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LOCAL STRUCTURE OF GENERALIZED COMPLEX
MANIFOLDS

Mohammed Abouzaid and Mitya Boyarchenko

We study generalized complex (GC) manifolds from the point of
view of symplectic and Poisson geometry. We start by recalling that
every GC manifold admits a canonical Poisson structure. We use this
fact, together with Weinstein’s classical result on the local normal form
of Poisson, to prove a local structure theorem for GC, complex mani-
folds, which extends the result Gualtieri has obtained in the “regular”
case. Finally, we begin a study of the local structure of a GC mani-
fold in a neighborhood of a point where the associated Poisson tensor
vanishes. In particular, we show that in such a neighborhood, a “first-
order approximation” to the GC structure is encoded in the data of a
constant B -field and a complex Lie algebra.

1. Introduction and main results

The main objects of study in this paper are irregular generalized complex
(GC) structures on manifolds (the terminology is explained below). In this
section, we state and discuss our main results. The rest of the paper is
devoted to their proofs.

1.1. Background on GC geometry. We begin by recalling the setup of
GC geometry. We use [1] as the main source for most basic results and
definitions, a notable exception being the notion of a GC submanifold of a
GC manifold, which is taken from [2].

The notion of a GC manifold was introduced by Hitchin (cf. [3–5]) and
developed by Gualtieri [1]. If M is a manifold (by which we mean a finite-
dimensional real C∞ manifold), specifying a GC structure on M amounts
to specifying either of the following two objects:

• an R-linear bundle automorphism J of TM ⊕ T ∗M which preserves
the standard symmetric bilinear pairing

〈
(X, ξ), (Y, η)

〉
= ξ(Y )+η(X)

and satisfies J 2 = −1 or
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• a complex vector subbundle L ⊂ TCM⊕T ∗
C
M such that TCM⊕T ∗

C
M =

L ⊕ L̄ and L is isotropic with respect to the C-bilinear extension of〈
·, ·

〉
to TCM ⊕ T ∗

C
M ,

which is required to satisfy a certain integrability condition that is similar
to the standard integrability condition for an almost complex structure on a
real manifold. A bijection between the two types of structure defined above
is obtained by associating to an automorphism J its +i-eigenbundle. In
terms of L, the integrability condition is that the sheaf of sections of L is
closed under the Courant bracket [6]

(1.1)
[
(X, ξ), (Y, η)

]
cou =

(
[X, Y ], LXη − LY ξ − 1

2
· d

(
ιXη − ιY ξ

))
.

One can check that this condition is equivalent to the vanishing of the
Courant–Nijenhuis tensor

(1.2) NJ (A, B) =
[
J A,J B

]
cou−J

[
J A, B

]
cou−J

[
A,J B

]
cou−

[
A, B

]
cou,

where A, B are sections of TM ⊕ T ∗M .
The two main examples of GC structures arise from complex and sym-

plectic manifolds. If M is a real manifold equipped with an integrable almost
complex structure J : TM → TM , it is easy to check that the automorphism

JJ =
(

J 0
0 −J∗

)

defines a GC structure on M ; such a GC structure is said to be complex.
Similarly, if ω is a symplectic form on M , we can view it as a skew-symmetric
map ω: TM → T ∗M , and then the automorphism

Jω =
(

0 −ω−1

ω 0

)

also defines a GC structure on M ; such a GC structure is said to be sym-
plectic.

A GC structure on a manifold M induces a distribution E ⊆ TCM which is
smooth in the sense of [7]. Namely, E is the image of L under the projection
map TCM ⊕ T ∗

C
M → TCM . Note that E may not have constant rank, and

in general, not every smooth section of E lifts to a smooth section of L.
In order to avoid this problem, we define the sheaf of section of E to be
the sheafification of the presheaf of sections of the bundle TCM that can
be lifted to a smooth section of L. In other words, it is the sheaf-theoretic
image of the sheaf of sections of L in the sheaf of sections of TCM . Note
that the sheaf of sections of E still determines E as a distribution, since for
each m ∈ M and each element in the fiber e ∈ Em, there exists a section of
L in a neighborhood of m whose image in TC,mM equals e.

The sheaf of sections of E is closed under the Lie bracket (i.e., E is
involutive), as follows trivially from the definition of the Courant bracket.
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Moreover, there is a (complex) 2-form ε on E defined as follows: if X, Y
are sections of E, choose a section ξ of T ∗

C
M such that (X, ξ) ∈ L and

set ε(X, Y ) = ξ(Y ). If η is a section of T ∗
C
M such that (Y, η) ∈ L, then

ξ(Y ) = −η(X) because L is isotropic with respect to the pairing
〈
·, ·

〉
, which

implies that ε(X, Y ) is independent of the choice of ξ; thus ε is well defined.
Furthermore, one can define the tensor dε ∈ ∧3(E∗) by the Cartan formula,
which makes sense since E is involutive.

Proposition 1.1 (see [1]). The data (E, ε) determines the GC structure L
uniquely. Moreover, dε = 0.

A special type of operation defined for GC structures, which plays an
important role in our discussion, is the transformation by a B-field. Specif-
ically, if B is a real closed 2-form on M , we define an orthogonal automor-
phism exp(B) of the bundle TM ⊕ T ∗M via

exp(B) =
(

1 0
B 1

)
,

where we view B as a skew-symmetric map TM → T ∗M . If J defines a GC
structure on M , and the associated pair (E, ε) is constructed as above, then
J ′ = exp(B)J exp(−B) is another GC structure on M , which follows from
the fact that exp(B) preserves the Courant bracket on TM ⊕ T ∗M , see [1].
Moreover, in this case, the +i-eigenbundle of J ′ is given by L′ = exp(B)(L),
and the associated pair (E′, ε′) is determined by E′ = E, ε′ = ε+B

∣∣
E
, where,

by a slight abuse of notation, we also denote by B the C-bilinear extension
of B to TCM . In our paper, a B-field transformation will always mean a
transformation of the form J �→ exp(B)J exp(−B), where B is a closed
real 2-form. For a more detailed discussion and a more general notion of
B-fields, see [1, 5] and references therein.

Another important construction is that of the canonical symplectic folia-
tion on a GC manifold. Namely, let us consider E ∩ Ē; this is a distribution
in TCM which is stable under complex conjugation, and hence has the form
SC = C ⊗R S for some distribution S ⊆ TM . Gualtieri [1] proves that
S is a smooth distribution in the sense of [7] and that the 2-form ω on S
defined by ω = Im

(
ε
∣∣
S

)
is (pointwise) nondegenerate. Moreover, it is now

clear that the sheaf of sections of S is closed under the Lie bracket and
that ω is a closed 2-form on S , in the same sense as in Proposition 1.1.
It follows from the results of [7] that through every point of M there is a
maximal integral manifold of S , which, by construction, inherits a natural
symplectic structure.

For example, if the GC structure on M is complex, then S = 0, whereas
if the GC structure on M is symplectic, then S = TM and the canonical
symplectic form on S coincides with the symplectic form defining the GC
structure on M .
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We now recall the notion of a GC submanifold of a GC manifold. Let L
be a GC structure on a manifold M , and let N ⊂ M be a (locally closed)
submanifold. We define a (not necessarily smooth) distribution LN on N as
follows. Set

L̃N = L
∣∣
N

∩
(
TCN ⊕

(
T ∗

CM
∣∣
N

))
and LN = pr

(
L̃N

)
,

where pr: TCN ⊕
(
T ∗

C
M

∣∣
N

)
→ TCN ⊕ T ∗

C
N denotes the natural projection

map,
(
X, ξ

)
�→

(
X, ξ

∣∣
TCN

)
. It is proved in [2] that dimC LN,n = dimR N for

all n ∈ N . However, LN may not be a subbundle of TCN ⊕ T ∗
C
N . We say

that N is a GC submanifold of M provided LN is smooth, and defines a GC
structure on N . It can be shown (cf. [2]) that a necessary and sufficient
condition for this is that LN is smooth and LN ∩ LN = 0 (integrability is
then automatic).

In conclusion, we would like to mention that there exists a way of describ-
ing GC structures on manifolds in terms of spinors. In fact, most of [1] is
written in the language of spinors. However, in our paper, we have made a
conscious effort to state and prove all of our results in a spinor-free language.
We hope that this approach helps illuminate the simple geometric ideas that
underlie our main constructions.

1.2. The canonical Poisson structure on a GC manifold. From now
on, we fix a manifold M equipped with a GC structure which, whenever
convenient, we will think of in terms of either the automorphism J or the
subbundle L ⊂ TCM ⊕ T ∗

C
M . The starting point for our work is the obser-

vation that the canonical symplectic foliation (S , ω) defined in Section 1.1
is in fact the symplectic foliation associated to a certain Poisson structure
on M . The existence of a canonical Poisson structure on a GC manifold
was also independently noticed by Gualtieri [8], and Lyakhovich and
Zabzine [9].

Let us briefly explain why one could expect the existence of a natural
Poisson structure on general grounds. Recall the definition of integrabil-
ity as the vanishing of the Courant–Nijenhuis tensor (1.2). The condition
NJ (A, B) = 0 can be naturally rewritten as a collection of four equations
corresponding to the possibilities of either A or B being a section of TM or
a section of T ∗M . Let us also write J as a matrix

(1.3) J =
(

J π
σ K

)
,

where J : TM → TM , π: T ∗M → TM , σ: TM → T ∗M and K: T ∗M →
T ∗M are bundle morphisms. The requirements that J 2 = −1 and J is
orthogonal with respect to

〈
·, ·

〉
force K = −J∗, π = −π∗, σ = −σ∗;

in particular, π can be viewed as a bivector on M , i.e., a section of∧2 TM . Moreover, it is a straightforward computation that in the case
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when A = (0, ξ) and B = (0, η), where ξ, η are sections of T ∗M , the
TM -component of NJ (A, B) is the following expression:

(1.4) [πξ, πη] − π

(
Lπξη − 1

2
d(ιπξη)

)
+ π

(
Lπηξ − 1

2
d(ιπηξ)

)
.

Observe that this expression depends only on π and not on the other com-
ponents of the matrix defining J . However, one can check that no other
entry of the matrix can be separated from the rest in this way. This suggests
that π must play a special role in the theory. In fact, one has the following
theorem.

Theorem 1.2. The bivector π defines a Poisson structure on M . More-
over, the canonical symplectic foliation associated to this Poisson structure
coincides with (S , ω).

The proof consists of a straightforward verification of the fact that the
vanishing of expression (1.4) for all 1-forms ξ and η on M is equivalent to
the vanishing of the Schouten bracket [π, π]; see [8, 10] for details. The
latter condition means precisely that π is a Poisson bivector.

Given a real-valued f ∈ C∞(M), let us write

J (0, df) = (Xf , ξf ).

By construction, Xf = π(df) is the Hamiltonian vector field on M associated
to f . On the other hand, ξf is a certain differential 1-form on M . The
following result complements Theorem 1.2.

Proposition 1.3. The map f �→ ξf has the following properties.
(1) For all f, g ∈ C∞(M), we have

ξf ·g = f · ξg + g · ξf .

(2) If {·, ·} is the Poisson bracket on C∞(M) defined by π, then

ξ{f,g} = LXf
(ξg) − ιXg(dξf ).

(3) If (E, ε) is associated to the GC structure J as in Section 1.1, then
for all f ∈ C∞(M), we have

LXf
(ε) =

(
dξf

)∣∣
E
.

We omit the proof, since it amounts to a few lines of straightforward
computations using only Cartan’s formula for the Lie derivative and the
definition of the Poisson bracket, {f, g} = Xf (g) = −Xg(f). The properties
of the map f �→ ξf turn out to be crucial in our proof of the local normal
form for GC manifolds. Moreover, these results raise the question of whether
one can give an explicit description of GC manifolds as Poisson manifolds
equipped with additional structure. In other words, consider a GC structure
on a manifold M defined by matrix (1.3). By Theorem 1.2, the pair (M, π)
is a Poisson manifold. Then the problem is to describe, in the language of
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Poisson geometry, the extra data on (M, π) that are needed to recover all of
J . Part (2) of Proposition 1.3 is a first step in this direction.

1.3. The local structure theorem for GC manifolds. We say that a
GC structure on a manifold M is regular if the distribution S (equivalently,
E) has locally constant rank. The structure is said to be irregular otherwise.
The original motivation for our work came from trying to extend the local
structure theorem proved in [1] for regular GC structures to the irregular
case. Gualtieri proved that if m ∈ M is a regular point of a given GC
structure on M (i.e., the structure is regular in an open neighborhood of
M), then there exists a neighborhood U of m in M such that the induced
GC structure on U is a B-field transform of the product of a symplectic GC
manifold and a complex GC manifold.

Let us fix a GC manifold M and a point m0 ∈ M . We define the rank,
rkm0 M , of M at m0 to be the rank of the associated Poisson tensor π at
m0. The central result of our paper is the following.

Theorem 1.4. There exists an open neighborhood U of m0 in M , a real
closed 2-form B on U , a symplectic GC manifold S and a GC manifold N
with marked points s0 ∈ S, n0 ∈ N such that rkn0 N = 0, and a diffeomor-
phism S × N → U which takes (s0, n0) to m0 and induces an isomorphism
between the product GC structure on S×N and the transform of the induced
GC structure on U via the 2-form B.

This theorem is proved in Section 3.

Remark 1.5. It is easy to recover the result of Gualtieri from Theorem
1.4. Namely, if, with the notation of the theorem, the GC structure on M
is regular in a neighborhood of m0, then the rank of N must be zero in a
neighborhood of n0. It then follows by linear algebra that the GC structure
on N must be B-complex in a neighborhood of n0, and the fact that this
structure can be written as the transform of a complex structure by a closed
real 2-form follows from the local vanishing of Dolbeault cohomology (cf. [1]).

1.4. Linear GC structures. The term “linear GC structure” should not
be confused with the notion of a constant GC structure on a real vector
space discussed in Section 2. Rather, it is used in the same way as the term
“linear Poisson structure” is used to describe the canonical Poisson structure
on the dual space of a real Lie algebra.

Recall that if (M, π) is a Poisson manifold, and m ∈ M is a point at
which the Poisson tensor π vanishes, then a “first-order approximation” to
π at m defines a real Lie algebra of dimension dim M . Canonically, this Lie
algebra can be identified with the quotient g = mm/m2

m, where mm denotes
the ideal in the algebra of all real-valued C∞ functions on M consisting of
the functions that vanish at m. Since π vanishes at m, it is easy to check
that mm is stable under the Poisson bracket, and m2

m is an ideal of mm in the
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sense of Lie algebras, and hence we obtain an induced Lie algebra bracket
on g.

Therefore one expects that, near a point on a GC manifold where the
associated Poisson tensor vanishes, the first-order approximation to the GC
structure can be encoded in a real finite-dimensional Lie algebra equipped
with additional structure. Indeed, we prove the following.

Theorem 1.6. In a neighborhood of a point on a GC manifold where the
associated Poisson tensor vanishes, the first-order approximation to the GC
structure is encoded in a complex Lie algebra of complex dimension dim M

2 ,
and a B-field which is constant in appropriate local coordinates (and hence,
a fortiori, is closed).

The meaning of this statement is explained in Section 4.
A natural problem that arises is to give a local classification of GC man-

ifolds near a point where the associated Poisson tensor vanishes. Together
with our Theorem 1.4, a solution of this problem would yield a complete
local classification of GC manifolds.

2. Linear algebra

2.1. In this section, we present the auxiliary results on linear algebra that
are used in the proofs of our main theorems. We begin by recalling that the
notion of a GC structure has an analog for vector spaces, which was studied
in detail in [1, 2]. Specifically, a constant GC structure on a real vector space
V is defined either as an R-linear automorphism J of V ⊕V ∗, which preserves
the standard symmetric bilinear pairing

〈
·, ·

〉
and satisfies J 2 = −1, or

as a complex subspace L ⊂ VC ⊕ V ∗
C
, which is isotropic with respect to

the C-bilinear extension of
〈
·, ·

〉
and satisfies VC ⊕ V ∗

C
= L ⊕ L. There is

no integrability condition in this case. It is easy to see that constant GC
structures on V correspond bijectively to GC structures on the underlying
real manifold of V that are invariant under translations. Furthermore, it is
obvious that if J is a GC structure on a manifold M , then for every point
m ∈ M , the automorphism Jm of TmM ⊕ T ∗

mM induced by J defines a
constant GC structure on TmM . From now on, by a GC vector space, we
will mean a real vector space equipped with a constant GC structure.

All notions and constructions discussed in Section 1.1 have obvious
analogs for GC vector spaces. In particular, for a real vector space V ,
we let ρ: V ⊕ V ∗ → V , ρ∗: V ⊕ V ∗ → V ∗ denote the natural projection
maps. Given a GC structure on V defined by a subspace L ⊂ VC ⊕ V ∗

C
, we

let E = ρ(L) ⊆ VC. There is an induced C-bilinear 2-form ε on E defined
in the same way as in Section 1.1, and the pair (E, ε) determines the GC
structure on V uniquely. Moreover, if S ⊆ V is the real subspace satisfying
C ⊗R S = E ∩ E, then ω = Im

(
ε
∣∣
S

)
is a symplectic form on S. Finally, the
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notion of a GC subspace of a GC vector space V is defined in the obvious
way: if W ⊆ V is a real subspace, set

L̃W = L ∩
(
WC ⊕ V ∗

C

)
and LW = pr(L̃W ),

where pr: WC ⊕ V ∗
C

→ WC ⊕ W ∗
C

is the projection map (w, λ) �→ (w, λ
∣∣
WC

).
We say that W is a GC subspace of V if LW ∩ LW = (0); it is shown in
[2] that in this case LW is automatically a GC structure on W , called the
induced GC structure.

The notion of a B-field transform is also defined in the obvious way. If
B ∈ ∧2 V ∗ is a skew-symmetric bilinear form on V, then the map

exp(B) =
(

1 0
B 1

)

is a linear automorphism of V ⊕ V ∗ which preserves the standard pairing〈
·, ·

〉
, and hence acts on constant GC structures on V via

L �→ exp(B) · L or J �→ exp(B) · J · exp(−B).

It is easy to check that, in terms of the pairs (E, ε), the transformation above
is given by

(E, ε) �−→
(
E, ε + BC

∣∣
E

)
,

where BC is the unique C-bilinear extension of B to VC.
In what follows, we will occasionally need to consider GC structures on

different vector spaces at the same time. Therefore, whenever a confusion
may arise, we will use the notation LV ⊂ VC ⊕ V ∗

C
, JV ∈ AutR(V ⊕ V ∗),

SV ⊆ V , EV ⊆ VC, etc., to denote the objects L,J , S, E, etc., that are
associated to a given GC structure on a vector space V .
2.2. For future use, we make explicit the notions of an isomorphism and a
product of GC structures. Given two real vector spaces, P and Q, equipped
with GC structures LP and LQ, an isomorphism of GC vector spaces between
P and Q is an R-linear isomorphism φ: P → Q such that the induced map

(
φC, (φ∗

C)−1): PC ⊕ P ∗
C −→ QC ⊕ Q∗

C

carries LP onto LQ. The direct sum of the GC vector spaces P and Q is the
vector space P ⊕ Q equipped with the GC structure LP ⊕ LQ (called the
product GC structure), where we have made the natural identification

(P ⊕ Q)C ⊕ (P ⊕ Q)∗
C

∼= PC ⊕ P ∗
C ⊕ QC ⊕ Q∗

C.

Finally, if V is a GC vector space and P, Q ⊆ V are two subspaces, we say
that V is the direct sum of P and Q as GC vector spaces provided P, Q are
GC subspaces of V , and if we equip P , Q with the induced GC structures
and P ⊕ Q with the product GC structure, then the map P ⊕ Q → V given
by (p, q) �→ p + q is an isomorphism of GC vector spaces.

The notions of an isomorphism and a product of GC structures have
obvious extensions to GC manifolds, see [2].
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2.3. The main results of GC linear algebra that we need are summarized
in the following theorem.

Theorem 2.1. Let V be any GC vector space, and let (S, ω) be defined as
above.

(a) The notion of being a GC subspace is transitive; in fact, the following
stronger statement holds: if W1 ⊆ V is a GC subspace and W2 ⊆ W1
is any real subspace, then W2 is a GC subspace of V if and only if it is
a GC subspace W1 with respect to the induced GC structure on W1.1

Moreover, if this is the case, then the induced GC structure on W2 is
the same in both cases.

(b) A subspace W ⊆ V is a GC subspace if and only if W∩S is a symplectic
subspace of S (in the sense that ω

∣∣
W∩S

is nondegenerate) and WC =
(WC ∩ E) + (WC ∩ E).

(c) In particular, S itself is a GC subspace of V ; the induced GC structure
on S is B-symplectic, and moreover, S is the largest GC subspace of V
with this property. The underlying symplectic structure on S is given
by ω.

(d) The notion of being a GC subspace is invariant under B-field trans-
formations of the GC structure on V .

(e) If W ⊆ V is a real subspace such that W + S = V (the sum is not
necessarily direct), then W is a GC subspace of V if and only if W ∩S
is a symplectic subspace of S. In particular, any subspace of V that is
complementary to S in the sense of linear algebra is automatically a
GC subspace of V .

(f) Let W ⊆ V be a real subspace such that W +S = V , and let S0 denote
any real subspace of S such that S = S0⊕(S∩W ), so that V = S0⊕W .
Then the following two conditions are equivalent:
(i) S0 and S ∩ W are orthogonal with respect to ω.
(ii) W and S0 are GC subspaces of V , and there exists a B-field B ∈∧2 V ∗ which transforms the GC structure on V into the direct sum

of the induced GC structures on S0 and W .
(g) If the equivalent conditions of part (f) hold, then the choice of B is

unique provided we insist that B
∣
∣
S0

= 0 and B
∣
∣
W

= 0.

Remark 2.2. As a byproduct of our discussion, we obtain an alternate
proof of the structure theorem for constant GC structures (see [1, 2]) which
does not use spinors. Indeed, if S ⊆ V is as above and W ⊆ V is any
complementary subspace to S, then parts (e) and (f) of the theorem imply
that W is a GC subspace of V and the GC structure on V is a B-field
transform of the direct product GC structure on S ⊕ W . It is then easy to

1In general, however, GC subspaces do not behave well with respect to taking sums
and intersections.
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check that the induced GC structure on S (resp., W ) is B-symplectic (resp.,
B-complex), see, e.g., [2].

Proof of Theorem 2.1. (a) It is trivial to check that the two definitions of
LW2 we obtain by viewing W2 either as a subspace of V or as a subspace of
W1 coincide, whence the claim.
(b) We first show the necessity of the two conditions. It follows from the
results of [2] that a subspace of S is a GC subspace if and only if it is
a symplectic subspace with respect to the form ω. Now if W is any GC
subspace of V , then W ∩S = SW , whence W ∩S is a GC subspace of W by
the results of [2]. By part (a), it follows that W ∩ S is also a GC subspace
of V , and hence a GC subspace of S.

Suppose now that W is a GC subspace of V , yet (WC ∩ E) + (WC ∩ E) �

WC. Then there exists a nonzero real subspace U ⊂ W with

UC ⊕
[
(WC ∩ E) + (WC ∩ E)

]
= WC.

This implies that

UC ∩
[
E + (WC ∩ E)

]
= (0) and UC ∩

[
E + (WC ∩ E)

]
= (0).

Hence we can find �, �′ ∈ V ∗
C

with �
∣∣
UC

= �′∣∣
UC


≡ 0 and �
∣∣
E+(WC∩E) ≡ 0 ≡

�′∣∣
E+(WC∩E). This forces � ∈ L ∩ V ∗

C
, �′ ∈ L ∩ V ∗

C
and �

∣∣
WC

= �′∣∣
WC


≡ 0,
which means that

(
ρ(�), ρ∗(�)

∣∣
WC

)
=

(
0, �

∣∣
WC

)
=

(
0, �′∣∣

WC

)
=

(
ρ(�′), ρ∗(�′)

∣∣
WC

)

= 0,

contradicting the assumption that W is a GC subspace of V .
Conversely, suppose that W ⊆ V is a subspace such that WC = (WC∩E) +

(WC ∩E) and W ∩S is a GC subspace (equivalently, a symplectic subspace)
of S. We will prove that W is a GC subspace of V . Assume that � ∈ L,
�′ ∈ L and ρ(�) = ρ(�′) ∈ WC, ρ∗(�)

∣∣
WC

= ρ∗(�′)
∣∣
WC

. Then, in particular,
ρ(�) = ρ(�′) ∈ (W ∩ S)C and ρ∗(�)

∣∣
(W∩S)C

= ρ∗(�′)
∣∣
(W∩S)C

, so we deduce
from the second assumption that ρ(�) = ρ(�′) = 0 and ρ∗(�)

∣∣
(W∩S)C

=
ρ∗(�′)

∣
∣
(W∩S)C

= 0. It remains to check that ρ∗(�)
∣
∣
WC

= ρ∗(�′)
∣
∣
WC

= 0. But

ρ∗(�) = � ∈ L ∩ V ∗
C = AnnV ∗

C
(E) and ρ∗(�′) = �′ ∈ L ∩ V ∗

C = AnnV ∗
C
(E),

whence �
∣∣
WC∩E

= 0 = �′∣∣
WC∩E

, and also, since �
∣∣
WC

= �′∣∣
WC

, we find from
our first assumption that �

∣
∣
WC

= �′∣∣
WC

= 0, completing the proof.
(c) This is easy. We omit the proof since the straightforward argument is
presented in [2].
(d) It follows from the remarks of Section 2.1 that a B-field transform
changes neither E, nor S, nor ω = Im

(
ε
∣∣
S

)
. Hence the claim follows from

the characterization of GC subspaces given in part (b).
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(e) We will show that if W ⊆ V is a subspace such that V = W + S, then
we automatically have WC = (WC ∩ E) + (WC ∩ E). The claim then follows
from part (b). Let w ∈ WC, and write w = e1 + e2, with ej ∈ E for j = 1, 2.
Further, we can write ej = wj + sj , where wj ∈ WC and sj ∈ SC. A fortiori,
sj ∈ E, so wj ∈ E ∩ WC. Hence

w = w1 + w2 + (s1 + s2),

where w1, w2 ∈ WC ∩ E. This forces s1 + s2 ∈ WC, and since we also have
sj ∈ SC, it follows that s1 + s2 ∈ WC ∩ SC ⊆ WC ∩ E. Finally, we conclude
that

w = (w1 + s1 + s2) + w2,

where w1 + s1 + s2 ∈ WC ∩ E and w2 ∈ WC ∩ E, as desired.
(f), (g) First, it is clear that (ii) implies (i), since B-field transforms cannot
change the imaginary part of ε. Conversely, assume that S0 and S ∩ W are
orthogonal with respect to ω. We will show that there exists exactly one
B-field B ∈ ∧2 V ∗ such that B

∣∣
S0

= B
∣∣
W

= 0 and B transforms the given
GC structure on V into the direct sum of the induced GC structures on S0
and W .

Observe that EV = ES0 ⊕ EW . Indeed, it is clear that ES0 ⊕ EW ⊆ EV .
Conversely, let e ∈ EV and write e = e1+e2, where e1 ∈ (S0)C and e2 ∈ WC.
Then, a fortiori, e1 ∈ EV , so we also have e2 ∈ EV , whence e1 ∈ EV ∩
(S0)C = ES0 and e2 ∈ EV ∩ WC = EW , proving the claim.

Note now that if the original GC structure on V is determined by (EV , ε),
then the product GC structure on S0 ⊕ W is determined by

(
ES0 ⊕ EW , ε

∣∣
ES0

+ ε
∣∣
EW

)
.

To complete the proof, we must therefore show that there exists exactly one
B ∈ ∧2 V ∗ such that B

∣∣
S0

= B
∣∣
W

= 0 and the pairing between ES0 and EW

induced by (the complexification of) B is the same as the one induced by ε.
Suppose that such a B exists. Let s ∈ S0, w ∈ W . Since w is real, we

can write w = e + e, where e ∈ E ∩ WC. Then we must have

B(s, w) = B(s, e) + B(s, e) = 2 · Re ε(s, e),

which proves that B is unique if it exists. Conversely, let us define B on
S0 ×W by this formula, and define B to be zero on S0 and on W . We claim
that B is well defined. Indeed, consider a different representation w = e′+e′,
where e′ ∈ E ∩ WC. Then

e − e′ = e′ − e ∈ (W ∩ S)C,

which implies that e − e′ = i · t for some t ∈ W ∩ S, where i =
√

−1. Hence

Re ε(s, e − e′) = − Im ε(s, t) = −ω(s, t) = 0 by assumption,

which implies that B is well defined.
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Finally, to show that B satisfies the required condition, it is enough to
check (by linearity) that if s ∈ S0 and e ∈ EW = WC ∩ E, then B(s, e) =
ε(s, e). We have

e =
e + e

2
+ i · e − e

2i
and

e + e

2
,
e − e

2i
∈ W.

By construction,

B

(
s,

e + e

2

)
= 2 Re ε

(
s,

e

2

)
= Re ε(s, e),

and similarly B
(
s, (e− e)/(2i)

)
= Im ε(s, e), which completes the proof. �

Remark 2.3. The following comment will be used in our proof of the local
structure theorem for GC manifolds. Consider a variation of GC linear
algebra where the vector space V is replaced by a smooth real vector bundle
V over a base manifold B, and a GC structure on V is a subbundle L ⊆
VC ⊕ V∗

C
such that for every point b ∈ B, the subspace Lb ⊆ Vb,C ⊕ V∗

b,C

defines a constant GC structure on the real vector space Vb. Then we have
the subdistributions E ⊆ VC and S ⊆ V which are the global analogs of E
and S, respectively, which may have nonconstant rank, but are nevertheless
smooth in the sense of [7], by the argument given in [1]. It is easy to check
that, in fact, the proofs of parts (e), (f) and (g) of Theorem 2.1 go through
in this setup with appropriate modifications that ensure smooth dependence
on the point b ∈ B.

3. Local normal form

3.1. Strategy of the proof. We begin by outlining the strategy of
our proof of Theorem 1.4. Our argument is an extension of the inductive
argument of [11]. If rkm0 M = 0, then there is nothing to prove. Otherwise,
following loc. cit., we can split M , locally near m0, as a product M = S ×N
in the sense of Poisson manifolds, M = S ×N , where S is an open neighbor-
hood of 0 in R

2 with the induced standard symplectic form ω0, and m0 ∈ M
corresponds to (0, n0) ∈ S × N . By abuse of notation, we identify N with
the submanifold {0}×N of M . It is clear that each “horizontal leaf” S×{n}
is a GC submanifold of M .

Lemma 3.1. The “transverse slice” N is a GC submanifold of M .

The proof of this lemma is given at the end of the section. We equip
N with the induced GC structure. It is clear that rkn0 N = rkm0 M − 2.
Hence, by induction, it suffices to show that in a neighborhood of m0, the
GC structure on M is a B-field transform of the product of the symplectic
structure on S and the induced GC structure on N . The proof of this
fact consists of three steps, each involving a transformation by a closed
2-form and possibly replacing M by a smaller open neighborhood of m0.
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To save space, we will still use M to denote any of these sufficiently small
neighborhoods. The steps are listed below.

(1) After a transformation by a closed 2-form B′′ on M , the induced GC
structure on each horizontal leaf S×{n} is the symplectic GC structure
defined by ω0 via the obvious identification S ∼= S × {n}.

(2) After a transformation by a closed 2-form B′ on M that restricts to
zero on the horizontal leaves S×{n} and on the transverse slice {0}×N ,
we have that for each n ∈ N , the induced constant GC structure on
T(0,n)M is the direct sum of the induced constant GC structures on
T(0,n)

(
S × {n}

)
and on TnN .

(3) After a transformation by a closed 2-form B on M that vanishes along
N , the GC structure on all of M is the product of the symplectic GC
structure on S and the induced GC structure on N .

3.2. Step 1. We begin by introducing notation that will be used in the
rest of the section. Let (p, q) denote the standard coordinates on S, so
that ω0 = dp ∧ dq; we will also view them as part of a coordinate system
(p, q, r1, · · · , rd) on M , where r1, · · · , rd are local coordinates on N centered
at n0. Note that for any such coordinate system on M , we have

(3.1) Xp = − ∂

∂q
and Xq =

∂

∂p
,

where Xp and Xq denote the Hamiltonian vector fields on M associated to
the functions p and q, as in Section 1.2.

Without loss of generality, we may assume that S is the open square
on R

2 defined by the inequalities −1 < p < 1, −1 < q < 1. A point
(s, n) ∈ S ×N = M will from now on be written as (a, b, n), where a = p(s),
b = q(s) ∈ (−1, 1). We will denote by φs: M → M and ψt: M → M the
flows of the vector field Xp and Xq, respectively. Of course, these flows are
not defined everywhere. Explicitly, we have, from equation (3.1),

(3.2) φs(a, b, n) = (a, b − s, n) and ψt(a, b, n) = (a + t, b, n).

It is clear that the flows φs and ψt commute with each other.
Furthermore, we define S0 (resp., N ) to be the distribution on M which

is tangent to the horizontal leaves S × {n} (resp., to the transverse slices
{s} × N); note that S0 is spanned by the vector fields Xp, Xq.

We now prove statement (1) of Section 3.1. Since M = S × N as Poisson
manifolds, it follows that for each n ∈ N , the induced GC structure on S ×
{n} is B-symplectic, with the underlying symplectic structure being given
by ω0. A general fact, proved in [1], is that on a B-symplectic GC mani-
fold, both the underlying symplectic structure and the B-field are uniquely
determined and, moreover, depend smoothly on the original GC structure.
In our situation, we obtain a family {B′′

n} of closed 2-forms on the leaves
S × {n}, depending smoothly on n, such that for every n ∈ N , the B-field
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B′′
n transforms the induced GC structure on S × {n} into the symplectic

structure on S × {n} defined by ω0.
The usual proof of the Poincaré lemma shows that, after possibly shrink-

ing S and N , we can find a smooth family {σn}n∈N of 1-forms on the leaves
S × {n} such that dσn = B′′

n for each n ∈ N . Now let σ be an arbitrary
1-form on M such that σ

∣∣
S×{n} = σn for each n ∈ N ; such a σ exists simply

because TM = S0 ⊕ N as vector bundles. By construction, the 2-form
B′′ = dσ satisfies the requirement of statement (1) of Section 3.1.

3.3. Step 2. It follows now from parts (f) and (g) of Theorem 2.1, together
with Remark 2.3, that for every point n ∈ N , there exists a unique 2-form
B′

n ∈ ∧2 T ∗
(0,0,n)M with the following properties:

• B′
n

∣∣
TnN

= 0;
• B′

n

∣∣
T(0,0,n)

(
S×{n}

) = 0;

• B′
n transforms the constant GC structure on T(0,0,n)M into the direct

sum of the induced GC structures on TnN and T(0,0,n)
(
S × {n}

)
;

and moreover, B′
n depends smoothly on n. We must show that there exists

a closed 2-form B′ on M such that for each n ∈ N , we have B′∣∣
S×{n} = 0

and B′∣∣
T(0,0,n)M

= B′
n. In fact, we will define B′ by an explicit formula.

Let us choose a coordinate system {xi} on S centered at (0, 0) (one can
take {xi} = {p, q}, but this is not important in this step), and a coordinate
system {yj} on N centered at n0, so that {xi, yj} is a coordinate system on
M centered at m0. We denote the corresponding coordinate vector fields by
si = ∂/∂xi, nj = ∂/∂yj . We then define B′ by the formulas

B′(si, sk) = 0; B′(si, nj)(a, b, n) = Bn
(
(si)(0,0,n), (nj)(0,0,n)

)

(in particular, note that B′(si, nj) does not depend on the coordinates xk);

B′(nj , nl) =
∑

i

[
xi ·

(
njB

′(si, nl) − nlB
′(si, nj)

)]
.

By construction, B′ satisfies all the required pointwise conditions, so we
only have to check that B′ is closed. However, it is straightforward to check,
using the definition of B′, that dB′ annihilates any triple of vector fields
chosen among the si’s and the nj ’s.

3.4. Step 3. We now complete the proof outlined in Section 3.1. Let us
begin by exploring the consequence of the fundamental theorem of calculus
in the context of Lie derivatives. With the notation of Section 3.2, let τ be
a differential form on M of arbitrary degree.

Lemma 3.2. For all (a, b, n) ∈ S × N = M , we have

(3.3) τ(a,b,n) = φ∗
bτ(a,0,n) −

∫ b

0

(
φ∗

b−s(LXpτ)
)
(a,b,n)ds
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and

(3.4) τ(a,b,n) = ψ∗
−aτ(0,b,n) +

∫ a

0

(
ψ∗

t−a(LXqτ)
)
(a,b,n)dt.

The proof of this lemma is straightforward from the definition of Lie
derivative and the fundamental theorem of calculus. Combining equations
(3.3) and (3.4), we deduce that

τ(a,b,n) = φ∗
bψ

∗
−a(τ(0,0,n)) + φ∗

b

∫ a

0

(
ψ∗

t−a(LXqτ)
)
(a,0,n)dt(3.5)

−
∫ b

0

(
φ∗

b−s(LXpτ)
)
(a,b,n)ds

= ψ∗
−aφ

∗
b(τ(0,0,n)) − ψ∗

−a

∫ b

0

(
φ∗

b−s(LXpτ)
)
(0,b,n)ds(3.6)

+
∫ a

0

(
ψ∗

t−a(LXqτ)
)
(a,b,n)dt.

In particular, Proposition 1.3(3) now implies that

ε(a,b,n) = φ∗
bψ

∗
−a(ε(0,0,n)) + φ∗

b

∫ a

0

(
ψ∗

t−a(dξq)
)
(a,0,n)dt

∣∣∣∣
E(a,b,n)

(3.7)

−
∫ b

0

(
φ∗

b−s(dξp)
)
(a,b,n)ds

∣∣∣∣
E(a,b,n)

.

We now note that, due to the preparations of Sections 3.2 and 3.3, the GC
structure on S × N defined as the product of the symplectic structure on
S and the induced GC structure on N corresponds to the 2-form ε′ on E
defined by

ε′
(a,b,n) = φ∗

bψ
∗
−a

(
ε(0,0,n)

)
.

The proof will therefore be complete if we show that the (real) 2-form B on
S × N defined by

B(a,b,n) = φ∗
b

∫ a

0

(
ψ∗

t−a(dξq)
)
(a,0,n)dt −

∫ b

0

(
φ∗

b−s(dξp)
)
(a,b,n)ds

is closed.
Recall first from Proposition 1.3 that ξ{f,g} = LXf

(ξg) − ιXg(dξf ) for
all C∞ functions f, g on M ; on the other hand, the definition of the map
f �→ ξf implies that if {f, g} is a constant function on M , then ξ{f,g} = 0.
We deduce that

LXp(ξq) = ιXq(dξp), LXq(ξp) = ιXp(dξq),(3.8)

LXp(ξp) = ιXp(dξp), LXq(ξq) = ιXq(dξq).(3.9)

We now compute

(LXqB)(a,b,n) = lim
γ→0

1
γ

·
[
ψ∗

γ

(
B(a+γ,b,n)

)
− B(a,b,n)

]
,
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and

ψ∗
γB(a+γ,b,n) = φ∗

b

∫ a+γ

0

(
ψ∗

t−a(dξq)
)
(a,0,n)dt −

∫ b

0
ψ∗

γφ∗
b−s

(
(dξp)(a+γ,s,n)

)
ds,

which leads to

(3.10) (LXqB)(a,b,n) = φ∗
b(dξq)(a,0,n) −

∫ b

0
φ∗

b−s

((
LXq(dξp)

)
(a,s,n)

)
ds.

However, we have, from equation (3.8) and Cartan’s formula for LXq ,

LXq(dξp) = dιXq(dξp) = dLXp(ξq) = LXp(dξq).

Substituting this into equation (3.10) and combining with Lemma 3.2, we
obtain

(3.11) LXqB = dξq.

A similar, but easier, computation shows that

(3.12) LXpB = dξp.

We now compute ιXpB. We use the fact that contraction commutes with
integration of differential forms, and also that the vector field Xp is invariant
under the flows φs and ψt:

(ιXpB)(a,b,n) = φ∗
b

∫ a

0

(
ψ∗

t−a(ιXpdξq)
)
(a,0,n)dt −

∫ b

0

(
φ∗

b−s(ιXpdξp)
)
(a,b,n)ds

= φ∗
b

∫ a

0

(
ψ∗

t−a(LXqξp)
)
(a,0,n)dt −

∫ b

0

(
φ∗

b−s(LXpξp)
)
(a,b,n)ds

= φ∗
b

(
(ξp)(a,0,n) − ψ∗

−a

(
(ξp)(0,0,n)

))
+ (ξp)(a,b,n) − φ∗

b

(
(ξp)(a,0,n)

)

= (ξp)(a,b,n) − φ∗
bψ

∗
−a

(
(ξp)(0,0,n)

)
,

where we have used equations (3.8) and (3.9) in the second equality and
Lemma 3.2 in the third equality. However, (ξp)(0,0,n) = 0. This follows from
the fact that (ξp)(0,0,n) depends only on the value of dp at the point (0, 0, n)
and on the induced constant GC structure on T(0,0,n)M ; on the other hand,
after the preparations of Sections 3.2 and 3.3, the constant GC structure
on T(0,0,n)M is the direct sum of the induced GC structure on TnN and the
symplectic GC structure on T(0,0,n)

(
S × {n}

)
. Therefore,

(3.13) ιXpB = ξp.

Likewise,

(3.14) ιXqB = ξq.

Let us compare equations (3.12) and (3.13). We can rewrite equation
(3.12) as d(ιXpB) + ιXp(dB) = dξp, whence equation (3.13) implies that
ιXp(dB) = 0. Likewise, equations (3.11) and (3.14) force ιXq(dB) = 0. But
Xp, Xq span the tangent space to every horizontal leaf S×{n} at every point.
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Hence, to show that dB = 0, it remains to check that the restriction of dB to
each transverse slice {s}×N is equal to zero. By construction, the restriction
of B itself to {(0, 0)} × N is zero. Let us pick three arbitrary sections
Z1, Z2, Z3 of N which commute with Xp and Xq. Then (dB)(Z1, Z2, Z3) = 0
along N = {(0, 0)} × N , and furthermore

LXp

[
(dB)(Z1, Z2, Z3)

]
= (LXp(dB))(Z1, Z2, Z3)

= (dLXpB)(Z1, Z2, Z3)

= (ddξp)(Z1, Z2, Z3) = 0,

where we have used equation (3.12) and the fact that Xp commutes
with each Zj . Similarly, LXq

[
(dB)(Z1, Z2, Z3)

]
= 0. It follows that

(dB)(Z1, Z2, Z3) = 0 everywhere on M and completes the proof.

Proof of Lemma 3.1. Let (S , ω) denote the canonical symplectic foliation
associated to the GC structure on M , and recall from Section 3.2 that
S0 ⊆ S denotes the foliation tangent to the leaves S×{n}. Since M = S×N
as Poisson manifolds, it follows that at each point (s, n) ∈ N , the tangent
space T(s,n)

(
S × {n}

)
=

(
S0

)
(s,n) is orthogonal to Ts,n

(
{s} × N

)
∩ S(s,n)

with respect to ω. In particular, by Theorem 2.1(e), the transverse slice
N satisfies the pointwise condition for being a GC submanifold of M , and
hence we must only show that LN is a subbundle of TCN ⊕ T ∗

C
N .

Since LN is the image of L̃N = L
∣∣
N

∩
(
TCN ⊕

(
T ∗

C
M

∣∣
N

))
under the

projection map TCN ⊕
(
T ∗

C
M

∣∣
N

)
→ TCN ⊕ T ∗

C
N , it suffices to show that

L̃N is a subbundle of TCN ⊕
(
T ∗

C
M

∣∣
N

)
. Further, since L̃N is defined as the

intersection of two subbundles of
(
TCM ⊕ T ∗

C
M

)∣∣
N

, it suffices to show that
L̃N has constant rank on N . Considering the projection of L̃N onto TCN ,
we obtain a short exact sequence

0 −→
(
L ∩ T ∗

CM
)∣∣

N
−→ L̃N −→

(
E

∣∣
N

∩ TCN
)

−→ 0.

Now L ∩ T ∗
C
M = AnnT ∗

C
M (E), so

rk L̃N = rk
(
AnnT ∗

C
M (E)

∣
∣
N

)
+ rk

(
E

∣
∣
N

)
− rk

(
(E

∣∣
N

)
(E

∣∣
N

∩ TCN)

)

= dimM − rk
(E

∣
∣
N

+ TCN)
TCN

= dimM − rk
TCM

∣∣
N

TCN
= dimN ;

we have used the fact that E
∣
∣
N

+TCN = TCM
∣∣
N

, which follows from S
∣∣
N

+
TN = TM

∣
∣
N

. Thus, in fact, not only is the rank of L̃N constant, but
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the projection map L̃N → LN is an isomorphism (since LN has constant
rank equal to dim N). �

4. Linearization of GC structures

In this section, we consider a GC structure J on a manifold M such that
the associated Poisson tensor has rank zero at a certain point m ∈ M . Our
goal is to describe a “first-order approximation” to the GC structure in a
neighborhood of m. We will use the notation m2

m ⊂ mm ⊂ C∞(M) in the
same sense as in Section 1.4. Also, for f ∈ C∞(M), we will use the notation
(Xf , ξf ) as defined in Section 1.2. Let us assume that J is given by matrix
(1.3). Thus, by assumption, πm: T ∗

mM → TmM is the zero map. Hence, if
we consider the induced constant GC structure Jm on TmM , its matrix has
the form

Jm =
(

Jm 0
σm −J∗

m

)
.

It is proved, for instance, in [2], that a constant GC structure of this form is
a B-field transform of a complex GC structure on TmM . If Bm ∈ ∧2 T ∗

mM
is any 2-form which transforms Jm into a complex GC structure, we can
extend Bm to a differential 2-form B on a neighborhood of m in M which is
constant in the appropriate local coordinates, and hence, a fortiori, is closed.
Applying the transformation defined by B to the structure J reduces us to
the situation where σm = 0.

We now assume that σm = 0 and explain what we mean by the first-
order approximation to J at the point m, proving Theorem 1.6 at the same
time. Let g = mm/m2

m be the real Lie algebra which encodes the first-order
approximation to π at m, as defined in Section 1.4. Thus the Lie bracket
on g is induced by the Poisson bracket on C∞(M) defined by π. We can
also think of π as a C∞(M)-linear map from Γ(M, T ∗M) to mm ·Γ(M, TM),
which induces an R-linear map

Γ(M, T ∗M)
mm

· Γ(M, T ∗M) −→ mm · Γ(M, TM)
m2

m

· Γ(M, TM).

This map also encodes the first-order approximation to π. It is then
natural to define the first-order approximation to J to be the R-linear
automorphism of

(
mm · Γ(M, TM)

m2
m

· Γ(M, TM)
)

⊕
(

Γ(M, T ∗M)
mm

· Γ(M, T ∗M)
)

induced by J . Note, however, that the map

mm · Γ(M, TM)
m2

m

· Γ(M, TM) −→ Γ(M, T ∗M)
mm

· Γ(M, T ∗M)
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induced by σ clearly vanishes; moreover, since J and K = −J∗ determine
each other, we can concentrate our attention on the map

Γ(M, T ∗M)
mm

· Γ(M, T ∗M) −→ Γ(M, T ∗M)
mm

· Γ(M, T ∗M)

induced by −J∗. Now the de Rham differential d induces an R-linear
isomorphism

mm

m2
m

�−→ Γ(M, T ∗M)
mm

· Γ(M, T ∗M),

and we have, by definition ξf = −J∗(df) for any f ∈ mm. By transport
of structure, −J∗ induces an R-linear automorphism of the Lie algebra g

which we will denote by A; by construction, A2 = −1. To obtain further
information on A, we will study it from the point of view of the map f �→ ξf .

Let f, g ∈ mm. Part (2) of Proposition 1.3 yields

ξ{f,g} = LXf
(ξg) − ιXg(dξf ) =

[
ιXf

(dξg) − ιXg(dξf )
]
+ d

(
ιXf

(ξg)
)
.

But Xf = π(df) and Xg = π(dg), which implies that the first term vanishes
modulo mm. On the other hand, ξg ≡ d(Ag) modulo mm, whence ιXf

(ξg) ≡
{f, Ag} modulo m2

m. Thus we conclude that A{f, g} ≡ {f, Ag} modulo m2
m,

which is precisely the condition for A to make g a complex Lie algebra. This
completes the proof of Theorem 1.6.
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