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SYMPLECTIC FIELD THEORY AND QUANTUM
BACKGROUNDS

Michael Sullivan, John Terilla, and Thomas Tradler

We derive an L∞ structure associated to a polarized quantum back-
ground and characterize the obstructions to finding a versal solution
to the quantum master equation (QME). We illustrate how symplectic
field theory (SFT) is an example of a polarized quantum background
and discuss the L∞ structure in the SFT context. The discussion may
be summarized as follows: given a contact manifold M with contact
homology H, one can define an L∞ algebra on A[[�]], where A = A(M)
is the free symmetric algebra on the vector space of Reeb orbits of M.
The obstructions to finding a versal solution to the QME in A[[�]] are
organized into what we call the kappa invariant, which is a new differ-
ential κ : H[[�]] → H[[�]].

Also, a quantum background associated to an arbitrary manifold is
defined, which does not use any contact structure. It agrees with the
one from SFT of the unit cotangent bundle of the manifold in some
cases, but might, in general, be different.

1. Introduction

Since the celebrated Gromov compactness result for J-holomorphic curves
in symplectic manifolds [7], symplectic geometers have been using these
curves to study symplectic and contact manifolds, as well as questions in
other fields connected to these manifolds. The compactness of these curves
is often restated in some form of the equation

∂X = X ∗ X.

Here X is some collections of moduli spaces of these curves, ∂ is the topo-
logical boundary of these spaces, and ∗ embodies the (possibly self-) gluing
of the J-holomorphic curves as they appear in Gromov’s sequential limit. A
common goal is to develop algebraic machinery (and its subsequent
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invariants) which can refine the equation ∂X = X ∗ X. Current algebraic
considerations include Floer homology, contact homology, and symplectic
field theory (SFT) [6].

Independently, efforts to understand in algebraic terms the way in which
correlation functions are computed in the Batalin–Vilkovisky quantization
have met with some success since the BV setting was generalized to quantum
backgrounds. A quantum background consists of an algebraic framework
within which a quantum master equation (QME) can be defined. According
to Park [8, 10], the physicists’ correlation functions are determined (up to
finite ambiguity) by a versal solution to the QME.

In this paper, we note that the two areas are connected: SFT is an exam-
ple of a quantum background. In fact, SFT is an example of a particularly
nice kind of quantum background, which we call a polarized quantum back-
ground. For polarized quantum backgrounds, the QME has an expression
in terms of an L∞ algebra, which we call the quantum L∞ algebra and
is derived from the background data. For SFT, the quantum L∞ alge-
bra is an invariant of the contact manifold. This L∞ structure contains
(but is not contained in) all of the L∞ structures previously associated
to a contact manifold. Augmentations, which are associated to symplec-
tic fillings, are examples of solutions to the QME in this quantum L∞
algebra. The general theory of quantum backgrounds suggests that one
should find, if possible, a versal solution to the QME, from which new
contact invariants might be derived. There is a simple necessary and suf-
ficient condition for the existence of a versal solution to the QME in a
polarized quantum background, which we state for SFT in terms of J-
holomorphic curves. Whether this condition is satisfied is itself a con-
tact invariant. If the condition is not satisfied, there is a finer invari-
ant which encodes the obstructions to the existence of a versal solution.
This finer invariant, which we call the kappa invariant, is a differential
κ : H[[�]] → H[[�]], where H is the contact homology of the contact man-
ifold. While we develop κ as the obstructions to solving the QME, the
components of κ = κ1� + κ2�

2 + · · · are linear maps on the contact homol-
ogy that encode some kind of higher genus information. Since lim�→0 κ = 0,
the kappa invariant is invisible in the ordinary contact homology but can
be seen clearly from the vantage of quantum backgrounds. Finally, we
generalize an example of SFT [3] from surfaces to manifolds, using the
involutive bi-Lie algebra structure of the manifold’s string topology. We
do not claim it to be SFT, but we confirm it defines a quantum back-
ground.

2. Symplectic field theory

We review the construction of SFT. For a more complete story, see [6].
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A contact manifold is a pair (M, ξ) where M is a closed orientable
(2n− 1)-dimensional manifold and ξ ⊂ TM is a contact structure, that is, a
(2n−2)-dimensional maximally non-integrable distribution. By “maximally
non-integrable” we mean that locally ξ = ker(α) for some one-form α such
that α ∧ (dα)n is nowhere-vanishing. If such an α is defined globally, then
α is referred to as a contact one-form for ξ. Henceforth, assume such a form
exists.

The Reeb vector field Rα is the unique vector field satisfying

α(Rα) = 1, dα(Rα, ·) ≡ 0.

We usually denote the contact manifold simply as M when it causes no
ambiguity. Let P = P(α) denote the set of unparameterized Reeb orbits of
Rα and their multiple covers. We only consider generic α whose Reeb orbits
satisfy a certain non-degeneracy condition, although the so-called Morse–
Bott set-up works as well [6]. To each orbit γ ∈ P, one can associate the
Conley–Zehnder index, CZ(α), which captures a certain symplectic winding
number of the linearized symplectic flow of dα|ξ about γ; See [6] for details.
We ignore the issues of capping surfaces in this brief exposition.

For each γ ∈ P, consider the two formal variables pγ and qγ . We define a
Weyl algebra W = W(M) for the contact manifold to be the set of formal
power series in p and � ∑

Γ,g

fΓ,g(q)pΓ
�

g,

where Γ = (γ1, . . . , γa) is a non-empty unordered a-tuple, γi ∈ P, g ∈ Z,
pΓ = pγ1 · · · pγa , and fΓ,g(q) are polynomials in the q variables.

All variables commute except [pγ , qγ ] = κγ�, where κγ is the multiplicity
of the orbit γ. Let p∅ and q∅ denote the unit 1, which has grading 0. The
gradings of the other generators are

|pγ | = −CZ(γ) + n − 3,

|qγ | = CZ(γ) + n − 3,

|�| = 2(n − 3).

The symplectic manifold (M ×Rt, d(etα)) is known as the symplectization
of (M, ξ). Fix an almost complex structure J ∈ End(T (M × R)) with the
following properties.

• Let ξ̃ be the extension of the distribution ξ to M × R. Then J(ξ̃) = ξ̃

and J |ξ̃ is d(etα)-compatible: for each p ∈ M × R and each v, w �=
0 ∈ Tp(M × R), d(etα)(Jpv, Jpw) = d(etα)(v, w) and d(Jpv, v) > 0.

• J is R-invariant: J(u,t) = J(u,t+s) for all u ∈ M , s, t ∈ R.
• J(∂t) = Rα, where Rα is the Reeb vector field extended to M × R.

Let Σg(k, l) be a Riemann surface of genus g with a set x+ of k “positively”
marked punctures and a set x− of l “negatively” marked punctures. Fix two
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collections of orbits, Γ+ and Γ−. Let Mg(Γ+, Γ−) be the moduli space of
(j, J)-holomorphic maps (or J-holomorphic curves)

(u, a) : Σg(k, l) → M × R

with the property that at each puncture x± ∈ x±, the map a converges to
±∞ and the map u converges to γ± ∈ Γ±. The convergence statement can
be made more precise [6]. We mod out by the (possibly trivial) space of
conformal reparameterizations of the domain (Σg(k, l), j).

Note that most moduli spaces have a natural R-translation, given by
post-composing the curves with the shift (u, a) 
→ (u, a + t). One exception
is the union of trivial cylinders which constitute M0(Γ+, Γ−). Geometrically,
these are simply copies of γ × R ⊂ M × R with γ ∈ Γ. (To see that no other
curves appear in M0(Γ+, Γ+) requires an application of Stokes’ theorem as
in Lemma 3.3 below.) For Γ+ �= Γ−, let M̂g(Γ+, Γ−) = Mg(Γ+, Γ−)/R

denote the moduli space after modding out by this translation.
To each component of Mg(Γ+, Γ−), one can associate an element A ∈

H2(M × R) = H2(M) by capping the image of any map in the com-
ponent at the relevant orbits using certain capping surfaces. As in the
Conley–Zehnder discussion, we ignore this issue. For those familiar with
SFT, we mention that we are allowed to avoid this issue since for our exam-
ples of interest in Section 4, the first Chern class of the J-complex bundle
restricted to A vanishes: c1(J, A) = 0.

We denote by |Γ| the cardinality of the set Γ. A widely accepted but still
to be proven “fact” is that

Proposition 2.1. For generic J, Mg(Γ+, Γ−) is an orbifold whose compo-
nents are pre-compact in the sense of Gromov and have dimensions

∑

γ∈Γ+

CZ(γ) −
∑

γ∈Γ−

CZ(γ) + (n − 3)(2 − 2g − |Γ+| − |Γ−|) + 2c1(J, A).

Write Mk as the set of k-dimensional components of M. We define an
element H ∈ W by counting the number of one-dimensional components of
the moduli spaces

(2.1) H =
1
�

∑

g,Γ+,Γ−

(#M1
g(Γ+, Γ−))

|Γ+|!|Γ−|! qΓ−pΓ+�
g.

Assuming c1(J, ·) = 0, note that the choice of the degrees of the elements
implies that H is an element of degree (−1). Another widely accepted but
still unproven “fact” is that H2 = 0. Geometrically, H2 is viewed as all
possible ways of gluing pΓ in any term of H to qΓ in any term of H, where
Γ is a (possibly empty) set of orbits. Technically, the proof of this equation
would have two analytic steps: an application of Gromov compactness and
a gluing theorem. We define (W, H) to be the SFT of M.
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If we only count holomorphic curves with genus g = 0 and one positive
puncture, |Γ+| = 1, our structure becomes a commutative differential graded
algebra (d, A), where A = S(V ) is the symmetric algebra on the vector space
V generated by the qγ and d is a degree −1 differential.

The homology of the DGA (A, d) is commonly known as contact homol-
ogy. Note that we can write d =

∑
k=0 dk, where dk denotes the words of

length k. Since d0 may not be zero, this DGA is dual to a weak L∞ algebra.
In case d0 = 0, this weak L∞ structure is an L∞ structure and d1 : V → V
satisfies d2

1 = 0. (This is revisited in Section 3.4, where we call the structure
the level zero L∞ algebra.) The d1 homology of V , when defined, is called
the linearized, or cylindrical, contact homology.

The construction of the SFT of M depends on the choice of contact one-
form α and almost complex structure J. This motivates one more concept.
A directed symplectic cobordism from the contact manifold (M−, ξ−) with
contact form α− and almost complex structure J− to the contact manifold
(M+, ξ+) with contact form α+ and almost complex structure J+ is a sym-
plectic manifold (C, ω) and ω-compatible complex structure J ∈ End(TC)
with the following properties.

• There exist (possibly empty) neighborhoods C−, C+ in C such that
C \ (C− ∪ C+) is compact.

• (C±, ω|C±) is symplectomorphic to a neighborhood of the ±-end of
the symplectization of M±. Moreover, this symplectomorphism carries
J to J±.

We say the cobordism is exact if ω is exact. Exact symplectic cobordisms,
such as symplectizations, enjoy the property that the moduli space of holo-
morphic curves without punctures is empty

We associate to C the graded commutative algebra D = D(C, α±) con-
sisting of power series

∑

Γ+,g

φΓ+,g(q−)(p+)Γ+�
g,

where Γ+ = (γ1, . . . , γa) is a non-empty unordered a-tuple, γi ∈ P(α+),
g ∈ Z, pΓ+ = (p+)γ1 · · · (p+)γa , and φΓ+,g(q−) are polynomials in the q−

variables. All variables commute.
Given sets of (α±)-Reeb orbits Γ±, let Mg(Γ+, Γ−) denote the moduli

space of J-holomorphic curves in C with asymptotic behavior at the posi-
tive/negative punctures. Note that in this case the moduli space does not
have the R-translation. Define the element F ∈ 1

�
D to count the zero-

dimensional components of the moduli spaces

F =
1
�

∑

g,Γ+,Γ−

(#M0
g(Γ+, Γ−))(q−)Γ−(p+)Γ+�

g.

Such an element is called a potential of C.
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Define a left action of W− on D by considering “full-gluing”. More pre-
cisely, if p−

γ ∈ W−, define its left action on D using the substitution

p−
γ 
→ κγ�

→
∂

∂q−
γ

.

Define a similar left action of W+ on D. The analogue of H2 = 0 is
→
HeF = eF

←
H.

Let f be the count of holomorphic curves in C with genus g = 0 and one
positive puncture |Γ+| = 1, then this count defines a DGA homomorphism
f∗ from A+ to A−. If M+ and M− are contactomorphic, another unproven
but commonly assumed “fact” is that a directed exact symplectic cobordism
can be chosen such that the induced map f∗ is a quasi-isomorphism.

3. Quantum backgrounds

In this section, we introduce quantum backgrounds and polarized back-
grounds, relating them to the original concepts from physics. We derive
several L∞-structures for polarized quantum backgrounds. In any quantum
background, one can speak about a QME, but in the polarized case, the
QME has an expression in terms of one of the derived L∞ algebras. We
discuss a complete obstruction to the existence of a versal solution to the
QME. Throughout the section, we translate these concepts to SFT, which
is an example of a polarized quantum background.

Definition 3.1. Let k be a field of characteristic zero. We say that a graded
associative, unital k[[�]] algebra W has a classical limit provided W is free
as a k[[�]] module and if K = W/�W is a graded, commutative, associative,
unital k algebra. K is called the classical limit.

If an algebra W has a classical limit, then W � K ⊕ �K ⊕ �
2K ⊕ · · ·

and [W, W ] ⊆ �W. The Weyl algebra W = W(M) associated to a con-
tact manifold M is an example of an algebra with a classical limit. The
classical limit of W(M) is the commutative ring K = S(V )[[V ∗]], where V
is the graded vector space generated by the Reeb orbits P and S(V ) is the
symmetric algebra of V . This classical limit is like the graded commutative
algebra underlying the differential Poisson algebra in [6].

Definition 3.2. We define a (quantum) background B to be a four-tuple
B = (W, H, N, ϕ), where

(1) W = ⊕iW
i is a k[[�]] algebra with a classical limit;

(2) H ∈ W 1 satisfies H2 = 0 (H is called a structure);
(3) N = ⊕iN

i is a graded left W module, which is free as a k[[�]] module;
(4) ϕ ∈ N0 satisfies H · ϕ = 0 (ϕ is called a vacuum).
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A morphism between B = (W, H, N, ϕ) and B′ = (W ′, H ′, N ′, ϕ′) consists
of a map σ : W → W ′ of graded k[[�]] algebras and a map τ : N → N ′ of
graded W modules (where N ′ becomes a W module via σ) with τ(ϕ) = ϕ′

satisfying the compatibility

τ(Haϕ) = H ′σ(a)ϕ′ for all a ∈ W.

Let us motivate the definition of a quantum background by recalling how
similar concepts arise in physics. In the Batalin–Vilkovisky approach to
quantum field theory, an action functional is a function of fields S that
satisfies the so-called QME Δ(eS/�) = 0. As one would expect, the defor-
mations of the action functional give invariants of the field theory, which
have expressions in the physics language as well as the language of defor-
mation theory. For example, the space of infinitesimal deformations of the
action corresponds to the space of physical observables. One may qualify
the observables by calling them quantum observables to distinguish them
from their � = 0 limits, which are the classical observables. On the defor-
mation theory side, these are characterized by two homology theories: one
with �’s, one without. Back on the physics side, there are physical invariants
associated to a collection of observables called correlation functions. They
are typically derived by physicists with the computational aid of a Feyn-
man path integral, but can be extracted from a versal deformation of the
action functional, provided it exists. In the deformation theory language,
the correlation functions are captured by a kind of flat connection on the
tangent bundle of the moduli space of solutions to the QME [10]. Thus, the
process of beginning with a physical quantum field theory and producing
the correlation functions of the theory can be recast mathematically in the
language of deformation theory as producing a versal solution to the QME
and deriving some algebraic structures. So, in practical terms, if one is in a
setting where a QME can be defined, an approach to extracting invariants is
to try and compute correlation-function type invariants, with the first step
of seeking a versal solution to the QME.

In certain situations, and guided by general principles of homotopy
algebra, the algebraic setting in which a QME can be defined should be gen-
eralized beyond that of Batalin–Vilkovisky algebras. Quantum backgrounds
provide a more general algebraic background setting in which fields, action
functionals, master equations, etc. can be defined [8, 10]. If (W, H, N, ϕ)
is a quantum background, the QME for an element S ∈ W is the equation
e−S/�HeS/�ϕ = 0. The following is a translation into physics terminology
of the components: the module N is the space of the fields, the ring W
consists of functionals on the fields, the structure H is a package contain-
ing the BRST and Batalin–Vilkovisky differentials and their higher order
analogs, and the vacuum ϕ is (the exponential of) an initial action func-
tional applied to some vacuum field. The factor of e−S/� on the left side of
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should be thought of as a way to control the � so the result does not have
any negative powers of �.

SFT is precisely an example of a quantum background. As such, one can
think of the data afforded by SFT as providing a mathematical context in
which one can speak of a quantum action functional, specifically as an ele-
ment of W satisfying a QME. The quantum background arising from SFT
comes equipped with zero as an initial action functional (that zero is an
action functional is a non-trivial condition and follows from Lemma 3.3).
Then, the physical considerations mentioned above suggest a way to pro-
cess SFT: find, if possible, a versal solution to the QME in the SFT quan-
tum background. In principle, the physically inspired invariants which are
encoded in this versal solution — or the obstructions to the existence of
such a versal solution — give invariants of the underlying SFT. It should be
acknowledged that SFT has roots in the A model topological field theory,
which itself is a kind of field theory. Perhaps one can think of SFT in its cur-
rent form of a square zero element in the Weyl algebra, which goes beyond
the A model origins, as a theory primed for a “second” quantization, the
first step of which is to study the QME in the quantum background defined
by SFT.

3.1. SFT is an example of a quantum background. Consider the Weyl
algebra W(M) of a contact manifold M . Recall that A is the symmet-
ric algebra generated by the Reeb orbits, that is, polynomials in the “q”
variables. Notice that A[[�]] is a left W module with the module action
W ⊗k[[�]] A[[�]] → A[[�]] defined by

f(q)pγ1 · · · pγa · g(q) 
→ f(q)
(

�
∂

∂qγ1

)
· · ·

(
�

∂

∂qγa

)
g(q).

Let H be defined as in equation (2.1), but without the overall factor
of 1

�
. This does not affect the fact that the geometry of moduli spaces

of J-holomorphic curves implies H2 = 0. We do not use the SFT conven-
tion of putting the 1

�
factor in front of H, since for a quantum background,

H should be an element of the ring W , and 1
�
H /∈ W . The following lemma

implies that H · 1 = 0 for 1 ∈ A[[�]].

Lemma 3.3. Each monomial in H has a factor of p.

Proof. We recall this standard SFT fact. If pΓ+qΓ−�
g−1 is a term in H, there

exists u ∈ M1
g(Γ+, Γ−). Since J is d(etα)-compatible,

∫
u∗dα is positive;

thus, by the Stokes’ theorem,

0 <

∫
u∗dα =

∫

Γ+

α −
∫

Γ−

α.

Since all the integrals on the RHS are positive, Γ+ �= ∅. �
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This lemma shows that H · 1 = 0. Therefore, the four-tuple

(W(M), H,A[[�]], 1)

forms a quantum background.

3.2. Algebraic structures on the module. Before turning to the QME
and the problem of finding a versal solution, we discuss a special feature
of the background arising from SFT that can be used to equip the module
with several algebraic structures. We do this because the QME has a simple
restatement using this algebraic structure.

To explain this, it is convenient to have another picture of the action of
W on A[[�]]. Consider the inclusion ι : A[[�]] → W defined by viewing a
polynomial in q and � as an element of W, and the projection pr : W →
A[[�]] defined by setting the p’s to zero after writing an element in canonical
form with q’s on the left. The action of W on A[[�]] can be viewed as

(f(q)pγ1 · · · pγa) · g(q) 
→ pr[f(q)pγ1 · · · pγa , ι(g(q))],

where [ , ] is the graded commutator in W. Backgrounds (W, H, N, ϕ), for
which the W module structure on N can be understood using an inclusion
ι : N → W of N as a commutative subalgebra of W and a projection
pr : W → N, naturally have additional algebraic structures on N .

Definition 3.4. Let B = (W, H, N, ϕ) be a background and suppose N =
W/I is the quotient of W by a left ideal I and the left W module structure
on N is the one obtained by left multiplication. We say that B is polarized
by ι : N → W if ι includes N as a commutative k[[�]] subalgebra of W . We
call B = (W, H, N, ϕ, ι) a polarized background.

We first describe two algebraic structures on the module of a polarized
quantum background: one is an L∞ algebra over k[[�]] called the quantum
L∞ structure, another is an L∞ algebra over k called the classical L∞ struc-
ture. Suppose that (W, H, N, ϕ, ι) is a polarized quantum background. Here
N = W/I, and there is a natural projection pr : W → N . Define multilinear
operators μk : N×k → N by

μk(g1, . . . , gk) = pr
(

1
�k

[· · · [H, ι(g1)], . . . , ι(gk)]
)

.

Note that [W, W ] ⊆ �W implies that [· · · [H, ι(g1)], . . . , ι(gk)] is divisible by
�

k and so the μk are well defined. (If one were to use an overall factor of 1
�

in front of H, then one should divide by �
k−1, instead of �

k, in the definition
of μk.)

Theorem 3.5. If B = (W, H, N, ϕ, ι) is a polarized quantum background,
then (N, {μk}) is an L∞ algebra over k[[�]].
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Proof. First, we show that the μk are symmetric. To see this, observe that
the terms in [· · · [H, ι(g1)], . . . , ι(gk)] are exactly those of the form

ι(gσ(1)) · · · ι(gσ(l))Hι(gσ(l+1)) · · · ι(gσ(k)),

where σ is a permutation satisfying σ(1) < · · · < σ(l) and σ(l + 1) < · · · <
σ(k). Because ι(N) is a commutative subalgebra of P , we can reorder all
the factors that precede H and all the factors the follow H. For example,
replacing ι(gi)ι(gi+1) by (−1)|gi||gi+1|ι(gi+1)ι(gi) in every term it appears
gives μk(g1, . . . , gi, gi+1, . . . , gk) = (−1)|gi||gi+1|μk(g1, . . . , gi+1, gi, . . . , gk), as
needed.

To see that the L∞ relations are satisfied by the μk, choose any homoge-
neous elements g1, . . . , gk ∈ N and consider the ring R = k[[�]][t1, . . . , tk],
where |ti| = −|gi|. Let F =

∑k
i=1 giti and consider eF/�He−F/� :

eF/�He−F/� = H +
1
�
[H, F ] +

1
2!�2 [[H, F ], F ] +

1
3!�3 [[[H, F ], F ], F ] + · · ·

= H +
∞∑

j=1

1
j!

μj(F, . . . , F ).

Since, H2 = 0 ⇒ (eF/�He−F/�)2 = 0. In particular, the coefficient of the
t1 · · · tk term in (eF/�He−F/�)2 vanishes. Explicitly,

(3.1)
∑

σ,i

χ(σ)(−1)(i)(k−i)μi(fσ(1), . . . , fσ(i−1), μk−i(fσ(i), . . . , fσ(k))) = 0,

where the sum is over all k-permutations σ satisfying σ(1) < · · · < σ(i − 1)
and σ(i) < · · · < σ(k) and χ(σ) is the Koszul sign of σ, and over all i =
1, . . . , k − 1. Equation (3.1) is precisely the L∞ relations for the {μk}. �

The module N is a free k[[�]] module. If we write N as N = A[[�]], then
each operator μk : Nk → N can be decomposed in its � powers as

μk = μk0 + �μk1 + �
2μk2 + · · ·

with each μki : Ak → A. Expressing equation (3.1) in powers of � implies,
in particular, that the (A, {μk0}) form an L∞ algebra over the field k.

Definition 3.6. Let B = (W, H, N, ϕ, ι) be a polarized background. Let
A = N |�=0. We call the algebra (A[[�]], {μk}) the quantum L∞ algebra
associated to B and we call (A, {μk0}) the classical L∞ algebra associated
to B.

3.3. Example: differential BV algebras. In [3], Cieliebak and Latschev
describe a square zero element in the Weyl algebra as affording a kind of
BV infinity structure. The operator D defined in [3] is the same as μ1.
While we think of this structure in different terms, certainly differential BV
algebras provide simple, nontrivial examples with which to illustrate our
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constructions. Suppose that V is a graded vector space with basis {qi}. Let
{pi} be the dual basis for V ∗ and consider the Weyl algebra W consisting of
power series in the variables pi and � with coefficients that are polynomials
in the qi. We have the commutation relations [qi, qj ] = [pi, pj ] = 0 and
[pi, q

j ] = �δj
i . Suppose that

H =
∑

i

f i(q)pi +
∑

ij

f ij(q)pipj

is odd degree, square zero, and f i(q), f ij(q) ∈ S(V ) = A. Then
(W, H, A[[�]], 1, ι) is a polarized quantum background. Here, A[[�]] is the
quotient of W by the left ideal I generated by the p’s, and ι : A[[�]] → W is
the inclusion.

Let us analyze the quantum L∞ structure (A[[�]], {μk}). Since H is qua-
dratic in p, μk = 0 for k > 2. The operators μ1 = μ10 + �μ11 and μ2 = μ20
are given by

μ1(g(q)) =
∑

i

f i(q)
∂g

∂qi
+ �

∑

ij

f ij(q)
∂2g

∂qiqj

and

μ2(g1(q), g2(q)) =
∑

ij

f ij(q)
∂g1

∂qi

∂g2

∂qj
.

Write μ10, μ11, and μ20 as d, Δ, and { , } respectively. Then the
quantum and the classical L∞ algebras associated to the background
(W, H, A[[�]], 1, ι) are the differential graded Lie algebras:

quantum dgLa = (A[[�]], d + �Δ, { , })

and

classical dgLa = (A, d, { , }).

Note that H2 = 0 implies that d2 = dΔ+Δd = Δ2 = 0. The triple (A, d, Δ)
defines a differential BV algebra and the Lie bracket μ20 is the one defined by
the failure of Δ to be a derivation of the commutative, associative product
in A. Theorem 3.5 is suggestive of the process of deriving a Lie algebra
structure from a BV algebra, but the quantum L∞ algebra is �-sensitive
in a crucial way. To see the importance of the role of �, we make a simple
comparison between the two dgLas (A, d+Δ, { , }) and (A[[�]], d+�Δ, { , }).
Since {a, b} = (d + Δ)(a · b) for two closed a, b, the bracket vanishes in the
homology of (V, d + Δ, { , }). However, the brackets in (A[[�]], d + �Δ, { , })
do not, in general, vanish in homology — if a and b are (d + �Δ)-closed,
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then (d + �Δ)(a · b) = �{a, b}, but since � is not a unit in A[[�]], it may be
that {a, b} is not exact.

3.4. The quantum L∞ structure from SFT. It is interesting to calcu-
late the quantum L∞ structure arising from SFT and express it directly in
terms of moduli spaces of J-holomorphic curves.

Proposition 3.7. For k = 1, . . . , i, let Γk be a non-empty set of orbits.
Then

μij(qΓ1 , . . . , qΓi) =
∑

qΓ∈A

i+j∑

k=i

∑

γ1∈Γ1,...,γi∈Γi
{γ1,...,γk}⊂(Γ1∪···∪Γi)

#(M1
i+j−k({γ1, . . . , γk}, Γ))qΓq(Γ1∪···∪Γi)\{γ1,...,γk},

where the sets of orbits can have repeated elements.

Proof. We first note that the exponent of � in the contribution of μij(qΓ1 , . . . ,
qΓi) to the expression [· · · [H, qΓ1 ], . . . , qΓi ] is both i + j and g + k, where
g is the genus of the holomorphic curve and k is the number of positive
punctures. Thus, g = i + j − k, as written.

For the moduli space not to contribute to a vanishing term when we set
the p variables equal to 0, we require that {γ1, . . . , γk} ⊂ (Γ1 ∪ · · · ∪ Γi).
This justifies the second line of the inner sum.

Finally, consider any moduli space which does not have positive punctures
at orbits in the collections Γi1 , . . . ,Γil . Such moduli space appears 2l times
in the coefficient of qΓq(Γ1∪...∪Γi)\{γ1,...,γk} in the expression μij(qΓ1 , . . . , qΓi).
More specifically, for im = i1, . . . , il, it appears in both (· · · qΓim · · ·H · · · )
and (· · ·H · · · qΓim · · · ) with opposite signs, since H is odd degree. This
justifies the middle sum and the top line of the inner sum. �

One could alternatively define μ =
∑

ij μij using the above moduli spaces
and prove that they satisfy the L∞ relations. As this is logically redun-
dant, we omit this proof, but it is an interesting exercise in using a Gromov
compactness argument.

Proposition 3.8. The quasi-isomorphism class of the quantum L∞ algebra
of a contact manifold M is a contact invariant.

Proof. As mentioned in Section 3.3, the authors in [3] re-interpret the SFT
Hamiltonian H in [6] as a differential D, which is the same as the μ1 of the
quantum L∞ algebra on A[[�]]. They point out how the potential F associ-
ated to an exact symplectic cobordism between contact manifolds M+, M−
gives rise to a morphism

�F : A+ → A−[[�]], e
�F D+ = D−e

�F .
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Since μk is derived from multiple brackets with μ1, eF defines an L∞ mor-
phism between the two quantum L∞ structures associated to M− and M+.

�

Remark 3.9. In general, if (W, H, A[[�]], ϕ, ι) and (W ′, H ′,A′[[�]], ϕ′, ι′) are
two polarized quantum backgrounds with A[[�]] = W/I and A′[[�]] = W ′/I ′,
then an algebra map α : W → W ′ with α(I) ⊂ I ′ and α(H) = H ′ induces a
map τ : A[[�]] → A′[[�]] and the pair (α, τ) defines a morphism of back-
grounds. So τ defines a morphism between the quantum L∞ algebras
(A[[�]], {μi}) and (A′[[�]], {μ′

i}). Not all morphisms between these L∞ alge-
bras are of this type: in general, an L∞ morphism would consist of maps
F1, F2, F3, . . . with Fi : A[[�]]⊗i → A′[[�]], while those induced by polarized
background morphisms only have the F1 map. In particular, the morphisms
in Proposition 3.8 between the quantum L∞ algebras associated to contact
manifolds that arise from exact cobordisms only have an F1 term.

At this point, we contrast the classical and quantum L∞ structures to
the level zero L∞ algebra mentioned in Section 2. Recall the classical L∞
algebra (A, {μk0}): μk0 : A⊗k → A. In particular, μ10 : A → A is a
square zero, degree one operator, which by Proposition 3.7 is equivalent
to the contact homology differential. As mentioned in Section 2, for any
polarized quantum background, we can expand d =

∑
k=0 dk. If d0 = 0,

this is dual to the level zero L∞ algebra. (This can be relaxed with the
use of augmentations, see Section 3.6.) Each moduli space of genus 0 rigid
J-holomorphic curves contributes to just one of the operations in the level
zero L∞ algebra. By contrast, in the quantum L∞, a given moduli space (of
any genus) is counted for multiple operations. For example, M1

0({pγ1 , pγ2})
contributes to both μ20 and μ11. To summarize,

{quantum background (W, H, N, ϕ)}
if polarized� {quantum L∞ algebra (A[[�]], {μk})}

�=0� {classical L∞ algebra (A, {μk0})}
if Weyl type and d0=0� {the level zero L∞ coalgebra (V, {dr})}

Degree one elements H in a Weyl algebra satisfying the two condi-
tions are closely related to algebras over the cobar dual of the Frobenius
co-properad [5]. These algebras include all of the operations that algebras
over a resolution of the involutive bi-Lie properad would have, and possibly
some other operations as well.

3.5. Quantum master equation. In this section we propose a way to
process the quantum background coming from the SFT of a contact manifold
as a first step to extracting invariants. We defined the algebraic structures
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on the module of a polarized background in the previous section to provide
a familiar language for describing the process.

Definition 3.10. Let B = (W, N, H, ϕ) be a background and let A be
a nilpotent, commutative k[[�]] algebra, and π ∈ (W ⊗ A)0. We call the
equation

(3.2)
(
eπ/�He−π/�

)
ϕ = 0

the QME and say that π is a solution to the QME.

One may linearize the QME in two ways, leading to two homology theo-
ries: one with �’s called the Dirac space, and one without �’s called the tan-
gent space. In general, one defines these homology theories by equivalence
classes of solutions to the QME with parameters in the rings A = k[[t]]/t2

or A = k[[t, �]]/t2. In the physics language, the tangent space consists of
equivalence classes of classical observables, and the Dirac space consists of
equivalence classes of quantum observables.

For polarized quantum backgrounds, both the QME and the associated
homology theories are easily expressed in terms that have already been
defined. If the background B is polarized, and π ∈ ιN ⊗ A ⊂ W ⊗ A, then
π satisfies the QME if and only if π satisfies the Maurer–Cartan equation

μ1(π) +
1
2!

μ2(π, π) +
1
3!

μ3(π, π, π) + · · · = 0

in the quantum L∞ algebra associated to B. This is seen by expanding
the exponential (eπ/�He−π/�) in terms of iterated brackets 1 + 1

�
[H, π] +

1
2!�2 [[H, π], π] + · · · We identify π ∈ N with its image ι(π) ∈ W when it
causes no confusion.

Definition 3.11. Let B = (W, H, A[[�]], ϕ, ι) be a polarized background.
We define the Dirac space of B to be the homology of the quantum L∞
algebra (A[[h]], uk). We define the tangent space of B to be the homology
of the classical L∞ algebra (A, uk0).

Let B = (W, H, N, ϕ, ι) be a polarized quantum background and consider
the ring A = k[[H∗, �]], where H is the tangent space of B. A solution
Π ∈ W ⊗̂A to the QME is called versal if and only if it satisfies the condition
that the linear terms span the tangent space. That is, if

Π = (γ0
i + γ1

i � + γ2
i �

2 + · · · ) ⊗ ti + (γ0
ij + γ1

ij� + · · · ) ⊗ titj + · · ·
satisfies the QME and {[γ0

i ]} form a basis of H dual to ti ∈ H∗. Of course,
the ring k[[H∗, �]] is not nilpotent, but by “satisfies the QME”, we mean
“satisfies the QME to each finite order in t”.

The picture to have in mind is that of a neighborhood of a point in the
moduli space of solutions. The point corresponds to the 0 solution to the
QME. The tangent space H is the tangent space to the moduli space at
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the point. A versal solution Π gives a map from H to the moduli space by
t 
→ Π(t), and gives coordinates on this neighborhood. At the point in the
moduli space with coordinate t, one can define a background

Bt := (W, eΠ(t)/�e−Π(t)/�, N, ϕ, ι),

which is a background precisely because Π satisfies the QME: (eΠ/�He−Π/�)
ϕ = 0. Then one can view the tangent bundle of this neighborhood by iden-
tifying the tangent space at t with the tangent space of Bt, the background
represented by the point t.

Theorem 3.12 ([10]). For every versal solution to the QME, there exists
a flat quantum super connection on the tangent bundle in a neighborhood of
zero in the moduli space of backgrounds.

In special coordinates, this superconnection encodes the essential physical
invariants of the theory associated to the background. The Frobenius mani-
fold structure (minus the inner product) on a moduli space arising from the
formality of Lie polyvector fields on a Calabi–Yau manifold [1] provides an
example.

One can write down the condition for Π to be a versal solution in powers
of t and � and imagine constructing a solution term by term, beginning with
γ0

i ti, where {[γ0
i ]} is a basis for H. One obtains a collection of obstructions,

indexed by all powers of t (and all powers of �), that must all vanish in order
for Π to exist. For example, in order to be able to extend the infinitesimal
solution γ0

i ti to a versal one, it is necessary that the linear in t obstructions
vanish. That is, for each i, there exist γj

i ∈ ι(V ) j = 1, 2, . . . so that for
γ := γ0

i + �γ1
i + �

2γ2
i + · · · we have μ1(γ) = 0. The surprising result is that

this condition is also sufficient: if the linear in t obstructions vanish, then
all obstructions vanish.

Theorem 3.13. There exists a versal solution to the QME in a polarized
quantum background (W, H, N, ϕ, ι) if and only if there exists a basis of rep-
resentatives {γ0

i } of the tangent space that can be extended to representatives
γi = γ0

i + �γ1
i + �

2γ2
i + · · · of the Dirac space.

Proof. The same proof for the case of differential BV algebras [9] works for
the general case of quantum backgrounds. In fact, Lemma 2 in [9] is simply
a re-expression of the QME for differential BV algebras in the quantum
background form, and then a quantum background proof is given. �

We translate Theorem 3.13 to the language of J-holomorphic curves in
the SFT case. There exists a versal solution if and only if there is a basis
for the contact homology, {qΓ0

i }i, so that each qΓ0
i can be extended to

qΓi =
∑

j=0

qΓi
j �

j ,
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satisfying the following: for all n ≥ 1 and all qΓ ∈ A,

n∑

j=0

1+j∑

k=1

∑

{γ1,...,γk}⊂Γi
n−j

#(M1
1+j−k({γ1, . . . , γk}, Γ) = 0.

So, there is a two-tiered approach to understanding invariants of a polar-
ized quantum background. First, try to extend the representatives of the
tangent space to representatives of the Dirac space. If this is possible, then
there exists a universal solution Π to the QME, and one can construct it
algorithmically from the tangent-to-Dirac extension. From the versal solu-
tion, one can construct the flat quantum superconnection. If one encounters
obstructions to extending the tangent space to the Dirac space, then those
obstructions are invariants of the background which can be organized sys-
tematically. The obstructions to extending the tangent space to the Dirac
space satisfy their own set of internal relations, which are organized as a
certain differential. We describe this in Theorem 3.14.

Let us analyze the obstructions to the existence of the extension

γ0
i 
→ γ0

i + �γ1
i + · · · ,

where {[γ0
i ]} is a basis for the μ10 homology and γ0

i + �γ1
i + · · · is μ1-closed.

The first obstruction is
μ11γ

0
i = μ10γ

1
i .

For the extension to exist, the expression μ11γ
0
i must be μ10-exact. In gen-

eral, μ11γ
0
i will be μ10-closed, but not necessarily exact. However, having

chosen representatives {γ0
i } gives a way to write it as closed plus exact. The

closed part defines the first part of a differential κ and the exact part defines
the first part of a map β from H → A[[�]].

Theorem 3.14. Let B = (W, H,A[[�]], ϕ) be a polarized quantum back-
ground. For every basis {γ0

i } of representatives of the tangent space, there
is map of k[[�]] modules κ : H[[�]] → H[[�]] satisfying κ2 = 0 and
κ(H) ⊂ �H[[�]], and a map of complexes β : (H[[�]], κ) → (A[[�]], μ1) of
the form [γ0

i ] 
→ γ0
i + �γ1

i + �
2γ2

i + · · ·

Proof. One can give an abstract argument by noting that (H, 0) and (A, μ10)
are quasi-isomorphic as differential graded vector spaces and that μ10 can
be deformed over k[[�]] to

μ1 = μ10 + μ11� + μ12�
2 + · · · ,

and therefore, a general deformation theory argument implies that the dif-
ferential 0 can also be extended to

κ = 0 + κ1� + κ2�
2 + · · ·

and that the quasi-isomorphism between (H, 0) and (A, μ10) can be extended
over k[[�]] to the map β. However, it might be instructive to illustrate a
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construction of κ and β so that one might carry it out in the SFT example.
Begin with a basis {γ0

i } of representatives for the tangent space H(A, μ10).
We define the map β modulo � by

[γ0
i ]

β
→ γ0
i .

Now, since μ10(γ0
i ) = 0,

μ1(γ0
i ) = �μ11(γ0

i ) + �
2μ12(γ0

i ) + · · ·
and μ2

1 = 0 implies that

(3.3) 0 = �(μ10μ11γ
0
i ) + �

2(μ2
11γ

0
i + μ10μ12γ

0
i ) + �

3 · · ·
From the �

1 part of equation (3.3), we see that μ11γ
0
i is μ10-closed. There-

fore, there exist constants κj
1i and elements γ1

i ∈ A so that

(3.4) μ11γ
0
i = κj

1iγ
0
j + μ10γ

1
i .

We now extend the definitions of β and κ modulo �
2 to be

[γ0
i ]

β
→ γ0
i + �γ1

i ,

κ([γ0
i ]) = �κj

1i[γ
0
j ].

Now, substituting the RHS of equation (3.4) in for μ11γ
0
i in the �

2 part of
equation (3.3) gives

μ11(κ
j
1iγ

0
j + μ10γ

1
i ) + μ10μ12γ

0
i = 0.

Substituting the RHS of equation (3.4) in for μ11γ
0
i again (and using the

fact that μ10 and μ11 commute, which follows from μ2
1 = 0) produces

(3.5) κj
1iκ

k
1jγ

0
k + μ10(κ

j
1iγ

1
j + μ11γ

1
i + μ12γ

0
i ) = 0.

Since {γ0
k} are a basis of H(A, μ10), equation (3.5) implies that both terms

on the LHS vanish separately:

κj
1iκ

k
1j = 0(3.6)

and

μ10

(
κj

1iγ
1
j + μ11γ

1
i + μ12γ

0
i

)
= 0.(3.7)

So we see κ2
1 = 0, and as they are defined thus far, we have

βκ1[γ0
i ] = β�κj

1i[γ
0
i ] = �κj

1iγ
0
i + �

2κj
1iγ

1
i

and

μ1β[γ0
i ] = μ1(γ0

i + �γ1
i ) = �(μ11γ

0
i + μ10γ

1
i ) + �

2(μ12γ
0
i + μ11γ

1
i ) + �

3 · · · ,
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which shows that β is a chain map modulo �
2. For the �

2 step, note that
equation (3.7) implies that there exist constants κj

2i and γ2
i ∈ A so that

κj
1iγ

1
j + μ11γ

1
i + μ12γ

0
i = κj

2iγ
0
i + μ10γ

2
i .

Now extend the definitions of β and κ modulo �
3 to be

[γ0
i ]

β
→ γ0
i + �γ1

i + �
2γ2

i ,

κ([γ0
i ]) = (�κj

1i + �
2κj

2i)[γ
0
j ].

And so on. �

Like Massey products, κ is constructed with choices. Write κ = �κ1 +
�

2κ2 + · · · , where each κi : H → H. The first map κ1 is just the image of μ11
in μ10 homology, which is well defined by (3.3). The second map κ2 depends
on the choice of γ1

i in equation (3.4), specifically on κ1(γ1
i ). Therefore, if κ1

vanishes, κ2 is defined independently of any choices. And so on, if κi = 0
for i = 1, . . . , j − 1, then κj is defined independently of any choices.

The existence of a versal solution to the QME is a quasi-isomorphism
invariant of the L∞ algebra. It follows that whether there exists a basis
{γ0

i } of the contact homology H = H(A, d = μ10) and a choice of κ = 0 is
a contact invariant: if κ = 0, there is an extension

γ0
i 
→ β([γ0

i ]) = γ0
i + �γ1

i + · · ·

of the tangent space H to the Dirac space. However, the vanishing of κ
is independent of any choices, including the choice of basis. Therefore, it
makes sense to speak of whether or not κ vanishes, without reference to any
bases or choices, and that the vanishing or non-vanishing of κ is a contact
invariant.

Definition 3.15. We call the map κ in Theorem 3.14 the kappa invariant.

There exists a versal solution to the QME if and only if κ = 0. If κ �= 0,
then the components of κ, defined modulo some choices, define maps κi :
H → H which encode the obstructions to finding a versal solution to the
QME. In the SFT case, these obstructions have higher genus information,
but are not independent — they satisfy relations among themselves in the
equation κ2 = (�κ1 + �

2κ2 + · · · )2 = 0. The idea of using higher genus
holomorphic curves to define structures on a homology theory that is defined
using no genus also appears in [6], where the full theory of curves in H is
used to define a “Satellite” structure on the homology of their graded Poisson
algebra (which is a restricted theory of curves with no genus). It would be
interesting to compare these two reductions.
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3.6. Augmentations for polarized quantum backgrounds. A directed
symplectic cobordism C from the empty contact manifold to M is called a
symplectic filling of M. Let π denote the potential associated to C. Since
one boundary of the cobordism is empty, there are no q− variables and the
potential π ∈ W(M). The standard SFT results on augmentations (see, for
example, [3]) can be re-expressed in the language of quantum backgrounds to
say that π is a solution to the QME. Furthermore, the polarized background

(W(M), eπ/�He−π/�, N, 1, ι)

has “no d0” and so the level zero L∞ structure is defined.
In the general picture where the background associated to the SFT of

a contact manifold M represents a zero point in the moduli space of solu-
tions to the QME, one has a fibration whose fibers are quantum L∞ struc-
tures. One may set � = 0 and obtain a family of classical L∞ structures,
fibered over the moduli space. For each point t in the moduli space, one
has μ1(t), which may be a weak L∞ structure, or if d0(t) = 0, it may
be a L∞ structure. From the perspective of quantum backgrounds, the
important thing is to understand how the family of quantum L∞ struc-
tures varies with the moduli. It is this variation of structure (at a smooth
point) that is encapsulated by the flat superconnection of Theorem 3.12,
and it is the way in which this variation fails to vary smoothly (at a non-
smooth point) that is encapsulated by the kappa invariant. By focussing
on the points where the classical L∞ structure is linearizable, one loses
the possibility to study how these structures vary with the moduli since
these points are likely to be isolated. However, if one is most interested
in cylindrical-type contact homology theories, one can certainly look at the
full set of them, which potentially carries more geometric information than a
single one.

4. The unit cotangent bundle example

We conclude this paper with a computation.

4.1. String topology and geodesics. Consider an n-dimensional mani-
fold X. Let Ωeq(X) = Ω(X) ×S1 ES1 denote its equivariant loop space, and
let K denote the constant loops. Chas and Sullivan [2] define the degree
(2 − n) bracket and cobracket string topology operations

[·, ·] :Hj(Ωeq(X), K) ⊗ Hi(Ωeq(X), K) → Hi+j−n+2(Ωeq(X), K),

Δ :Hj(Ωeq(X), K) → ⊕iHj−n+2−i(Ωeq(X), K) ⊗ Hi(Ωeq(X), K)

motivated by the Goldman bracket and Turaev cobrackets on surfaces.
Given a basis λi of H∗(Ωeq(X), K), define 〈Δλi, λjλk〉 by

Δλi =
∑

k,l

〈Δλi, λjλk〉λjλk.
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Define 〈[λi, λj ], λk〉 similarly.
These operations are moreover defined not just at the homology level,

but also on certain chains of the equivariant loop space. There are several
different attempts to resolve certain transversality issues thereby defining
these operations on all chains [4, 11].

If X is a Riemannian manifold with a generic metric, then its closed
geodesics generate a Morse complex, graded by the Morse index, with the
differential given by gradient flows of the L2-energy functional. The bracket
and cobracket are not yet rigorously defined on this Morse complex unless the
differential vanishes. If X is hyperbolic, the differential vanishes; however,
if dim(X) > 2, the string topology operations vanish. The case dim(X) = 2
is considered in Section 4.2.

The metric on X also induces a canonical contact one-form for the unit
cotangent bundle (M, ξ) = (ST ∗X, ker(

∑
xidyi)), where xi is a local coor-

dinate system for X and yi is a cotangent vector dual to ∂xi . Moreover, the
oriented closed geodesics of X are in one-to-one correspondence with the
Reeb orbits of M, λ ↔ γλ, and the Conley–Zehnder index CZ(γλ) equals
the Morse index m(λ).

4.2. Riemann surface of genus at least 2. Let X be a Riemann surface
of genus at least 2, so that it admits a metric on whose oriented geodesics,
bracket and cobracket operations are well defined and non-trivial. To sim-
plify notation while applying the above correspondence between geodesics λ
and Reeb orbits γλ, denote the generator pγλ in W(ST ∗X) by pλ. Similarly,
denote qγλ by qλ.

One computes

dim Mg({γλ1 , . . . , γλk
}, {γη1 , . . . , γηl

}) = −2 + 2g + k + l.

Since H counts those holomorphic curves which appear in one-dimensional
moduli spaces, this computation implies that H can only have non-zero
coefficients in front of terms of the form

pp′p′′
�

−1, pp′q′′
�

−1, pq′q′′
�

−1, p�
0,

where a priori, p, p′, p′′, q′, q′′ can be any of the Weyl algebra generators.
Note that the disk cotangent bundle is a symplectic filing of the unit

cotangent bundle M . By observing what curves appeared in this filing of
M, Cieliebak and Latschev [3] could (modulo analysis) connect H to the
string topology operations on the surface X. Let λ̄1 be the geodesic λ1
with opposite orientation. Like the bracket and cobracket, this is a degree
0 operation.

Let Zn ⊂ Sn denote the subgroup of cyclic permutations.
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Proposition 4.1 ([3]). The SFT of ST ∗X is given by, up to signs,

H =
1
�

∑

λ1,λ2,λ3

⎡

⎣〈Δλ1, λ2λ3〉pλ1qλ2qλ3

+

⎛

⎝〈[λ1, λ2], λ3〉 +
∑

τ∈Z2

〈Δλτ(1), λ̄τ(2)λ3〉

⎞

⎠ pλ1pλ2qλ3

+

⎛

⎝
∑

τ∈Z3

(
〈[λτ(1), λτ(2)], λ̄τ(3)〉 + 〈Δλτ(1), λ̄τ(2)λ̄τ(3)〉

)
⎞

⎠ pλ1pλ2pλ3

⎤

⎦

+
1
2

∑

λ1,λ2

〈Δλ1, λ2λ̄2〉pλ1�
0.

The factorial coefficients appearing in the definition of H in Section 2 are
canceled by the “over-counting” from permuting the ordering of the marked
domain points.

4.3. The general case. We now generalize Cieliebak and Latschev’s exam-
ple. We remark that this generalization does not require any analytical
results for J-holomorphic curves. Consider a closed n-dimensional Rie-
mann manifold X where the count of J-holomorphic curves to determine
H ∈ W(ST ∗X) is unknown.

We would like to give X the same graded Weyl algebra, W(ST ∗X), as
before; that is, the one generated by the oriented geodesics. However, unlike
in Section 4.2, the relevant string topology operations are not yet rigorously
defined; thus, we instead let W(X) denote the Weyl algebra generated by a
fixed set of generators for H∗(Ωeq(X), K), homogeneous in degree.

For such λ ∈ Hi(Ωeq(X), K), we have the degree 0 operation induced
by orientation reversing, λ̄, which is defined in a way such that its square
is given by ¯̄λ = (−1)n+1λ. We also have the degree (2 − n) bracket and
cobracket operations. For each λ, let pλ, qλ denote generators of W(X) with
gradings

|pλ| = −i + n − 3, |qλ| = i + n − 3.

For generators λ1 ∈ Hi1(Ω
eq(X), K), λ2 ∈ Hi1(Ω

eq(X), K), λ3 ∈
Hi3(Ω

eq(X), K) we can consider coefficients

〈Δλ1, λ2λ3〉, which is non-zero only if i1 − i2 − i3 = n − 2

and

〈[λ1, λ2], λ3〉, which is non-zero only if i1 + i2 − i3 = n − 2.

With this notation in mind, we can now make sense of the formula in Propo-
sition 4.1 for any manifold X. Label this element as H ′ ∈ W(X), since it
may not agree with the holomorphically defined H ∈ W(ST ∗(X)).
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Note that to have grading −1 (as should all terms in H ′), the signed sum
of the homology gradings i must be n − 2. For example,

−1 = |pλ1pλ2qλ3�
−1| = −i1 − i2 + i3 + n − 3 → i1 + i2 − i3 = n − 2.

For certain terms, there are no obstructions due to grading. For example,
in the expression 〈Δλ1, λ2λ3〉pλ1qλ2qλ3�

−1, we know that i1 − i2 − i3 = n−2
because the degree of pλ1qλ2qλ3�

−1 is −1. Thus, a priori, the count may
be non-zero. However, for the expression 〈Δλ1, λ̄2λ3〉pλ1pλ2qλ3�

−1 to be
non-zero, grading considerations eliminate all those triples for which i2 �= 0.

Proposition 4.2. The element H ′ ∈ W(X) defined by the formula in Propo-
sition 4.1 (without the overall factor of 1

�
) is a structure element. In particu-

lar, the involutive Lie bi-algebra structure on the homology of the equivariant
loop space can be re-interpreted as a quantum background.

Proof. There are six terms in H ′2 which all must vanish. We see this is the
case by re-interpreting each as a set of string topology relations. We use a
slightly modified Einstein summation convention, where if the generator x
appears twice (or along with x̄) in an expression (or product of expressions),
then we sum over x ∈ H∗(Ωeq(X), K). Let Zx1,...,xn denote the subgroup of
cyclic permutations Zn ⊂ Sn which permutes the variables x1, . . . , xn.

• The coefficients in front of terms of the form pλ1qλ2qλ3qλ4�
1 are given

by
∑

Zλ2,λ3,λ4

〈Δλ1, xλ2〉〈Δx, λ3λ4〉 = 〈Δ2(λ1), λ2λ3λ4〉,

which vanishes because Δ2 = 0; that is, the cobracket satisfies the
co-Jacobi identity.

• The coefficients in front of terms of the form pλ1pλ2qλ3qλ4�
1 are

given by

(〈[λ1, λ2], x〉 +
∑

Aλ1,λ2

〈Δλ1, λ̄2x〉) · 〈Δx, λ3λ4〉

+
∑

Zλ1,λ2 ,Zλ3,λ4

〈Δλ1, λ3x〉 · (〈[x, λ2], λ4〉 + 〈Δλ2, x̄λ4〉 + 〈Δx, λ̄2λ4〉).

Here and throughout the proof, we will order these terms as they
naturally appear after expanding the products. The third expression
(which is in fact four terms) and the first expression sum to zero
because of the compatibility of the bracket and cobracket

〈Δ[λ1, λ2], λ3λ4〉 = 〈[Δλ1, λ2], λ3λ4〉 + 〈[λ1, Δλ2], λ3λ4〉.
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Δ2 = 0 implies the second and the fifth expression individually are
zero. The four terms in the fourth expression are

〈Δλ1, λ3x〉〈Δλ2, λ4x̄〉 − 〈Δλ1, λ3x〉〈Δλ2, λ4x̄〉 = 0.

〈Δλ1, λ4x〉〈Δλ2, λ3x̄〉 − 〈Δλ1, λ4x〉〈Δλ2, λ3x̄〉 = 0.

Let us be more explicit in showing why the first of these two equations
vanishes. (The second equation is similar.) Assume that α, β, γ, δ and
ε are generators of H∗(Ωeq(X), K), which for simplicity are assumed
to be pairwise different, such that

〈Δα, βγ〉 �= 0 and 〈Δδ, β̄ε〉 �= 0.

Notice that the first equality used in the first line of H ′ gives a term
〈Δα, βγ〉pαqβqγ

�
0, whereas the second equality used in the second

line of H ′ gives a term 〈Δδ, β̄ε〉pδpβqε
�

0. Thus, in H ′2, we obtain the
following commutator with coefficient 〈Δα, βγ〉 · 〈Δδ, β̄ε〉:

[pαqβqγ , pδpβqε]�0 = (−1)spαpδ[qβ, pβ]qγqε
�

0.

Here s is the sign obtained by the derivation rule of [−,−] using the
degrees of the ps and qs.

On the other hand, using the first equality in the second line of H ′,
we obtain a term (−1)n+1〈Δα, βγ〉pαpβ̄qγ

�
0, and using the second

equality in the first line of H ′, we obtain the term 〈Δδ, β̄ε〉pδqβ̄qε
�

0.
In H ′2, we get the following commutator with the same coefficient as
above:

(−1)n+1[pαpβ̄qγ , pδqβ̄qε]�0 = (−1)s+n+1pαpδ[pβ̄, qβ̄]qγqε
�

0.

Thus, we obtain opposite signs, due to the fact that [qβ, pβ] =
−(−1)n−3[pβ, qβ] = −(−1)n+1[pβ̄, qβ̄], since iβ = iβ̄ = 0.

• The coefficients in front of terms of the form pλ1pλ2pλ3qλ4�
1 are

given by

∑

Zλ1,λ2,λ3

⎛

⎝
∑

Zλ1,λ2

〈Δλ1, λ̄2x〉 + 〈[λ1, λ2], x〉

⎞

⎠

· (〈Δλ3, x̄λ4〉 + 〈Δx, λ̄3λ4〉 + 〈[x, λ3], λ4〉)

+
∑

Zλ1,λ2,λ3

〈Δλ1, λ4x〉 ·

⎛

⎝〈Δx, λ̄2λ̄3〉 + 〈[λ2, λ3], x̄〉

+
∑

Zλ2,λ3

(〈Δλ2, x̄λ̄3〉 + 〈[x, λ2], λ̄3〉)

⎞

⎠.
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Expanding this out gives 3 + 3 + 4 = 10 expressions. The sum of
the first and ninth expressions, each made of six terms, vanishes due
to pairwise cancelations:

∑

Zλ1,λ2,λ3

∑

Zλ2,λ3

(〈Δλ1, xλ4〉 · 〈Δλ2, x̄λ̄3〉 − 〈Δλ1, xλ4〉 · 〈Δλ2, x̄λ̄3〉) = 0.

The sign works just as in the previous case, namely non-vanishing
coefficients 〈Δα, βγ〉 and 〈Δδ, ε̄β̄〉 applied in the first and third lines
of H induce a commutator [pαqβqγ , pδpεpβ]�0, whereas applied twice
in the second line induce the commutator (−1)n+1[pαpβ̄qγ , pδpεqβ̄]�0.
We refer to this phenomenon as symmetry.

The sum of the second and the seventh vanishes due to co-Jacobi:
∑

Zλ1,λ2,λ3

〈Δ2λ1, λ̄2λ̄3λ4〉 = 0.

The sum of the third, fifth, and tenth vanishes due to the compati-
bility:

∑

Zλ1,λ2,λ3

(〈Δ[λ1, λ2], λ̄3λ4〉 − 〈[Δλ1, λ2], λ̄3λ4〉 − 〈[λ1, Δλ2], λ̄3λ4〉) = 0.

The sum of the fourth and eighth vanishes due to symmetry:
∑

Zλ1,λ2,λ3

〈Δλ1, [λ̄2, λ̄3]λ4〉 − 〈Δλ1, [λ̄2, λ̄3]λ4〉 = 0.

Here, non-vanishing coefficients 〈Δα, βγ〉 and 〈[δ, ε], β̄〉 applied in the
first and third lines of H induce a commutator [pαqβqγ , pδpεpβ]�0,
whereas applied twice in the second line induce the commutator
(−1)n+1[pαpβ̄qγ , pδpεqβ̄]�0.

The sixth vanishes due to Jacobi:

〈[·, ·]2(λ1, λ2, λ3), λ4〉 = 0.

• The coefficients in front of terms of the form pλ1qλ2�
2 are given by

〈Δλ1, xλ2〉 · 〈Δx, yȳ〉 + 〈Δλ1, xy〉 ·

⎛

⎝
∑

Zx,y

〈Δx, ȳλ2〉 + 〈[x, y], λ2〉

⎞

⎠.

The sum of the first two expressions vanishes due to co-Jacobi. The
third expression, [·, ·] ◦ Δ(λ1), vanishes by the involutive property of
the Lie bi-algebra.
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• The coefficients in front of terms of the form pλ1pλ2�
2 are given by

⎛

⎝〈[λ1, λ2], x〉 +
∑

Zλ1,λ2

〈Δλ1, λ̄2x〉

⎞

⎠ · 〈Δx, yȳ〉

+
∑

Zλ1,λ2

〈Δλ1, xy〉 ·
(
〈[x, y], λ̄2〉 + 〈Δλ2, x̄ȳ〉

+
∑

Zx,y

(〈[x, λ2], ȳ〉 + 〈Δx, ȳλ̄2〉)

⎞

⎠.

The sum of the first and fifth expressions vanishes by compatibil-
ity. The second vanishes by co-Jacobi. The third vanishes by invo-
lutivity. The fourth vanishes by symmetry. The sixth vanishes by
co-Jacobi.

• The coefficients in front of terms of the form pλ1pλ2pλ3pλ4�
1 are

given by

∑

Z4C2

⎛

⎝
∑

Zλ1,λ2

〈Δλ1, λ̄2x〉 + 〈[λ1, λ2], x〉

⎞

⎠ ·

⎛

⎝〈Δx, λ̄3λ̄4〉 + 〈[λ4, λ3], x̄〉

+
∑

Zλ3,λ4

(〈Δλ3, x̄λ̄4〉 + 〈[x, λ3], λ̄4〉)

⎞

⎠.

Here the sum is over the six ways of separating the four λi into two
groups of two. The summand as written shows λ1, λ2 separated from
λ3, λ4.

We have 4+4 = 8 expressions to consider. The 12 terms in the first
expression vanish as 4 triples by co-Jacobi. The second and seventh
expressions add up to 24 terms which re-arrange to make 12 canceling
pairs such as

〈Δλ1, λ̄2x̄〉〈Δλ3, λ4x〉 − 〈Δλ1, λ̄2x̄〉〈Δλ3, λ4x〉 = 0.

This may again be seen by looking at non-vanishing coefficients
〈Δα, β̄γ〉 and 〈Δδ, ε̄γ̄〉, which in the second and the third line of H
give both [pαpβqγ , pδpεpγ ]�0 and (−1)n+1[pαpβpγ̄ , pδpεqγ̄ ]�0.

The third expression vanishes on its own by a similar symmetry.
The sum of the fourth and fifth expression vanishes by compatibility.
The sixth expressions vanishes on its own by symmetry. The eighth
expression vanishes by Jacobi. �

We end with two conjectures.



404 M. SULLIVAN, J. TERILLA, AND T. TRADLER

Conjecture 4.3. The quasi-isomorphism type of the induced quantum L∞-
structure from H ′ on X is independent of the choice of representatives used
to generate H∗(Ωeq(X), K), and hence is a manifold invariant.

Conjecture 4.4. The quasi-isomorphism type of the induced quantum L∞-
structure from H ′ is the same as the one defined by counting some moduli
space of curves, such as the SFT H.

Proposition 4.1 implies the second conjecture when X is a surface with
a hyperbolic metric. Following our earlier discussion, part of the attempt
would involve defining string topology operations on the Morse complex
generated by the oriented geodesics.
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