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Josef G. Dorfmeister and Tian-Jun Li

In this note we introduce the notion of the relative symplectic cone
CV

M . As an application, we determine the symplectic cone CM of cer-
tain T 2-fibrations. In particular, for some elliptic surfaces we verify
the conjecture in [17]: If M underlies a minimal Kähler surface with
pg > 0, the symplectic cone CM is equal to Pc1(M) ∪ P−c1(M), where
Pα = {e ∈ H2(M ; R)|e ·e > 0 and e ·α > 0} for nonzero α ∈ H2(M ; R)
and P0 = {e ∈ H2(M ; R)|e · e > 0}.
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1. Introduction

Given an oriented smooth manifold M known to admit symplectic struc-
tures, one would like to know which cohomology classes α ∈ H2(M, R) can
be represented by an orientation compatible symplectic form ω ∈ Ω2(M).
We shall always restrict ourselves to symplectic forms which are compatible
with the fixed orientation of the manifold M . This leads naturally to the
definition of the symplectic cone:

(1.1) CM = {α ∈ H2(M)|[ω] = α, ω is a symplectic form on M}.

In dimension 4, the symplectic cone has been determined in the following
cases: S2-bundles [26], T 2-bundles over T 2 [9], all b+ = 1 manifolds ([19],
see also [2, 25]), and minimal manifolds underlying a Kähler surface with
Kodaira dimension 0 [17]. A smooth 4-manifold M is said to be minimal if
it contains no exceptional class, i.e., a degree 2 homology class represented
by a smoothly embedded sphere of self-intersection −1.

Clearly, CM is contained in PM , the cone of classes of positive squares
in H2(M, R). Amazingly, when M is a minimal and in the list above, the
symplectic cone CM is actually equal to PM . In particular, it holds for any
M underlying a minimal Kähler surface with pg = 0 or Kodaira dimension 0.

In general, CM is smaller than PM , as there are constraints coming
from the Seiberg–Witten basic classes. This is a consequence of Taubes’
remarkable equivalence between Seiberg–Witten invariants SW and Gromov
invariants Gr [33]. As exceptional classes and the canonical class of any sym-
plectic structure all give rise to SW basic classes, there are corresponding
constraints on CM .

If the smooth manifold M underlies a minimal Kähler surface, a basic
fact [7, 36] is that all symplectic structures on M have the same canonical
class up to sign. Denote and fix one such choice −c1(M). Due to the SW
constraints, for any minimal Kähler surface with pg > 0, we have CM ⊂
Pc1(M) ∪P−c1(M). In light of this beautiful fact the following conjecture was
raised:

Conjecture 1.1 ([17, Question 4.9]). If M underlies a minimal Kähler
surface with pg > 0, the symplectic cone CM is equal to Pc1(M) ∪ P−c1(M).

We define Pα = {e ∈ PM |e · α > 0} for nonzero α ∈ H2(M ; R) and
P0 = PM . As P0 = PM = CM this conjecture is known to be true when M
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underlies a minimal Kähler surface with Kodaira dimension 0 (Prop. 4.10,
[17], see also [23]).

In this note we will show that this conjecture holds for certain manifolds
underlying minimal Kähler manifolds with pg > 0 and Kodaira dimension
1. Many such manifolds are T 2-fibrations and can be written as a T 2-fiber
sum of manifolds with pg = 0 or Kodaira dimension 0.

There are many ways to explicitly construct new symplectic manifolds.
Common among most of these methods is that some type of surgery is
performed with respect to a codimension 2 symplectic submanifold V . It
is natural to ask how the symplectic forms on the new manifolds relate to
those on the constituent manifolds. This leads naturally to the notion of the
relative symplectic cone CV

M defined in Section 2. As examples, we consider
T 2-fibrations over T 2 (see [9]) and manifolds with b+ = 1. These are of
interest, as we will consider T 2 fiber sums in the following sections.

The fiber sum of symplectic manifolds X and Y along symplectic embed-
dings of a codimension 2 symplectic manifold V , denoted M = X#V Y , as
defined by Gompf [10] and McCarthy-Wolfson [24], and its inverse opera-
tion, the symplectic cut, defined by Lerman [16], are briefly described in
Section 3.

We then proceed to show that the sum and cut operations naturally
describe a cone Csum of sum forms in terms of the relative cones of X and Y
with respect to V . We also observe that in the case V having trivial normal
bundle, Csum is actually a subcone of the relative cone CV

M .
Furthermore, under some topological restrictions on the sum M = X#V Y

and the respective relative cones CV
∗ , we show that the relative symplectic

cone CV
M is actually equal to this subcone.

What does this imply for the symplectic cone of M? Notice that for a
minimal T 2-fibration, the canonical class is proportional to the fiber class.
Thus the relative symplectic cone, which is of course contained in the sym-
plectic cone, is essentially equal to the symplectic cone. This strategy applies
perfectly to fiber sums where one summand is a product T 2-fibration, hence
verifying the conjecture for such T 2 fibrations (possibly with singular or mul-
tiple fibers). During the preparation of this paper, Friedl and Vidussi (see
[4, 5]) determined the symplectic cone of a product S1-bundle over any 3-
manifold or a S1-bundle over a graph manifold in terms of the Thurston
norm ball of the 3-manifold. Their results overlap ours for the product
T 2-fibrations T 2 × Σg.

We include an appendix concerning genericity results for almost complex
structures J which make V pseudoholomorphic. These results are needed
to determine the relative cone in the b+ = 1 case of Section 2. They show
that the set JV of such almost complex structures J is rich enough to allow
deformations of pseudoholomorphic curves. These results should be known
to experts in the field, see [3] or [35].
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One purpose of this note is to introduce the relative symplectic cone
and prove a version of the gluing formula for fiber sums along T 2. Missing
from the examples in Section 2 is the K3 surface. Hopefully this could be
understood in a further paper, thus rounding off the known examples of
symplectic manifolds with Kodaira dimension 0. Furthermore, the notion of
the relative symplectic cone is useful in the symplectic birational geometry
program (see the survey paper [21]). Moreover, it is an important ingredient
in understanding the symplectic blow-down procedure in dimension 6 [22].

2. The relative symplectic cone

This section comprises two distinct parts. The first subsection introduces
notation and general concepts of use in the following subsections. The lat-
ter subsections contain the definition of the relative symplectic cone and
examples.

2.1. Preliminaries. Let M be an oriented manifold and V an oriented
codimension 2 submanifold, not necessarily connected. Throughout this sec-
tion, it will be necessary to carefully distinguish the class of V , denoted
V ∈ H2(M), and the specific submanifold V . Throughout this paper we will
not distinguish between V and its Poincaré dual. Moreover, V will always
be a nonzero class and g will denote the genus of V .

We introduce two sets: The set of symplectic classes which evaluate pos-
itively on V:

CVM = {α ∈ CM |α · V > 0}
and the larger set of classes with positive square which evaluate positively
on V:

PV = {α ∈ PM |α · V > 0}.

Clearly CVM ⊂ PV.
The structure of the set PV as a subset of PM will be important in the

following sections. To this end, recall the “light cone lemma”: Let (M, ω)
be a symplectic 4-manifold with b+ = 1. Then the set PM consists of two
connected components, separated by the hyperplane of classes with [ω] ·
A = 0. The component which contains [ω] is called the forward cone and is
denoted by P+. Its complement will be denoted by P− = PM\P+.

Lemma 2.1 ((Light Cone Lemma) [27, Lemma 3.7]). Suppose that
(M, ω) is a symplectic 4-manifold with b+ = 1. Let a, b ∈ H2(M) both lie in
the closure P+. Then a · b > 0 unless a = λb and a2 = 0.

Note that if a ∈ P−, then −a ∈ P+. In particular, this means that any
two classes in the same connected component of PM have a·b > 0. Moreover,
if a, b lie in different components, then −a, b lie in the same component and
hence a · b < 0.
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Lemma 2.2. If b+ = 1, then PV is connected if V ·V ≥ 0; and PV has two
connected components if V · V < 0.

Proof. Assume that V · V > 0. Then V is in one of the components of PM

and, in particular, V ∈ PV. Let a ∈ PV, then a · V > 0 by definition, hence
by the light cone lemma a must lie in the same component of PM as V.
Hence PV has only one component.

If V · V = 0, then V lies in the closure of a component of PM . As PV
contains no elements of square 0, the previous argument again shows that
PV has one component unless V = 0, which our assumptions exclude.

To understand the case V·V < 0, note that the statement of the light cone
lemma can be viewed as follows: If a lies in closure of the cone PM , then the
hyperplane of classes defined by a ·A = 0 does not intersect the cone PM at
any point. However, in the case V · V < 0 this can no longer be guaranteed.
Hence we may have one or two connected components for PV. However, if
we assume that we have only one connected component, then this implies
that the hyperplane of classes with V ·A = 0 does not intersect PM , meaning
all classes in the hyperplane have nonpositive square. Moreover, V is not in
this hyperplane. Hence the span of the generators of the hyperplane and V

generate a space of the same dimension as H2(M). Furthermore, this basis
is negative semi-definite, which contradicts b+ = 1. �

2.1.1. Minimality.

Definition 2.3. Let EM be the set of cohomology classes whose Poincaré
dual are represented by smoothly embedded spheres of self-intersection −1.
M is said to be (smoothly) minimal if EM is the empty set.

Equivalently, M is minimal if it is not the connected sum of another
manifold with CP

2. We say that N is a minimal model of M if N is minimal
and M is the connected sum of N and a number of CP

2.
We also recall the notion of minimality for a symplectic manifold (M, ω):

(M, ω) is said to be (symplectically) minimal if Eω is the empty set, where

Eω = {E ∈ EM | E is represented by an embedded ω-symplectic sphere}.

A basic fact proved using SW theory [18, 20, 31], is: Eω is empty if and
only if EM is empty. In other words, (M, ω) is symplectically minimal if and
only if M is smoothly minimal.

A class K ∈ H2(M, Z) is called a symplectic canonical class if there exists
a symplectic form ω on M such that for any almost complex structure J
tamed by ω,

K = Kω = −c1(M, J).
Let K be the set of symplectic canonical classes of M . For any K ∈ K define

EK = {E ∈ EM |K · E = −1}.
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It is shown in Lemma 3.5 in [19] that for any ω,

EKω = Eω.

Let S ⊂ K, then define the S-symplectic cone

(2.1) CM,S = {α ∈ CM |α = [ω], (M, ω) symplectic, Kω ∈ S}.

2.1.2. Relative inflation. The relative inflation procedure allows one to
deform a symplectic form in a smooth family while keeping a fixed submani-
fold symplectic. Moreover, this deformation is explicitly given. The following
is the precise statement:

Lemma 2.4 ([3, Lemma 2.1.A]). Let V, C ⊂ (M, ω) be two distinct 2-
dimensional symplectic submanifolds. The submanifold V may be discon-
nected with pairwise disjoint components. Assume that C · C ≥ 0 and that
C and V intersect positively and transversally in a finite number of points.
Then there exists a two form ρ, supported in an arbitrarily small neighbor-
hood of C, with the following properties:

• [ρ] is Poincaré dual to [C],
• ω(s, t) = sω + tρ for every s > 0 and t ≥ 0 and
• V is a symplectic submanifold with respect to ω(s, t) for any choice of

(s, t).

Note that the second statement of the lemma concerns symplectic forms
not only symplectic classes. With these preparations, we can now proceed
to the relative symplectic cone.

2.2. Definition and properties. We make the following definition:

Definition 2.5. A relative symplectic form on the pair (M, V ) is an ori-
entation compatible symplectic form on M such that ω|V is an orientation
compatible symplectic form on V . The relative symplectic cone of (M, V ) is
(2.2)
CV

M = {α ∈ H2(M)| [ω] = α, ω is a relative symplectic form on (M, V )}.

The submanifold V is embedded, hence the adjunction equality Kω ·V =
2g−2−V ·V must hold for the canonical class Kω of any relative symplectic
form ω on (M, V ). Let K(V ) = {K ∈ K | K · V = 2g − 2 − V · V}. The
following is a consequence of the definition of K:

Lemma 2.6. If K(V ) = ∅, then there exists no symplectic form ω ∈ CM

such that V is a ω-symplectic submanifold.

For any S ⊂ K(V ), define the S-relative symplectic cone

(2.3) CVM,S = {α ∈ CVM |α = [ω], (M, ω) symplectic, Kω ∈ S}.

Note that

(2.4) CVM,S = CM,S ∩ PV.
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The following lemma follows directly from the definition of the relative
symplectic cone and the K(V )-relative symplectic cone:

Lemma 2.7.
CV

M ⊂ CVM,K(V ) ⊂ CVM ⊂ PV

The inclusion CV
M ⊂ PV can be strict, see Lemma 2.15.

Obviously there are maps

(2.5) CV
M ↪→ CM , CV

M → CV .

In fact, if V is the disjoint union of V0 and V1, then there is also a map
CV

M → CVi
M . Note that the restriction mapping CV

M → CV is by no means
generically injective. The following fact relates the relative cones to the
symplectic cone:

Lemma 2.8. Let V denote the set of oriented codimension 2 submanifolds
of M . Then ⋃

V ∈V
CV

M = CM

Proof. The inclusion
⋃

V ∈V CV
M ⊂ CM follows from (2.5). Consider now a

symplectic class α ∈ CM and denote by ω a symplectic form representing
the class α . We distinguish two cases: b+ = 1 and b+ > 1.

Let b+ = 1. Then α is trivially in the forward cone P+ of (M, ω). More-
over, if Eω 	= ∅, α · E > 0 for all E ∈ Eω. It now follows from Prop. 4.2 or
Prop 4.3 in [19] that for k large enough the class kα is represented by a
ω-symplectic surface. Therefore, if V represents the class kα, it follows that
α ∈ CV

M .
If b+ > 1, then the canonical class of (M, ω) for some almost complex

structure J taming ω is represented by a ω-symplectic surface, see [31,
Thm 0.2]. Hence, if V represents the canonical class Kω, then α ∈ CV

M . �

The proof shows, that if b+ > 1, we need only consider submanifolds V
which are representatives of a canonical class Kω of (M, ω) if we wish to
understand CM with respect to the relative cone. In particular, this shows
that CM ⊂ Pc1(M) ∪P−c1(M) if b+ > 1 and M is minimal Kähler, which is of
interest in connection with Conjecture 1.1. Furthermore, it seems natural to
wonder, whether there exist a finite set of submanifolds Vf ⊂ V, such that
they completely determine the symplectic cone of M . With respect to this
question, a trivial but key observation connecting the relative symplectic
cone and the symplectic cone is

Lemma 2.9. Denote the submanifold V with opposite orientation by
V . Then

CV
M = −CV

M .
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The following corollary will be useful in our applications in Section 4:

Corollary 2.10. Suppose M underlies a minimal Kähler surface with b+ >
1. If c1(M, ω) = aV with a 	= 0 for some symplectic form ω and CV

M = PV,

then CM = Pc1(M) ∪ P−c1(M).

We now proceed to calculate the relative cone for certain submanifolds V
for two classes of symplectic manifolds: T 2 bundles over T 2 and manifolds
with b+ = 1.

2.3. T 2-bundles over T 2. The total spaces M of such bundles have been
studied and classified by Sakamoto-Fukuhara [8], Ue [34] and Geiges [9]. In
particular, with one exception, they all admit symplectic structures compat-
ible with the bundle structure; in the case of a primary Kodaira surface this
bundle structure must be specified as it is not unique. Moreover, the rela-
tive symplectic cone with respect to the fiber torus T 2

f has been determined
explicitly by Geiges.

In [8], the manifolds M are classified according to the monodromy A, B
of the bundle and the Euler class (x, y). A manifold M is determined by the
tuple (A, B, (x, y)). In [34], the total spaces are classified according to their
geometric type as defined by Thurston. Furthermore, an explicit represen-
tation of each is given in terms of generators of Γ such that M = R

4\Γ.
For example, the four torus T 4 is given by the following data: (Id, Id, (0, 0))
(Id is the 2 × 2 identity matrix) with geometric type E4 and Γ = Z

4, i.e.,
T 4 = R

4\Z
4. From the explicit presentation of the generators of Γ, Geiges

constructs symplectic forms, thereby determining the symplectic cones as
well as the relative cones with respect to the fiber torus T 2

f . In the following
we denote the class of a fiber torus T 2

f by F . We collect the data in the
following table, details can be found in [34] and [9]:

Type b1 CM CT 2
f

M

T 4 4 PM PF
M

Primary Kodaira surface 3 PM PF
M

Hyperelliptic surface 2 PM PM

(d) 2 PM ∅
(e) − (h) 2 PM PM

Note that the class of T 2-fibrations over T 2 provides a full range of possible
relative cones, from ∅ to the maximal possible cone, see Lemma 2.7.

2.4. Manifolds with b+ = 1. In this section, we will study the relative
cone with respect to a submanifold V for manifolds with b+ = 1. Particularly
we will completely determine CV

M when M is minimal.
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The symplectic cone in this case is determined in [19, Thm. 4]:

Theorem 2.11. Let M be a 4-manifold with b+ = 1 and CM nonempty. Let
EM denote the set of all exceptional classes of M . Then

CM = {e ∈ PM |0 < |e · E| for all E ∈ EM}.

In particular, if M is minimal, then CM = PM .

Consider the K-symplectic cone for K ∈ K, see equation (2.1).

Theorem 2.12 ([19, Theorem 3]). Let M be a 4-manifold with b+ = 1.
Then CM is the disjoint union of CM,K over K ∈ K. For each K ∈ K,
CM,K is contained in a component of PM , which we call the K-forward cone
P+(K). Moreover, for each K ∈ K,

CM,K = {e ∈ P+(K)|e · E > 0 for all E ∈ EK}.

The following theorem is the main result of this section:

Theorem 2.13. Let M be a 4-manifold with b+ = 1 and V an oriented
submanifold for which CV

M 	= ∅. If ω is a relative symplectic form on (M, V ),
then

CVM,Kω
⊂ CV

M .

Proof. The following lemma will be central to the proof. We defer the proof
of the lemma to Section 2.5.

Lemma 2.14. Let us fix a relative symplectic form ω on (M, V ). For any
A ∈ H2(M ; Z) with

A · E > 0 for all E ∈ Eω,

A · V > 0, A · A > 0, A · [ω] > 0

(A − Kω) · [ω] > 0, (A − Kω) · (A − Kω) > 0, (A − Kω) · V > 0,

there exists an ω-symplectic submanifold C in the class A, intersecting V
transversally and positively.

Fix a relative symplectic form ω, we may assume that [ω] ∈ CV
M is an

integral class. Let e ∈ CVM,Kω
∩ H2(M, Z). Then

e · E > 0 for all E ∈ Eω, e · e > 0, e · V > 0.

Moreover, by [19, Prop. 4.1], CVM,Kω
is contained in one component of PM .

Hence, noting that [ω] ∈ CVM,Kω
, it follows that e · [ω] > 0. Thus for large

l > 0, the class A = le − [ω] will satisfy the assumptions of Lemma 2.14.
Apply Lemma 2.14 to the class A = le− [ω] for l >> 0 and Lemma 2.4 to

the pair (V, C) with C the symplectic surface of class A obtained by Lemma
2.14. This proves that s[ω] + t(le − [ω]) ∈ CV

M , hence in particular le is in
the relative cone and therefore also e, i.e.,

CVM,Kω
∩ H2(M, Z) ⊂ CV

M .
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It also follows that any real multiple of an integral class e in CVM,Kω
is in the

relative cone CV
M .

We now want to show that CVM,Kω
⊂ CV

M . Observe that CVM,Kω
is an open

convex cone. Therefore, for any α in CVM,Kω
, we can write α =

∑p
i=1 αi,

where the rays of αi are in CVM,Kω
, arbitrarily close to that of α, and each

αi = siβi for some positive real number si and an integral class βi ∈ CVM,Kω
.

Note that βi · βj > 0 for all i, j by Lemma 2.1. Inductively it can be shown
that for each q ≤ p,

∑q
i=1 αi is in the relative cone CV

M :
First we choose a relative symplectic form ω1 for the pair (M, V ) with

[ω1] = α1, which we can do by the procedure described above. For a large
integer l, since β2 ∈ CVM,Kω

∩H2(M, Z), we can apply Lemma 2.14 to A = lβ2

to obtain a submanifold C2. Lemma 2.4 applied to the pair (V, C2) on (M, ω1)
then shows that s[ω1] + tA ∈ CV

M . Choosing s = 1 and t = s2
l shows that

α1 + α2 = α1 + s2
l A is in the relative cone.

Now choose a symplectic form ω2 for the pair (M, V ) with [ω2] = α1 +α2.
This completes the argument. �

Notice that when M is minimal and V ·V < 0, CV
M contains a component

of PV whenever there is a relative symplectic form whose class lies in that
component.

In the rest of this subsection we assume that M is minimal. The general
case is more complicated and not needed in the application in Section 4, so
it will be studied elsewhere.

Lemma 2.15. Let M be a smoothly minimal 4-manifold with b+ = 1 and
V an oriented submanifold for which CV

M 	= ∅. If 2g − 2 − V · V 	= 0, then
CVM,K(V ) is contained in one component of PM . In particular, if V · V < 0,

the inclusion CV
M ⊂ PV is strict.

Proof. Theorem 1 in [19] states that under the assumptions on M there is a
unique symplectic canonical class up to sign. Denote this class by K. Theo-
rem 3 and Proposition 4.1 of [19] show that symplectic forms with canonical
class K lie in one component of the cone PM while those with canonical class
−K lie in the other. Hence CVM, K(V ), which contains only symplectic classes
representable by symplectic forms with canonical class K, is contained in
one component of PM . Lemmas 2.2 and 2.7 complete the proof. �

The following result follows directly from [19, Thm 1]:

Lemma 2.16. Let M be a smoothly minimal 4-manifold with b+ = 1 and
V an oriented submanifold for which CV

M 	= ∅. If 2g − 2 − V · V 	= 0 or
V · V ≥ 0, then K(V ) is a point.
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Denote the class in K(V ) by K. Together with Theorem 2.13, this leads
to the following statement in the minimal case, notice that this is equality
in Theorem 2.13:

Corollary 2.17. Let M be a smoothly minimal 4-manifold with b+ = 1 and
V an oriented submanifold for which CV

M 	= ∅. If 2g − 2 − V · V 	= 0 or
V · V ≥ 0, then

CV
M = CVM,K

is one connected component of P. Moreover, if V · V ≥ 0, then CV
M = PV.

Proof. Assuming CV
M 	= ∅, we may choose a relative symplectic form ω on

(M, V ). Then Kω = K, hence by Theorem 2.13

CVM, K = CVM, Kω
⊂ CV

M .

Moreover, by Lemma 2.7 CV
M ⊂ CVM,K(V ) = CVM, K .

If V · V ≥ 0, then by Lemma 2.15, CVM, K(V ) = CVM, K is contained in one
component of PM . The minimal case of Theorem 2.12 and equation (2.4)
imply that

CVM, K = P+(K) ∩ PV

and hence by Lemma 2.2, that CV
M = PV. �

Remark. If M is a minimal symplectic 4-manifold with b+ = 1 and K is
the unique canonical class, then it was shown in [19, Thm. 1 and Prop. 4.1],
that CM = CM,K ∪ CM,−K . This decomposition can be restated in terms of
the relative cone of a submanifold V with V · V ≥ 0: CM = CV

M ∪ CV
M , see

Corollary 2.9.
Missing from the corollary is the case V · V < 0 and 2g − 2 − V · V = 0.

In this case V is an embedded sphere of self-intersection −2 or −1. This
follows from 2g −2−V ·V = 0, as then V ·V < 0 can only hold if g = 0. We
will just deal with the case V · V = −2 since otherwise M is not minimal.
In the minimal b+ = 1 case, the corollary shows that only if V is a sphere
of self-intersection −2 can CV

M possibly consist of two disjoint components:

Lemma 2.18. Let M be a smoothly minimal 4-manifold with b+ = 1 and
V an oriented submanifold for which CV

M 	= ∅. If V is an embedded sphere of
self-intersection −2, then CV

M has two connected components and the inclu-
sion CV

M ∪ CV
M ⊂ CM is strict.

Proof. The proof relies on [6, Prop. 2.4]: This result provides a self-
diffeomorphism of M which gives rise to a reflection on cohomology. The
diffeomorphism φ can be chosen such that φ(V ) = V , though φ does not fix
V pointwise. In fact, it is an antipodal map on V , reversing the orientation
of V . The effect of φ on cohomology is the reflection:

φ : x �→ x + (x · V)V,
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which is precisely the reflection across the hyperplane of classes A with
A · V = 0.

Suppose ω is a relative symplectic form for (M, V ) and Kω is its canoni-
cal class. Notice that φ∗ preserves the canonical class Kω since Kω · V = 0.
Moreover, φ∗(ω) is a symplectic form for (M,V ) since φ preserves the sub-
manifold V but reverses the orientation of V and the canonical class of φ∗(ω)
is φ∗(Kω) = Kω. This implies that −φ∗(ω) is a relative symplectic form for
(M, V ). Notice however that the canonical class of −φ∗(ω) is −Kω, which
means that −φ∗(ω) and ω lie in different components of PM . �
Example. Consider the manifold M = S2 × S2. Let V be a −2 sphere in
the class S1 −S2 ∈ H2(M). Choose ω to be in the class s1 +2s2 ∈ CV

M where
si(Sj) = 0 if i = j and 1 if i 	= j. Then φ∗(ω) is in the class

[ω] + ([ω] · V)V = [ω] + V = 2s1 + s2.

Hence −φ∗(ω) is in the class −2s1 − s2.

2.5. Proof of Lemma 2.14.

Proof. This relies on Proposition 4.3 in [19] and the genericity results of the
Appendix.

Let us first recall the notion of A being J-effective and simple consid-
ered in [3]. A is J-effective and simple if, for a generic choice of k(A) =
−Kω(A)+A·A

2 ≥ 0 distinct points Ωk(A) in M , there exists a connected J-
holomorphic submanifold C ⊂ M which represents A and passes through all
the k(A) points.

Proposition 4.3 in [19] implies that any A with

A · E ≥ 0 for all E ∈ E ,

A · A > 0, A · [ω] > 0,

(A − Kω) · (A − Kω) > 0, (A − Kω) · [ω] > 0,

is J-effective for any J tamed by ω.
Let JV be the space of ω-tamed almost complex structures making V

a pseudo-holomorphic submanifold. Then for every J ∈ JV there exists a
J-holomorphic curve C in class A by the previous considerations. We con-
sider connected nodal J-holomorphic curves C representing A with multiple
components each having as their image a ω-symplectic submanifold. How-
ever, for the purposes of this lemma, we need to exclude components which
lie in V . Therefore consider a connected J-holomorphic curve C representing
A: The curve C is given by a collection {(φi, Σi)} of maps φi and Riemann
surfaces Σi. We want to reformulate this as a collection {(ϕi, Ci, mi)} of
simple maps, submanifolds and multiplicities. If φi is a multiple cover, we
replace it by a simple map ϕi with the same image and an integer mi track-
ing the multiplicity. We also combine maps which have same image, adding
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the multiplicities and keeping only one copy of the map. Ultimately, we
replace all the maps φi by simple embeddings ϕi with image Ci. We can
therefore decompose the class A as

∑
i mi[Ci]. Note that we are only inter-

ested in the submanifolds Ci, so we do allow the class [Ci] to be divisible.
However, we want the class to represent a submanifold, hence correspond to
an embedding ϕi. We denote

(1) components with [Ci]2 < 0 by Bi and
(2) those with [Ci]2 ≥ 0 which do not lie in V by Ai.

The class Ai could be a multiple of the class V, however, due to our decom-
position above we consider only maps which are not multiple covers of V .
Furthermore, we could have a component [C0] = V, with a multiplicity
m ≥ 1, which is a (multiple) cover of V . Thus, A = mV +

∑
i miBi + riAi.

We begin with the negative square components: Let B · B < 0. Consider
the moduli space of M(B, J, g) of pairs (u, j), where j ∈ Tg, the Teichmüller
space of a closed oriented surface Σg of genus g, and u : (Σg, j) → (M, J)
is a somewhere injective (j, J)-holomorphic curve in the class B. If B 	= V,
then arguments similar to those in the proof of Lemma A.1 show that for
generic J ∈ JV , the spaces M(B, J, g) are smooth manifolds of dimension
2(−Kω · B + g − 1) + dimGg.

By the adjunction formula the space of non-parametrized J-holomorphic
curves has dimension

2(−Kω · B + g − 1) ≤ 2B · B − (2g − 2).

Thus if B ·B < 0, M(B, J, g) is nonempty only if g = 0 and B ·B = −1. We
conclude, that for a generic J ∈ JV , the only irreducible components of a
cusp A-curve with negative self-intersection (except possibly the component
C0) have B2 = −1. In particular, note that all Bi ∈ Eω and k(Bi) = 0.
Hence, our assumptions imply that A · Bi > 0 for all i.

Now let us divide the proof into two cases, in both we shall use the
genericity results proven in the Appendix:

Case 1. k(V) ≥ 0. The condition k(V) ≥ 0 can be rewritten using the
adjunction formula to state that V2 ≥ 0 if g(V) ≥ 1 and V2 ≥ −1 at worst,
if g(V) = 0. In the following we will allow the case A = mV.

The results of the Appendix, in particular Lemma A.1 and Lemma A.3,
show, that we can find a generic set of pairs (J,Ωk(A)) such that k(Ai) ≥ 0,
each curve in class Ai resp. V meets at most k(Ai) resp. k(V) generic points
and

∑
k(Ai) + k(V) ≥ k(A).

Further, if k(Ai) ≥ 0 and A2
i ≥ 0, then k(riAi) ≥ 0 for any positive

integer ri:

0 ≤ 2k(Ai) ≤ 2rik(Ai) = −Kω(riAi) + riAi · Ai

≤ −Kω(riAi) + r2
i Ai · Ai = 2k(riAi).
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Note that this holds in particular for mV.
For such a generic choice of (J,Ωk(A)), let C be a connected curve repre-

senting A, which contains the k(A) distinct points of Ωk(A). Then

2k(A) = −Kω(mV) +
∑

i

−Kω(miBi) +
∑

i

−Kω(riAi)

+ m2
V

2 +
∑

i

m2
i B

2
i +

∑

i

r2
i A

2
i + 2

∑

i

mVmiBi + 2
∑

i

mVriAi

+ 2
∑

i>j

mimjBi · Bj + 2
∑

i>j

mirjBi · Aj + 2
∑

i>j

rirjAi · Aj

≥ 2mk(V) + 2
∑

i

rik(Ai) + (m2 − m)V2 + 2
∑

i

mVriAi

+ 2
∑

i>j

rirjAi · Aj +
∑

i

(m2
i − mi)B2

i + 2
∑

i>j

mimjBi · Bj

+ 2
∑

i>j

mirjBi · Aj + 2
∑

i

mVmiBi

If V2 = −1, then denote B0 = V and include it in the following estimate.
Fix an i and consider the terms in the last line. They can be rewritten as

2miA · Bi − 2m2
i B

2
i + (m2

i − mi)B2
i = 2miA · Bi + m2

i + mi ≥ 0

and thus we obtain the estimate

2k(A) ≥ 2k(V) + 2
∑

i

k(Ai).

Hence either k(A) > k(V) +
∑

i k(Ai) or the following hold:
• mi = 0 for all i, i.e., there are no components of negative square,
• Ai · Aj = 0 = Ai · V for i 	= j,
• if V2 ≥ 0, then m = 1 or k(V) = 0 and V2 = 0, and
• ri = 1 or k(Ai) = 0.

Therefore, the curve C representing A is an embedded J-holomorphic sub-
manifold with a single nonmultiply covered component containing the set
Ωk(A) with J ∈ JV or k(A) = 0.

In the following cases we are done:
(1) A 	= mV

(2) A = mV and k(V) > 0: The results above imply that m = 1. Choose
Ωk(A) such that it contains a point not in V . Then C does not lie in
V and intersects V locally positively.

We are left with the following case: A = mV and k(V) = 0. However, in
this case the previous results show that either m = 1 or V2 = 0. The latter
is excluded by the assumption A2 > 0. The former would mean A = V and
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thus
0 = 2k(V) = V

2 − KωV = V(A − Kω),
which is also excluded by assumption.

In all cases, we can perturb C to be transverse to V , see [28, 29].

Case 2. k(V) < 0. In this case, the results of the Appendix show, that
we can find a generic set of almost complex structures, such that V is rigid
and there are no other curves in class V. In the following, we choose only
complex structures from this set.

Even though we are working in the case k(V) < 0, it is possible for a
multiple class mV to have k(mV) ≥ 0. For this reason, we will distinguish
the following two objects:

(1) Classes Ai = miV which correspond to components of the curve C
in class mV, but which are NOT multiple covers of a submanifold
in class V. If V2 < 0, then positivity of intersections shows that any
curve C can contain at most one component in class mV for all m
and this component must coincide with the manifold V . This situation
was studied in greater generality in [3]. Furthermore, if V2 ≥ 0 and a
class Ai = mV occurs, then the results of Lemma A.1 apply. We may
therefore assume , that A2

i ≥ 0 in the following.
(2) The specific “class” mV which corresponds to components that have

as their image the submanifold V .
Note further that we can choose our almost complex structures such that
the components corresponding to mV are rigid, while those in miV are not.
Such a decomposition is not necessary in the case k(V) ≥ 0, as we can choose
a generic set of pairs such that KVV (J,Ω) is smooth (see the Appendix for
details); however, we do not know if V is an element in this set, nor does this
matter for the calculation. In the current situation, the specific submanifold
V acts differently than other elements in the class V.

We now proceed as in [3]: Consider the class Ã = A − mV =
∑

riAi +
miBi. We assume that such a decomposition is possible, i.e., there exists
a not necessarily connected pseudoholomorphic curve in class Ã. The case
A = mV will be considered afterwards. We need to show that there exists a
generic set of pairs (J,Ωk(A)) such that k(A) >

∑
k(Ai). Proceeding exactly

as in [3], we obtain the following two estimates:
∑

k(Ai) ≤ k′(Ã), where k′

is the modified count defined by McDuff [27]. Furthermore

2k(A) − 2k′(Ã) = m (A − Kω) · V︸ ︷︷ ︸
>0 by assumption

+non-negative terms

and hence, combining all these inequalities, for generic pairs (J,Ωk(A)) we
obtain k(A) >

∑
k(Ai). We therefore conclude that we can rule out such a

decomposition, hence “A = mV ” or A =
∑

riAi + miBi. In the latter case
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we are done by the same line of argument as in the k(V) ≥ 0 case, albeit
with the added restriction on the almost complex structures that V is rigid
and no further curves in class V exist. The case “A = mV ” corresponds to
the case A = mV and k(A) ≥ 0, more precisely,

0 < m(A − Kω) · V = mA · V − Kω · V = A2 − Kω · A = k(A).

Thus, applying Lemma A.1, we can find a generic set of pairs (J,Ωk(A))
such that A = mV is represented by an embedded curve with deformations.
Choosing Ωk(A) such that it contains a point not in V ensures that a repre-
sentative of A in this case does not lie in V .

As before, we can make the curve C transverse to V . �

3. The gluing formula

We now return to Conjecture 1.1 which was stated in the Introduction: Is
the symplectic cone CM equal to the Pc1(M) ∪ P−c1(M) for minimal Kähler
manifolds? In this section we provide the theoretical framework necessary
to answer this question for so-called “good” sums. We first review the sym-
plectic sum and cut operations. This leads to the definition of a good sum
and the subsequent homological reformulation of these operations.

3.1. Smooth fiber sum. Let X, Y be 2n-dimensional smooth manifolds.
Suppose we are given codimension 2 embeddings j∗ : V → ∗ into X and Y
of a smooth closed oriented manifold V with normal bundles N∗V . Assume
that the Euler classes of the normal bundle of the embedding of V in X
resp. Y satisfy e(NXV ) + e(NY V ) = 0 and fix a fiber-orientation revers-
ing bundle isomorphism Θ : NXV → NY V . By canonically identifying the
normal bundles with a tubular neighborhood ν∗ of j∗(V ), we obtain an
orientation preserving diffeomorphism ϕ : νX\jX(V ) → νY \jY (V ) by com-
posing Θ with the diffeomorphism that turns each punctured fiber inside
out. This defines a gluing of X to Y along the embeddings of V denoted
M = X#(V,ϕ)Y . The diffeomorphism type of this manifold is determined
by the embeddings (jX , jY ) and the map Θ. Note also that if V has trivial
normal bundle, then this construction should actually be viewed as a sum
along V × S1.

In the rest of the paper, whenever we consider a fiber sum, we fix V , the
embeddings j∗ and the bundle isomorphism Θ without necessarily explicitly
denoting either. This fixes the homology of the manifold M = X#(V,ϕ)Y .

Example 3.1. Consider for example the torus T 4 = T 2
f × T 2, where the

first factor is the fiber direction. Let M = T 4#T 2
f
T 4 be the sum along the
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fiber T 2
f . Then M is actually T 2

f × Σ2, as can be seen from the following:

T 2
f T 4 T 4 T 2

f

T 2 T 2

�

� �

�

=⇒

T 2
f T 4#T 2

f
T 4 = M

T 2#T 2 = Σ2

�

�

3.2. Symplectic sum and symplectic cut. We briefly describe the sym-
plectic sum construction M = X#V Y as defined by Gompf [10] (see also
McCarthy–Wolfson [24]). Assume X and Y admit symplectic forms ωX , ωY

resp. If the embeddings j∗ are symplectic with respect to these forms, then
we obtain M = X#(V,ϕ)Y together with a symplectic form ω created from
ωX and ωY . It was shown in [10] that this can be done without loss of
symplectic volume.

Furthermore, Gompf showed that the symplectic form ω thus constructed
on M = X#(V,ϕ)Y from ωX , ωY is unique up to isotopy. This result
allows one to construct a smooth family of isotopic symplectic sums M =
X#(V,ϕλ)Y parametrized by λ ∈ D2\{0} as deformations with a singular
fiber X �V Y over λ = 0 (see [14, Sect. 2]). Therefore, we suppress ϕλ from
the notation, choosing instead to work with an isotopy class where necessary.

Thus, a symplectic sum will be denoted by M = X#V Y , a symplectic
class ω on the sum will denote an isotopy class.

The symplectic cut operation of Lerman [16] functions as follows: Con-
sider a symplectic manifold (M, ω) with a Hamiltonian circle action and a
corresponding moment map μ : M → R. We can assume that 0 is a regular
value, if necessary by adding a constant. We can thus cut M along μ−1(0)
into two manifolds Mμ>0 and Mμ<0, both of which have boundary μ−1(0).
If we collapse the S1-action on the boundary, we obtain manifolds Mμ>0

and Mμ<0 which contain a real codimension 2 submanifold V = μ−1(0)/S1.
If we symplectically glue Mμ>0 and Mμ<0 along V we obtain again M .

Note that the above construction is local in nature, thus the moment map
and the S1 action need only be defined in a neighborhood of the cut.

The symplectic structure ω restricted to Mμ>0 and Mμ<0 reduces to a
symplectic structure on Mμ>0 and Mμ<0 which have the same value on V .
This motivates the sum decomposition of the symplectic cones in Section 3.3.

A symplectic cut is only possible on a symplectic manifold; thus, when
discussing a symplectic cut on M = X#V Y , we implicitly consider only
those isotopy classes allowing moment maps μ with V = μ−1(0)\S1.

In the case M = T 4#T 2
f
T 4 it is possible to understand the geomet-

ric construction underlying the cut: Consider M = T 4#T 2
f
T 4 = T 2 × Σ2

and view Σ2 such that we have the holes on either end and a cylindri-
cal connecting piece S in between. Furthermore, in M this copy of Σ2 is
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transverse to the fiber T 2. Choose local coordinates (λ, θ, t) on S × T 2,
(λ, θ) ∈ [−1, 1] × [0, 2π] coordinates on S, t a coordinate on T 2. Consider
an S1 action on the second coordinate stemming from the Hamiltonian
μ : S → R given by μ(λ, θ, t) = λ. Locally, any symplectic form is given
by ω = a dλ ∧ dθ + b dt + Ω, with Ω( ∂

∂θ , ·) = 0 and a ∈ R nonzero.
The symplectic cut defined by μ produces Mμ<0 = T 2

b × T 2 with T 2
b a

punctured torus with boundary S1. Over each point of the boundary, there
is a fiber T 2

f , hence ∂Mμ<0 = T 3. Collapsing this boundary under the S1

action produces T 4 = T 2
f ×T 2. In particular, the action maps dλ∧dθ to local

coordinates on a neighborhood of the collapsed boundary on T 2
b without loss

of volume.

3.3. CV
X#V Y from CV

X and CV
Y .

3.3.1. The cone of sum forms. We are interested in the symplectic cone
CM of the 4-manifold M . Suppose this manifold can be obtained as a sym-
plectic sum M = X#V Y . Let us fix the symplectic embeddings as well
as the map Θ. In the following, we will distinguish between the manifold
M and the specific viewpoint as a symplectic sum from X and Y along V
by explicitly denoting M = X#V Y . Accordingly, we define the following
symplectic cone associated to the symplectic sum:

Definition 3.2. Suppose that M = X#V Y . Define the cone of sum forms,
Csum

X#V Y , to be the set of classes of symplectic forms on M which can be
obtained by summing X and Y with symplectic embeddings j̃∗ and bundle
map Θ̃ isotopic to the fixed choice j∗ and Θ.

We obtain the following result:

Theorem 3.3. For a symplectic manifold M = X#V Y,

(3.1) Csum
X#V Y = Ψ(Φ−1(CV

X ⊕ CV
Y )),

where Φ, Ψ are the maps on cohomology corresponding to the inclusion of
X, Y into X �V Y and the projection of X#V Y onto the singular manifold
X �V Y respectively (see (3.2) below).

Proof. Consider the following maps on cohomology:

(3.2)

H2(X �V Y ) H2(X#V Y )

H2(X) ⊕ H2(Y )

�Ψ

�

Φ

Let CX�V Y := Φ−1(CV
X ⊕ CV

Y ) ∈ H2(X �V Y ). We can view this set as the
collection of classes of symplectic forms in X and Y which are symplectic
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and equal on V . More precisely, we obtain CX�V Y by pulling back of CV

under the restriction maps rX , rY from (2.5):

CX�V Y CV
X

CV
Y CV

�

� �

rX

�rY

The symplectic sum takes (X, ωX) and (Y, ωY ) and produces a symplec-
tic manifold (X#V Y, ω). This will work for any relative symplectic forms
ωX and ωY identical on V . (By identical we mean that the symplecto-
morphism used to produce the symplectic singular manifold X �V Y maps
these two forms symplectically to each other along V .) Thus any symplec-
tic class (αX , αY ) ∈ CX�V Y can be summed to produce a symplectic class
α ∈ Csum

X#V Y . Therefore Ψ(Φ−1(CV
X ⊕ CV

Y )) ⊂ Csum
X#V Y .

On the other hand, given any symplectic class in Csum
X#V Y , any symplectic

representative ω of such a class can be symplectically cut, such that the
manifolds (X, V ) and (Y, V ) result with symplectic forms ωX and ωY which
agree on V . Hence, Ψ−1Csum

X#V Y ⊂ Φ−1(CV
X ⊕ CV

Y ). �

Remark.

(1) Theorem 3.3 is valid for any dimension.
(2) In general, the cone of sum forms will be a strict subset of the relative

cone CV
M . For example, consider M = K3#T 2

f
K3, the fiber sum of two

K3 surfaces along a fiber torus. This has b2(M) = 45, which is also

the dimension of the relative cone CT 2
f

M . On the other hand, CT 2
f

K3 has
dimension 22. Hence the cone of sum forms must be a strict subset
of the relative cone. This indicates that a precise study of the second
homology of the symplectic sum M = X#V Y should be interesting,
and we dedicate the rest of the section to this analysis.

3.3.2. The second homology of M = X#V Y . We assume that X, Y
are 4-manifolds and that V has trivial normal bundle. The latter ensures
that the class of V will exist in H2(X#V Y ) after summing, albeit not
the particular copy of V along which was summed. Denote the class of V
by f ∈ H2(X#V Y ). In this section, we shall describe a “natural” basis
of the second homology with respect to the fiber sum operation, which
will allow us to efficiently construct and deconstruct cohomology classes
on X#V Y .



20 J.G. DORFMEISTER AND T.-J. LI

We begin by detailing the role of the maps involved in the symplectic sum
in the structure of the second homology of M = X#V Y . The homology of
M can be analyzed by the Mayer–Vietoris sequences for the triples (X �V

Y, X, Y ) and (X#V Y, X\V, Y \V ) :

(3.3)

H2(V ) H2(X) ⊕ H2(Y ) H2(X �V Y )

H2(SV ) H2(X\V ) ⊕ H2(Y \V ) H2(X#V Y )

RV RX#V Y

�(jX ,jY )∗ �φ

�

�λ

�

�ρ

�
ψ

� �

The map λ, defined on classes in the homology of the normal unit circle
bundle SV , is induced by the canonical identification of the tubular neigh-
borhoods and the normal bundles. The map ρ is identity on the classes which
are supported away from V and on classes supported near V is defined by
the gluing map ϕ, in particular by Θ. The map φ : H2(X) ⊕ H2(Y ) →
H2(X �V Y ) produces classes with the appropriate matching conditions
on V as determined by Θ in preparation for summing along V . The map
ψ : H2(X#V Y ) → H2(X�V Y ) is induced by the gluing map ϕ, in particular
by the embeddings j∗ and the isomorphism Θ. Then ψ correctly decomposes
classes in X#V Y in accordance with the symplectic gluing. The set RX#V Y

is completely determined by RV and an understanding of how these classes
bound in M . The outer columns are exact, for a detailed discussion of the
kernel RV see [13, Sect. 5].

We are in the four-dimensional setting, thus when we consider the
Poincaré dual diagram to (3.3), we obtain in particular the following com-
ponent:

(3.4)

H2(X �V Y ) H2(X#V Y ) RD
X#V Y 0

H2(X) ⊕ H2(Y )

�Ψ

�
Φ

� �

This is precisely the diagram used in the proof of Theorem 3.3. This moti-
vates the detailed discussion of the generators of the second homology which
follows.
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To explicitly describe the second homology of M = X#V Y , we consider
the following part of the Mayer–Vietoris sequences as before:
(3.5)

H2(X) ⊕ H2(Y ) H2(X �V Y ) H1(V )

H2(X\V ) ⊕ H2(Y \V ) H2(M) H1(SV ) � H1(S1) ⊕ H1(V )

RX#V Y

�φ �δ

�

�ρ

�
ψ

�(γ,t)

�
μ

�

Define the subgroups x = ρ(H2(X\V ), 0) and y = ρ(0, H2(Y \V )) of H2(M).
Elements in x and y are representable by submanifolds in X, Y resp. which
are supported away from the submanifold V . Denote generators of x and y
by xi and yi. Note that xi · f = 0 = yi · f in the intersection form.

Define the subgroup Γ = (γ, t)−1(H1(S1), 0) � Z. Representatives γM

of this subgroup are submanifolds formed from submanifolds γX ∈ X and
γY ∈ Y , these being supported in any neighborhood of V and thus affected
by the sum construction. The submanifolds γ∗ intersect V nontrivially and
γ∗ · f = 1. We denote the generator of this subgroup by γM . Note that
ψ(γM ) is always nontrivial: ψ(γM ) = (γX , γY ).

Define τ = (γ, t)−1(0, H1(V )) and RM = ker ψ. The following holds.

Lemma 3.4. ψ(τ) = coker(φ)

Proof. Let gi be generators of H1(V ). Then τ is generated by

τi = (γ, t)−1(0, gi).

The commutativity of (3.5) shows

(3.6) δψ(τi) = (μ)(γ, t)τi = μ(0, t(τi)) = t(τi) = gi.

Thus it follows from gi 	= 0 that ψ(τi) /∈ ker δ. Thus

(3.7) ψ(τi) ∈ H2(X �V Y )/ ker δ = H2(X �V Y )/imφ = coker(φ).

Hence ψ(τ) ⊂ coker(φ).
From the definition of coker (φ) it follows that coker (φ) = H2(X �V

Y )/imφ and hence any nontrivial element c of the cokernel is supported in
a neighborhood of V , but is not generated out of elements in H2(X) and
H2(Y ). In particular, c · γ∗ = 0. Thus any lift τ̃ of an element c in the
cokernel by ψ to H2(M) has γ(τ̃) = 0. Furthermore,

(3.8) 0 	= δ(c) = δψ(ψ−1τ) = (μ)(γ, t)τ̃ = t(τ̃),



22 J.G. DORFMEISTER AND T.-J. LI

so (γ, t)τ̃ ∈ 0 ⊕ H1(V ) is nontrivial. Therefore, τ̃ ∈ τ and thus coker (φ) ⊂
ψ(τ). �

Consider now the set RX#V Y . In particular, let us describe how objects
in this set are generated from submanifolds of X\V and Y \V . Define RY as
the image of the map iY∗ Δ : H1(V ) → H2(Y \V ) where iY is the inclusion of
SV into Y \V and Δ : H1(V ) → H2(SV ) stems from the Gysin sequence for
the bundle SV → V . If V is two-dimensional, then the map Δ is an injection.
Furthermore, consider for each simple closed curve l in V the preimage in
∂NY V , this is a torus. Such tori are called rim tori. We restate a result
in [13]:

Lemma 3.5 ([13, Lemma 5.2]). Each element R ∈ RY can be represented
by a rim torus.

Under symplectic gluing, rim tori glue and are the elements of RM , in
particular the elements iX∗ Δl and −iY∗ Δl for some loop l ∈ H1(V ) glue.
An example of this process is the generation of nonfiber tori in K3 when
viewed as a sum E(1)#T 2

f
E(1) (see [12, Sect. 3.1]). These are then precisely

the elements of RK3 = {T 2
1 , T 2

2 } and, in the same process, τ = {S2
1 , S2

2} is
produced. This accounts for the two new hyperbolic terms in the intersection
form. We observe the following

Lemma 3.6. Assume that H1(V ) → H1(Y ) is an injection and V has trivial
normal bundle. Then Y has no rim tori and τ = 0 = RX#V Y .

Proof. To prove that Y has no rim tori, it will suffice to show that i∗ :
H2(SV ) → H2(Y \V ) is trivial on elements which are trivial under the map
π∗ : H2(SV ) → H2(V ). Therefore, consider the map ξ : H3(Y ) → H2(SV )
where SV = V ×S1. Let W ∈ H3(Y ), then ξ(W ) = W∩SV = W∩(V ×S1). In
particular, W ∩V ∈ H1(V ), thus by the injectivity assumption, if this inter-
section is nontrivial, it is nontrivial in H1(Y ). Therefore, the map ξ maps
H3(Y ) onto the space generated by α×S1 and β ×S1, where α, β are gener-
ators of H1(V ). This space is the kernel of π∗ and the map i∗ is trivial on it.

Let us now consider RX#V Y . Elements of this set are constructed by sym-
plectic gluing from elements in X\V and Y \V , or equivalently, from classes
in H2(X\V ) and H2(Y \V ). In particular, considering (3.3), only classes in
RV are relevant, these are precisely those classes that do not map trivially
to H2(V ). As we have seen above, our assumption implies that H2(SV ) →
H2(Y \V ) is trivial. Hence every element in RX#V Y would be trivial.

Thus RX#V Y = 0. Furthermore, τ = 0 is clear from the assumption. �
The previous discussion allows us to explicitly state a set of generators

for H2(M):
• {f} is the fiber class present in both X and Y , in our case this is the

class of V ;
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• {xi}, {yi};
• {ki} ⊂ RX#V Y , generators that are represented by submanifolds

mapping to 0 in X �V Y ;
• {γ} generated out of elements of the homology of both X and Y , e.g

[Σ2] from copies of T 2 in Example 3.1. Note that this is the origin
for the nonsurjectivity of the map ψ: ψ[Σ2] will always have a fixed
relative orientation of the two copies of T 2 into which Σ2 degenerates.
Thus the pairing of the tori with opposite orientation will not lie in
the image of ψ;

• {τi} ⊂ τ ; these objects will persist in X �V Y and hence contribute
to its homology as well.

Given this set of generators, we can explicitly state how an element in
the cone of sum forms decomposes: Given α =

∑
i aiXi + biYi + cF + gΓ +

eiRi+tiTi ∈ Csum and taking the Poincaré dual basis of the one given above,
we obtain two forms αX =

∑
i aiXi + cXFX + gΓX and αY =

∑
i biYi +

cY F Y + gΓY on X resp. Y . Note that this is ultimately a direct result of
Theorem 3.3.
3.3.3. Good sums. If we know the relative cones of X and Y , then, con-
sidering (3.3), we should obtain information on the structure of the relative
cone on M = X#V Y by using the Poincaré duals of the maps φ and ψ. For
this to work nicely, one needs φ to be surjective and ψ to be injective. We
thus make the following definition:

Definition 3.7. A symplectic sum M = X#V Y is called good if φ is sur-
jective and ψ is injective.

This statement is equivalent to τ = 0 = R, and Lemma 3.6 provides a
simple criterion to check this.

Theorem 3.8. Suppose M = X#V Y is good and V has trivial normal
bundle. If for X, Y,

(3.9) CV
∗ = {α ∈ P∗ | α · V > 0},

then

(3.10) Csum
X#V Y = {α ∈ PM | α · V > 0}.

Consequently, CV
M = {α ∈ PM | α · V > 0}.

Proof. The second result is immediate: Theorem 3.3 and Lemma 2.7 show
that Csum

X#V Y ⊂ CV
M ⊂ {α ∈ PM | α · V > 0}.

The first result follows, if we can show {α ∈ PM | α · V > 0} ⊂ Csum
X#V Y .

We proceed as remarked above, using Theorem 3.3: Taking the Poincaré
dual basis of the one given above, we can write each α ∈ {α ∈ PM | α·V > 0}
as

(3.11) α =
∑

i

aiXi + biYi + cF + gΓ + eiRi + tiTi; g > 0.
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As R = 0 = τ , the last two terms drop.
We must now show, that α ∈ Csum

X#V Y . We thus choose a possible pair of
classes αX and αY in H2(X) resp. H2(Y ) as determined by Theorem 3.3
and show that this can be done in such a way as to ensure that they are
representable by a relative symplectic form. We first determine a relation
which preserves the volume. In the following, we show how to choose this
pair, so that they lie in their respective relative cones CV

∗ . Hence the class α
can be obtained by summing two classes representable by relative symplectic
forms and thus, by Gompf’s result, α ∈ Csum

X#V Y .
Choose the candidates for classes summing to α as follows:

αX =
∑

i

aiXi + cXFX + gΓX ∈ H2(X),

αY =
∑

i

biYi + cY F Y + gΓY ∈ H2(Y ),
(3.12)

where F ∗ and Γ∗ are the Poincaré duals on X, Y . The coefficient g must be
the same for both, as g = α(V) = αX(V) = αY (V). The class F has F 2 = 0
due to the triviality of the normal bundle of V , similarly (F ∗)2 = 0. The
volume of each of these is
(3.13)

α2 =
(∑

aiXi

)2
+

(∑
biYi

)2
+ (gΓ)2 + 2

∑
(aiXigΓ + biYigΓ) + cFgΓ

and

(3.14) α2
X =

(∑
aiXi

)2
+ g2(ΓX)2 + 2

∑ (
aiXigΓX

)
+ cXFXgΓX .

Thus the difference of the volumes is calculated to be

α2 − α2
X − α2

Y = (gΓ)2 −
(
gΓX

)2 −
(
gΓY

)2
(3.15)

+ 2
(∑

aiXigΓ −
∑

aiXigΓX
)

(3.16)

+ 2
(∑

biYigΓ −
∑

biYigΓY
)

(3.17)

+ 2
(
cFgΓ − cXFXgΓX − cY F Y gΓY

)
(3.18)

Note the following: The morphism Ψ : H2(X �V Y ) → H2(M) relates the
intersection forms, giving the following relations:

(1) (ΓX)2 +(ΓY )2 = (ΓX ⊕ΓY )2 = Ψ((ΓX ⊕ΓY )2) = Ψ(ΓX ⊕ΓY )2 = Γ2;
(2) αiXiβΓ = Ψ(αiXi(βΓX ⊕ βΓY )) = αiXiβΓX .

Applying these relations, it follows immediately that 3.15 is trivial,

(3.19) 3.16 ⇒ aiXigΓ − aiXigΓX = ai(g − g)XiΓX = 0
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and analogously for 3.17 and Y . Furthermore, (3.18) becomes

cFgΓ − cXFXgΓX − cY F Y gΓY = cFgΓ − Ψ(cXFXgΓX + cY F Y gΓY )

= cFgΓ − Ψ(cXFX + cY F Y )gΓ.(3.20)

The condition for this to vanish is

(3.21) Ψ(cXFX + cY F Y ) = cF.

Thus, by choosing c = cX + cY we preserve the volume.
Now, we must show that this can be done in such a way as to ensure

α2
∗ > 0. Choose cX , cY so that volume is preserved. Then α2 = α2

X +α2
Y > 0,

and we may assume α2
X > 0. This holds true for any choice of c∗ satisfying

3.21.
Squaring αX and denoting B =

∑
aiXi + gΓX , we obtain

(3.22) f(cX) = α2
X = B2 + 2B · FXcX + (cX)2(FX)2 = B2 + 2B · FXcX .

We can always solve f(cX) = ρ for any ρ > 0. Thus we can ensure that
α2 > α2

X > 0 holds. Then also α2
Y = α2 − α2

X > 0 holds, and thus each α∗
must lie in CV

∗ , hence α̃ = (αX , αY ) ∈ CX�V Y by definition of this set. Thus
{α ∈ P∗ | α · V > 0} ⊂ Csum

X#V Y . �
This result is of particular interest, as it shows that good sums preserve the

structure of the relative cone. Thus, if X, Y have relative cones as assumed
in the theorem and the sum is good, we can apply this result repeatedly to
obtain the relative cone of nX#V mY :

(3.23) CV
nX#V mY = {α ∈ PnX#V mY | α · V > 0}.

4. Symplectic cone of certain T 2-fibrations

4.1. T 2 × Σg. We now show that Theorem 3.8 can be applied to T 2 × Σg.
The results of the previous section assume two things: a certain form of the
relative symplectic cone and that the sum be good.

Fix Y = T 2 × Σk. Thus by Lemma 3.6 we do not need to verify the
condition R = 0 = τ when applying Theorem 3.8, i.e., all sums X#V Y are
good.

The following result follows immediately:

Theorem 4.1. Let M = T 2 × Σk. Then

(4.1) CT 2
f

M = {α ∈ PM | α · [T 2
f ]D > 0}.

Consequently, CM = Pc1(M) ∪ P−c1(M).

Proof. We proceed by induction: Let M = T 4. Then the result holds due to
Lemma 2.3 and Corollary 2.10. Summing repeatedly we obtain

M = T 2 × Σk = T 4#T 2
f
(T 2 × Σk−1).
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Using the induction hypothesis, which ensures that

CT 2
f

T 2×Σk−1
= {α ∈ PT 2×Σk−1

| α · [T 2
f ]D > 0},

the result now follows from Theorem 3.8 (see equation (3.23)) and Corol-
lary 2.10. Note that b+ ≥ 3 for any k, hence by Thm IV.2.7, [1], we have
pg > 0. �

As noted in the Introduction, this result also follows from results in [4, 5].

Remark (Fibered symplectic forms). Every class in CM can be rep-
resented by a symplectic form which restricts to a symplectic form on the
fibers of M . Denote the set of such forms by S. Then this set is contractible
(and nonempty) ([11, Thm. 1.4]). See also McDuff [25].

4.2. X#(T 2×Σk). In the following we allow the fibration to have singular
or multiply covered fibers. If we sum along a generic fiber, avoiding these
special fibers, we find no obstruction to applying the methods developed
above.

Theorem 4.2. Let X be a minimal symplectic manifold with b+ = 1. Let
V ⊂ X be a torus with trivial normal bundle and CV

X 	= ∅. Consider the
manifold M = X#V Y . Then

CM = PV ∪ P−V.

Proof. We begin with the trivial case: Assume that X = S2 × T 2. Then the
fiber sum is a trivial sum and we obtain M = Y . The result was shown in
Theorem 4.1.

Assume in the following that X 	= S2 × T 2. Using the assumptions, we
obtain from Corollary 2.17 that CV

X = PV. Lemma 3.6 and Theorem 3.8 now
show that CV

M = PV ⊂ PM , hence by Lemma 2.8 and Lemma 2.9 we obtain

PV ∪ P−V ⊂ CM .

Let ω be a relative symplectic form on (X, V ). Denote the corresponding
canonical class by Kω. The adjunction equality shows that Kω · V = 0.
Hence, if Kω · Kω ≥ 0, it follows from Lemma 2.1 that Kω = aV for some
a ∈ R. If Kω · Kω < 0, then X is a S2-bundle over a Riemann surface of
genus g ≥ 2, hence contains no torus with trivial normal bundle.

Moreover, from the symplectic sum construction, it follows for any sym-
plectic form ω on M obtained from relative symplectic forms ω1 and ω2 on
(X, V ) resp. (Y, V ) that

Kω = Kω1 + Kω2 + 2V.

Thus Kω is a multiple of V for such sum symplectic forms. If Kω is a nonzero
multiple of V, then CM ⊂ PV ∪P−V as Kω is a SW basic class and we have
proven the theorem.

We must show that Kω is a nonzero multiple of V. The canonical class of
Y is a positive multiple of V. Thus, if Kω1 is torsion, we are done. Assume
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that Kω1 is nontorsion. Then the classification in [19, Prop. 5.2], shows that
Kω1 is a negative multiple of V only if X = CP 2, S2×S2 or a S2-bundle over
T 2. Only the trivial S2-bundle over T 2 admits a torus with trivial normal
bundle and we have assumed that X 	= S2 × T 2. �

Corollary 4.3. Let X be a minimal elliptic Kähler surface with pg = 0 and
M = X#T 2

f
Y . Then Conjecture 1.1 holds, i.e.,

CM = Pc1(M) ∪ P−c1(M).

Proof. The condition pg = 0 for the Kähler manifold X implies b+ = 1, see
[1, Thm IV.2.7]. The result now follows from the previous theorem and the
uniqueness of the canonical class in the Kähler class. �

Remark. The manifold X could be an Enriques surface, a hyperelliptic
surface or a Dolgachev surface.

5. Appendix

Let V be a fixed smooth codimension 2 submanifold of a symplectic manifold
(X, ω). Let JV be the set of almost complex structures compatible with
ω such that V is pseudoholomorphic for each j ∈ JV . We wish to show
that JV has a rich enough structure to allow for genericity statements for
J-holomorphic curves. These results are presumably known to experts in
the field, the methods used can be found in [30, 35]; we include them for
completeness. Let A ∈ H2(X) be any class, except that in the case A2 = 0 =
Kω(A) the class A should be indivisible. We begin by defining a universal
space which we shall use throughout this section: Fix a closed compact
Riemann surface Σ. The universal model U is defined as follows: This space
will consist of Diff(Σ) orbits of a 4-tuple (i, u, J,Ω) with

(1) u : Σ → X an embedding of a finite set of points from a Riemann
surface Σ such that u∗[Σ] = A and u ∈ W k,p(Σ, X) with kp > 2,

(2) Ω ⊂ X a set of m distinct points (with Ω = ∅ if m ≤ 0) such that
Ω ⊂ u(Σ),

(3) i a complex structure on Σ and J ∈ JV .
Note that every map u is locally injective.

In order to show the necessary genericity results, we will call upon the
Sard-Smale Theorem. This will involve the following technical difficulty: The
spaces JV and any subsets thereof which we will consider are not Banach
manifolds in the C∞-topology. However, the results we wish to obtain are
for smooth almost complex structures. In order to prove our results, we need
to apply Taubes trick (see [33] or [30, Sect. 3.2]), which replaces the smooth
spaces by C l-almost complex structures and apply the Sard-Smale theorem
in that setting. Then, one constructs a countable collection of sets, whose
intersection is the generic set of smooth structures, and shows that each of
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these is dense and open by explicit argumentation in the space of smooth
structures. We will not go through this technical step but implicitly assume
this throughout the section, details can be found in [30, Ch. 3].

Lemma A.1. Let A ∈ H2(X, Z), A 	= V and k(A) = 1
2(A2 − Kω(A)) ≥ 0.

Let Ω denote a set of k(A) distinct points in X. Denote the set of pairs
(J,Ω) ∈ JV × Xk(A) by I. Let J A

V be the subset of pairs (J,Ω) which are
nondegenerate for the class A in the sense of Taubes [32, Def. 2.1]. Then
J A

V is a set of second category in I.

The term “nondegenerate as defined by Taubes” states that for the pair
(J,Ω) the linearization of the operator ∂ at any J-holomorphic submanifold
of X representing the class A and containing the set Ω has trivial cokernel.
Note that the universal model excludes multiple covers of the submanifold
V in the case that A = aV for a ≥ 2, and we can thus assume that any map
u : Σ → M with [u(Σ)] = A satisfies u(Σ) 	⊂ V .

Proof. To prove this statement, we will define a map F from a universal
model U to a bundle with fiber W k−1,p(Λ0,1T ∗Σ ⊗ u∗TX) and show that it
is submersive at its zeroes. Then we can apply the Sard-Smale theorem to
obtain that J A

V is of second category.
Define the map F as (i, u, J,Ω) �→ ∂i,Ju. Then the linearization at a zero

(i, u, J,Ω) is given as

(5.1) F∗(ξ, α, Y ) = Duξ +
1
2
(Y ◦ du ◦ i + J ◦ du ◦ α)

where Du is Fredholm, Y and α are variations of the respective almost
complex structures.

Consider u ∈ U such that there exists a point x0 ∈ Σ with u(x0) ∈ X\V
and du(x0) 	= 0. (The second condition is satisfied almost everywhere, as u
is a J-holomorphic map.) Then there exists a neighborhood N of x0 in Σ
such that

(1) du(x) 	= 0,
(2) u(x) 	∈ V for all x ∈ N .

In particular, we know that the map u is locally injective on N . Furthermore,
we can find a neighborhood in N , such that there are no constraints on the
almost complex structure J ∈ JV , i.e., this neighborhood does not intersect
V . In particular, any variation Y with support in N leaves V J-holomorphic
and is, therefore, admissable. Denote this open set by N as well.

Let η ∈ coker F∗. Consider any x ∈ N with η(x) 	= 0. Then [30,
Lemma 3.2.2], provides a matrix Y0 with the properties

• Y0 = Y T
0 = J0Y0J0 with J0 the standard almost complex structure in

a local chart, and
• Y0[du(x) ◦ i(x)] = η(x).
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Choose any variation Y of J with support on N such that Y (u(x)) = Y0.
Then define the map f : N → R by 〈Y ◦ du ◦ i, η〉. We can find an open
set N1 in N such that f > 0 on that open set. Using the local injectivity
of the map u and arguing as in [30, Sect. 3.2], we can find a neighborhood
N2 ⊂ N1 and a neighborhood U ⊂ M of u(x0) such that u−1(U) ⊂ N2.
Choose a cutoff function β supported in U such that β(u(x)) = 1. Hence in
particular

(5.2)
∫

Σ
〈F∗(0, 0, βY ), η〉 > 0

and therefore η(x) = 0. This result holds for any x ∈ N , therefore η vanishes
on an open set.

As we have assumed η ∈ coker F∗, it follows that

0 =
∫

Σ
〈F∗(ξ, 0, 0), η〉 =

∫

Σ
〈Duξ, η〉

for any ξ. Then it follows that D∗
uη = 0 and 0 = �η + l.o.t. Therefore

Aronszajn’s theorem allows us to conclude that η = 0 and hence F∗ is
surjective.

Thus we have the needed surjectivity for all maps admitting x0 as
described above: u(x0) 	∈ V and du(x0) 	= 0. As stated before, this last
condition is fulfilled off a finite set of points on Σ. The first holds for any
map u in class A as we have assumed that A 	= V.

Now apply the Sard-Smale theorem to the projection onto the last two
factors of (i, u, J,Ω). �

Given J ∈ JV and Ω ∈ Xm, define the set KA
V (J,Ω) to be the set of

J-holomorphic submanifolds which are abstractly diffeomorphic to a Rie-
mann surface Σ, contain the set Ω and represent the class A. Then the same
methods as in the above proof together with index calculations of the pro-
jection operator onto the last two factors lead to the following results: If
m > k(A) or m < 0, then KA

V (J,Ω) is empty for generic (J,Ω), if m = k(A),
then KA

V (J,Ω) is a smooth 0-dimensional manifold for generic (J,Ω). In par-
ticular, there exists a set of second category in JV , such that if k(A) ≥ 0
then any pseudoholomorphic submanifold in class A meets a generic set of
at most k(A) distinct points.

As we have seen in the above proof, for the class A = V which may
have representatives which do not lie outside of V , we must be careful. In
particular, it is conceivable that the particular submanifold V chosen may
not be generic in the sense of Taubes, i.e., the set JV may contain almost
complex structures for which the linearization of ∂J at the embedding of
V is not surjective. The rest of this section addresses this issue. We begin
by showing that the cokernel of the linearization of the operator ∂J at a
J-holomorphic embedding of V has the expected dimension:
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Let j be an almost complex structure on V . Define J j
V = {J ∈ JV |J |V = j}

and call any J-holomorphic embedding of V for J ∈ J j
V a j-holomorphic

embedding.

Lemma A.2. Fix a j-holomorphic embedding u : (Σ, i) → (X, J) for some
J ∈ J j

V . If k(V) ≥ 0, then there exists a set J g,j
V of second category in J j

V

such that for any J ∈ J g,j
V the linearization of ∂i,J at the embedding u is

surjective. If k(V) < 0, then then there exists a set J g,j
V of second category

in J j
V such that the submanifold V is rigid in X.

Let us first explain the structure of the proof before giving the exact
proof. We follow ideas of [35, Sect. 4]. We need to show that for a fixed
embedding u : Σ → X of V the linearization F∗ of ∂i,J at u has a cokernel
of the correct dimension for generic J ∈ J j

V . To do so, we will consider the
operator G(ξ, α, J) := F∗(ξ, α, 0) at (i, u, J,Ω). We will show that the kernel
of the linearization F∗ for nonzero ξ has the expected dimension for generic
J and hence the linearization of ∂i,J at u also has the expected dimension.
Note also that for any J ∈ J j

V , the map u is J-holomorphic.
What is really going on in this construction? The operator F is a section

of a bundle over U , as described above. Further, we consider a map U →
J j

V . In this map, we fix a “constant section” (u, j), i.e., we consider the
structure of the tangent spaces along a fixed map u where we do not let the
almost complex structure along V vary. On the other hand, it is only this
structure j which makes u pseudoholomorphic. Hence fixing (u, j) is akin
to considering a constant section in the bundle U → J j

V . In particular, we
are only interested in the component of the tangent space along this section
which corresponds to the tangent space along the moduli space M = F−1(0),
as this will give us insight into the dimension of M. Along (u, j), this is
precisely the component of the kernel of F∗ with Y = 0 as the complex
structure is fixed on V , i.e., the set of pairs (ξ, α) such that F∗(ξ, α, 0) = 0,
which corresponds to exactly the zeroes of G. When considering the zeroes
of the map G viewed over J j

V , we find that this is a collection of finite
dimensional vector spaces. We may remove any part of these spaces, so
long as we leave an open set, which is enough to allow us to determine
the dimension of the underlying vector spaces. Hence, removing ξ = 0,
a component along which we cannot use our methods to determine the
dimension of the kernel, still leaves a large enough set to be able to determine
the dimension of the moduli space M. We therefore want to show that the
kernel of the linearization F∗ for nonzero ξ which is the zero set of G for
nonzero ξ has the expected dimension max{k(V), 0} for generic J .
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Proof. The operator G is defined as

W 1,p(u∗TX) × H0,1
i (TCΣ) × J j

V → Lp(u∗TX ⊗ T 0,1Σ)

(ξ, α, J) �→ DJ
uξ +

1
2
J ◦ du ◦ α,

where the term DJ
u = 1

2(∇ξ + J∇ξ ◦ i) for some J-hermitian connection
∇ on X, say for example the Levi–Civita connection associated to J . Note
that we could define this operator also for a smooth embedding u : Σ → X,
but that we have fixed the almost complex structure on V and therefore
∂i,Ju = 0 for any J ∈ J j

V .
Let (ξ, α, J) be a zero of G. Linearize G at (ξ, α, J):

G∗(γ, μ, Y ) = DJ
uγ +

1
2
∇ξY ◦ du ◦ i +

1
2
J ◦ du ◦ μ.

As stated above, we assume nonvanishing ξ, hence we can assume that ξ 	= 0
on any open subset. Let η ∈ coker G∗. Let x0 ∈ Σ be a point with η(x0) 	=
0 	= ξ(x0). In a neighborhood of u(x0) ∈ V the tangent bundle TX splits as
TX = NV ⊕ TV with NV the normal bundle to V in X. With respect to
this splitting, the map Y has the form

y =
(

a b
0 0

)

with all entries J-antilinear and b|V = 0, thus ensuring that V is pseudoholo-
morphic and accounting for the fact that we have fixed the almost complex
structure along V . Thus ∇ξY can have a similar form, but with no restric-
tions on the vanishing of components along V . In particular, assuming η
projected to NV is nonvanishing, we can choose

∇ξY =
(

0 B
0 0

)

at x0 such that B(x0)[du(x0) ◦ i(x0)](v) = ηNV (x0)(v) and B(x0)[du(x0) ◦
i(x0)](v) = ηNV (x0)(v) for a generator v ∈ T 1,0

x0 Σ and where ηNV is the
projection of η to NV . Then, using the same universal model as in the
previous lemma, we can choose neighborhoods of x0 and a cutoff function β
such that ∫

Σ
〈G∗(0, 0, βY ), η〉 > 0

and thus any element of the cokernel of G∗ must have ηNV = 0. An argument
in [35] shows that the projection of η to TV must also vanish. Therefore the
map G∗ is surjective at the embedding u : Σ → V .

Thus the set {(ξ, α, J)|G(ξ, α, J) = 0, J ∈ J j
V , ξ 	= 0} is a smooth

manifold and we may project onto the last factor. Then applying Sard-
Smale, we obtain a set J g,j

V of second category in J j
V , such that for any

J ∈ J g,j
V , the kernel of the linearization of ∂ at nonzero perturbations ξ
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of the map u is a smooth manifold of the expected dimension. In the case
k(V) ≥ 0, this however implies that F∗ at (i, u, J,Ω) is surjective. Therefore,
we have found a set J g,j

V of second category in J j
V such that the linearization

of ∂i,J at u is surjective at all elements of J g,j
V .

If however k(V) < 0, then this kernel is generically empty. This implies
the rigidity of the embedding u of V . �

We have thus shown that for a fixed embedding we can find a generic
set of almost complex structures among those making the embedding pseu-
doholomorphic, such that the linearization of ∂ at u has cokernel of the
expected dimension. We would like to state a similar result for the space
KVV (J,Ω) as we stated for the class A. In order to do so, note that in our
model, we consider orbits under the action of Diff(Σ). Hence, given any two
embeddings u : (Σ, i) → (X, J) and v : (Σ, i) → (X, J̃) of V for J, J̃ ∈ J j

V ,
there exists a φ ∈ Diff(Σ) such that u = v ◦ φ, i.e., u and v correspond to
the same point in the universal model U .

For every almost complex structure j on V the previous results provide
the following:

(1) A set J g,j
V of second category in J j

V with the property that the lin-
earization of the operator ∂ at a fixed j-holomorphic embedding of V
is surjective (k(V) ≥ 0) or is injective (k(V) < 0).

(2) Up to a map φ ∈ Diff(Σ), there is a unique j-holomorphic embedding
of V for all J ∈ J j

V .
Therefore, consider the following set:

J g
V =

⋃

j

J g,j
V ⊂

⋃

j

J j
V = JV .

Note that we J g
V is actually a disjoint union of sets. The following prop-

erties hold:
(1) The set J g

V is dense in JV .
(2) The linearization of the operator ∂ at a fixed j-holomorphic embed-

ding of V is surjective (k(V) ≥ 0) or is injective (k(V) < 0) for any
J ∈ J g

V .
(3) Up to a map φ ∈ Diff(Σ), there is a unique j-holomorphic embedding

of V .
We can now state the final result concerning genericity that we will need:

Lemma A.3. Let Ω denote a set of k(V) distinct points in X.

(1) k(V) ≥ 0: Denote the set of pairs (J,Ω) ∈ JV × Xk(V) by I (with
Ω = ∅ if k(V) ≤ 0). Let JV be the subset of pairs (J,Ω) which are
nondegenerate for the class A in the sense of Taubes [33]. Then JV
is dense in I.
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(2) k(V) < 0: There exists a dense set JV ⊂ JV such that V is rigid,
i.e., there exist no pseudoholomorphic deformations of V and there
are no other pseudoholomorphic maps in class V.

Proof. To begin, we will replace the set JV ×Xk(V) by J g
V ×Xk(V) which is

a dense subset, as seen from the previous remarks. Further, for any (J,Ω) ∈
J g

V × Xk(V), we have surjectivity or injectivity of the linearization at the
embedding of V .

Consider the case k(V) ≥ 0. Fix a j on V . Then consider the set J g,j
V

provided by Lemma A.2. The linearization at the embedding of V is sur-
jective for any J ∈ J g,j

V . For any element (i, u, J,Ω) of U with u(Σ) 	⊂ V

representing the class V and J ∈ J g,j
V , arguments as in the proof of Lemma

A.1 provide the necessary surjectivity. Therefore, there exists a further set
J g,j
V

of second category in J g,j
V × Xk(V) such that any pair (J,Ω) ∈ J g,j

V
is

nondegenerate.
Define JV =

⋃
j J g,j
V

. This is a dense subset of J g
V ×Xk(V) such that any

pair (J,Ω) ∈ JV is nondegenerate.
If k(V) < 0, then restrict to J g

V as well. Thereby we have already ensured
that V is rigid. Now apply the proof of Lemma A.1 to the universal model U ,
which we modify to allow only maps u : (Σ, i) → (X, J) such that u(Σ) 	⊂ V .
Then we can find a set JV of second category in J g

V such that there exist
no maps in class V other than the embedding of V . �

Note that by results of Taubes, if k(V) < 0, the set JV is a set of first
category in J . Further, it is not clear whether it is possible to improve the
denseness statement to include openness in JV . In the case k(V) ≥ 0, this
is also unclear.

Furthermore, if k(V) ≥ 0, then we have shown that the set KVV (J,Ω) has
the desired properties, i.e., for a dense set of pairs (J,Ω) KVV (J,Ω) is a smooth
0-dimensional manifold unless m > k(V), in which case it is generically
empty.

Similar results have been proven by Jabuka in [15]. However, that result
only provides an isotopic copy of V in the case k(V) ≥ 0.
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