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ON POISSON FUNCTIONS

Yuji Terashima

In this paper, defining Poisson functions on super manifolds, we
show that the graphs of Poisson functions are Dirac structures, and
find Poisson functions which include as special cases both quasi-Poisson
structures and twisted Poisson structures.

1. Introduction

In this paper, we define Poisson functions on super manifolds as a
generalization of Poisson structures on manifolds, and show that quasi-
Poisson and twisted Poisson structures are both special cases of Poisson
functions on some supermanifolds. Quasi-Poisson structure are introduced
by Alekseev, Kosmann-Schwarzbach, and Meinrenken [AK, AKM]. They
are defined by an invariant bivector field π on a manifold M with a group
action such that the Schouten bracket [π, π] equals the trivector field gen-
erated by the Cartan 3-tensor Ψ. A twisted Poisson structure is a bivector
field π on a manifold M such that the Schouten bracket [π, π] equals the
trivector field associated to a closed 3-form Φ on M [P, KS, SW].

In the work [SW], Ševera and Weinstein interpret twisted Poisson struc-
tures in terms of Courant algebroid and Dirac structure, and ask whether
there is a general notion which incorporates both quasi-Poisson and twisted
Poisson structures. In this paper, first, generalizing Theorem 6.1 of
Liu–Weinstein–Xu [LWX], we show that the graphs of Poisson functions
are Dirac structures. Second, we show that the notion of Poisson function
includes various notions: Poisson structure, twisted Poisson structure, quasi-
Poisson structure, Lie algebra action, Lie bialgebra action, Poisson action,
etc. In particular, we find Poisson functions which include as special cases
both quasi-Poisson structures and twisted Poisson structures. Moreover, a
Lie algebroid structure in Theorem 4.1 of Lu [L] associated to a Poisson
action of a Poisson Lie group is understood in this more general context.
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In the interesting paper [K], Kosmann-Schwarzbach, following Roytenberg
[R2], studies weaker versions of Poisson structures by using Poisson func-
tions as “twistings,” and, with many other results, points out a similarity
of quasi-Poisson structures and twistings of Lie quasi-bialgebroids. Inde-
pendently, Bursztyn and Crainic also relate hamiltonian quasi-Poisson
structures and twisted Poisson structures in [BC], and give a geometric
way to construct Lie algebroids associated with quasi-Poisson structures in
[BCS] with Ševera.

This paper is mainly based on ideas of Vaintrob [V] who interprets Lie
algebroid structures as homological vector fields on supermanifolds, and
Roytenberg [R1] who gets Courant algebroids from homological functions
on supermanifolds.

2. Poisson functions

For a smooth vector bundle V → M on a smooth manifold M , we have
a supermanifold T ∗ΠV with canonical Poisson bracket { , }. A choice of
a local coordinate system (xi) on M and a local basis (ξa) of sections of
V ∗ induces a local coordinate system (xi, ξa) on ΠV and a local coordinate
system (xi, ξa, pi, θa) on T ∗ΠV . The ring of functions on the supermanifold
T ∗ΠV is equipped with a bidegree which is compatible with the parity, by
assigning bidegree (0, 0), (1, 0), (1, 1), (0, 1) to (xi, ξa, pi, θa), respectively.

Definition 2.1. A homological function on a supermanifold with an even
Poisson bracket { , } is an odd function S satisfying {S, S} = 0.

An impressive result of D. Roytenberg [R1] is that for a homological
function S of total degree 3 on T ∗ΠV we have a Courant algebroid structure
on V ⊕ V ∗ with

• Loday bracket on Γ(V ⊕ V ∗):

[a, b]S := {{a, S}, b}

• anchor map on Γ(V ⊕ V ∗):

(τ(a))(f) := {{a, S}, f}

• inner product on Γ(V ⊕ V ∗):

(a, b) := {a, b}

• map ε : C∞(M) → Γ(V ⊕ V ∗) :

ε(f) := −1
2
{f, S},

where we identify sections of V ⊕ V ∗ with functions of total degree 1 on
T ∗ΠV .
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For a function σ of degree (0, 2), a canonical transformation

eσ(a) := a + {a, σ} +
1
2
{{a, σ}, σ} + · · ·

preserves the total degree and the Poisson bracket { , }:

{eσ(a), eσ(b)} = eσ{a, b}.

Therefore, for a homological function S of total degree 3, the function eσ(S)
is also of total degree 3 and homological.

Definition 2.2 (see [K, P, R2]). Let X be a super manifold with an even
Poisson bracket and a compatible bidegree, and let S be a homological
function on X of total degree 3. A Poisson function with respect to S is
a function σ of degree (0, 2) such that the (0, 3)-component (e−σ(S))0,3 of
e−σ(S) vanishes.

Remark 2.3. This condition is equivalent to the “Maurer–Cartan” equa-
tion:

S0,3 − {S1,2, σ} +
1
2!

{{S2,1, σ}, σ} − 1
3!

{{{S3,0, σ}, σ}, σ} = 0.

Remark 2.4. As D. Roytenberg [R2] observes, this condition gives a quasi-
Lie bialgebroid structure on (V, V ∗) (see also [K, P, HP]).

Theorem 2.5. The graph Γσ = {α + {α, σ} : α ∈ Γ(V ∗)} is an isotropic
and integrable subbundle, i.e., a Dirac subbundle, of the Courant algebroid
V ⊕ V ∗ if and only if σ is a Poisson function.

Proof. First, we note that

eσ(α) = α + {α, σ}

for any (1, 0)-function α because the bracket { , } has degree (−1,−1).
Then, for any (1, 0)-functions α, β, we have

(α + {α, σ}, β + {β, σ}) = (eσ(α), eσ(β))

= {eσ(α), eσ(β)}
= eσ{α, β}
= 0

and

[α + {α, σ}, β + {β, σ}]S = [eσ(α), eσ(β)]S
= eσ[α, β]e−σ(S)

= eσ[α, β](e−σ(S))0,3+(e−σ(S))1,2 ,
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where we use in the last equation the fact that the bracket { , } has degree
(−1, −1). Therefore, σ is a Poisson function if and only if

[α + {α, σ}, β + {β, σ}]S = eσ[α, β](e−σ(S))1,2

= [α, β](e−σ(S))1,2 + {[α, β](e−σ(S))1,2 , σ},

which means that the graph Γσ is integrable. This completes the proof of
Theorem 2.5. �

When a given homological function S has degree (1, 2)+ (2, 1), this proof
gives a proof of Theorem 6.1 in Liu–Weinstein–Xu [LWX].

3. Quasi-Poisson and twisted Poisson structures

For a smooth manifold M and a Lie algebra g with structure constants f c
ab

for a basis (τa), we consider the supermanifold X = T ∗(ΠTM × Πg∗) with
local coordinates (xi, ξi, τa) on ΠTM ×Πg∗ and conjugate local coordinates
(pi, θi, ηa). Each 3-form

Φ =
1
3!

Φijkξ
iξjξk

and each skew-symmetric 3-tensor

Ψ =
1
3!

Ψabcτaτbτc

give a homological function

S = Sg + SM + Ψ + Φ

=
1
2!

f c
abη

aηbτc + ξipi +
1
3!

Ψabcτaτbτc +
1
3!

Φijkξ
iξjξk

of degree 3 on X when Φ is closed

{SM ,Φ} = 0

with respect to SM and Ψ is closed

{Sg, Ψ} = 0

with respect to Sg. A (0, 2)-function

σ = π + ρ

=
1
2!

πijθiθj + ρj
aη

aθj

is a Poisson function with respect to S if and only if
• −{Sg, ρ} + 1

2!{{SM , ρ}, ρ} = 0
• {{SM , π}, ρ} + {{SM , ρ}, π} = 0
• 1

2!{{SM , π}, π} − 1
3!{{{Ψ, ρ}, ρ}, ρ} − 1

3!{{{Φ, π}, π}, π} = 0.
In the special case when Φ = 0, we have

• −{Sg, ρ} + 1
2!{{SM , ρ}, ρ} = 0
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• {{SM , π}, ρ} + {{SM , ρ}, π} = 0
• 1

2!{{SM , π}, π} − 1
3!{{{Ψ, ρ}, ρ}, ρ} = 0.

These conditions correspond to the following.
• ρ is a representation of: ρ : g → Γ(TM)
• π is invariant for the action ρ
• π is a quasi-Poisson structure with respect to Ψ and ρ,

when there exists an invariant inner product on g and Ψ is the associated
Cartan 3-tensor. In the special case when ρ = 0, we have

1
2!

{{SM , π}, π} − 1
3!

{{{Φ, π}, π}, π} = 0

which means that π is a twisted Poisson structure with respect to Φ.

Remark 3.1. This interpretation of quasi-Poisson structures gives a clear
view to the quasi-Poisson cohomology defined by [AKM]. In fact, the dif-
ferential of the quasi-Poisson cohomology is the restriction to the subspace
of G-invariant multivectors C∞(M,∧TM)G of the differential

d = {e−σ(S))1,2, ·}

= {−{SM , π} − {SM , ρ} +
1
2
{{Ψ, ρ}, ρ}, ·}

on the space of (0, ∗)-functions C∞(M,∧TM) ⊗ ∧g∗.

4. Lu’s Lie algebroid

For a smooth manifold M and a Lie bialgebra (g, g∗) with structure constants
f c

ab, γ
bc
a for a basis (τa, ηa) we consider the supermanifold X = T ∗(ΠTM ×

Πg∗) with local coordinates (xi, ξi, τa) on ΠTM × Πg∗ and conjugate local
coordinates (pi, θi, η

a). Each 3-form

Φ =
1
3!

Φijkξ
iξjξk

and each skew-symmetric 3-tensor

Ψ =
1
3!

Ψabcτaτbτc

give a homological function

S = Sg + Sg∗ + SM + Ψ + Φ

=
1
2!

f c
abη

aηbτc +
1
2!

γbc
a ηaτbτc + ξipi +

1
3!

Ψabcτaτbτc +
1
3!

Φijkξ
iξjξk

of degree 3 on X when Φ is closed

{SM ,Φ} = 0

with respect to SM and Ψ is closed

{Sg + Sg∗ ,Ψ} = 0
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with respect to Sg + Sg∗ . A (0, 2)-function

σ = π + ρ

=
1
2!

πijθiθj + ρj
aη

aθj

is a Poisson function with respect to S if and only if
• −{Sg, ρ} + 1

2!{{SM , ρ}, ρ} = 0
• {{SM , π}, ρ} + {{SM , ρ}, π} + 1

2!{{Sg∗ , ρ}, ρ} = 0
• 1

2!{{SM , π}, π} − 1
3!{{{Ψ, ρ}, ρ}, ρ} − 1

3!{{{Φ, π}, π}, π} = 0.
In the special case when Φ = 0 and Ψ = 0, we have

• −{Sg, ρ} + 1
2!{{SM , ρ}, ρ} = 0

• {{SM , π}, ρ} + 1
2!{{Sg∗ , ρ}, ρ} = 0

• {{SM , π}, π} = 0.
These conditions correspond to the following.

• ρ is a representation of: ρ : g → Γ(TM)
• ρ is an infinitesimal Poisson action of the Lie bialgebra (g, g∗)
• π is a Poisson structure.

For each Poisson function σ, Theorem 2.5 gives a Lie algebroid structure on
the graph Γσ which is equivalent to the Lie algebroid structure on T ∗M × g

in Theorem 4.1 of J.-H. Lu [L] associated to a Poisson action of a Poisson
Lie group.
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