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COMPLEX AND KÄHLER STRUCTURES ON COMPACT
SOLVMANIFOLDS

Keizo Hasegawa

We discuss our recent results on the existence and classification
problem of complex and Kähler structures on compact solvmanifolds.
In particular, we determine in this paper all the complex surfaces which
are diffeomorphic to compact solvmanifolds (and compact homogeneous
manifolds in general).

1. Introduction

The purpose of this paper is to discuss our recent results on the existence
and classification problem of complex and Kähler structures on compact
solvmanifolds. In particular, we determine in this paper all the complex
surfaces which are diffeomorphic to four-dimensional compact solvmanifolds
(see Theorem 1); combined with many known results, this makes us
determine the complete list of complex surfaces which are diffeomorphic
to four-dimensional compact homogeneous manifolds (see Section 8).

A solvmanifold M is a compact homogeneous space of solvable Lie group,
that is, M is a differentiable manifold on which a connected solvable Lie
group G acts transitively (and almost effectively). M can be written as
D\G, where G is a simply connected solvable Lie group and D is a closed
subgroup of G (which includes no non-trivial connected normal subgroup
of G). By complex structures (or Kähler structures) on solvmanifolds, we
mean integrable almost complex structures (with compatible Kähler form)
on M which are not necessarily invariant by the canonical (right) action
of G. A complex structure J on M is called left-invariant if it is induced
from a left-invariant complex structure on G. It should be noted that com-
plex structures on solvmanifolds may or may not be left-invariant; how-
ever, we shall see in this paper that four-dimensional solvmanifolds admit
only left-invariant complex structures. We do not know any solvmanifolds

749



750 K. HASEGAWA

(including tori) of higher dimension which admit non-left-invariant complex
structures.

The classification of compact homogeneous Kähler manifolds is well
known [8, 26]; in particular, we know that the only compact homogeneous
Kähler solvmanifolds are complex tori. On the other hand, we observed in
the paper [20] that a four-dimensional solvmanifold admits a Kähler struc-
ture if and only if it is a complex torus or a hyperelliptic surface. The
following theorem on four-dimensional solvmanifolds may be considered as
a generalization of this result:

Theorem 1. A complex surface is diffeomorphic to a four-dimensional solv-
manifold if and only if it is one of the following surfaces: Complex torus,
Hyperelliptic surface, Inoue Surface of type S0, Primary Kodaira surface,
Secondary Kodaira surface, Inoue Surface of type S±. And every complex
structure on each of these complex surfaces (considered as solvmanifolds) is
left-invariant.

A hyperelliptic surface can be characterized as a finite quotient of a com-
plex torus which is simultaneously a complex torus bundle over a complex
torus. As a natural generalization of hyperelliptic surfaces to the higher
dimension, we can define a class of Kählerian solvmanifolds (see Example 4).
And as stated in the paper [20], we made a conjecture that any Kählerian
solvmanifold must belong to this class of solvmanifolds. Recently, we have
given a complete proof for this conjecture, applying a result of Arapura
and Nori on polycyclic (solvable) Kähler groups [3] (see also [1]), together
with our previous results on Kählerian nilmanifolds [9, 18] and Kählerian
solvmanifolds [20] (see Section 7):

Theorem 2. [21]. A compact solvmanifold admits a Kähler structure if
and only if it is a finite quotient of a complex torus which has a structure
of a complex torus bundle over a complex torus. In particular, a compact
solvmanifold of completely solvable type has a Kähler structure if and only
if it is a complex torus.

The last part of the theorem was first conjectured by Benson and Gordon
[10], which can be shown simultaneously in the proof of the theorem. For
the definition of completely solvable type, we refer to Section 7.

In this paper, we provide many examples of solvmanifolds, including two
class of four-dimensional solvmanifolds which admit no complex structures
(see Section 4), and a class of six-dimensional pseudo-Kählerian solvman-
ifolds (of completely solvable type) which admit no complex structures
but satisfy most of the known topological properties of compact Kähler
manifolds (see Section 7).
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2. Fundamental results on solvmanifolds

We recall some fundamental results on solvmanifolds, most of which are
found in [5]. Let M be a solvmanifold of dimension n. We have the following
basic results:

(1) M is a fiber bundle over a torus with fiber a nilmanifold (which is called
the Mostow fibration of M) [27]. In particular, we can represent the
fundamental group Γ of M as an extension of a torsion-free nilpotent
group Λ of rank n−k by a free abelian group of rank k, where 1 ≤ k ≤ n
and k = n if and only if Γ is abelian:

0 −→ Λ −→ Γ −→ Zk −→ 0.

(2) Conversely, any such abstract group Γ (which is a polycyclic group)
can be the fundamental group of some solvmanifold [35]. We call such
a group Γ a Wang group of rank n.

(3) It is also well known (due to Mostow [27]) that two solvmanifolds
having isomorphic fundamental groups are diffeomorphic.

It is often useful to assume that k = b1 (the first Betti number of M) in
the group extension of (1), which is possible due to a result of Auslander and
Szczarba [7] that a solvmanifold M = D\G has the canonical torus fibration
over the torus ND\G of dimension b1 with fiber a nilmanifold, where N is
the nilradical of G (the maximal connected normal subgroup of G).

It should be noted that a solvmanifold M is not necessarily of the form
Γ\G, where G is a simply connected solvable Lie group with discrete sub-
group Γ. However, it is known (due to Auslander [4]) that M has a solv-
manifold of the form Γ′\G as a finite covering, where Γ′ is a subgroup of
Γ with finite index. We know in general that two Wang groups are com-
mensurable if and only if the corresponding two solvmanifolds has the same
solvmanifold as a finite covering.

3. Four-dimensional solvmanifolds with complex structures

Let Γ be the fundamental group of a four-dimensional solvmanifold S. Then
we have

0 −→ Λ −→ Γ −→ Zk −→ 0,

where Λ is a torsion-free nilpotent group of rank 4 − k.
For the classification of four-dimensional solvmanifolds (up to finite cov-

ering), it is sufficient to classify Wang groups Γ as the group extensions of
the above form and find a subgroup Γ′ of finite index, which extends to a
simply connected solvable Lie group G such that Γ′\G is a solvmanifold.

We define three types of Wang groups of rank 4 as follows: (Type I)
2 ≤ k ≤ 4, (Type II) k = 1 and Λ is abelian, (Type III) k = 1 and Λ is
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non-abelian, where these three types are not mutually exclusive (as seen in
Example 1).

Example 1. Let Λn = Z2
�Z, where the action φ: Z → Aut(Z2) is defined

by φ(1) = An ∈ GL(2,Z),

An =
(

1 n
0 1

)
.

Then Λn is a nilpotent group of rank 3 and has a matrix expression:

Λn =

⎧⎨
⎩

⎛
⎝1 a c

n
0 1 b
0 0 1

⎞
⎠

∣∣∣∣∣a, b, c ∈ Z

⎫⎬
⎭ .

We see that Λn can also be expressed as a non-split group extension:

0 −→ Z −→ Λn −→ Z2 −→ 0,

where the action of Z2 on Z is trivial. It should be noted that a torsion-free
nilpotent group of rank 3 is isomorphic to Λn for some n ∈ Z.

Let Γn = Λn × Z be a nilpotent group of rank 4. Then Γn belongs to all
of the types I, II, and III.

A four-dimensional solvmanifold S is of type I (II or III) if the funda-
mental group of S is of type I (II or III, respectively). Concerning the
four-dimensional solvmanifolds of type I, we have

Proposition 1. A four-dimensional solvmanifold S is of type I if and only
if S is a T 2 bundle over T 2.

Proof. We can easily see that Wang groups with k = 3 or 4 can be expressed
also as those with k = 2. Hence, the solvmanifolds of type I are all T 2

bundles over T 2. Conversely, the fundamental group of a T 2 bundle over
T 2 is clearly a Wang group. Since we know [30] that diffeomorphism types
of T 2 bundles over T 2 are also determined uniquely by their fundamental
groups, they are diffeomorphic to some solvmanifolds of dimension four. �

It is known (due to Ue [32]) that a complex surface S is diffeomorphic
to a T 2 bundle over T 2 if and only if S is a complex torus, Kodaira sur-
face or hyperelliptic surface. The following result may be considered as a
generalization of this result.

Theorem 1. A complex surface is diffeomorphic to a four-dimensional solv-
manifold if and only if it is one of the following surfaces: Complex torus,
Hyperelliptic surface, Inoue Surface of type S0, Primary Kodaira surface,
Secondary Kodaira surface, Inoue Surface of type S±. And every complex
structure on each of these complex surfaces (considered as solvmanifolds) is
left-invariant.
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The proof of Theorem 1 consists of three parts. The first part is to show
that each of the complex surfaces (in the theorem) can be characterized as
a solvmanifold of type II or III with canonical complex structure. The rest
of this section is devoted to this part of the proof. The second part of the
proof (the converse of the first part) is to show that a complex surface with
diffeomorphism type of solvmanifold must be one of the complex surfaces in
the theorem. We shall see this part of the proof in Section 6. For the proof
of the last part of the theorem, we shall give in Section 5 the complete list of
(left-invariant) complex structures on these complex surfaces as integrable
almost complex structures on their corresponding solvable Lie algebras.

We now characterize each of the complex surfaces in the theorem as a
solvable manifold of type II or III as follows.

[Type II] We have the following split group extension, where the action
φ: Z → AutZ3 is defined by φ(1) ∈ SL(3,Z):

0 −→ Z3 −→ Γ −→ Z −→ 0.

(1) Complex tori. φ(1) = I, and thus Γ = Z4.
(2) Hyperelliptic surfaces. φ(1) has a single root 1 and a double root −1

with linearly independent eigenvectors or non-real complex roots β, β̄
with |β| = 1.

(3) Inoue surfaces of type S0. φ(1) has non-real complex roots α, ᾱ and a
real root c (c �= 1) with |α|2c = 1.

[Type III] The group extension is split and thus determined only by the
action φ: Z → Aut(Λn):

0 −→ Λn −→ Γ −→ Z −→ 0,

where Λn is a nilpotent group of rank 3 as defined in Example 1.
An automorphism φ(1) induces the automorphism φ̃(1) of the center Z of

Λn and the automorphism φ̂(1) of Z2 = Λn/Z.
(4) Primary Kodaira surfaces. φ(1) = Id, and thus Γ = Λn × Z.
(5) Secondary Kodaira surfaces. φ̃(1) = Id, and φ̂(1) has a double root 1

with linearly independent eigenvectors or non-real complex roots α, ᾱ
with |α| = 1.

(6) Inoue surfaces of type S±. φ̃(1) = ±Id, and φ̂(1) has two positive
roots a, b (a �= 1)) with ab = 1 (two real roots a, b with opposite sign
(|a| �= 1) with ab = −1 respectively). Note that the Inoue surface of
type S− has that of type S+ as a double covering.

(1) Complex tori. An n-dimensional torus Tn is a compact homogeneous
space of the abelian Lie group Rn: that is, Tn = Zn\Rn, where Zn is an
abelian lattice of Rn which is spanned by some basis of Rn as a real vector
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space. For the case n = 2m, the standard complex structure Cm on R2m

defines a complex structure on T 2m. The complex manifold thus obtained
is a complex torus.

It should be noted that Tn(n ≥ 3) can admit a structure of non-toral
solvmanifold (see Section 7). On the other hand, it is unknown if all the
complex structures on T 2m (m ≥ 3) are the standard ones. This holds for
m = 1, 2, since it does define a Riemann surface with b1 = 2 (a complex
surface with b1 = 4, respectively), which is Kählerian, and its albanese map
is biholomophic.

(2) Hyperelliptic surfaces. Let Γ = Z3
�Z, where the action φ: Z → Aut(Z3)

is defined by φ(1) ∈ SL(3,Z). Assume that φ(1) has a single root 1 and a
double root −1, with linearly independent eigenvectors of −1 or non-real
complex roots β, β̄ with |β| = 1.

For A = φ(1) ∈ SL(3,Z) which satisfies our assumption, we can find
a basis {u1, u2, u3} of R3 such that Au1 = au1 − bu2, Au2 = bu1 + au2,
Au3 = u3, where a = −1 and b = 0, for the case that A has a double
root −1 and a = Re β and b = Im β, for the case that A has a non-real
complex root β. Let ui = (ui1, ui2, ui3), i = 1, 2, 3. Then {v1, v2, v3},
vj = (u1j , u2j , u3j), j = 1, 2, 3, defines an abelian lattice Z3 of R3 which is
preserved by a rotation around a fixed axis. In particular, β must be e

√
−1ζ

(ζ = 2
3π, 1

2π or 1
3π).

Furthermore, we may assume that u3j = 0, j = 1, 2 and A is of the form
⎛
⎝a11 a12 0

a21 a22 0
p q 1

⎞
⎠ ,

where A′ = (aij) ∈ SL(2,Z), p, q ∈ Z. Since A′ has the root −1 (with linearly
independent eigenvectors) or β, we can assume that A′ is of the form:(

−1 0
0 −1

)
,

(
0 1

−1 −1

)
,

(
0 1

−1 0

)
,

(
0 1

−1 1

)
,

according to the root e
√

−1 η of A′, where η = π, 2
3π, 1

2π or 1
3π, respectively.

We now define a solvable Lie group G = (C × R) � R, where the action
φ: R → Aut(C × R) is defined by

φ(t)(z, s) = (e
√

−1ηtz, s),

which is a canonical extension of φ. Γ = Z3
� Z clearly defines a lattice of

G. Since the action on the second factor R is trivial, the multiplication of
G is defined on C2 as follows:

(w1, w2) · (z1, z2) = (w1 + e
√

−1ηtz1, w2 + z2),
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where t = Re w2. For each lattice Γ of G, S = Γ\G with the canonical
complex structure from C2 defines a complex surface which is, by definition,
a hyperelliptic surface [11].

We can see that there exist seven isomorphism classes of lattices of G,
which correspond to seven classes of hyperelliptic surfaces. For each η, take
a lattice Z3 of R3 spanned by {v1, v2, v3} for A with p = q = 0. Then we
can get a lattice Z3 spanned by {v1, v2, v

′
3} for A with arbitrary (p, q) ∈ Z2,

by changing v3 into v′
3 = sv1 + tv2 + v3, where s, t ∈ Q with 0 ≤ s, t < 1,

and Γ = Z3
�Z defines a lattice of the solvable Lie group G. By elementary

calculation, we obtain the following seven isomorphism classes of lattices:
besides four trivial cases with (p, q) = (0, 0) and (s, t) = (0, 0) for η =
π, 2

3π, 1
2π, and 1

3π, we have three other cases with (p, q) = (1, 0); (i) (s, t) =
(1
2 , 0) for η = π, (ii) (s, t) = (1

3 , 1
3) for η = 2

3π, (iii) (s, t) = (1
2 , 1

2) for η = 1
2π.

(3) Inoue surfaces of type S0. Let Γ = Z3
� Z, where the action φ: Z →

Aut(Z3) is defined by φ(1) ∈ SL(3,Z). Assume that φ(1) has complex roots
α, ᾱ and a real root c (c �= 1) with |α|2c = 1.

Let (α1, α2, α3) ∈ C3 be the eigenvector of α and (c1, c2, c3) ∈ R3 the
eigenvector of c. The set of vectors {(αi, ci) ∈ C×R | i = 1, 2, 3} are linearly
independent over R and defines a lattice Z3 of C × R. Then Γ = Z3

� Z
can be extended to a solvable Lie group G = (C×R)�R, where the action
φ̄: R → Aut(C × R) is defined by φ̄(t): (z, s) → (αtz, cts).

Taking a coordinate change R → R+ defined by t → elog ct and regarding
R × R+ as H (the upper half plain), M = Γ\G can be considered as
C × H/Γ′, where Γ′ is a group of automorphisms generated by g0 and gi,
i = 1, 2, 3, which correspond to the canonical generators of Γ. To be more
precise, we see

g0: (z1, z2) → (αz1, cz2), gi: (z1, z2) → (z1 + αi, z2 + ci), i = 1, 2, 3.

S = C × H/Γ′ is, by definition, an Inoue surface of type S0 [23].

(4) Primary Kodaira surfaces. Let Γn = Λn × Z (a nilpotent group of rank
4). Γn can be extended to the nilpotent Lie group G = N × R, where

N =

⎧⎨
⎩

⎛
⎝1 x s

0 1 y
0 0 1

⎞
⎠

∣∣∣∣∣x, y, s ∈ R

⎫⎬
⎭ .

Taking the coordinate change Φ from N × R to R4:

Φ: ((x, y, s), t) −→
(

x, y, 2s − xy, 2t +
1
2
(x2 + y2)

)
,

and regarding R4 as C2, the group operation on G can be expressed as

(w1, w2) · (z1, z2) = (w1 + z1, w2 −
√

−1w̄1z1 + z2).
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Let Γ′
n be the corresponding group of affine transformations on C2, then

S = C2/Γ′
n is, by definition, a Primary Kodaira surface [24].

(5) Secondary Kodaira surfaces. Let Γn = Λn �Z, where the action φ: Z →
Aut(Λn) satisfies the condition that the induced automorphism φ̃(1) of Z is
trivial, that is, φ̃(1) = Id, and the induced automorphism φ̂(1) of Z2 has a
double root −1 with linearly independent eigenvectors, or non-real complex
roots, α, ᾱ (α �= ᾱ) with |α| = 1.

We shall see that Γn can be extended to a solvable Lie group G = N �R.
As we have seen in (2), α must be eiη, η = π, 2

3π, 1
2π or 1

3π, and there exists
a basis {u′

1, u
′
2} of R2 such that Au′

1 = au′
1 − bu′

2, Au′
2 = bu′

1 + au′
2, where

A = φ̂(1), a = Re α, b = Im α and u′
1 = (u11, u12), u′

2 = (u21, u22). The
abelian lattice Z2 of R2 spanned by {v′

1, v
′
2}, where v′

1 = (u11, u21), v′
2 =

(u12, u22), is preserved by the automorphism ψ′: (x, y) → (ax − by, bx + ay)
of R2. We can extend ψ′ to an automorphism of N of the form:

ψ:
(
x, y,

z

n

)
−→

(
ax − by, bx + ay,

z

n
+ h(x, y)

)
,

where h(x, y) = 1
2b(ax2 −ay2 −2bxy). We can extend the lattice Z2 spanned

by {v′
1, v

′
2} to a lattice Λn spanned by {v1, v2, v3}, v1 = (u11, u21, u31), v2 =

(u12, u22, u32), v3 = (0, 0, u33), for suitable u31, u32, u33, so that Λn is pre-
served by ψ. We now define a solvable Lie group G by extending the action
φ(m) = ψm, m ∈ Z to ψ(t), t ∈ R, replacing a with cos ηt and b with sin ηt.
It is clear that Γn = Λn � Z defines a lattice of G. If we take the new
coordinate as in (4), the automorphism ψ is expressed as

(z1, z2) −→ (ζz1, z2)

for ζ ∈ C, |ζ| = 1. It follows that the above automorphism is holomorphic
with respect to the complex structure defined in (3). We see that Sn = Γn\G
is a finite quotient of a primary Kodaira surface; and Sn with the above
complex structure is, by definition, a secondary Kodaira surface [11, 13].

(6) Inoue surfaces of type S±. Let Γn = Λn � Z, where the action φ: Z →
Aut(Λn) satisfies the condition that for the induced action φ̃: Z → Aut(Z),
φ̃(1) = Id, and for the induced action φ̂: Z → Aut(Z2), φ̂(1) = (nij) ∈
SL(2,Z) has two positive real roots a, b with ab = 1.

Let (a1, a2), (b1, b2) ∈ R2 be eigenvectors of a, b, respectively. Let G =
N�R be a solvable Lie group, where the action φ̄: R → Aut(N) is defined by

φ̄(t):

⎛
⎝1 x z

0 1 y
0 0 1

⎞
⎠ −→

⎛
⎝1 atx z

0 1 bty
0 0 1

⎞
⎠,
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which is a canonical extension of φ. In order to define a lattice Λn which is
preserved by φ̄, we take g1, g2, g3 ∈ N as

g1 =

⎛
⎝1 a1 c1

0 1 b1
0 0 1

⎞
⎠, g2 =

⎛
⎝1 a2 c2

0 1 b2
0 0 1

⎞
⎠, g3 =

⎛
⎝1 0 c3

0 1 0
0 0 1

⎞
⎠,

where c1, c2, c3 are to be determined, satisfying the following conditions:
(1) [g1, g2] = gn

3
(2) φ̄(1)(g1) = gn11

1 gn12
2 gk

3 , φ̄(1)(g2) = gn21
1 gn22

2 gl
3, where k, l ∈ Z.

If we take g0 ∈ N � R as

g0 =

⎛
⎝

⎛
⎝1 0 p

0 1 0
0 0 1

⎞
⎠, 1

⎞
⎠ , p ∈ R,

then {g0, g1, g2, g3} defines a lattice Γn of G, and Sn = Γn\G is a solvmani-
fold.

Now, we define a diffeomorphism Ψ: G = N � R −→ R3 × R+, for an
arbitrary γ = p + q

√
−1 ∈ C and σ = log b, by

Ψ:

⎛
⎝

⎛
⎝1 y x

0 1 s
0 0 1

⎞
⎠, t

⎞
⎠ −→ (x, eσty + q t, s, eσt).

Then considering R3 × R+ as C × H, g0, g1, g2, g3 are corresponding to the
following holomorphic automorphisms of C × H,

g0: (z1, z2) −→ (z1 + γ, bz2),

gi: (z1, z2) −→ (z1 + aiz2 + ci, z2 + bi),

where i = 1, 2, 3 and a3 = b3 = 0. Sn with the above complex structure is,
by definition, an Inoue surface of type S+ [23].

An Inoue surface of type S− is defined similarly as the case where the
action φ: Z → Aut(Λn) satisfies the condition that φ̃(1) = −Id, and φ̂(1)
has a positive and a negative real root. It is clear that an Inoue surface of
type S− has S+ with γ = 0 as its double covering surface.

4. Examples

We give in this section three other classes of four-dimensional (orientable)
solvmanifolds which (as a consequence of Theorem 1) admit no complex
structures.

Example 2. Let Γ be the Wang group of type II defined by the following
split group extension, where the action φ: Z → AutZ3 is defined by φ(1) ∈
SL(3,Z):

0 −→ Z3 −→ Γ −→ Z −→ 0.
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(1) Suppose that φ(1) has three distinct positive real roots a1, a2, a3, then
there exist linearly independent eigenvectors u1, u2, u3 of a1, a2, a3
respectively. Let ui = (ui1, ui2, ui3), i = 1, 2, 3. Then we have an
abelian lattice Z3 of R3 defined by {v1, v2, v3}, vj = (u1j , u2j , u3j),
j = 1, 2, 3. We define a solvable Lie group G = R3

� R, where the
action φ: R → Aut(R3) is defined by

φ(t)(x, y, z) = (et log a1x, et log a2y, et log a3z),

which is a canonical extension of φ. Then Γ = Z3
� Z is a lattice of

G, and S = Γ\G is a solvmanifold. We can see that S is a T 2-bundle
over T 2 with b1 = 2 for the case where one of the roots is 1 and a T 3

bundle over T 1 with b1 = 1 for the case where none of the roots is 1.
(2) Suppose that φ(1) has a triple root 1, then taking a suitable basis

{u1, u2, u3} of R3, φ(1) is expressed in either of the following forms:
⎛
⎝1 1 1

2
0 1 1
0 0 1

⎞
⎠,

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠.

Let G = R3
� R, where the action φ̄: R → Aut(R3) is defined by

φ̄(t) = exp t

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ =

⎛
⎝1 t 1

2 t2

0 1 t
0 0 1

⎞
⎠

for the former case, and

φ̄(t) = exp t

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝1 t 0

0 1 0
0 0 1

⎞
⎠

for the latter case. Then, as defined in case (1), {v0, v1, v2, v3} defines
a lattice Γ of G, and S = Γ\G is a nilmanifold. We can see that S is a
nilmanifold with b1 = 2 for the former case (which admits no complex
structures) and a nilmanifold with b1 = 3 for the latter case (which is
a primary Kodaira surface).

Remark 1. We can show that, up to finite covering, there exist nine classes
of four-dimensional (orientable) solvmanifolds: six classes of complex sur-
faces in Section 3 and three classes of solvmanifolds in Example 2, which
admit no complex structures.

Example 3. Let Γn be a Wang group expressed as the extension:

0 −→ Z2 −→ Γn −→ Z2 −→ 0,
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where the action φ: Z2 → Aut(Z2) is defined by φ(e1), φ(e2), e1 = (1, 0),
e2 = (0, 1). Suppose that φ(e1) = −I and φ(e2) is of the form(

1 n
0 1

)
.

Then we can express Γn also as Λn � Z, where Λn is the nilpotent group of
rank 3 as defined in Example 1, and the action φ: Z → Aut(Λn) is defined
by φ(1) = τ ∈ Aut(Λn),

τ :

⎛
⎝1 x z

n
0 1 y
0 0 1

⎞
⎠ −→

⎛
⎝1 x −z

n
0 1 −y
0 0 1

⎞
⎠.

Let G = N × R be a nilpotent Lie group, where N is the nilpotent Lie
group obtained by the real completion of Λn as defined in (4). Γn acts freely
as a group of automorphisms on G, and Sn = G/Γn is a solvmanifold with
b1 = 2. Sn has the nilmanifold (Λn × Z)\G as a double covering, with the
covering transformation group Z2 generated by τ .

We show that Sn is parallelizable, that is, Sn admits a field of linear
frame (consisting of four linearly independent vector fields). We have three
linearly independent left-invariant vector fields on N :

X1 =
∂

∂x
, X2 =

∂

∂y
+ nx

∂

∂z
, X3 =

∂

∂z
.

We define vector fields on G invariant by τ : X̃1 = X1, X̃4 = ∂/∂t and

X̃2 = cos(πt)X2 + sin(πt)X3, X̃3 = − sin(πt)X2 + cos(πt)X3,

which are linearly independent and invariant by Γn.
It should be noted that Sn can be expressed as Dn\G, where G is the

extension of G with y, z ∈ C and the action φ defined by

φ(t)(x, y, z) =
(
x, e

√
−1πty, e

√
−1πtz

)
,

and Dn = ΓnH, where H is the closed subgroup of G with x = 0, y =√
−1y2, z =

√
−1z2, y2, z2 ∈ R.

Remark 2. As noted in the paper [6], all of the four-dimensional solvman-
ifolds are parallelizable. This is trivial for the case where S is of the form
Γ\G (where Γ is a simply connected solvable Lie group with lattice Γ). For
the case where S is not of the form Γ\G, we can see that, as shown in
Example 3, S always admits a field of linear frame.

5. Complex structures on solvable Lie algebras

A four-dimensional solvmanifold can be written (up to finite covering) as
Γ\G, where Γ is a lattice of a simply connected solvable Lie group G. In
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this section, we express complex structures of the complex surfaces in the last
section as those induced from left-invariant complex structures on G (i.e.,
left-invariant complex structures), by defining integrable almost complex
structures J on the Lie algebra g of G. In the following list, we express
the Lie algebra g of G as having a basis {X1, X2, X3, X4} with the bracket
multiplication specified for each complex surface. Except for (6), the almost
complex structure J is defined by

JX1 = X2, JX2 = −X1, JX3 = X4, JX4 = −X3,

for which the Nijenhuis tensor NJ(Xi, Xj) = [JXi, JXj ] − J [JXi, Xj ] −
J [Xi, JXj ] − [Xi, Xj ], 1 ≤ i < j ≤ 4, vanishes.

(1) Complex tori. [Xi, Xj ] = 0 (1 ≤ i < j ≤ 4).
(2) Hyperelliptic surfaces. [X4, X1] = −X2, [X4, X2] = X1, and all other

brackets vanish.
(3) Inoue surfaces of type S0. [X4, X1] = aX1−bX2, [X4, X2] = bX1+aX2,

[X4, X3] = −2aX3, and all other brackets vanish, where a, b (�=0) ∈ R.
(4) Primary Kodaira surfaces. [X1, X2] = −X3, and all other brackets

vanish.
(5) Secondary Kodaira surfaces. [X1, X2] = −X3, [X4, X1] = −X2,

[X4, X2] = X1, and all other brackets vanish.
(6) Inoue surfaces of type S+ and S−. [X2, X3] = −X1, [X4, X2] = X2,

[X4, X3] = −X3, and all other brackets vanish. The almost complex
structure J is defined by

JX1 = X2, JX2 = −X1, JX3 = X4 − qX2, JX4 = −X3 − qX1,

for which the Nijenhuis tensor NJ vanishes.

6. Proof of Theorem 1

We have seen in Sections 3 and 5 that each of the complex surfaces in
Theorem 1 can be characterized as a four-dimensional solvmanifold with
canonical left-invariant complex structure. In this section, we shall complete
the proof of Theorem 1, showing the converse that a complex surface with
diffeomorphism of solvmanifold must be one of the complex surfaces in the
theorem.

We denote by S a complex surface with diffeomorphism type of solvman-
ifold. We first remark that since S is parallelizable, the Euler number c2 of
S vanishes, and the fundamental group of S is abelian if and only if S is a
four-dimensional torus [27]. Let κ(S) be the Kodaira dimension of S. The
classification of complex surfaces with c2 = 0 is divided into three cases:
κ(S) = −∞, 0, 1 [11]. In the case where κ(S) = −∞, S is a surface of class
VII0 or ruled surface of genus 1. The latter surface cannot be diffeomorphic
to a solvmanifold since the fundamental group of ruled surface of genus 1 is
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Z2 (which is abelian). According to the well-known theorem of Bogomolov
(proved by Li et al. [15]), we know that a complex surface of class VII0
with b1 = 1 and c2 = 0 is an Inoue surface or a Hopf surface. Since the
fundamental group of the Hopf surface is of the form H � Z, where H is
a finite unitary group (including the trivial case), it cannot be the funda-
mental group of solvmanifold. Hence, S must be an Inoue surface. In the
case where κ(S) = 0, S is a complex torus, hyperelliptic surface or Kodaira
surface (primary or secondary Kodaira surface).

In the case where κ(S) = 1, S is a (properly) elliptic surface (which is
minimal since c2 = 0). Let us first recall some terminologies and funda-
mental results concerning topology of elliptic surfaces in general. An elliptic
surface is a complex surface S together with an elliptic fibration f : S → B,
where B is a curve, such that a general fiber f−1(t), t ∈ B (except finite
points t1, t2, . . . , tk) is an elliptic curve. The base curve B is regarded as a
two-dimensional orbifold with multiple points ti with multiplicity mi, where
mi(i ≥ 2) is the multiplicity of the fiber f−1(ti) (i = 1, 2, . . . , k). An ellip-
tic surface S is of the type hyperbolic, flat (Euclidean), spherical or bad,
according as the orbifold B is of that type. The Euler number eorb(B) of
B is by definition e(B) −

∑k
i=1(1 − 1

mi
), where e(B) is the Euler number

of B as topological space. We know that B is hyperbolic, flat or spherical
according as eorb(B) is negative, 0 or positive. In the case c2 = 0, we can
see [33, 34] that an elliptic surface S is hyperbolic, flat or spherical accord-
ing as the Kodaira dimension κ(S) is 1, 0 or −∞. We now continue our
proof for the case κ(S) = 1. By the above argument, S is a minimal elliptic
surface of hyperbolic type. We show that the fundamental group of S is not
solvable, and thus S cannot be diffeomorphic to a solvmanifold. We have
the following presentation of π1(S) as a short exact sequence [13]:

0 −→ Z2 −→ π1(S) −→ πorb
1 (B) −→ 0,

where πorb
1 (B) is the fundamental group as two-dimensional orbifold.

Since πorb
1 (B) is a discrete subgroup of PSL(2,R), it contains a torsion-

free subgroup Γ of finite index, such that Γ is the fundamental group of a
finite orbifold covering B̃ of B, which is a closed surface of genus g ≥ 2
(or a Riemann surface of hyperbolic type) [28]. We know that Γ is repre-
sented as a group with generator {a1, a2, . . . , ag, b1, b2, . . . , bg} and relation∏g

i=1[ai, bi] = 1, which is not solvable for g ≥ 2 [12]. It follows that π1(S)
cannot be solvable since the quotient groups and subgroups of a solvable
group must be solvable. This completes the proof of Theorem 1. �

7. Solvmanifolds with Kähler structures

Let M be a solvmanifold of the form Γ\G, where Γ is a lattice of a simply
connected solvable Lie group G. M is of completely solvable type, if the



762 K. HASEGAWA

adjoint representation of the Lie algebra g of G has only real eigenvalues
and of rigid type (or of type (R)), in the sense of Auslander, if the adjoint
representation of g has only pure imaginary (including 0) eigenvalues. It is
clear that M is both of completely solvable and of rigid type if and only if
g is nilpotent, that is, M is a nilmanifold. As we have seen in Sections 4
and 5, a hyperelliptic surface can be characterized as a solvmanifold of rigid
type with canonical complex structure. We define a natural generalization
of hyperelliptic surfaces as in the following example.

Example 4. Let G = Cl
�R2k with the action φ: R2k → Aut(Cl) defined by

φ(t̄i)(z1, z2, . . . , zl) =
(
e
√

−1ηi
1tiz1, e

√
−1ηi

2tiz2, . . . , e
√

−1ηi
l tizl

)
,

where t̄i = tiei (ei: the ith unit vector in R2k) and e
√

−1 ηi
j is the sith root of

unity, i = 1, . . . , 2k, j = 1, . . . , l. If an abelian lattice Z2l of Cl is preserved
by the action φ on Z2k, then M = Γ\G defines a solvmanifold of rigid type,
where Γ = Z2l

� Z2k is a lattice of G. In fact, the Lie algebra g of G is the
following:

g = {X1, X2, . . . , X2l, X2l+1, . . . , X2l+2k},

where the bracket multiplications are defined by

[X2l+2i, X2j−1] = −X2j , [X2l+2i, X2j ] = X2j−1

for i = 1, . . . , k, j = 1, . . . , l, and all other brackets vanish. The canonical
left-invariant complex structure is defined by

JX2j−1 = X2j , JX2j = −X2j−1, JX2l+2i−1 = X2l+2i,

JX2l+2i = −X2l+2i−1

for i = 1, . . . , k, j = 1, . . . , l.

Remark 3. Let G = Cl
�R2k with the action φ: R2k → Aut(Cl) defined by

φ(t̄i)(z1, z2, . . . , zl) =
(
e2π

√
−1tiz1, e

2π
√

−1tiz2, . . . , e
2π

√
−1 tizl

)
,

where t̄i = tiei (ei: the i-the unit vector in R2k), i = 1, . . . , 2k. Then Z2n\G
is a solvmanifold diffeomorphic to a torus T 2n (n = k + l).

It is easily seen that M (in Example 4) is a finite quotient of a complex
torus and has a structure of a complex torus bundle over a complex torus.
The following theorem asserts that any solvmanifolds which admit Kähler
structures must belong to the class of Kählerian solvmanifolds defined in
Example 4. Note that a solvmanifold of completely solvable type does not
belong to this class unless it is a complex torus:

Theorem 2 [21]. A compact solvmanifold admits a Kähler structure if
and only if it is a finite quotient of a complex torus which has a structure
of a complex torus bundle over a complex torus. In particular, a compact
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solvmanifold of completely solvable type has a Kähler structure if and only
if it is a complex torus.

The proof of the theorem is based on a result of Aparura and Nori [3]
that a polycyclic Kähler group has a nilpotent subgroup of finite index,
together with our previous results: a result of the papers [9, 18] that the only
Kählerian nilmanifold is a complex torus and a partial result on Kählerian
solvmanifolds in the paper [20]. For the details of the proof and the related
topics, we refer to the paper [21].

We give an example of a six-dimensional solvmanifold which admits a
psuedo-Kähler structures but no Kähler structures.

Example 5 [2]. Let Λ = Z4
� Z, with the action φ: Z → Aut(Z4) defined

by φ(1) = A⊕A ∈ Aut(Z4), where A ∈ SL(2,Z) has two positive eigenvalues
a1, a2 (a1 �= 1, a1a2 = 1). Let u = (u1, u2), v = (v1, v2) be the eigenvectors of
a1, a2, respectively. We have a basis {(u1, v1, 0, 0), (u2, v2, 0, 0), (0, 0, u1, v1),
(0, 0, u2, v2)} of R4, which defines an abelian lattice Z4 of R4. We define a
solvable Lie group H = R4

� R with the action φ̄: R → Aut(R4) defined by

φ̄(t)(x1, x2, y1, y2) = (et log a1x1, e
t log a2x2, e

t log a1y1, e
t log a2y2),

which is a canonical extension of φ. Then, Γ = Λ×Z is a lattice of a solvable
Lie group G = H × R, and M = Γ\G is a six-dimensional solvmanifold.

The Lie algebra g of G is expressed as having a basis {X1, X2, Y1, Y2, Z, W}
with the bracket multiplication:

[X1, Z] = X1, [X2, Z] = −X2, [Y1, Z] = Y1, [Y2, Z] = −Y2,

and all other brackets vanishing. Let α1, α2, β1, β2, γ, η be the corresponding
Maurer–Cartan forms (left-invariant 1-forms), then we have

dα1 = γ∧α1, dα2 = −γ∧α2, dβ1 = γ∧β1, dβ2 = −γ∧β2, dγ = dη = 0.

Let ω = α1 ∧α2 +β1 ∧β2 +γ∧η, then ω defines a left-invariant symplectic
form on M . A complex structure J on g is defined by

JX1 = Y1, JY1 = −X1, JX2 = Y2, JY2 = −X2, JZ = W, JW = −Z.

It is easy to check that the Nijenhuis tensor vanishes for J and that the pair
(ω, J) defines a psuedo-Kähler structure on M . Since G is of completely
solvable type, we can apply a result of Hattori [22] that the De Rham
cohomology ring of M is isomorphic to the cohomology ring of g. It is
now not hard to check that with respect to (ω, J) the following “Kähler
conditions” hold for M (while M never admits Kähler structures due to
Theorem 1): (1) the Hard Lefschetz condition, (2) the Betti number b2k−1
are even, (3) the De Rham complex is formal and (4) the Fröhlicher spectral
sequence degenerates at E1. For more details, we refer to the papers [2, 3].
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8. Four-dimensional compact homogeneous manifolds with
complex structures

In this section, we determine all the complex surfaces which are diffeomor-
phic to four-dimensional compact homogeneous manifolds.

It is known (due to Gorbatsevich [16, 17]) that a four-dimensional com-
pact homogeneous manifold is diffeomorphic to one of the following types:
(1)

∏
Ski (up to finite quotient), where ki ≥ 1 with

∑
ki = 4; (2) CP2;

(3) solvmanifold; (4) S1×Γ\S̃L2(R), where S̃L2(R) is the universal covering
of SL2(R) and Γ is a lattice of S̃L2(R). We can determine, based on the
above result, the complete list of complex surfaces with diffeomorphism type
of four-dimensional compact homogeneous manifolds:

where κ is the Kodaira dimension of S and H is a finite subgroup of SU(2)
acting freely on S3.

It is well known (due to Borel and Serre) that S4 has almost no complex
structure. For the case of S2 × T 2, it is known (due to Suwa [29]) that a
complex surface is diffeomorphic to a S2-bundle over T 2 if and only if it is a
ruled surface of genus 1. We can see this also from the recent result (due to
Friedman and Qin [14]) that the Kodaira dimension of complex algebraic
surface is invariant up to diffeomorphism. To be more precise, there exist
two diffeomorphism types of ruled surfaces of genus 1: the trivial one and
the non-trivial one (which correspond to two diffeomorphism types of S2-
bundles over T 2), and the latter is not of homogeneous space form [29].

For the case of S1 × S3, Kodaira [25] showed that a complex surface
diffeomorphic to a finite quotient of S1 × S3 is a Hopf surface. Generally,
a Hopf surface is diffeomorphic to a fiber bundle over S1 with fiber S3/U,
defined by the action ρ: π1(S1) → NU(2)(U) with ρ(1) being cyclic of order
m, where U is a finite subgroup of U(2) acting freely on S3: that is, S =
S1 × ZmS3/U [19]. We can see that a Hopf surface is of homogeneous space
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form if and only if U is a finite subgroup of SU(2). Let G = SU(2) × S1,
which is a compact Lie group structure on S3 × S1. Take a finite subgroup
∆ = H � Zm of G, where H is a finite subgroup of SU(2), Zm is a finite
cyclic subgroup of G generated by c:

c = (τ, ξ), τ =
(

ξ−1 0
0 ξ

)
, ξm = 1,

and τ belongs to NSU(2)(H). S is a fiber bundle over S1 with fiber S3/H,
which has a canonical complex structure, defining a Hopf surface. It should
be noted that if τ does not belong to H and m ≥ 2, then S is a non-trivial
bundle. Conversely, given a Hopf surface S with fiber S3/H, defined by
the action ρ, we can assume that ρ(1) is a diagonal matrix, all of which
entries are m-th roots of 1 [19]. Then we can see that ρ(1), which belongs
to NU(2)(H), actually belongs to NSU(2)(H). Hence, S is diffeomorphic to
the one constructed above.

For the case of S2 × S2, it was shown (due to Qin [31]) that a complex
surface diffeomorphic to S2 ×S2 must be a Hirzebruch surface of even type,
which is by definition a ruled surface of genus 0 with diffeomorphism type
S2 × S2. As is well known, there exist two diffeomorphism types of ruled
surfaces of genus 0: S2 × S2 and CP2#CP2 (which correspond to two dif-
feomorphism types of S2-bundles over S2). A Hirzebruch surface of odd
type is the surface of the latter type. We can see that no non-trivial finite
quotient of S2 × S2 has a complex structure. It is well known (due to Yau)
that CP2 can have only the standard complex structure. We have studied
in detail the case of solvmanifolds in this paper. The complex surfaces with
diffeomorphism type of solvmanifolds are Inoue surfaces for κ = −∞ and
all of those with c2 = 0 for κ = 0. For the case of S1 × Γ\S̃L2(R), Wall
[33] showed that it admits a canonical complex structure, which defines a
properly elliptic surface with b1 = odd and c2 = 0; and conversely any such
surface with no singular fibers is diffeomorphic to S1 × Γ\S̃L2(R) for some
lattice Γ.
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