4 yields
a convergent subsequence for each � = 1, . . . , n − k and m = 1, . . . , s.

Combining types (a) and (b), we conclude that fn : Bj → X has a
subsequence converging in the desired sense to a continuous limit map fj :
(Bj , Bj ∩∂Σ) → (X, L) which is holomorphic on Bj ∩(int Σ∪(∂Σ\f−1

j (K))).
Finally, we take a diagonal sequence with respect to the index j of Bj in
our exhaustion to get a subsequence converging on all of Σ to a limit map
f : (Σ, ∂Σ) → (X, L), with convergence in C0

loc on Σ and in C∞
loc on int Σ ∪

(∂Σ \ f−1(K)) as in the second case of the proposition. �
Remark 4.1. Note that the same proof works if we allow the domains of
fn to vary in a converging sequence of Riemann surfaces (Σn, jn).

4.2. Proof of the Compactness Theorem 1.1. For the remainder of this
section, we assume familiarity with the proof of compactness for holomorphic
curves in SFT presented in [3], and we will sketch how it can be adapted to
our setting. We freely use the concepts and notation of [3].

We denote a nodal Riemann surface by (S, j, D, M), where (S, j) is a
compact Riemann surface, D is the set of double points and M is the set
of marked points. As our curves have boundary, a nodal Riemann surface
will have nodes of two types: boundary nodes, where both points are on the
boundary, and interior nodal points, where both are in the interior. We do
not consider mixed nodes. Also, we think of the boundary components as
ordered, and so the set of marked points M can be split as M = Mint ∪M1 ∪
. . . ∪ Mb, where b ≥ 0 is the number of boundary components of the surface
S, and where the marked points in Mint are interior and the marked points
in Mi lie on the ith boundary component. The genus of a nodal Riemann
surface with boundary is the arithmetic genus of the topological surface
obtained by filling each boundary component by a disc.

We define the signature of a nodal Riemann surface as the sequence
σ = (g, b; n, m1, . . . , mb), where g is its genus, b is the number of bound-
ary components, n is the number of interior marked points and mi is the
number of marked points on the ith boundary component.

The ε-thin part of every component of a stable nodal Riemann sur-
face (with respect to its uniformizing metric) now consists of four types
of domains: annuli of finite modulus around a short interior geodesic, annuli
conformally equivalent to the punctured unit disc around each interior punc-
ture, a rectangular region conformally equivalent to [−1, 1]×(−L, L) around
each short geodesic (minimal in its free homotopy class) connecting two
boundary components and a region conformally equivalent to a punctured
half-disc D+ \ {0} near each boundary puncture.

A decoration (i.e., an orientation reversing orthogonal identification of the
tangent planes at the two corresponding points) is required only at interior
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nodes, since at the boundary the choice of identification is fixed by matching
the boundary directions. We denote a decorated nodal Riemann surface by
(S, j, D, M, r), where r stands for the decoration.

We denote by M$
σ the moduli space of connected decorated stable nodal

Riemann surfaces with signature σ, equipped with the usual topology ([3],
cf. also [14] for the nondecorated case). It is shown in [3] that, for each
fixed signature σ, the space M$

σ is a compact metric space which coincides
with the closure of its subset Mσ of smooth marked Riemann surfaces with
boundary of signature σ. In other words, every sequence of smooth stable
marked Riemann surfaces (Sn, jn, Mn) of signature σ has a subsequence
which converges to a decorated nodal Riemann surface (S, j, M, D, r) of the
same signature.

Now consider (X, L, ω, J) as above. With the above setup for the domains,
the definition of a nodal holomorphic curve of height 1 in (X, L, J) is exactly
the same as in [3, Section 8], except that we allow the domain to have
boundary, which is required to be mapped to L. Similarly, we get the notion
of a holomorphic building of height (1|k+), and the notion of convergence.
Fixing the signature σ := (g, b; n, m1, . . . , mb), we obtain the moduli space
Mσ(W, L, J) of stable holomorphic curves of that signature.

Now we can prove the Compactness Theorem 1.1 in the introduction,
which we restate as follows.

Theorem 4.1. Let (X, L, ω, J) satisfy conditions (X), (Y), (L), (K) and
(R). Then for any E > 0 and for any fixed signature σ = (g, b; n, m1, . . . , mb),
the space Mσ(X, L, J) ∩ {E(f) ≤ E} is compact.

Proof. The proof closely follows the strategy of the corresponding proof of
Theorem 10.2. of [3]. Clearly, it is sufficient to establish sequential compact-
ness for smooth curves (i.e., without nodes).

So let fn : (Sn, ∂Sn, jn) → (X, L, J) be a sequence of curves of fixed
signature and uniformly bounded energy.

Step 1. After adding additional marked points if needed, we may assume
that the underlying domains (Sn, jn, Mn ∪ Zn) of the fn are stable.

Now we want to argue that, by adding a finite set (with cardinality
depending on the energy bound) of additional pairs of points, one obtains
a new sequence of stable domains, denoted by (Sn, jn, Mn ∪ Zn), such that
the new sequence satisfies the gradient bounds (4.1) and (4.2).

This is based on a bubbling analysis. Indeed, to achieve (4.1) one argues
as in [3], producing finite energy planes or spheres that each take a minimal
amount � > 0 of energy by Lemma 3.6.

So assume that (4.1) holds but (4.2) fails, i.e., there exists a sequence of
points zn ∈ Sn such that fn(zn) ∈ Uε/4 and ‖∇(τ ◦ fn)(zn)‖ · ρ(zn) → ∞.
After passing to a subsequence, we have one of the following two cases:
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(i) ρ′
n := ρ(zn)

d(zn,∂Sn) ≤ C < ∞, or
(ii) ρ′

n → ∞.
In case (i), we find holomorphic embeddings φn : (D, 0) →

(
Sn \ (Mn ∪

Zn), zn

)
of the unit disk with

1
C ′ ρ

′
n ≤ |∇φn| ≤ C ′ρ′

n

for some constant C ′, and in case (ii) we find points ξn ∈ D+ with ξn → 0
and holomorphic embeddings φn : (D+, D+∩R, ξn) → (Sn\(Mn∪Zn), L, zn)
of the upper half disc satisfying the same bounds.

In both cases we can modify the sequence (zn), rescale fn ◦ φn as in [3,
Section 10.2.1] and apply Proposition 4.1 to obtain a J-holomorphic plane
f : C → X or half-plane (H, R) → (X, L) of finite energy. The map f is
either proper, or it extends to a holomorphic sphere or disc by Lemma 3.5.
In either case, f has area Eω(f) ≥ � > 0 by Lemma 3.6. Hence adding a
pair of marked points and repeating this process, we obtain a bound of the
form (4.2) after finitely many steps.

Step 2. After passing to a subsequence, the domains (Sn, Mn, Zn) will con-
verge to a decorated nodal Riemann surface with boundary (S, j, M, Z, D, r).
In Step 1 we have arranged for assumption (S2) to hold for our sequence,
and using the energy bound we can arrange (S1) after passing to a sub-
sequence. So, by Proposition 4.1, for a further subsequence we obtain C∞

loc-
convergence on each component of the complement of the pinching geodesics
in (Sn, jn, Mn, Zn) of the maps fn to some limiting map f defined on the
corresponding components of (S, j, M, Z, D, r).

Step 3. Now we have to analyse the convergence in the thin part. Here, as in
[3], one considers each type of component of the thin part separately. Annuli
near interior marked points and near interior nodes are treated in detail in
[3, Section 10.2.3]. In the other two cases one proceeds analogously, with the
following adaptions.

4.2.1. Behaviour near a boundary node. As in the case of interior
nodes described in [3], boundary nodes appear as a result of degeneration
of some component of the thin part of the Sn. The associated holomorphic
strips un = fn ◦φn, obtained by precomposing with suitable uniformizations
φn whose domains are longer and longer strips, have gradient bounds of the
form

|∇un(z)| ≤ C if un(z) /∈ Uε/4,

|∇(τ ◦ un)(z)| ≤ C if un(z) ∈ Uε.
(4.5)

This follows by the same argument as that for equation (35) in [3]. After
passing to a subsequence, the areas Eω(fn) converge to either zero or some
positive constant.
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First consider the case of zero limiting Eω-energy. If one of the asymptotics
for the limit map f in the adjacent thick parts of S is a Reeb chord, one uses
part (b) of Proposition 3.2 to conclude that the other asymptotic equals the
same Reeb chord. If both adjacent asymptotics are points p± ∈ L one uses
Lemma 3.8 to conclude that p+ = p−.

If the limiting Eω-energy of the strips is positive, in view of the gradient
bounds (4.5) there can be no bubbling, and so the only possibility is breaking
into a sequence of holomorphic strips. By Lemma 3.7, each nontrivial strip
carries area at least �(E), so there can only be finitely many of them.

4.2.2. Behaviour near a boundary puncture. Here, the adjustments
are similar in nature to the ones described for the previous case, and we
omit the details.

After Step 3 is done, we have a subsequence fn of the original sequence of
holomorphic curves converging to a limiting map f defined on some nodal
Riemann surface (S, j, M, Z, D, r) such that limE(fn) = E(f).

Step 4. It remains to recover the level structure in the holomorphic building
f constructed above, and this is done exactly as in [3, Section 10.2.5]. �
Remark 4.2. Theorem 1.2 in [13] is a version of Gromov compactness
for holomorphic curves in a symplectic manifold X with boundaries on
immersed Lagrangian submanifolds with mutually clean intersections. In
order to discuss how it differs from our Theorem 1.1 we recall the notation
from [13, p. 81] (we restrict to the case of nonmoving boundary conditions
since this is what we study in this paper).

The immersed boundary conditions are given by a finite collection of
Lagrangian immersions fi : Wi → X, i = 1, . . . , M with mutually clean
intersections and self-intersections. The holomorphic curves un : Cn → X,
n = 1, 2, . . . of the sequence are assumed to be of the following form. The
boundary ∂Cn is subdivided into a fixed number of arcs βn,k, k = 1, . . . , M

and on any βn,k, un = fi ◦ u
(b)
n,k with continuous maps u

(b)
n,k : βn,k → Wi, for

some i. This means that the number of switches where the map changes
branches is a priori bounded by M . Contrary to that, in our Theorem 1.1
there is no a priori bound on the number of such switches. On the other
hand [13] allows for more general almost complex structures.

5. Proof of the Finiteness Theorem 1.2

As before, we consider (X, L, ω, J) satisfying conditions (X), (Y), (L), (K)
and (R). Now we assume in addition that (X, L, ω = dλ) is exact with convex
end, i.e., λ is a positive contact form on M which extends as a primitive of
ω to X̄.

For a holomorphic curve f : (S, ∂S, j) → (X, L, J) a switch is a point in
∂S which is mapped to K.
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Now we can prove the Finiteness Theorem 1.2 in the introduction, which
we restate for convenience.

Theorem 5.1. In the situation of Theorem 1.1, suppose in addition that
(X, L, ω = dλ) is exact with convex end. Then for each s ∈ N and C > 0
there exists a constant κ(s, C) ∈ N such that every holomorphic disc f :
(Ḋ, ∂Ḋ, j) → (X, L, J) with at most s boundary punctures and energy ≤ C
has at most κ(s, C) switches.

Proof. We argue by contradiction. So assume there exists a sequence of holo-
morphic discs f : (Ḋ, ∂Ḋ, j) → (X, L, J) with at most s boundary punctures
and energy ≤ C such that f−1

n (K)∩∂D contains at least n points. After pass-
ing to a subsequence, we may assume that the number s of boundary punc-
tures and the ordered collection of asymptotic Reeb chords Γ = (γ1, . . . , γs)
is fixed in the sequence.

By Theorem 4.1 in the previous section, some subsequence of the fn con-
verges to a stable holomorphic curve f of some finite height (1|k), whose
domain is a disc-like nodal Riemann surface (S, j, Z, D, r) with Z ⊂ ∂S of
cardinality s. The convergence is in C0 and in C∞

loc away from the punctures,
the nodes and f−1(K) ∩ ∂S.

Consider a component C of S on which f is nonconstant. We claim that
in this case f−1(K) ∩ ∂C is finite. To see this, suppose otherwise. Since f
tends to infinity near the boundary punctures the set f−1(K)∩∂C avoids a
neighbourhood of the punctures and thus has a limit point p ∈ ∂C. Pick a
neighbourhood Sp of p which is mapped into a neighbourhood as in condition
(K) on which we have holomorphic coordinates mapping the branches of L
to R

n and R
k × iRn−k. Consider for � = k + 1, . . . , n the holomorphic map

ν
 ◦ f : Sp → C, where ν
 : C
n → C is the projection onto the �th C-

factor in these coordinates. Since ν
 ◦ f has infinitely many zeros in Sp,
Lemma 2.5 implies that it vanishes identically, so f(Sp) ⊂ KC, where KC ⊂
Uε is the complexification of K in condition (K). By unique continuation,
the component of p in f−1(Uε)) is mapped into KC, so in particular the
(connected) boundary of C is mapped entirely into K. But since L is exact,
the boundary of a nonconstant component must contain at least one positive
puncture. This contradiction completes the proof of the claim.

It follows that f−1(K) ∩ ∂S consists of finitely many points and finitely
many components on which f takes a constant value on K. Pick disjoint
compact sets S1, . . . , Sr with piecewise smooth boundary such that f−1(K)∩
∂S ⊂ ∪iintSi and for each Si one of the following holds:
(a) Si contains precisely one point of f−1(K) ∩ ∂S and no nodes, or
(b) Si contains precisely one connected union of components on which f

takes a constant value on K.
Moreover, we may assume that each Si is mapped into the neighbour-

hood Uε of K in condition (K). Note that for n ≥ N sufficiently large we
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have fn(∂D \ ∪iSi) ∩ K = ∅ by the C0-convergence on compact sets. Since
f−1

n (K) ∩ ∂D contains at least n points, it follows that in some Si the map
fn has at least n/r points of ∂D mapping to K.

Suppose first that this Si is of type (a). Then fn → f in C∞ on Si and
(composing as above with projections to C) Lemma 2.5 implies that f maps
Si into KC. As above, this yields a contradiction.

Finally, suppose that Si is of type (b). Then we argue as in the proof of
Lemma 2.5: By Lemma 2.3, the winding number of fn over Γi := ∂Si \ (Si ∩
∂S) satisfies

w(fn, Γi) ≥ n

4r

n→∞−→ ∞.

On the other hand, the smooth convergence fn → f on Γi implies

w(fn, Γi)
n→∞−→ w(f,Γi) < ∞.

This contradiction completes the proof of the Finiteness Theorem. �

Corollary 5.1. In the situation described above, for every ordered collection
of Reeb chords Γ = (γ1, . . . , γs), there exists a constant κ = κ(Γ) with the
following property. If Z ⊂ ∂D2 has cardinality s and f : (D2 \Z, ∂D2 \Z) →
(T ∗

R
3, L) is a J-holomorphic disc with asymptotics Γ, then f−1(K) ∩ ∂D2

contains at most κ points. In particular, f has at most κ switches.

6. Appendix A. Dimensions of moduli spaces

Consider a quadruple (X, L, ω, J) satisfying conditions (X), (Y), (L), (K)
and (R) in Section 3. In this appendix we give the dimension formula for
moduli spaces of holomorphic curves in X with smooth boundary on L, inte-
rior punctures asymptotic to closed Reeb orbits, boundary punctures asymp-
totic to Reeb cords and Lagrangian intersection punctures, i.e., boundary
punctures asymptotic to the clean self-intersection K. Before proving the
formula we introduce the (topological) data needed to state it.

Consider a Lagrangian intersection puncture mapping to a point k in a
component Kd of K, where dim(Kd) = n − d. We restate the relevant part
of condition (K) as follows:

(t0) Near k there exist local holomorphic coordinates C
n−d ×C

d in which L
corresponds to R

n−d ×(Rd ∪ iRd), and T ∗K corresponds to C
n−d ×{0}.

Assume that f : (S, ∂S) → (X, L) is a holomorphic map with a Lagrangian
intersection puncture. Pick a local coordinate z in upper half plane H on the
source S, where the Lagrangian intersection puncture corresponds to 0 ∈ H,
and local holomorphic coordinates C

n−d × C
d around f(0) in the target as

in (t0). In these coordinates f is expressed as

f(z) = (f1(z), f2(z)) ∈ C
n−d × C

d,
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where f1 maps R to R
n−d, and f2 maps R± to R

d or iRd. It follows that
f1, f2 have unique power series expansions of the form

(A.1) f1(z) =
∞∑

j=0

ajz
j , f2(z) =

∞∑
j=0

cjz
j+w,

where aj ∈ R
n−d for all j, either cj ∈ R

d for all j or cj ∈ iRd for all j, c0 	= 0,
and w is either a positive half integer (if the map f switches local sheets
of L at k) or a positive integer (if f remains on one sheet). We call w the
asymptotic winding number of f at the Lagrangian intersection puncture k.
(This notion is clearly independent of the choices involved in its definition.)

Assume that the holomorphic map f : (S, ∂S) → (X, L) has

• p positive interior punctures at Reeb orbits γ1, . . . , γp,
• q negative interior punctures at Reeb orbits β1, . . . , βq,
• s positive boundary punctures at Reeb chords c1, . . . , cs,
• t negative boundary punctures at Reeb chords b1, . . . , bt, and
• l Lagrangian intersection punctures on the boundary mapping to

clean self intersection components Kd1 , . . . , Kdl
with asymptotic wind-

ing numbers w1, . . . , wl, respectively, where dim(Kdj
) = (n − dj),

j = 1, . . . , l.

We trivialize TX along parts of the map f as follows:

(t1) Fix complex trivializations Zγ of the contact planes in the convex end
of X along all Reeb orbits γ ∈ {γ1, . . . , γp}.

(t2) Fix complex trivializations Zβ of the contact planes in the concave end
of X along all Reeb orbits β ∈ {β1, . . . , βq}.

If α ∈ {γ1, . . . , γp} or α ∈ {β1, . . . , βq} then the linearized Reeb flow induces
a one-parameter family of symplectomorphisms Φt : ξα(0) → ξα(t), where ξα(t)
is the contact hyperplane at α(t), t ∈ [0, T ]. Using the trivialization Zα from
(t1) or (t2), we view Φt as a path of symplectomorphisms ΦZα

t : C
n−1 →

C
n−1. Write

(A.2) μCZ(α, Zα)

for the Conley–Zehnder index of the path ΦZα
t , 0 ≤ t ≤ T (see [8]).

Remark A.1 (cf. [8]). The Conley–Zehnder index of a path Ψt : C
m →

C
m, 0 ≤ t ≤ 1 is the Maslov index of the path of Lagrangian planes in

C
m ⊕ C

m corresponding to the graph of Ψt. The Maslov index of a path
Lt, 0 ≤ t ≤ 1, of Lagrangian planes in C

k equals 〈μ, [L̂]〉 − k
2 , where μ is

the Maslov class and where L̂ is the loop of Lagrangian planes obtained by
closing L by a positive rotation taking L1 and L0. Here a positive rotation
is defined as follows. Two Lagrangian subspaces V0 and V1 in C

k defines
a decomposition W = W 1 ⊕ . . . ⊕ W r into orthogonal subspaces and a
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complex angle (θ1, . . . , θr), 0 ≤ θ1 < θ2 < . . . < θr < π as follows. Let θ1 be
the smallest number in [0, π) such that

dim
(
(eiθ1 · V0) ∩ V1

)
≥ 1.

Let W 1 ⊂ C
k be the complex subspace generated by (eiθ1 ·V0) ∩V1 and let W ′

be its orthogonal complement. Then V ′
0 = W ′ ∩ (eiθ1 · V0) and V ′

1 = W ′ ∩ V1
are Lagrangian subspaces. Let θ′

1 be the smallest number in (0, π) such that

dim
(
(eiθ′

1 · V ′
0) ∩ V ′

1

)
≥ 1.

Let θ2 = θ′
1 + θ1 and let W 2 ⊂ W ′ ⊂ W be the complex subspace generated

by (eiθ′
1 · V ′

0) ∩ V ′
1 . Repeating this construction we get a decomposition and

complex angles as claimed.
The positive rotation taking V0 to V1 is the one-parameter family of linear

transformations which acts by multiplication by eiθjt, t ∈ [0, 1] on W j , j =
1, . . . , r. The negative rotation taking V0 to V1 acts by multiplication by
e−i(π−θj)t, t ∈ [0, 1] on W j , j = 1, . . . , r.
(t3) Fix complex trivializations Zc of the contact planes along all Reeb

chords c ∈ {c1, . . . , cs} of the Legendrian submanifold in the convex
end which have the property that the linearized Reeb flow along the
chord c expressed in Zc is constantly equal to the identity.

(t4) Fix complex trivializations Zb of the contact planes along all Reeb
chords b ∈ {b1, . . . , bt} of the Legendrian submanifold in the concave
end which have the property that the linearized Reeb flow along the
chord b expressed in Zb is constantly equal to the identity.

Completing these trivializations with a vector field in the symplectization
direction, we get trivializations of TX along any Reeb orbit and along any
Reeb chord appearing as asymptotic data for f .
(t5) Fix complex trivializations ZC of f∗TX along each component C of the

complement of the punctures in ∂S with the following properties. If an
endpoint of C is a Reeb chord puncture at a Reeb chord a then ZC = Za

at the corresponding Reeb chord endpoint in some neighborhood of the
endpoint of C. If a Lagrangian intersection puncture is the common
endpoint of boundary components C and C ′ then ZC = ZC′ at the
common endpoint.

Choices (t1) and (t2) give trivializations of f∗TX near each interior punc-
ture in S and choices (t3)–(t5) give a trivializations Z∂jf of f∗TX along the
jth component Cj of the boundary ∂S, where we think of punctures as
marked points so that ∂S becomes a closed one-manifold. Let

(A.3) crel
1

(
u∗(TX); Z∂f ; Zγ1 , . . . , Zγp ; Zβ1 , . . . , Zβq

)
denote the obstruction to extending this trivialization over S. Here we think
of the obstruction as the number arising from evaluating the obstruction
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class on the orientation class of (S0, ∂S0), where S0 is the surface obtained
from S by removing small open discs around all its interior punctures and
where the bundle is trivialized along ∂S0.

Let Λ denote a Legendrian submanifold at one of the ends of X and let
a ∈ {c1, . . . , cs} or a ∈ {b1, . . . , bt} be a Reeb chord of Λ. Let a− denote the
endpoint of a where the Reeb vector field points into a, and let a+ denote
the other endpoint of a. The image of the tangent space Ta−Λ under the
linearized Reeb flow along a is a Lagrangian plane (Ta−Λ)′ ⊂ ξa+ , where ξy

denotes the contact plane at y. Assume that a is generic in the sense that
the two Lagrangian subspaces (Ta−Λ)′ and Ta+Λ of ξa+ intersect transversely
(after small perturbation, all Reeb chords are generic). Let

Rneg
a+ (a−, a+) : ξa+ → ξa+

denote the rotation in ξa+ in the negative direction which takes (Ta−Λ)′ to
Ta+Λ. Let

Rneg
a− (a+, a−) : ξa− → ξa−

be defined similarly, rotating the image (Ta+Λ)′ of Ta+Λ, under the back-
wards linearized Reeb flow along a, in the negative direction in ξa− to Ta−Λ.

Let C ′
j denote the complement of the punctures in the jth component

Cj ⊂ ∂S. Then the tangent planes to L along f(C ′
j) expressed in the trivi-

alizations Z∂jf constitute a collection of paths of Lagrangian planes in C
n.

We close these paths to a loop as follows:
(t3′) The tangent planes of L = Λ × R at endpoints of a Reeb chord c ∈

{c1, . . . , cs} are connected by the product of the linearized Reeb flow
along c in ξ and the identity in the symplectization direction, followed
by the path

Rneg
c+

(c−, c+)((Tc−Λ)′) ⊕ R ⊂ ξc+ ⊕ C.

(t4′) The tangent planes of L = Λ × R at endpoints of a Reeb chord
b ∈ {b1, . . . , bt} are connected by the backwards linearized Reeb flow
along b in ξ and the identity in the symplectization direction, followed
by the path

Rneg
b− (b+, b−)((Tb+Λ)′) ⊕ R ⊂ ξb− ⊕ C.

(t0′) The tangent planes at a Lagrangian intersection puncture mapping to
Kd ∈ {Kd1 , . . . , Kdl

} of asymptotic winding number w correspond to
the planes R

n−d × R
d or R

n−d × iRd in the coordinates (t0). Connect
these planes by multiplying the tangent plane of the boundary compo-
nent oriented toward the puncture with the matrix

(A.4)
(

1 0
0 e−swπi

)
, 0 ≤ s ≤ 1,

in the local C
n−d × C

d-coordinates of (t0).
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Define

(A.5) μ(∂jf, Z∂jf )

as the Maslov index of the loop of Lagrangian subspaces in C
n which cor-

responds to the jth boundary component of S and which is constructed by
closing the paths of Lagrangian planes as described in (t3′), (t4′) and (t0′).

Let M(f) denote the moduli space of holomorphic curves in X with
boundary on L, with punctures at Reeb orbits, Reeb chords and at
Lagrangian self-intersection components as described above, which have the
same additional structure as f (i.e., asymptotics and Lagrangian intersec-
tion punctures, including asymptotic windings), have domain diffeomorphic
to (S, ∂S), and which are homotopic to f through (continuous) maps respect-
ing the additional structure. Recall that dim(X) = 2n, let g denote the genus
of S, and let r denote the number of boundary components of ∂S.

Theorem A.1. With the notation from (A.2), (A.3) and (A.5), the formal
dimension of M(f) is given by

dim(M(f)) = (n − 3)(2 − 2g − r) + (s + t + l)

+
p∑

j=1

(
μCZ

(
γj , Zγj

)
− (n − 3)

)

−
q∑

j=1

(
μCZ

(
βj , Zβj

)
+ (n − 3)

)

+
r∑

j=1

μ
(
∂jf, Z∂jf

)

+ 2crel
1

(
u∗(TX); Z∂f ; Zγ1 , . . . , Zγp ; Zβ1 , . . . , Zβq

)
.

Remark A.2. As mentioned in Section 1, it follows from Theorem A.1 that
the contribution from a Lagrangian intersection puncture mapping to a codi-
mension d clean intersection component with asymptotic winding number
w equals 1−wd. Here 1 is the contribution to l and −wd is the contribution
to the Maslov index from the rotation in (A.4).

Proof. We consider first the case when there are no Lagrangian intersection
punctures. The formal dimension of M(f) equals the Fredholm index of
the linearization of the ∂̄J -equation at f . The source space of this operator
splits into the direct sum of an infinite-dimensional functional analytic space
of vector fields along f and the tangent space of the space of conformal
structures of the domain S of f . We denote the restriction of the linearized
∂̄J -operator to the space of vector fields by ∂̄vf .

The index of ∂̄vf remains constant as the operator is deformed through
Fredholm operators. Consider the symplectization direction in f∗TX near
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any boundary puncture in S. The boundary condition in this direction is
degenerate. In order to describe a neighbourhood of the map f in a func-
tional analytic setting (e.g., a polyfold neighbourhood of f), one would use
a Sobolev space with small positive exponential weights at the punctures
and augment that space by one cut-off solution corresponding to transla-
tions in the R-direction for each puncture. (With notation as above, if θm

and θM denotes the smallest and largest complex angles, respectively, of
(Ta−Λ)′ and Ta+Λ over all Reeb chords a ∈ {c1, . . . , cp} ∪ {b1, . . . , bt} then
the weight being small means that it is smaller than min{θm, π−θM}.) How-
ever, for index purposes, this is equivalent to forgetting the cut-off solution
and changing the weight to a small negative exponential weight. We will
work in the setting of small negative exponential weight without auxiliary
solutions below.

The first deformation of ∂vf will change the ξ-directions of the boundary
condition near boundary punctures so that they look like the symplecti-
zation direction. Consider the boundary condition at a boundary puncture
mapping to a Reeb chord a. We deform it as follows. Rotate the image of the
tangent space (Ta±Λ)′ at the endpoint a∓ of a boundary arc of f under the
linearized Reeb flow along a (forwards or backwards according to the sign
of the boundary puncture) in the negative direction to Ta∓Λ and simultane-
ously change the weight at this puncture in the ξ-directions from its initial
value 1 = e0 to a small negative exponential weight. It is straightforward to
check that this gives a path of Fredholm operators, compare [8, Proposition
6.14]. Denote the operator at the endpoint of this path ∂̄′

vf . Consider the
surface Ŝ which is S with boundary punctures erased. Since the change of
coordinates taking a neighbourhood [0,∞) × [0, 1] of a puncture in S to a
neighborhood of 0 ∈ H of the corresponding point in Ŝ is w �→ e−πw it follows
that the index of the operator ∂̄′

vf on S equals the index of the ∂̄-operator on
the surface Ŝ, with boundary condition naturally induced from the bound-
ary condition of ∂̄′

vf , see [8, Proposition 6.13]. We denote this operator on
Ŝ by ∂̄Ŝ . By definition, in the trivialization Z(∂jf) along the jth boundary
component of Ŝ, the Lagrangian boundary condition of ∂̄Ŝ has Maslov index
μ(∂jf ; Z∂jf ).

We next consider interior punctures. Also here, the asymptotic operator
is degenerate in the symplectization direction. As in the case of boundary
punctures, one would use small positive exponential weights and cut-off solu-
tions to define functional analytic neighbourhoods, but in order to compute
the index we might as well use small negative exponential weights and no
cut-off solutions. (Here small refers to small when compared to the distance
between the eigenvalues of the linearized return maps and 1.)

Fix capping spheres of all Reeb orbits at interior punctures. A capping
sphere of a positive (negative) puncture where f is asymptotic to a Reeb
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orbit α is a once punctured sphere with a trivial C
n−1 ⊕ C-bundle over it

with trivialization which extends the trivialization Zα given near the punc-
ture and with a ∂̄-operator with the asymptotics of a negative (positive)
puncture at α in the C

n−1-direction and with trivial asymptotics and small
positive exponential weight in the symplectization direction corresponding
to C. Thus, the capping operator ∂̄+

α of a positive puncture at α has index

ind(∂̄+
α ) = (n − 1) − μCZ(α, Zα),

and the capping operator ∂̄−
α of a negative puncture at α has index

ind(∂̄−
α ) = (n − 1) + μCZ(α, Zα),

see [4, 17]. A well-known argument shows that the index is additive under
linear gluing of operators. We make one remark concerning this result in the
present setup: the symplectization C-component of the operator on a gluing
neck limits to the standard operator on the infinite cylinder with positive
exponential weight at one end and negative exponential weight at the other.
This Fredholm operator is invertible and the usual linear gluing argument
applies.

The result of gluing the capping spheres at the punctures of Ŝ and the
capping operators to the operator ∂̄Ŝ is a ∂̄-operator ∂̄S̄ on a surface S̄ of
genus g with r boundary components and a Lagrangian boundary condi-
tion along each boundary component. The complex bundle over S̄ comes
equipped with a trivialization Z near its boundary. Let μ(∂S̄, Z) denote the
total Maslov index of the Lagrangian boundary condition of the boundary
measured with respect to the trivialization Z and let crel

1 (Z) denote the rela-
tive Chern class which is the obstruction to extending Z from ∂S̄ to all of S̄.
Doubling S̄ as well as the operator ∂̄S̄ over the boundary of S̄ and applying
the Riemann–Roch formula in combination with complex conjugation gives

ind(∂̄S̄) = n(2 − 2g − r) + μ(∂S̄, Z) + 2crel
1 (Z).

Additivity of the index then gives

ind(∂̄vf) = ind(∂̄Ŝ)

= n(2 − 2g − r) +
p∑

j=1

(
μCZ(γj , Zγj ) − (n − 1)

)

−
q∑

j=1

(
μCZ(βj , Zβj

) + (n − 1)
)

+ μ(∂S̄, Z) + 2crel
1 (Z)

= n(2 − 2g − r) +
p∑

j=1

(
μCZ(γj , Zγj ) − (n − 1)

)
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−
q∑

j=1

(
μCZ(βj , Zβj

) + (n − 1)
)

+
r∑

j=1

μ
(
∂jf, Z∂jf

)

+ 2crel
1

(
f∗(TX); Z∂f ; Zγ1 , . . . , Zγp ; Zβ1 , . . . , Zβq

)
.

In order to compute the dimension it remains only to compute the dimension
dim(T ) of the space T of conformal structures on S. Doubling a surface with
r boundary components in a similar way as above, studying the ∂̄-equation
for vector fields along the surface which are tangent to the boundary along
the boundary, and noting that each interior puncture adds two degrees of
freedom and each boundary puncture adds one degree of freedom, we find
that the dimension of the space of conformal structures on S equals

dim(T ) = 3r + (s + t) + 2(p + q) − 6 + 6g.

We thus have

dim
(
M(f)

)
= ind(∂̄vf) + dim(T )

= (n − 3)(2 − 2g − r) + (s + t)

+
p∑

j=1

(
μCZ(γj , Zγj ) − (n − 3)

)
−

q∑
j=1

(
μCZ(βj , Zβj

) + (n − 3)
)

+
r∑

j=1

μ
(
∂jf, Z∂jf

)

+ 2crel
1

(
f∗(TX); Z∂f ; Zγ1 , . . . , Zγp ; Zβ1 , . . . , Zβq

)
,

finishing the proof in the case when there are no Lagrangian intersection
punctures.

Consider next the case when there are Lagrangian intersection punctures.
In order to define a functional analytic neighbourhood of a map f with such
punctures of given asymptotic winding number w mapping to a codimension
d component of the clean intersection, we puncture the boundary of S and
identify a neighbourhood of the puncture in the domain with [0,∞) × [0, 1]
by the change of variables z = e−πw, w = τ + it ∈ [0,∞) × [0, 1]. Then the
Taylor expansion (A.1) gives

f1(τ + it) =
∞∑

j=0

aje−πj(τ+it), f2(τ + it) =
∞∑

j=0

cje−π(j+w)(τ+it).

It follows that a neighbourhood can be modelled on a Sobolev space with
positive exponential weight e(w− 1

100 )τ augmented by the space of cut off
solutions spanned by

ψ · a0, ψ · a1e−π(τ+it), . . . , ψ · ave−πv(τ+it),
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where ψ is a cut off function on [0,∞) × [0, 1], where v is the largest integer
smaller than w − 1

100 , and where aj ∈ R
n−d. (This augmentation space has

dimension (n − d)(v + 1).)
At Lagrangian intersection punctures where the map switches local sheets

of L, we observe that, as for Reeb chords above, we can close up the bound-
ary condition at a Lagrangian intersection puncture by rotating −π

2 in C
d,

keeping the weight, and obtain a family of Fredholm operators.
Finally, we interpret the above weights in terms of the closed up boundary

condition along ∂Ŝ. In the source we use the change of variables z = e−πw,
w = τ + it ∈ S and z ∈ Ŝ as above. We conclude that an exponential weight
in w-coordinates of magnitude k′π, where k − 1 < k′ < k for an integer
k ≥ 1, corresponds to the condition that the sections of f∗TX and their
first k−1 derivatives vanishes at 0 in the z-coordinates. Thus the dimension
formula is obtained by applying the formula above to the boundary con-
dition obtained by closing up the Lagrangian boundary conditions at each
Lagrangian intersection puncture with a minimal negative rotation (i.e., if
the map switches sheets at the puncture we rotate by −π

2 in the Cd-factor
complementary to T ∗K and by 0 in the C

n−d-factor corresponding to T ∗K,
and if the map does not switch sheets we rotate by 0 in both factors) and
adding

1 − w′d

for each Lagrangian intersection puncture, where w′ is the largest integer
smaller than w. Here 1 comes from the increase in the dimension of the
space of conformal structures T . The theorem then follows by definition of
the close up at Lagrangian intersection punctures, see (A.4). �
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[10] C. Faber and R. Pandharipande, Hodge integrals and Gromov–Witten theory,
Invent. Math. 139(1) (2000), 173–199.

[11] H. Hofer, K. Wysocki and E. Zehnder, Properties of pseudoholomorphic curves in
symplectisations I: asymptotics, A. Inst. Henri Poincaré 13(3) (1996), 337–379.
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