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COVERING SPACES AND Q-GRADINGS ON HEEGAARD
FLOER HOMOLOGY

Dan A. Lee and Robert Lipshitz

Heegaard Floer homology, first introduced by P. Ozsváth and
Z. Szabó in [OS04b], associates to a 3-manifold Y , a family of rel-
atively graded abelian groups HF (Y, t), indexed by Spinc structures
t on Y . In the case that Y is a rational homology sphere, Ozsváth
and Szabó lift the relative Z-grading to an absolute Q-grading [OS06].
This induces a relative Q-grading on

⊕
t∈Spinc(Y ) HF (Y, t). In this

paper, we describe an alternate construction of this relative Q-grading
by studying the Heegaard Floer homology of covering spaces.

1. Introduction

In [OS04b], P. Oszváth and Z. Szabó associated to a 3-manifold Y families
ĤF (Y, t), HF+(Y, t), HF−(Y, t), and HF∞(Y, t) of abelian groups, indexed
by Spinc structures t on Y , collectively known as Heegaard Floer homology.
(Below, we shall use HF (Y, t) to refer to any of these groups.) These groups
arise as the homology groups of certain Lagrangian intersection Floer chain
complexes ĈF (Y, t), CF+(Y, t), CF−(Y, t), and CF∞(Y, t), and as such
inherit relative Z-gradings or, if c1(t) is non-torsion, relative Z/n gradings;
we denote all of these gradings by gr.

In [OS06], for c1(t) torsion, Ozsváth and Szabó used a bordism con-
struction to lift gr to an absolute Q-grading on HF (Y, t). In other words,
they found an absolute Q-grading g̃r on HF (Y, t) satisfying gr(ξ, η) =
g̃r(ξ) − g̃r(η) for all homogeneous elements ξ, η ∈ HF (Y, t). This defines
an absolute Q-grading on the group

HF (Y, torsion) :=
⊕

c1(t) is torsion

HF (Y, t).

In [OS03], they used this absolute Q-grading to give restrictions on which
knots can, under surgery, give rise to lens spaces, and to give restrictions
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on intersection forms of 4-manifolds bounding a given 3-manifold; in [MO],
C. Manolescu and B. Owens used the absolute Q-grading on the branched
double cover of a knot to produce a concordance invariant of knots.

In this paper, we use covering spaces to give an alternate construction
of the relative Q-grading on HF (Y, torsion) induced by the absolute Q-
grading g̃r. Specifically, given homogeneous elements ξ, η ∈ HF (Y, torsion)
not necessarily lying in the same HF (Y, t), we are able to reconstruct g̃r(ξ)−
g̃r(η). See Theorems 2.6 and 4.1. Of course, the relative Q-grading contains
less information about Y than the absolute Q-grading, and therefore our
covering space construction is less powerful than the bordism construction
of Ozsváth and Szabó; on the other hand, our construction offers a new
perspective on g̃r and leads to a simple algorithm for computing the relative
Q-grading at the chain level.

Recall ([OS04b, Section 4]) that there are short exact sequences of chain
complexes

0 → ĈF (Y, t) → CF+(Y, t) → CF+(Y, t) → 0,

0 → CF−(Y, t) → CF∞(Y, t) → CF+(Y, t) → 0.

We specify that the relative Q-gradings on these chain complexes be pre-
served by the maps in these short exact sequences. Consequently, it suffices
to define the relative Q-grading on ĈF (Y, torsion), and we restrict our atten-
tion to this chain complex for the rest of the paper.

We now describe the structure of this paper. In Section 2, we explain
our covering space construction of the relative Q-grading. This section
requires no prior knowledge of Heegaard Floer homology. We also explic-
itly describe how to compute the relative Q-grading at the chain level. In
Section 3, we briefly review Ozsváth and Szabó’s construction of g̃r, and
in Section 4 we prove that our definition of the relative Q-grading agrees
with the Ozsváth–Szabó definition. We defer a necessary computation for
lens spaces until Section 5. Finally, we mention some directions for future
research in Section 6.

2. Gradings and covering spaces

2.1. Review of the relative Z-grading. We begin by defining our use of
the term “grading.”

Definition. Let G and S be abelian groups.
We say that f is an absolute S-grading on G with homogeneous elements

H if H ⊂ A generates A and f : H → S such that for each s ∈ S, f−1(s)∪{0}
is a subgroup of A.

A relative S-grading on G with homogeneous elements H is an equivalence
class of absolute S-gradings of G with homogeneous elements H, where two
absolute S-gradings are equivalent if they differ by a constant in S.
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In this paper, S will always be Z or Q. If G is free abelian, one can specify
an absolute S-grading on G with homogeneous elements H by declaring a
basis U of G to be contained in H and specifying a function f : U → S.
One can specify a relative S-grading of G by instead specifying a function
F : U ×U → S that is additive in the sense that F (x, y)+F (y, z) = F (x, z).

As mentioned in the introduction, for any Spinc structure t on Y with
c1(t) torsion, there is a relative Z-grading, gr, on ĤF (Y, t). We will describe
gr at the chain level. That is, given a pointed Heegaard diagram S for Y , we
will grade the group ĈF (S, t). More generally, we will define gr on ĈF (S, t)
when S is an �-pointed Heegaard diagram (defined below). The material
in this subsection has been extracted from Section 3 of [OS], Section 4 of
[Lip06], and the first half of [OS04b]; we gather it here for the reader’s
convenience.

Definition. An �-pointed Heegaard diagram S is a 4-tuple (Σ,α,β, z)
where:

• Σ is an oriented surface of genus g > 0.
• α is a union of disjoint simple closed curves α1, . . . , αg+�−1, which

span a rank g sublattice of H1(Σ).
• β is a union of disjoint simple closed curves β1, . . . , βg+�−1, which

span a rank g sublattice of H1(Σ).
• α intersects β transversely.
• z is a collection of points {z1, . . . , z�} ⊂ Σ � α � β.
• Each component of Σ � α contains exactly one zi.
• Each component of Σ � β contains exactly one zi.

The α and β circles specify two handlebodies, Uα and Uβ, with
boundary Σ. We say that S is an �-pointed Heegaard diagram for Yα,β =
Uα ∪Σ Uβ.

When � = 1, we say that S is a pointed Heegaard diagram. (The concept
of an �-pointed Heegaard diagram was introduced in [OS, Section 3]; earlier
papers restricted attention to the � = 1 case. Many theorems that were
originally proved in the � = 1 case can be trivially generalized to the case of
arbitrary �.)

Fix an oriented 3-manifold Y and a metric on Y . Let f be a self-indexing
Morse–Smale function on Y with � index zero and � index three critical
points, and choose � flowlines of ∇f connecting the index zero and index
three critical points in pairs. One can then construct an �-pointed Heegaard
diagram S for Y as follows:

• Take Σ = f−1(3/2).
• Take α to be the intersection of Σ with the flowlines leaving index

one critical points.
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• Take β to be the intersection of Σ with the flowlines entering index
two critical points.

• Take z to be the intersection of Σ with the � flowlines chosen above.
In this case we say that f is compatible with S. Observe that, given S, one
can always construct a compatible Morse function f .

Let S be an �-pointed Heegaard diagram for Y . Define Tα ∩ Tβ to be the
set of all (g + � − 1)-element subsets x ⊂ α ∩ β such that each αi contains
exactly one element of x, and each βi contains exactly one element of x.1

We now define a map

s : Tα ∩ Tβ → Spinc(Y ).

Fix a metric on Y , and choose a Morse function f compatible with S. Then
x ∈ Tα ∩ Tβ determines g + � − 1 flowlines connecting the g + � − 1 index
one critical points to the g + � − 1 index two critical points in pairs, and
z determines � flowlines connecting the � index zero critical points to the �
index three critical points in pairs. Consider small neighborhoods of these
flowlines containing the critical points. Notice that ∇f is nonvanishing
outside these neighborhoods, and that, since each neighborhood contains
two critical points of opposite parity, we can extend ∇f to a nonvanishing
vector field V (x) on all of Y .

The vector field V (x) reduces the structure group of TY from SO(3) to
SO(2), and since SO(2) = U(1) ⊂ U(2) = Spinc(3), it follows that V (x)
determines a Spinc structure s(x) on Y . One can check that s(x) does not
depend on the choices of metric, compatible Morse function, and exten-
sion of ∇f . (Specifically, while different choices will determine a different
vector field V (x), the new vector field will be homologous to the original
one in the sense of [Tur97]. Consequently s(x) is unchanged, as shown in
[Tur97].)

Now let x,y ∈ Tα ∩ Tβ where x = {x1, . . . , xg+�−1} and y =
{y1, . . . , yg+�−1}. Choose 1-chains a in α and b in β such that

∂a = ∂b = (y1 + · · · + yg+�−1) − (x1 + · · · + xg+�−1).

Then ∂(a − b) = 0, so a − b descends to an element of H1(Σ), which in turn
defines an element ε(x,y) ∈ H1(Y ) via the isomorphism

H1(Y ) ∼=
H1(Σ)

[α1], . . . , [αg+�−1], [β1], . . . , [βg+�−1]
.

It is clear that ε(x,y) is independent of choices a and b.
There is a nice relationship between ε and Spinc structures. Recall that

the set of (homotopy classes of) Spinc structures on Y forms an affine copy of

1The notation comes from thinking of Tα as the quotient of the torus α1 ×· · ·×αg+�−1

by permutations (and similar for Tβ) so that the intersection Tα ∩ Tβ takes place in the
(g + � − 1)-fold symmetric product of Σ.
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H2(Y ). The following lemma is a generalization of Lemma 2.19 of [OS04b]
to the �-pointed case, and is closely related to Lemma 3.11 in [OS].

Lemma 2.1. For x,y ∈ Tα∩Tβ, the difference class (s(x) − s(y)) ∈ H2(Y )
is the Poincaré dual of ε(x,y) ∈ H1(Y ).

Let D1, . . . , DN be the closures of the connected components of Σ�α�β,
thought of as 2-chains, labeled so that zi ∈ Di for i ≤ �. Define C2(S) to
be the group of 2-chains in Σ generated by the Di’s, and define Ĉ2(S) to be
the subgroup of C2(S) generated by the Di’s with i > �, or in other words,
Ĉ2(S) is generated by the closures of connected components of Σ � α � β
not containing any element of z.

For any A ∈ C2(S), define ∂αA to be the intersection of ∂A with α. For
all x,y ∈ Tα ∩ Tβ where x = {x1, . . . , xg+�−1} and y = {y1, . . . , yg+�−1}, we
define

π2(x,y) = {A ∈ C2(S) | ∂∂αA = (y1 + · · · + yg+�−1) − (x1 + · · · + xg+�−1)}
π̂2(x,y) = π2(x,y) ∩ Ĉ2(S).

Lemma 2.2. For x,y ∈ Tα ∩Tβ, if s(x) = s(y), then π̂2(x,y) is nonempty.

Proof. Construct a and b as in our definition of ε(x,y). By the previous
lemma, ε(x,y) = 0. By the definition of ε, this means that a − b plus some
α and β circles is zero in H1(Σ) and hence equal to the boundary of some
C =

∑N
i=1 ciDi ∈ C2(S). Observe that C ∈ π2(x,y). For i ≤ �, let Ai be

the closure of the connected component of Σ � α containing zi, thought of
as a 2-chain in C2(S). By the definition of an �-pointed Heegaard diagram,
the coefficient of Di in the expression for Aj must be δij , so one can check
that C −

∑�
i=1 ciAi ∈ π̂2(x,y). �

Let Ut = {x ∈ Tα ∩ Tβ | s(x) = t}, and define ĈF (S, t) to be
the free abelian group generated by Ut. We also define ĈF (S) =
⊕
t∈Spinc(Y ) ĈF (S, t). Our goal in this subsection is to define a relative

Z-grading, gr, on ĈF (S, t) when t is torsion. We declare Ut to be homoge-
neous so that we just need to define an additive function gr : Ut × Ut → Z.
Before doing so, we introduce some notation. For any A =

∑N
i=1 aiDi ∈

C2(S), we define the Euler measure of A, e(A), as follows. If Di has pi (not
necessarily distinct) “vertices” in α ∩ β, define e(Di) = χ(Di) − pi/4 where
χ(Di) is the Euler characteristic. Extend this definition linearly to C2(S),
so that

e(A) =
N∑

i=1

ai(χ(Di) − pi/4).

For any x ∈ Tα ∩ Tβ and A ∈ C2(S), we define nx(A) as follows. Each
x ∈ α∩β “touches” four of the Dis (with possible repetition); define nx(A)
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to be the average of the coefficients of these four Dis in the expression for A.
Finally, we define nx(A) =

∑
x∈x nx(A).

Definition. Let x,y ∈ Tα ∩ Tβ such that s(x) = s(y) is torsion. By the
previous lemma there exists A ∈ π̂2(x,y). Define gr(x,y) by the formula

(2.1) gr(x,y) = e(A) + nx(A) + ny(A).

The formula (2.1), first suggested by Ozsváth and Szabó, comes from
[Lip06, Section 4], where it was proved to agree with the standard definition
in [OS04b] in terms of the Maslov index.2 It follows that gr is additive. For
completeness, we include a proof that gr is well-defined.

Proposition 2.3. In the definition before, gr(x,y) does not depend on
choice of A ∈ π̂2(x,y).

Proof. Observe that A is unique up to addition of elements in π̂2(x,x).
By [OS04a, Proposition 7.5], for any P ∈ π̂2(x,x),

〈c1(s(x)), P 〉 = e(P ) + 2nx(P )

〈c1(s(y)), P 〉 = e(P ) + 2ny(P ).

Since s(x) and s(y) are torsion, the left sides must vanish and we are left
with

nx(P ) = ny(P ) = −1
2
e(P ).

(Indeed, the reason we deal only with torsion Spinc structures t throughout
this paper is that we need 〈c1(t), P 〉 to be zero.) Thus, calculating gr(x,y)
using A + P instead of A, we have

gr(x,y) = e(A + P ) + nx(A + P ) + ny(A + P )

= e(A) + e(P ) + nx(A) + nx(P ) + ny(A) + ny(P )

= e(A) + nx(A) + ny(A)

�
We have now defined a relative Z-grading on ĈF (S, t) when t is tor-

sion. If S is weakly admissible in the sense of [OS04b, Section 5], one
can make ĈF (S) into a chain complex whose homology is an invariant of
(Y, �), independent of the choice of S [OS].3 When � = 1, we can define the
Heegaard Floer homology group

ĤF (Y ) := H(ĈF (S)).

2The proofs in [Lip06] all deal with the case � = 1 but can easily be extended to the
general case using the proof of Theorem 2.4.

3We omit the definition of weakly admissible and the definition of the differential
because both are peripheral to the content of this paper. In later sections of this paper,
all Heegaard diagrams will be implicitly assumed to be weakly admissible. Arranging this
is never difficult; see [OS04b, Section 5].
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Turning our attention back to the case of general �, it follows from [Lip06,
Corollary 4.3] and the definition of the differential that gr descends to a
relative Z-grading on H(ĈF (S, t)) when t is torsion.

We recall the relationship between the � = 1 case and the general case.
The following is [OS, Theorem 4.5].

Theorem 2.4. Let S be a weakly admissible �-pointed Heegaard diagram for
Y , and let t ∈ Spinc(Y ). Then

H(ĈF (S, t)) ∼= ĤF (Y #(#�−1(S1 × S2)), t#s0),

where s0 is the unique Spinc structure on S1 × S2 with c1 = 0.
Furthermore, when t is torsion, the relative Z-gradings on the two sides

are the same.

Proof. Given S = (Σ,α,β, z), define a pointed Heegaard diagram S ′ =
(Σ′,α′,β′, z′) as follows. Define Σ′ by taking Σ and attaching � − 1 tubes
connecting Di � zi to Di+1 � zi+1 for 1 ≤ i ≤ � − 1. Let α′ = α,
β′ = β, and z′ = z1. Now observe that S ′ is a pointed Heegaard dia-
gram for Y #(#�−1(S1 × S2)), and that for each x ∈ Tα ∩ Tβ = Tα′ ∩ Tβ′ ,
s′(x) = s(x)#s0, where s′(x) is computed with respect to S ′ and s(x) is
computed with respect to S. Therefore ĈF (S) = ĈF (S ′), and ĈF (S, t) =
ĈF (S ′, t#s0) for each t ∈ Spinc(Y ). It is immediate from its definition,
which we have omitted, that the differential is the same on both sides.
Finally, it is clear that when t is torsion, the relative Z-gradings on ĈF (S, t)
and ĈF (S ′, t#s0) are the same. The result follows. �

To summarize, we have constructed a map from �-pointed Heegaard dia-
grams S and torsion Spinc structures t ∈ Spinc

tor(Yα,β) to relative Z-gradings
on ĈF (S, t),

(S, t) 
→ (ĈF (S, t), gr).
Moreover, for each � (after restricting to weakly admissible diagrams), this
map descends to a map from oriented 3-manifolds Y with torsion Spinc

structures t ∈ Spinc
tor(Y ) to relative Z-gradings on ĤF (Y #(#�−1(S1 ×

S2)), t#s0),

(Y, t, �) 
→
(
ĤF (Y #(#�−1(S1 × S2)), t#s0), gr

)

with the property that (Y, t, �) and (Y #(#�−1(S1 × S2)), t#s0, 1) produce
the same gr.

2.2. Gradings and covering spaces. Let p : Ỹ → Y be an n-fold,
connected covering map.4 Given an �-pointed Heegaard diagram S =

4All covers of 3-manifolds will be assumed to be connected, unless explicitly stated
otherwise.
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(Σ,α,β, z) for Y and the covering map p, consider the preimage of S under
p, which we denote by S̃ = (Σ̃, α̃, β̃, z̃). We claim that S̃ is an n�-pointed
Heegaard diagram for Ỹ .

To verify the claim, fix a metric on Y and a Morse function f on Y
compatible with S. Pull both of them back to Ỹ , so that we have a self-
indexing Morse–Smale function f̃ on Ỹ that has n� index zero and n� index
three critical points. Also, z determines � flowlines for ∇f , which lift to
n� flowlines for ∇̃f̃ . As described in Section 2.1, f̃ and the n� flowlines
determine an n�-pointed Heegaard diagram for Ỹ . It is clear that this n�-
pointed Heegaard diagram is exactly S̃.

We say that S̃ is a covering Heegaard diagram of S. Note that Σ̃ is a
connected n-fold cover of Σ and hence a surface of genus ng − n + 1. Also
observe that α̃ is a disjoint union of n(g + � − 1) circles, as is β̃.

In the situation described above, we have the following useful fact.

Lemma 2.5. For any x ∈ Tα ∩ Tβ,

p∗(s(x)) = s(x̃),

where x̃ is the inverse image of x under p.

Proof. As before, consider a metric g on Y , a Morse function f on Y compat-
ible with S, and their pullbacks g̃ and f̃ under p. Observe that x determines
g + � − 1 flowlines of ∇f connecting the index one and index two critical
points of f in pairs, which must be covered by the n(g + � − 1) flowlines of
∇̃f̃ determined by x̃. Recalling the definition of s from Section 2.1, it is now
evident that one can choose the vector fields V (x) and V (x̃) so that V (x̃)
is the pullback of V (x). It follows that the diagram

BSpinc(3)

��

Ỹ
p ��

s(x̃) ��

T Ỹ

��Y
TY ��

s(x)
������������

BSO(3)

commutes. This is the desired result. �

The preimage map p−1 : Tα ∩ Tβ → Tα̃ ∩ Tβ̃ induces a map of groups

ĈF (S) → ĈF (S̃), which we denote ξ 
→ ξ̃. (Note that in general this is not
a chain map.) Let us define

ĈF (S, torsion) :=
⊕

t∈Spinc
tor(Y )

ĈF (S, t).

Our goal in this subsection is to prove the following theorem, which com-
pletely characterizes our relative Q-grading.
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Theorem 2.6. There is a unique map from �-pointed Heegaard diagrams to
relative Q-gradings on ĈF (S, torsion),

S 
→ (ĈF (S, torsion), Gr)

such that the relative Q-grading Gr has the following properties:

• For each t ∈ Spinc
tor(Y ), the restriction of Gr to ĈF (S, t) is equal

to gr, where gr is the relative Z-grading described in the previous
subsection. In particular, they have the same homogeneous elements.

• If Ỹ → Y is an n-fold cover, then for all homogeneous elements
ξ, η ∈ ĈF (S, torsion),

Gr(ξ, η) =
1
n

Gr(ξ̃, η̃).

Moreover, for each � (after restricting to weakly admissible diagrams), this
map descends to a map from oriented 3-manifolds Y to relative Q-gradings
on ĤF (Y #(#�−1(S1 × S2)), torsion),

(Y, �) 
→
(
ĤF (Y #(#�−1(S1 × S2)), torsion), Gr

)

with the property that (Y, �) and (Y #(#�−1(S1 × S2)), 1) produce the
same Gr.

We are now ready to describe our construction of the relative Q-grading
on ĈF (S, torsion). As in the previous subsection, we simply need to define
Gr on the homogeneous generators in Tα ∩ Tβ.

Definition. Let p : Ỹ → Y be an n-fold covering map, and let x,y ∈ Tα∩Tβ

such that s(x) and s(y) are torsion. If it happens that s(x̃) = s(ỹ), then we
define

Gr(x,y) =
1
n

gr(x̃, ỹ).

In order for this definition to make sense, we need to prove two things.
First, we must show that Gr(x,y) is independent of the choice of cover.
Second, we must show that given any x,y ∈ Tα ∩ Tβ with s(x) and s(y)
torsion, there always exists a cover such that s(x̃) = s(ỹ).

Lemma 2.7. Let p : Ỹ → Y be an n-fold covering map, and let x,y ∈
Tα ∩ Tβ. If s(x) = s(y) is torsion, then s(x̃) = s(ỹ) and

gr(x,y) =
1
n

gr(x̃, ỹ).

In other words, computing Gr using the trivial cover, when possible, is
consistent with computing Gr using any other cover.
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Proof. The previous lemma shows that s(x̃) = s(ỹ). To prove the for-
mula, choose A ∈ π̂2(x,y). Now consider the total preimage Ã ∈ C2(S̃)
and observe that Ã ∈ π̂2(x̃, ỹ). It is clear from the definitions that
e(Ã) = n · e(A), nx̃(Ã) = n · nx(A), and nỹ(Ã) = n · ny(A). The result
now follows from the definition of gr in equation (2.1). �

Lemma 2.8. Let p1 : Ỹ1 → Y be an n1-fold covering map, and let p2 : Ỹ2 →
Y be an n2-fold covering map. Let x,y ∈ Tα ∩ Tβ such that s(x) and s(y)
are torsion, and suppose that s(p−1

1 x) = s(p−1
1 y) and s(p−1

2 x) = s(p−1
2 y).

Then
1
n1

gr(p−1
1 x, p−1

1 y) =
1
n2

gr(p−1
2 x, p−1

2 y).

Proof. Let Y ′ be a connected component of the fibered product Ỹ1 ×Y Ỹ2
so that the projections p′

1 : Y ′ → Ỹ1 and p′
2 : Y ′ → Ỹ2 are n′

1- and n′
2-

fold covering maps, respectively, and thus n1n
′
1 = n2n

′
2. Note that since

p1p
′
1 = p2p

′
2, given our �-pointed Heegaard diagram for Y , we are led to the

same covering Heegaard diagram for Y ′, whether we go through Ỹ1 or Ỹ2.
Therefore, the previous lemma shows that

1
n1

gr(p−1
1 x, p−1

1 y) =
1

n1n′
1

gr(p′−1
1 p−1

1 x, p′−1
1 p−1

1 y)

=
1

n2n′
2

gr(p′−1
2 p−1

2 x, p′−1
2 p−1

2 y)

=
1
n2

gr(p−1
2 x, p−1

2 y).

�
Lemma 2.8 implies that for any x,y ∈ Tα ∩ Tβ with s(x) and s(y) torsion,
Gr(x,y) is uniquely defined whenever it is defined at all. We must now
prove that Gr(x,y) can always be defined. For this we will use the following
lemma from algebraic topology.

Lemma 2.9. Let Y be a connected topological space with the homotopy-type
of a CW-complex. Suppose that a ∈ H2(Y ; Z) is n-torsion. Then there
exists a Z/n-covering map p : Ỹ → Y such that p∗a = 0.

Proof. The short exact sequence

0 �� Z
n �� Z �� Z/n �� 0

induces the exact sequence

H1(Y ; Z/n)
β �� H2(Y ; Z) n �� H2(Y ; Z) .

Since a is n-torsion, a = β(q) for some q ∈ H1(Y ; Z/n). Under the
isomorphism H1(Y ; Z/n) ∼= [Y, K(Z/n, 1)], we can represent q by a map
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f : Y → K(Z/n, 1) = BZ/n such that q = f∗ι, where ι ∈ H1(BZ/n; Z/n) is
the image of the identity via the canonical isomorphism Hom(Z/n, Z/n) ∼=
H1(BZ/n; Z/n). Let π : EZ/n → BZ/n denote the contractible principal
Z/n-bundle over BZ/n. Let Ỹ be the pullback f∗(EZ/n), so we have the
following commutative diagram:

Ỹ
g ��

p

��

EZ/n

π

��
Y

f �� BZ/n

.

We claim that p : Ỹ → Y is the desired n-fold covering map. Indeed, we have
a ∈ im(βf∗) = im(f∗β), and thus p∗a ∈ im(p∗f∗) = im(g∗π∗) ⊂ im(g∗) = 0,
since H2(EZ/n; Z) = 0. �
Corollary 2.10. Let x,y ∈ Tα ∩ Tβ such that s(x) and s(y) are torsion.
Then for some n, s(x) − s(y) is n-torsion and there is a Z/n-cover Ỹ → Y
such that s(x̃) = s(ỹ). Consequently, Gr(x,y) is well defined.

Proof. Since c1(s(x)) − c1(s(y)) = 2(s(x) − s(y)), the hypotheses imply
that s(x) − s(y) is n-torsion for some n. By the previous theorem, there
is a Z/n-covering map p : Ỹ → Y such that p∗(s(x) − s(y)) = 0. But
p∗(s(x) − s(y)) = s(x̃) − s(ỹ). �
We have shown that we can always find a cover that allows us to compute
Gr(x,y), but for a rational homology sphere, there is one cover that always
works. Recall that the maximal abelian cover of Y is the cover corresponding
to the commutator subgroup of π1(Y ).

Corollary 2.11. Let Y be a rational homology sphere and Ỹ its maximal
abelian cover. Then Ỹ is a finite cover of Y , and for all x,y ∈ Tα ∩ Tβ, we
have s(x̃) = s(ỹ). Thus Gr(x,y) can be computed using this cover.

Proof. Since H1(Y ) ∼= π1(Y )/[π1(Y ), π1(Y )] is finite, Ỹ is a finite cover of Y .
The rest of the conclusion follows from the previous corollary, Lemma 2.5,
and the fact that every cyclic cover is covered by the maximal abelian cover
(since every homomorphism from a group G to an abelian group factors
through the abelianization of G). �

We now turn to additivity.

Corollary 2.12. For x,y,w ∈ Tα ∩ Tβ such that s(x), s(y), and s(w) are
torsion,

Gr(x,y) + Gr(y,w) = Gr(x,w).

Proof. Lemma 2.9 and the proof of Corollary 2.10 allow us to find a cover
where s(x̃) = s(ỹ) = s(w̃). The additivity of gr then implies the result. �
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This completes the proof of Theorem 2.6, except for the last part regarding
the invariance of Gr and the statement that Gr is essentially independent
of �. The invariance of Gr is a direct consequence of the invariance of gr.
The proof that Gr is independent of � follows from the proof that gr is
independent of �.

2.3. How to compute. From the previous subsection, it would appear
that every time one wants to compute Gr(x,y), one must find an appropri-
ate cover and perform computations in the covering Heegaard diagram S̃.
However, it turns out that the mere existence of an appropriate cover allows
us to perform all of the computations in the original �-pointed Heegaard
diagram S, without ever thinking about covers at all.

Given x,y ∈ Tα ∩ Tβ such that s(x) and s(y) are torsion, Corollary 2.10
gives us an n-fold cover for which we can find A ∈ π̂2(x̃, ỹ). Consider the
projection Ā ∈ C2(S), and observe that Ā ∈ π̂2(nx, ny) in the sense that
Ā ∈ Ĉ2(S) and

∂∂αĀ = n(y1 + · · · + yg+�−1) − n(x1 + · · · + xg+�−1).

Also observe that

Gr(x,y) =
1
n

[e(A) + nx̃(A) + nỹ(A)]

=
1
n

[
e(Ā) + nx(Ā) + ny(Ā)

]
.

The moral here is that we do not need to find A in order to compute Gr(x,y);
it is sufficient to find Ā.

Proposition 2.13. Let x,y ∈ Tα ∩ Tβ such that s(x) and s(y) are
torsion. Then s(x) − s(y) is n-torsion for some n, and there exists some
A ∈ π̂2(nx, ny). For any such A,

Gr(x,y) =
1
n

[e(A) + nx(A) + ny(A)] .

Proof. The argument above shows that there exists some A for which the
result holds. We just have to prove that the right side of the formula is
independent of the choice of A. Observe that A is unique up to addition
of elements in π̂2(x,x). The rest of the proof is identical to the proof of
Proposition 2.3. �

Therefore, computing Gr(x,y) is reduced to an elementary exercise in linear
algebra: for each i > �, compute ∂∂αDi. Then find integers ai so that∑N

i=�+1 ai∂∂αDi equals some multiple n of (y1 + · · · + yg+�−1) − (x1 + · · · +
xg+�−1). Finally, plug A =

∑N
i=�+1 aiDi into the formula in the previous

proposition.
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3. Bordisms and Ozsváth–Szabó’s construction

The material in this section is all essentially contained in Ozsváth–Szabó’s
paper [OS06]. However, our purposes require us to articulate more precise
chain-level statements in Section 3.3.

3.1. Review of Heegaard triples.

Definition. An �-pointed Heegaard triple is a 5-tuple Tα,β,γ = (Σ,α,β,γ, z)
such that each of Sα,β = (Σ,α,β, z), Sβ,γ = (Σ,β,γ, z), and Sα,γ =
(Σ,α,γ, z) is an �-pointed Heegaard diagram and α ∩ β ∩ γ = ∅. Let
Yα,β be the 3-manifold specified by Sα,β (and similarly for Yβ,γ Yα,γ). When
� = 1, Tα,β,γ is called a pointed Heegaard triple.

An �-pointed Heegaard triple specifies a 4-manifold with boundary Wα,β,γ

as follows. Let T denote a triangle. The α circles (respectively β, γ) specify
a handlebody Uα (respectively Uβ, Uγ) with boundary Σ. Glue each of Uα ×
[0, 1], Uβ × [0, 1], and Uγ × [0, 1] to an edge of Σ × T (clockwise). The result
is a 4-manifold Wα,β,γ with boundary −Yα,β ∪ −Yβ,γ ∪ Yα,γ . See [OS04b,
Section 8.1] for details.

Let Tα,β,γ be an �-pointed Heegaard triple. Let D1, . . . , DN be the closures
of the connected components of Σ�α�β�γ, thought of as 2-chains, labeled
so that zi ∈ Di for i ≤ �. Define C2(Tα,β,γ) to be the group of 2-chains in Σ
generated by the Di’s, and define Ĉ2(Tα,β,γ) to be the subgroup of C2(Tα,β,γ)
generated by the Di’s with i > �, or in other words, Ĉ2(Tα,β,γ) is generated
by the closures of connected components of Σ � α � β � γ not containing
any element of z.

For all w ∈ Tα ∩ Tβ, x ∈ Tβ ∩ Tγ , and y ∈ Tα ∩ Tγ , define

π2(w,x,y) =
{

B ∈ C2(Tα,β,γ)
∣
∣
∣
∣

∂∂αB = (y1 + · · · + yg+�−1) − (w1 + · · · + wg+�−1)
∂∂βB = (w1 + · · · + wg+�−1) − (x1 + · · · + xg+�−1)

}

π̂2(w,x,y) = π2(w,x,y) ∩ Ĉ2(Tα,β,γ).

Observe that addition gives a map

π2(w′,w) × π2(x′,x) × π2(y′,y) × π2(w,x,y) → π2(w′,x′,y′).

For B ∈ π2(w,x,y) and B′ ∈ π2(w′,x′,y′), say that B and B′ are
Spinc-equivalent if there are Aα,β ∈ π2(w′,w), Aβ,γ ∈ π2(x′,x), and
Aα,γ ∈ π2(y,y′) such that B′ = Aα,β + Aβ,γ + Aα,γ + B.

Lemma 3.1. There is a map s : π2(w,x,y) → Spinc(Wα,β,γ) with the
following properties:

• s ∈ im(s) if and only if s|Yα,β
= s(w), s|Yβ,γ

= s(x), and s|Yα,γ = s(y).
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• For B ∈ π2(w,x,y) and B′ ∈ π2(w′,x′,y′), s(B) = s(B′) if and only
if B and B′ are Spinc-equivalent.

For a definition of the map s and the proof of this lemma, see [OS04b,
Section 8.1].

Let π̂s2(w,x,y) = {B ∈ π̂2(w,x,y) | s(B) = s}. For any s ∈
Spinc(Wα,β,γ), we say that an �-pointed Heegaard triple Tα,β,γ realizes s

when there exist w, x, and y such that π̂s2(w,x,y) �= ∅. The previous lemma
implies that π̂s2(w,x,y) �= ∅ if and only if s|Yα,β

= s(w), s|Yβ,γ
= s(x), and

s|Yα,γ = s(y).
Given an element B ∈ π2(w,x,y), one can assign an index ind(B) ∈ Z to

B; this is the index of the ∂-operator on some space of holomorphic curves.5

This index has the property that for B ∈ π2(w,x,y), Aα,β ∈ π2(w′,w),
Aβ,γ ∈ π2(x′,x), and Aα,γ ∈ π2(y′,y),

ind(Aα,β + Aβ,γ + Aα,γ + B) = ind(Aα,β) + ind(Aβ,γ) + ind(Aα,γ) + ind(B),

where ind(Aα,β) = e(Aα,β) + nw′(Aα,β) + nw(Aα,β), and similarly for
ind(Aβ,γ) and ind(Aα,γ).

Definition. Let w ∈ Tα ∩ Tβ, x ∈ Tβ ∩ Tγ , and y ∈ Tα ∩ Tγ such
that s(w), s(x), and s(y) are torsion, and let s ∈ Spinc(Wα,β,γ) such that
π̂s2(w,x,y) �= ∅. Then for any B ∈ π̂s2(w,x,y), define

grs(w,x,y) = ind(B).

The definition is independent of choice of B by the same reasoning
as in Proposition 2.3, but note that grs(w,x,y) is only defined when
π̂s2(w,x,y) �= ∅. This “relative grading” gr is additive in the sense that

grs(w′,x′,y′) = gr(w′,w) + gr(x′,x) + gr(y,y′) + grs(w,x,y).

In order to prove that Gr agrees with the relative grading induced by g̃r,
we will need to use covering Heegaard triples; we collect a few basic facts
about these here. Given an �-pointed Heegaard triple Tα,β,γ = (Σ,α,β,γ, z)
and an n-fold covering π : W̃ → Wα,β,γ , we can define a new n�-pointed
Heegaard triple T̃α̃,β̃,γ̃ = (Σ̃, α̃, β̃, γ̃, z̃) for W̃ by taking T̃α̃,β̃,γ̃ to be the
preimage of Tα,β,γ under π, as we did in Section 2.2 for ordinary Heegaard
diagrams. That T̃α̃,β̃,γ̃ is a Heegaard triple for W̃ follows by exactly the
same argument as in Section 2.2. We say that T̃α̃,β̃,γ̃ is a covering Heegaard
triple of Tα,β,γ .

5For the definition of ind, see [OS04b, Section 8], where the notation μ is used instead
of ind.
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Lemma 3.2. Fix w ∈ Tα ∩ Tβ, x ∈ Tβ ∩ Tγ, y ∈ Tβ ∩ Tγ, and s ∈
Spinc(Wα,β,γ). For any B ∈ π̂s2(w,x,y) and its total preimage B̃,

(1) s(B̃) = π∗s(B).
(2) ind(B̃) = n · ind(B).

In particular, if the restriction of s to ∂Wα,β,γ is torsion and π̂s2(w,x,y) �= ∅,
then grπ∗s(w̃, x̃, ỹ) = n · grs(w,x,y).

Proof. The proof of statement 1 follows from the definition of s(B) (which
we have not given) in an exactly analogous way to Lemma 2.5.

To prove statement 2, recall from [OS04b] that ind denotes the index
of the linearized ∂-operator at an appropriate map φ of a triangle Δ to
Symg+�−1(Σ). There is a map u : S → Σ × Δ for some Riemann surface S
which tautologically corresponds to φ (see, e.g., [Lip06, Section 13]). The
index of the ∂-operators at u and φ agree. (Indeed, there is even an identi-
fication of index bundles – see [Lip06, Section 13] – though we do not need
this stronger result.)

In our situation, the covering map Σ̃ → Σ induces an inclusion
Symg+�−1(Σ) → Symng+n�−n(Σ̃) and a covering map Σ̃ × Δ → Σ × Δ. The
maps φ and u then induce maps φ̃ : Δ → Symng+n�−n(Σ̃) and ũ : S̃ → Σ̃×Δ.
(Here, S̃ is an n-fold covering of S.) It is straightforward to check that the
maps ũ and φ̃ again tautologically correspond.

Now, it follows from the Atiyah–Singer index theorem that the index of
the ∂-operator at ũ is n times the index of the ∂-operator at u. Alternately,
this is immediate from the index formula on page 1018 of [Lip06], ind(u) =
(g + � − 1)/2 − χ(S) + 2e(D(u)). �

Remark. Since the first version of this paper, S. Sarkar has proved
a combinatorial formula for the index of triangles ([Sar]). It should be
possible to use his formula to prove part (2) of Lemma 3.2. We leave this
to the interested reader.

3.2. Bordisms and Heegaard triples. Recall that any bordism W 4

from Y 3
1 to Y 3

2 can be decomposed as a collection of 1-handle attach-
ments, followed by 2-handle attachments, followed by 3-handle attachments.
(See [GS99] for an efficient exposition of handle decompositions and Kirby
calculus.) Attaching a 1-handle to W has the effect of either changing ∂W
to ∂W#(S1 × S2) or connect summing two connected components of ∂W .
Attaching 2-handles to W has the effect on ∂W of doing framed surgery
along the attaching circles of the 2-handles. Attaching a 3-handle to W has
the opposite effect of attaching a 1-handle: it either removes an S1 × S2

summand or it disconnects a connected sum.
In [OS06], Ozsváth and Szabó associate maps to 1-handle, 2-handle, and

3-handle attachings, and show that the composition of these maps depends
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only on the bordism. The absolute Q-grading, however, is defined using
bordisms composed entirely of 2-handles. We will restrict our attention
here to such bordisms, which we call for convenience link surgery bordisms.

Fix a framed n-component link L = {Li} in Y . By a bouquet for L we
mean the union of L and a path from each component Li of L to a fixed
reference point. Fix a bouquet B(L) for L. A neighborhood V of B(L)
is a handlebody of genus n. In general, Y � V will not be a handlebody;
however, it is possible to annex tubes to V to produce a new handlebody V ′

so that Y � V ′ is a handlebody. Suppose ∂V ′ has genus g. We can choose
V ′ so that a small neighborhood of Li intersects ∂V ′ in a punctured torus
Fi, with Fi ∩ Fj = ∅ for i �= j.

A Heegaard triple (Σ,α,β,γ, z) is subordinate to L if, for some choice of
bouquet and V ′ as before, there is an identification of Σ with ∂V ′ such that

• Each αi bounds a disk in Y � V ′.
• Each βi bounds a disk in V ′.
• For 1 ≤ i ≤ n, βi lies in Fi and is a meridian of Li.
• For n < i ≤ g, βi is disjoint from each Fj .
• For 1 ≤ i ≤ n, γi lies in Fi and the homology class of γi corresponds

to the framing of Li.
• For n < i ≤ g, γi is a small perturbation of βi.

This definition comes from [OS06, Section 4.1].
Observe that for such a Heegaard triple, (Σ,α, βn+1, . . . , βg) and (Σ,α,

γn+1, . . . , γg) both specify Y � L = Y (L) � L, where Y (L) denotes the
3-manifold obtained by surgery along L. Filling in the boundary of Y � L

according to the βi, i ≤ n, gives back Y ; filling in the boundary according
to the γi, i ≤ n, gives Y (L). That is, Yα,β = Y and Yα,γ = Y (L).

For any B(L), there always exists a pointed Heegaard triple subordinate to
it. Note that if we start with a link surgery bordism W and find a Heegaard
triple Tα,β,γ subordinate to the corresponding link, then W is obtained from
Wα,β,γ by filling in Yβ,γ = #g−n(S1 × S2) with �g−n(S1 × D3).

3.3. The absolute Q-grading. We will now define Ozsváth and Szabó’s
absolute Q-grading, g̃r, on ĤF (Y, torsion), following the treatment in
[OS06, Section 7]. First, for ti ∈ Spinc(Yi), we define a Spinc bordism
from (Y1, t1) to (Y2, t2) to be a pair (W, s) such that W is a bordism from
Y1 to Y2, and s ∈ Spinc(W ) satisfies s|Yi = ti. (We distinguish this con-
cept from that of stable Spinc bordism, which will be relevant in Section 4.)
For any t ∈ Spinc

tor(Y ), there exists a link surgery Spinc bordism (W, s)
from (S3, s0) to (Y, t), where s0 is the unique Spinc structure on S3. Let
Tα,β,γ be a pointed Heegaard triple realizing s and subordinate to the link.
Then Yα,β = S3, Yβ,γ = #k(S1 × S2) for some k, and Yα,γ = Y . Choose
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x0 ∈ Tα∩Tβ and θ ∈ Tβ∩Tγ so that they have the same grading as the high-
est graded elements of ĤF (S3, s0) and ĤF (#k(S1 × S2), s0), respectively.
We say that x0 and θ lie in the canonical degree.

Definition. With notation as before, define g̃r on ĈF (Sα,γ , t) by

g̃r(y) = − grs(x0, θ,y) +
c1(s)2 − 2χ(W ) − 3σ(W )

4
for y ∈ Tα ∩ Tγ with s(y) = t.

In [OS06], Ozsváth and Szabó proved that this definition gives a well-
defined absolute Q-grading on ĤF (Y, torsion). Observe that g̃r is not obvi-
ously defined for a general pointed Heegaard diagram, but only those Sα,γ

that arise from the earlier construction. Call such a diagram a g̃r-admissible
pointed Heegaard diagram for Y .

For our purposes, we need to be able to work with g̃r at the chain level.
The following cumbersome lemma may be thought of as a generalization
of the previous definition. This argument is essentially the same as in the
proofs of [OS06, Proposition 4.9, Lemma 7.5, and Theorem 7.1]. Since we
want a chain-level statement, rather than a homology-level statement, we
need to be slightly more precise.

Lemma 3.3. Let (W, s) be a link surgery Spinc bordism from (Y1, t1) to
(Y2, t2). Then there is a pointed Heegaard triple Tα,β,γ subordinate to a
link inducing W , realizing s, such that Sα,β and Sα,γ are g̃r-admissible for
Y1 = Yα,β and Y2 = Yα,γ, respectively.

In this case, for all x ∈ Tα ∩ Tβ with s(x) = t1 and y ∈ Tα ∩ Tγ with
s(y) = t2,

(3.1) g̃r(y) = g̃r(x) − grs(x, θ,y) +
c1(s)2 − 2χ(W ) − 3σ(W )

4
.

As before, θ ∈ Tβ ∩ Tγ lies in the canonical degree of ĤF (Yβ,γ = #k(S1 ×
S2), s0) for some k.

(We abuse notation here and elsewhere by identifying s with s|Wα,β,γ
.)

Proof. Suppose that L′ is a framed link in S3 so that surgery on L′ produces
Y1 and t1 extends over the induced bordism from S3 to Y1. Let L be any
framed link in Y1 inducing the link surgery bordism W . By a small pertur-
bation we can choose L to be disjoint from image of L′ in Y1, so that L is
the image of some framed link in S3. Let LL′ be the union of L′ and the
preimage, in S3, of L.

Let (Σ,α, δ,γ) be a genus g Heegaard triple subordinate to LL′, with
the δ circles ordered so that δ1, . . . , δm are meridians for components of L′

and δm+1, . . . , δn are meridians for components of the preimage of L. Let βi
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be a small isotopic translate of γi for 1 ≤ i ≤ m; let βi be a small isotopic
translate of δi for m < i ≤ n; and let βi be a small isotopic translate of both
δi and γi for n < i ≤ g, all chosen so that each βi is transverse to α ∪ δ ∪ γ.
Set β = β1 ∪ · · · ∪ βg. Then (Σ,α, δ,β) is a Heegaard triple subordinate
to L′, and Tα,β,γ = (Σ,α,β,γ) is a Heegaard triple subordinate to L. We
will now verify that Tα,β,γ satisfies the requirements in the statement of the
lemma.

Let W ′ denote the link surgery bordism induced by L′, and WW ′ the
link surgery bordism induced by LL′, so that WW ′ is the result of gluing
W to W ′ along Y1. Let s′ be a Spinc structure on W ′ extending t1, and ss′

the Spinc structure on WW ′ induced by s and s′. (Note that it is easy to
make choices above so that s, s′, and ss′ are realized by the corresponding
Heegaard triples.)

It is classical that

c1(ss′)2 − 2χ(WW ′) − 3σ(WW ′) = c1(s)2 + c1(s′)2 − 2χ(W ) − 2χ(W ′)

− 3σ(W ) − 3σ(W ′).

(In particular, for additivity of the signature, see [AS68, Section 7.1].) To
prove the result, then, it remains to check that the gr-terms add.

Note that Yβ,γ = #g−n+m(S1 × S2), Yδ,β = #g−m(S1 × S2), and Yδ,γ =
#g−n(S1 × S2). Choose θ ∈ Tβ ∩ Tγ , θ′ ∈ Tδ ∩ Tβ, and Θ ∈ Tδ ∩ Tγ lying
in the canonical degree.

It is easy to check directly that in (Σ, δ,β,γ), gr(θ′, θ, Θ) = 0. Finally,
additivity properties of the index imply that for x ∈ Tα∩Tβ and y ∈ Tα∩Tγ

with s(x) = t1 and s(y) = t2, and x0 ∈ Tα ∩ Tδ in the canonical degree,

gr(x0, θθ
′,y) + gr(θ′, θ, Θ) = gr(x0, θ

′,x) + gr(x, θ,y).

where the suppressed superscripts are understood. The result follows. �
It is convenient to also understand how g̃r behaves under connected sums.

Lemma 3.4. Let S1 and S2 be g̃r-admissible pointed Heegaard diagrams for
Y1 and Y2. Then S1#S2 is a g̃r-admissible pointed Heegaard diagram for
Y1#Y2, and

ĈF (S1#S2) = ĈF (S1) ⊗ ĈF (S2).

Furthermore, for any homogeneous elements ξ1 ∈ ĈF (S1) and ξ2 ∈ ĈF (S2)
with s(ξ1) and s(ξ2) torsion,

g̃r(ξ1 ⊗ ξ2) = g̃r(ξ1) + g̃r(ξ2).

This lemma can be proved by considering a link surgery bordism from Y1
to Y1#Y2 and applying the same reasoning used in the proof of the previous
lemma. Here, it is convenient to choose the L and L′ so that LL′ ⊂ S3 is a
split link. Then the corresponding Heegaard triple subordinate to LL′ can
be chosen to be a connected sum of a triple for Y1 and a triple for Y2.
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Finally, given a pointed Heegaard diagram S for Y , observe that if
t ∈ Spinc

tor(Y ) and ĤF (Y, t) �= 0, then g̃r on ĤF (Y, t) determines g̃r on
ĈF (S, t).

4. Proof that the two constructions agree

The purpose of this section is to prove the following theorem.

Theorem 4.1. Gr = g̃r as relative Q-gradings on ĤF (Y, torsion).

The idea of the proof is the following. The grading g̃r is well behaved
under Spinc bordisms. In particular, if we know g̃r on ĈF (Y, t), then we
can determine g̃r on any pair that is Spinc bordant to (Y, t). The definition
of g̃r in Section 3.3 works because there is only one Spinc bordism class in
dimension three. The relative grading Gr has similar good behavior under
Spinc bordism, but only those bordisms admitting Z/n-covers. In particular
if we know Gr on ĈF (Y, t) ⊕ ĈF (Y, t′), then we can determine Gr on some-
thing that is “suitably” Spinc bordant to (Y, t, t′). Therefore, if we can show
that Gr is consistent with g̃r on a representative of each “suitable” bordism
class (it turns out that lens spaces will suffice), then the result will follow.

We begin by showing that Gr has the desired behavior under connected
sums.

Lemma 4.2. Let S1 and S2 be pointed Heegaard diagrams for Y1 and Y2.
Then S1#S2 is a pointed Heegaard diagram for Y1#Y2, and

ĈF (S1#S2) = ĈF (S1) ⊗ ĈF (S2).

Furthermore, for any homogeneous elements ξ1, ξ
′
1 ∈ ĈF (S1) and ξ2, ξ

′
2 ∈

ĈF (S2) with s(ξ1), s(ξ′
1), s(ξ2), and s(ξ′

2) torsion,

Gr(ξ1 ⊗ ξ2, ξ
′
1 ⊗ ξ′

2) = Gr(ξ1, ξ
′
1) + Gr(ξ2, ξ

′
2).

Proof. Consider a cover of Y1 for which s(ξ̃1) = s(ξ̃′
1) and a cover of Y2 for

which s(ξ̃2) = s(ξ̃′
2). From these two covers, we can construct a cover of

Y1#Y2 for which the computation becomes obvious. �
Combining this lemma with Lemma 3.4, we have the following.

Corollary 4.3. If Gr = g̃r as relative Q-gradings on ĤF (Y1, torsion) and
ĤF (Y2, torsion), then they are equal on ĤF (Y1#Y2, torsion).

Now observe that trivially, Gr = g̃r as relative Q-gradings on ĤF (S1 ×
S2, s0) ∼= Z ⊕ Z. Therefore, Lemmas 3.4 and 4.2 give us the following.

Corollary 4.4. Let t, t′ ∈ Spinc
tor(Y ). Then Gr = g̃r as relative Q-gradings

on ĤF (Y, t) ⊕ ĤF (Y, t′) if and only if they are equal on ĤF (Y #(S1 ×
S2), t#s0) ⊕ ĤF (Y #(S1 × S2), t′#s0).
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The following lemma will be useful for producing equivariant Spinc bor-
disms. When t is a Spin structure we will denote the induced Spinc structure
by t as well.

Lemma 4.5. Given f : Y → BZ/n and a Spin structure t on Y , there
exists a bordism F : W → BZ/n from f to a disjoint union of maps f1 :
L(n, 1) → BZ/n, and there exists s ∈ Spinc(W ) such that s|Y = t.

Proof. First, recall the following (stable) Spin bordism groups of a point.

ΩSpin
0 = Z

ΩSpin
1 = Z/2

ΩSpin
2 = Z/2

ΩSpin
3 = 0.

We use the Atiyah–Hirzebruch spectral sequence in order to understand the
third (stable) Spin bordism group of BZ/n, ΩSpin

3 (BZ/n). We know that
each class in ΩSpin

3 (BZ/n) can be described by an element of
⊕

p+q=3

E2
p,q

∼= H0(BZ/n; ΩSpin
3 ) ⊕ H1(BZ/n; ΩSpin

2 ) ⊕ H2(BZ/n; ΩSpin
1 )

⊕ H3(BZ/n; ΩSpin
0 ).

Consider the last summand H3(BZ/n; ΩSpin
0 ) ∼= Z/n. Choose a model of

BZ/n with L(n, 1) as its 3-skeleton; this map f1 : L(n, 1) → BZ/n, together
with a Spin structure on L(n, 1) gives us a generator of H3(BZ/n; ΩSpin

0 ).
We now consider the other three summands. The first is obviously zero,

since ΩSpin
3 = 0. Since ΩSpinc

1 = 0 and ΩSpinc

2 = Z, the maps ΩSpin
1 →

ΩSpinc

1 and ΩSpin
2 → ΩSpinc

2 are both zero. By naturality of the Atiyah–
Hirzebruch spectral sequence, it follows that any element of H1(BZ/n;
ΩSpin

2 ) ⊕ H2(BZ/n; ΩSpin
1 ) is stably Spinc bordant to 0.

We would be done now, except that the stable Spin bordisms and stable
Spinc bordisms are manifolds with Spin or Spinc structures on the stable nor-
mal bundle, not the tangent bundle. For Spin bordism this is no additional
complication: there is a one-to-one correspondence between Spin structures
on the tangent bundle and Spin structures on the stable normal bundle (see
[LM89, Proposition 2.15]). In particular, (f, t) must be Spin bordant to
something in ΩSpin

3 (BZ/n)
For Spinc structures on 3-manifolds, there is no such correspondence.

However, for manifolds of dimension less than three, there is such a cor-
respondence: in these dimensions, Spinc structures on the tangent bun-
dle and Spinc structures on the stable normal bundle are both classified
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by their first Chern classes. Therefore, any element of H1(BZ/n; ΩSpin
2 ) ⊕

H2(BZ/n; ΩSpin
1 ) is honestly Spinc bordant to 0. The result follows.

�

Corollary 4.6. Fix a 3-manifold Y , a Spin structure t on Y , and a tor-
sion Spinc structure t′ on Y . Suppose that 〈t − t′〉 = Z/n ⊂ H2(Y ; Z).
Let Ỹ → Y be a Z/n-covering space as in the statement of Corollary 2.10.
Then for some u, u′ ∈ Spinc(

∐m(L(n, 1))), there are Spinc bordisms (W, s)
from (

∐m(L(n, 1)), u) to (Y, t) and (W, s′) from (
∐m(L(n, 1)), u′) to (Y, t′),

and another Spinc bordism (W̃ , s̃) from S3 to Ỹ covering (W, s) and (W, s′).
That is,

(
∐m(L(n, 1)), u) (W,s) (Y, t)

(S3, s0) (W̃ ,s̃)

��

��
��

��

(Ỹ , t̃)

��

��

(
∐m(L(n, 1)), u′) (W,s′) (Y, t′)

Further, s − s′ is a torsion element of H2(W ; Z).

Proof. Let Ỹ → Y be the covering map given by Corollary 2.10, and let
f : Y → BZ/n be its classifying map. Then by Lemma 4.5 there is a
Spinc-bordism F : (W, s) → BZ/n from f : (Y, t) → BZ/n to a disjoint
union of m maps of the form f1 : (L(n, 1), u) → BZ/n. (Here, u is some
fixed Spin structure on L(n, 1).) Recall from the proof of Lemma 2.9 that
t − t′ = f∗b for some b ∈ H2(BZ/n; Z). Setting s′ = s − F ∗b, we see that
s′|Y = t′. Setting W̃ = F ∗(EZ/n), we see that s and s′ pullback to the same
s̃ ∈ Spinc(W̃ ). �

As mentioned earlier, we will need to know that the two gradings agree
for lens spaces.

Lemma 4.7. Gr = g̃r as relative Q-gradings on ĤF (L(n, 1)).

We defer the proof of this lemma until Section 5, where it follows from
Proposition 5.3 and Corollary 5.2.

Proof of Theorem 4.1. For the sake of clarity, assume for now that there
exists a Spin structure t on Y such that ĤF (Y, t) �= 0; this is necessarily the
case, for instance, if Y is a rational homology sphere. At the end of the proof
we will explain how to remove this assumption. With this assumption, it is
sufficient to show that for all t′ ∈ Spinc

tor(Y ), Gr = g̃r as relative Q-gradings
on ĤF (Y, t) ⊕ ĤF (Y, t′).
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Let W , W̃ , s, s′, u, u′, and m be as in the statement of Corollary 4.6.
As described in Section 3.2, we can decompose W into a bordism from∐m(L(n, 1)) to Y1 = (#m(L(n, 1)))#(#k1(S1 ×S2)), a link surgery bordism
W1 from Y1 to Y2 = Y #(#k2(S1 × S2)), and a bordism from Y2 to Y .
By the previous lemma, we know that Gr = g̃r as relative Q-gradings on
ĤF (L(n, 1)). Then by Corollaries 4.3 and 4.4, we know that Gr = g̃r as
relative Q-gradings on ĤF (Y1, torsion).

Now choose a pointed Heegaard triple Tα,β,γ corresponding to W1 as in
the statement of Lemma 3.3 such that Tα,β,γ realizes both s|W1 and s′|W1 .
Let x,x′ ∈ Tα ∩ Tβ with s(x) = (#u)#s0 and s(x′) = (#u′)#s0, and let
y,y′ ∈ Tα ∩ Tγ with s(y) = t#s0 and s(y′) = t′#s0. Then

g̃r(y) − g̃r(y′) = g̃r(x) − g̃r(x′) − (grs(x, θ,y) − grs
′
(x′, θ,y′))

+
c1(s|W1)

2 − c1(s′|W1)
2

4
= g̃r(x) − g̃r(x′) − grs(x, θ,y) + grs

′
(x′, θ,y′)(4.1)

where the last line follows because s − s′ is torsion.

Claim 4.8. Gr(y,y′) = Gr(x,x′) − grs(x, θ,y) + grs
′
(x′, θ,y′).

Using the cover W̃ → W , construct a covering Heegaard triple T̃α̃,β̃,γ̃ and
compute:

Gr(y,y′) =
1
n

gr(ỹ, ỹ′)

=
1
n

(gr(x̃, x̃′) − grπ∗s(x̃, θ̃, ỹ)+ grπ∗s′(x̃′, θ̃, ỹ′)) by additivity of gr

= Gr(x,x′) − grs(x, θ,y) + grs
′
(x′, θ,y′) by Lemma 3.2.

Since ĤF (Y1, (#u)#s0) and ĤF (Y1, (#u′)#s0) are nonzero and Gr = g̃r as
relative Q-gradings on ĤF (Y1, torsion), it follows that Gr(x,x′) = g̃r(x′) −
g̃r(x). Equation (4.1) and Claim 4.8 now show that Gr = g̃r as relative
Q-gradings on ĈF (Sα,γ , t#s0) ⊕ ĈF (Sα,γ , t′#s0). Consequently they are
equal on ĤF (Y2, t#s0) ⊕ ĤF (Y2, t

′#s0), and Corollary 4.4 then shows that
they are equal on ĤF (Y, t) ⊕ ĤF (Y, t′).

We now deal with the general case when the simplifying assumption fails.
Choose a Spin structure t on Y . To prove the theorem, it is sufficient
to show that for all t′, t◦ ∈ Spinc

tor(Y ), Gr = g̃r as relative Q-gradings
on ĤF (Y, t′) ⊕ ĤF (Y, t◦). We will do this by constructing a Heegaard
diagram Sα,γ for Y #(#k2S1 × S2) for which we know the relative gradings
Gr and g̃r agree on ĈF (Sα,γ , t#s0) ⊕ ĈF (Sα,γ , t′#s0) and also agree on
ĈF (Sα,γ , t#s0) ⊕ ĈF (Sα,γ , t◦#s0). By Corollary 4.4, this is sufficient to
prove that Gr and g̃r agree as relative gradings on ĤF (Y, t′) ⊕ ĤF (Y, t◦).
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Let W , W̃ , s, s′, u, u′, m, Y1, and Y2 be the objects constructed before
using t and t′. Let W ◦, W̃ ◦, s◦, s′◦, u◦, (u◦)′, m◦, Y ◦

1 , and Y ◦
2 be the

corresponding objects constructed using t and t◦. By adding some canceling
1- and 3-handles to the decompositions of W or W ◦ if necessary, we may
assume that Y2 = Y ◦

2 .
Now, choose Heegaard triples Tα,β,γ and T ◦

α◦,β◦,γ◦ for W2 and W ◦
2 respec-

tively, with the property that Sα,γ = S◦
α◦,γ◦ . This is possible by the argu-

ment used in Lemma 3.3. That is, we view W2 and W ◦
2 as given by surgery

on disjoint links L and L′ in Y2. Then it is easy to construct the desired
triple diagrams from a diagram subordinate to L ∪ L′. Further, arrange
that ĈF (Sα,γ , t#s0) is nonzero, i.e., that there is some generator in the
Spinc-structure t#s0.

As before, it follows from Corollaries 4.3 and 4.4 that Gr = g̃r
as relative Q-gradings on both ĈF (Sα,β , t#s0) ⊕ ĈF (Sα,β , t′#s0) and
ĈF (S◦

α,β◦ , t#s0) ⊕ ĈF (S◦
α,β◦ , t◦#s0). Then, by (4.1) and Claim 4.8, it fol-

lows that Gr = g̃r as relative Q-gradings ĈF (Sα,γ , t#s0) ⊕ ĈF (Sα,γ , t′#s0)
and ĈF (Sα,γ , t#s0) ⊕ ĈF (Sα,γ , t◦#s0). It then follows that Gr = g̃r as
relative Q-gradings on ĤF (Sα,γ , t′#s0) ⊕ ĤF (Sα,γ , t◦#s0). The result now
follows from Corollary 4.4. �

As discussed in Section 2.1, there is a group ĤF (Y, �) that is independent
of choice of �-pointed Heegaard diagram. The invariant absolute grading
g̃r was originally only defined on ĤF (Y, 1) [OS06]. In light of the two
main theorems of this paper, Theorems 2.6 and 4.1, one might hope that
some generalization of g̃r to an invariant absolute grading of ĤF (Y, �) would
behave well with respect to coverings. Specifically, given a one-pointed Hee-
gaard diagram S for Y and an n-fold cover of Y , one might hope that
g̃r(x) = 1

n g̃r(x̃) (whenever x and x̃ are both nontrivial in homology). Unfor-
tunately, the example of lens spaces shows that this is impossible.

Explicitly, consider the standard one-pointed Heegaard diagrams S1 and
S2 for L(5, 1) and L(5, 2), respectively, together with the covering maps from
S3 to L(5, 1) and L(5, 2). One can find x1 ∈ ĈF (S1) and x2 ∈ ĈF (S2) with
the properties that:

• x̃1 and x̃2 define the same nontrivial element of ĤF (S3, 5).
• x1 and x2 are both nontrivial in homology, and g̃r(x1) �= g̃r(x2).

5. Lens spaces and gradings

Let p and q be relatively prime positive integers with p > q. In this sec-
tion we will compute Gr on L(p, q) and show that the answer agrees with
the relative Q-grading induced by g̃r, as computed by Ozsváth and Szabó
in [OS03, Proposition 4.8]. We first describe a pointed Heegaard diagram
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Figure 1. The lens space −L(5, 1).

S = (Σ, α, β, z) for −L(p, q). Let Σ be a torus, realized as the square
[0, 1] × [0, 1] with edges identified. Let α be the horizontal circle y = 1/2,
and let β be any circle with slope −p/q. Choose z to be any point in Σ�α�β
lying below y = 1/2. There are p connected components of Σ � α � β. We
label their closures D0, . . . , Dp−1, going from left to right, starting with
z ∈ D0. (Note that this is not the same notational convention used in Sec-
tion 2.) There are p elements of α ∩ β. We label them x0, . . . , xp−1, going
from left to right along α, such that x0 is the upper right vertex of D0. See
Figure 1.

It is easy to see that ε(xi,xj) �= 0 if i �= j, so each si = s(xi) is distinct,
and these are all of the Spinc structures on −L(p, q). Consequently, the dif-
ferential on ĈF (S) is trivial, and we can identify ĈF (S) with ĤF (−L(p, q)).
Ozsváth and Szabó proved the following inductive formula for their abso-
lute Q-grading on ĤF (−L(p, q)) in [OS03, Proposition 4.8]. Since their
formula relates g̃r on different lens spaces, we will use the notation g̃rp,q for
the absolute Q-grading on ĤF (−L(p, q)).

Proposition 5.1. In the setup described above, for 0 ≤ i < p + q,

g̃rp,q(xi mod p) =
(

pq − (2i + 1 − p − q)2

4pq

)

− g̃rq,p mod q(xi mod q).

We can use this formula to derive a noninductive formula for the relative
Q-grading induced by g̃r.

Corollary 5.2. Fix p and q, and let g̃r refer to the absolute Q-grading on
ĤF (−L(p, q)). For 0 ≤ i < p,

g̃r(xi+q mod p) − g̃r(xi) =
1
p
(p − 1 − 2i).
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Note that this formula completely determines the relative Q-grading on
ĤF (−L(p, q)).

Proof. By the previous proposition,

g̃rp,q(xi+q mod p) − g̃rp,q(xi mod p)

=
(

pq − (2(i + q) + 1 − p − q)2

4pq

)

− g̃rq,p mod q(xi+q mod q)

−
(

pq − (2i + 1 − p − q)2

4pq

)

+ g̃rq,p mod q(xi mod q)

=
(

−(2i + 1 − p + q)2

4pq

)

+
(

(2i + 1 − p − q)2

4pq

)

=
2(2i + 1 − p)(−2q)

4pq

=
1
p
(p − 1 − 2i).

�

We now derive the same formula for Gr.

Proposition 5.3. Let Gr be the relative Q-grading on ĤF (−L(p, q)) defined
in Section 2. For 0 ≤ i < p,

Gr(xi+q mod p, xi) =
1
p
(p − 1 − 2i).

Proof. Since p and q are now fixed, we can interpret the indices for x and D
as being defined mod p. In order to compute Gr(xi+q, xi) using Proposition
2.13, we need an element of π̂2(pxi+q, pxi).

Claim 5.4. For 0 ≤ i < p, let Ai =
∑p

j=1(p − (i + j))Di+j. Then Ai ∈
π̂2(pxi+q, pxi).

To see that A ∈ Ĉ2(S), note that the coefficient of D0 = Dp is zero. The
proof that A ∈ π2(pxi+q, pxi) is a simple computation using the fact that

∂∂αDi = xi+q − xi+q−1 + xi−1 − xi.

We can now plug Ai into the formula in Proposition 2.13. Noting that
e(Di) = 0, xi touches Dp+i, Di+1, Dp+i−q, and Dp+i−q+1, and xi+q touches
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Di+q, Di+q+1, Dp+i, and Di+1, we compute

Gr(xi+q, xi) =
1
p
[e(Ai) + nxi+q(Ai) + nxi(Ai)]

=
1
p

(

0 +
1
4
[(p − i − q) + (p − i − q − 1) + (−i) + (p − i − 1)]

+
1
4
[(−i) + (p − i − 1) + (−i + q) + (−i + q − 1)]

)

=
1
p
(p − 1 − 2i).

�

6. Directions for future research

This paper is an offshoot of an ongoing attempt by the authors to understand
the relationship between the Heegaard Floer homology of a space and the
Heegaard Floer homology of its finite covering spaces, the main technical
goal of which is a localization theorem. This is one direction for further
study.

More directly related to gradings, it would be interesting to extend our
definition to non-torsion Spinc structures. This has two meanings. The
simpler is that if t1 − t2 ∈ H2(Y ) is torsion then one can find a covering
space p : Ỹ → Y such that p∗t1 = p∗t2; one could try to use this cover-
ing space to define a relative grading between generators of ĈF (Y, t1) and
ĈF (Y, t2). The difficulty arises from the fact that when t is nontorsion, the
relative grading on ĈF (Y, t) is only defined modulo gcdA∈H2(Y ){〈c1(t), A〉}.
Hopefully, this difficulty could either be overcome or exploited.

A larger generalization would be to obtain a relative grading between
Spinc structures with non-torsion difference by considering infinite covering
spaces. In light of [APS75], it seems likely that here the real numbers,
rather than the rationals, would come into play. Conceivably, attempts to
generalize the index could lead to some kind of “�2 Heegaard Floer homol-
ogy” for infinite covering spaces.

Finally, it would be interesting to explore how covering spaces might be
used to construct the absolute Q-grading g̃r, as well as the induced relative
Q-grading. In view of the example of lens spaces, such a construction might
require significant new ideas.
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