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LAGRANGIAN BOUNDARY CONDITIONS FOR
ANTI-SELF-DUAL INSTANTONS AND THE

ATIYAH–FLOER CONJECTURE

Katrin Wehrheim

The purpose of this survey is to explain an approach to the Atiyah–
Floer conjecture via a new instanton Floer homology with Lagrangian
boundary conditions. This is a joint project with Dietmar Salamon; see
[14] for an earlier exposition. This paper also provides a rough guide
to the analysis of anti-self-dual instantons with Lagrangian boundary
conditions in [21, 22], which is the crucial ingredient of our approach.

1. Introduction

Atiyah [1] and Floer conjectured a natural isomorphism between the instan-
ton Floer homology HFinst

∗ (Y ) of a homology 3-sphere Y and the symplectic
Floer homology HFsymp

∗ (RΣ, LH0 , LH1) of a pair of Lagrangians LH0 , LH1 in
the symplectic moduli space RΣ of flat SU(2)-connections associated to a
Heegard splitting Y = H0∪ΣH1. Both homologies were introduced by Floer
[7, 8], but the symplectic Floer homology is not strictly defined in this case
due to singularities of RΣ. Taubes [16] proved that the Euler characteristics
both agree with the Casson invariant of Y . The main task in identifying the
homology groups is a comparison between the trajectories: pseudoholomor-
phic curves in RΣ with Lagrangian boundary conditions and anti-self-dual
instantons on R × Y (which has no boundary).

The basic idea of our approach is to introduce a third Floer homology1

HFinst
∗ ([0, 1] × Σ,LH0 × LH1) whose trajectory equation couples the anti-

self-duality equation on R× [0, 1]×Σ with Lagrangian boundary conditions.
We expect that two different degenerations of the metric on [0, 1] × Σ will

1This is a special case of the invariant HFinst
∗ (Y, L) introduced below for a 3-manifold

Y with boundary and a Lagrangian submanifold L in the space of connections over ∂Y .
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give rise to isomorphisms that would prove the Atiyah–Floer conjecture2

HFinst
∗ ([0, 1] × Σ,LH0 × LH1) ∼= HFinst

∗ (H0 ∪Σ H1),(1)

HFinst
∗ ([0, 1] × Σ,LH0 × LH1) ∼= HFsymp

∗ (RΣ, LH0 , LH1).(2)

This approach separates the difficulties: The first isomorphism is a purely
gauge theoretic comparison between anti-self-dual instantons over domains
with and without boundary. The second isomorphism requires a compari-
son between anti-self-dual instantons and pseudoholomorphic curves (both
with Lagrangian boundary conditions), which would be a generalization of
the adiabatic limit of Dostoglou–Salamon [6], which they used to prove an
analogon of the Atiyah–Floer conjecture for mapping tori. The mapping
torus case does not involve boundary conditions. Moreover, the underlying
bundle is nontrivial so that the moduli space of flat connections is smooth.
In contrast, the Heegard splitting case deals with trivial bundles for which
the moduli space RΣ and its Lagrangian submanifolds are always singular.

So the Atiyah–Floer conjecture poses as a first task (which we do not
approach here) the construction of a symplectic Floer homology for sym-
plectic and Lagrangian manifolds with quotient singularities. In fact, the
singular symplectic space RΣ is the symplectic quotient (in the sense of
Atiyah and Bott [2]) of a Hamiltonian group action (the infinite dimen-
sional gauge group) on an infinite dimensional symplectic space (the space
of connections over a Riemann surface). In the case of a finite dimensional
Hamiltonian group action with smooth and monotone symplectic quotient,
Gaio and Salamon [11] have identified the Gromov–Witten invariants of the
symplectic quotient with new invariants arising from the symplectic vortex
equations.

The anti-self-duality equation on R × [0, 1] × Σ is the exact analogue of
the symplectic vortex equations for RΣ. We will show in Section 3 that
the analytic behaviour of these trajectories of the new Floer homology is a
mixture of local effects in the interior—as they are expected for anti-self-
dual instantons—and surprising semiglobal effects near the boundary that
resemble to the behaviour of pseudoholomorphic curves in RΣ. This shows
that the new Floer homology indeed provides a good interpolation between
the two Floer homologies in the Atiyah–Floer conjecture.

More generally, an instanton type Floer homology for 3-manifolds with
boundary should naturally use Lagrangian boundary conditions. Fukaya [9]
gives such a setup in the case of a nontrivial bundle: The anti-self-duality
equation is coupled via a degeneration of the metric to the pseudoholo-
morphic curve equation in the moduli space of flat connections (which is

2There are moreover product structures on all three Floer homologies that should be
intertwined by the isomorphisms, as sketched in [14]. Our analytic setup should allow for
their definition and identification, but we do not discuss this topic here.
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smooth in this case). Our new trajectory equation is a different setting that
arises naturally from the Chern–Simons functional—the Morse function in
the instanton Floer theory. It works in the gauge theoretic setting up to the
boundary, which has the advantage that the Lagrangians are smooth Banach
submanifolds of a symplectic Banach space, although the quotients might be
singular. We thus give a setup for an instanton Floer homology HFinst

∗ (Y,L)
of a compact 3-manifold Y with boundary and a gauge invariant Lagrangian
submanifold L in the space of SU(2)-connections over ∂Y .

This program is carried through in [15] for the case where L = LH arises
from a disjoint union of handle bodies H with boundary ∂H = ∂Y = Σ
such that Y ∪Σ H is a homology 3-sphere. We expect that the isomorphism
(1) will be true in this more general setting,

(1’) HFinst
∗ (Y,LH) ∼= HFinst

∗ (Y ∪Σ H).

The assumption L = LH is more of technical nature and is not required for
the basic compactness in Theorem 3.4. We also have an approach to remov-
ing this assumption in Theorems 3.5 and 3.7, based on Mrowka’s under-
standing of the gauge group in borderline Sobolev cases. More essentially,
we need the nontrivial flat connections on Y with boundary condition in L
to be irreducible (i.e., to have discrete isotropy in the gauge group). For
the same reason, the original instanton Floer homology is only defined for
homology 3-spheres. Now starting from a Heegard splitting H0 ∪Σ H1 of a
general closed 3-manifold, the irreducibility could be achieved by perturbing
the Lagrangians LH0 and LH1 . Thus the problem of reducible connections
can be transferred to transversality questions in our new instanton Floer
homology with Lagrangian boundary conditions.

Section 2 provides an introduction to the gauge theoretic background.
We explain the Chern–Simons functional and the moment map picture of
the gauge group action and give the setup for an instanton Floer homol-
ogy HFinst

∗ (Y,L) with Lagrangian boundary conditions. In Section 3, we
specialize to the case Y = [0, 1] × Σ and the Lagrangian submanifold
LH = LH0 × LH1 arising from two handle bodies H = H0 � H1 such that
H0 ∪Σ H1 ∼= Y ∪Σ�Σ H is a homology 3-sphere. We give a detailed
account of the new Floer homology HFinst

∗ ([0, 1] × Σ,LH0 × LH1), compar-
ing its definition and the analytic properties of its trajectories to those of
HFinst

∗ (H0 ∪Σ H1) and HFsymp
∗ (RΣ, LH0 , LH1) (what it would be if these

quotients were smooth). In Section 4, we sketch the ideas for proofs of the
isomorphisms (1) and (2).

The last two sections are a rough guide to the analysis of anti-self-dual
instantons with Lagrangian boundary conditions, which was established in
[20–23] in full technical detail. Section 5 provides an overview of the proper-
ties of gauge invariant Lagrangian submanifolds in the space of connections
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over a Riemann surface. It moreover describes the special extension prop-
erties of Lagrangian submanifolds that arise from handle bodies. In Sec-
tion 6, we sketch the proofs of the analytic results in Section 3. We put the
proofs into context with the standard proofs of Uhlenbeck compactness (for
anti-self-dual instantons) and Gromov compactness (for pseudoholomorphic
curves) since—just as the results—each proof requires a subtle combination
of the best techniques from both gauge theory and symplectic topology,
which we hope the reader will find entertaining.

2. Gauge theory and symplectic topology

We give an introduction to some gauge theoretic concepts and notations.
More details and proofs can be found in, e.g., [5, 19].

Let G be a compact Lie group. The Lie algebra g = T1lG is equipped
with a Lie bracket [·, ·] and with a G-invariant inner product 〈 ·, · 〉. For the
instanton Floer theories, we will be using G = SU(2) with the commutator
[ξ, η] = ξη − ηξ and the trace 〈 ξ, η 〉 = −tr(ξη) for ξ, η ∈ su(2). We describe
a connection on the trivial G-bundle G × X → X over a manifold X
as a g-valued 1-form A ∈ Ω1(X; g) and thus denote the space of smooth
connections by

A(X) := Ω1(X; g).

(The discussion in this section generalizes to nontrivial bundles, where con-
nections are given by 1-forms with values in an associated bundle.) On the
trivial bundle, a 1-form A ∈ A(X) corresponds to an equivariant distribution
{(−gA(Y ), Y )

∣
∣ Y ∈ TxX} ⊂ T(g,x)(G × X) of horizontal subspaces. The

corresponding covariant derivative on sections s : X → E of a trivial vector
bundle with structure group G ⊂ Hom(E) is ∇As : Y 
→ ∇s(Y ) + A(Y )s.

The curvature of a connection A ∈ A(X) is given by the 2-form

FA := dA + 1
2 [A ∧ A] ∈ Ω2(X; g).

Throughout [·∧·] indicates that the values of the differential forms are paired
by the Lie bracket. The differential of the map A 
→ FA at a connection
A ∈ A(X) is the “twisted” exterior derivative dA : Ω1(X; g) → Ω2(X; g). In
general, dA : Ωk(X; g) → Ωk+1(X; g) acts on g-valued differential forms by

dAη := dη + [A ∧ η].

One checks that dAdAη = [FA ∧ η], so dA
2 = 0 iff the curvature vanishes.

Such connections are called flat and we denote the set of flat connections by

Aflat(X) := {A ∈ A(X)
∣
∣ FA = 0}.

Moreover, a connection is flat iff the horizontal distribution is locally inte-
grable. So parallel transport with respect to a flat connection around a loop
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is given by an element in the group G that is invariant under homotopy of
the loop with fixed base point x ∈ X. Thus the holonomy induces a map

holx : Aflat(X) −→ Hom(π1(X, x),G).

Next, connections that are the same up to a bundle isomorphism are called
gauge equivalent. The bundle isomorphisms of the trivial bundle can be
identified with maps u : X → G that are called gauge transformations.
Composition of bundle isomorphisms corresponds to multiplication of gauge
transformations, so the space of smooth gauge transformations has the struc-
ture of a group, called the gauge group

G(X) := C∞(X,G).

The action of G(X) on the space of connections A(X), called the gauge
action, is given by pullback of the connection (i.e., the horizontal subspace
or the covariant derivative), hence

u∗A := u−1Au + u−1 du for u ∈ G(X), A ∈ A(X).

The space of flat connections Aflat(X) is obviously invariant under G(X),
and the curvature transforms by Fu∗A = u−1FAu. The holonomy of a
flat connection A ∈ Aflat(X) transforms by conjugation under u ∈ G(X),
more precisely holx(u∗A) = u(x)−1holx(A)u(x) for the holonomy based at
x ∈ X. Similarly, a change of the base point also transforms the holonomy
by conjugation. Hence the holonomy descends to a map

hol : Aflat(X)/G(X) −→ Hom(π1(X),G)/G =: RX ,

where the action of G is by conjugation. If there are no nontrivial G-
bundles over X,3 then this is in fact an isomorphism and we will identify
the representation space RX with Aflat(X)/G(X). In general, this is an
isomorphism when taking the union over all isomorphism classes of bundles
on the left hand side, see, e.g., [5, Proposition 2.2.3].

Uhlenbeck compactness. The observations above shows that the mod-
uli space of flat connections is a compact subset of A(X)/G(X) (in the
C∞-topology). Uhlenbeck’s weak compactness theorem is a remarkable gen-
eralization of this compactness to connections with small curvature. It is
the starting point for all analysis in gauge theory, so this is a good point to
introduce the Sobolev completions of the spaces of connections and gauge
transformations. For a compact manifold X and for k ∈ N0 and 1 ≤ p ≤ ∞
let

Ak,p(X) := W k,p(X, T∗X ⊗ g), Gk,p(X) := W k,p(X,G).

3This is for example the case for dim X = 2 or 3 and a connected, simply connected
group as G = SU(2). It also holds for a handle body X and any connected group G.
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For kp > dim X, the gauge group Gk,p(X) is a Banach manifold, on which
multiplication and inversion are smooth, and it acts smoothly on Ak−1,p(X).
We equip X with a metric, and then for any p ≥ 1, the Lp-norm of the
curvature,

‖FA‖p
p =

∫

X
|FA|p,

is a gauge invariant quantity. For p = 1
2 dim X, this is the conformally

invariant Yang–Mills energy of the connection, which can concentrate at
single points. Thus for p ≤ 1

2 dim X, one cannot expect the compactness of
a set of connections with bounded Lp-norm of the curvature. Uhlenbeck’s
result [18] says that for p > 1

2 dim X, however, every such set is compact in
the weak W 1,p-topology on the quotient A1,p(X)/G2,p(X).

Theorem 2.1 (Weak Uhlenbeck Compactness). Let X be a compact
manifold and let p > 1

2 dim X. Suppose that Ai ∈ A(X) is a sequence of
connections such that ‖FAi‖p is uniformly bounded. Then, after going to
a subsequence, there exists a sequence of gauge transformations ui ∈ G(X)
such that u∗

i Ai → A∞ converges in the weak W 1,p-topology to a connection
A∞ ∈ A1,p(X).

In fact, one even has a weak W 1,dim X/2-compactness if one assumes that
every point in X has a neighbourhood on which the Yang–Mills energy is
bounded by a small constant. We will need the slightly stronger W 1,p-
compactness since it allows us to globally (not just locally over small balls
in X) work in a local slice of the gauge action. The local slice theorem says
that any connection A′ that is suitably close to a fixed reference connection
A can be put into relative Coulomb gauge, i.e., u∗A′ −A is L2-orthogonal to
the gauge orbit through A. The linearized gauge action T1lG(X) → TAA(X)
at A ∈ A(X) is given by dA : Ω0(X; g) → Ω1(X; g). Its formal adjoint is
d∗

A = − ∗ dA∗. More generally, with m(X, k) = (dimX − k)(k − 1), the
twisted coderivative is

d∗
A := −(−1)m(X,k) ∗ dA∗ : Ωk(X; g) −→ Ωk−1(X; g).

Here we only give the sequential form of the local slice theorem. A stronger
statement and proof can be found, e.g., in [19, Theorem F].

Theorem 2.2 (Local Slice Theorem). Let X be a compact Riemann-
ian manifold with smooth boundary and let p > 1

2 dim X. Suppose that
Ai ∈ A1,p(X) is a sequence of connections such that Ai → A ∈ A(X) in the
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weak W 1,p-topology. Then for sufficiently large i, there exist gauge transfor-
mations ui ∈ G2,p(X) such that u∗

i Ai → A and
{

d∗
A(u∗

i Ai − A) = 0,

∗(u∗
i Ai − A)|∂X = 0.

To see the strength of these two theorems consider the following example:
Let X be a compact Riemannian 4-manifold. The extrema of the Yang–
Mills energy

∫

X |FA|2 are called Yang–Mills instantons. They satisfy
the equation d∗

AFA = 0 and the boundary condition ∗FA|∂X = 0, which—
augmented with the local slice conditions—pose an elliptic boundary value
problem. Uhlenbeck’s compactness theorem for Yang–Mills instantons with
Lp-bounded curvature then is a corollary of Theorems 2.1 and 2.2.

Theorem 2.3 (Strong Uhlenbeck Compactness). Let Ai ∈ A(X) be
a sequence of Yang–Mills instantons such that ‖FAi‖p is uniformly bounded
for some p > 2. Then, after going to a subsequence, there exists a sequence
of gauge transformations ui ∈ G(X) such that u∗

i Ai → A∞ converges in the
C∞-topology to another Yang–Mills instanton A∞ ∈ A(X).

Anti-self-dual instantons on an oriented Riemannian 4-manifold X are
solutions A ∈ A(X) of the first order equation

FA + ∗FA = 0.

By the Bianchi identity dAFA = 0, these are special solutions of the Yang–
Mills equation d∗

AFA = 0. On a manifold with boundary, however, the anti-
self-duality equation with boundary condition ∗FA|∂X = 0 is an overdeter-
mined boundary value problem comparable to Dirichlet boundary conditions
for holomorphic maps. This is another reason why it is natural to consider
(weaker) Lagrangian boundary conditions for anti-self-dual instantons.

The moduli space of flat connections over a Riemann surface Let
Σ be a Riemann surface. The natural symplectic form on the space of
connections A(Σ) = Ω1(Σ; g) is

(3) ω(α, β) :=
∫

Σ
〈 α ∧ β 〉 for α, β ∈ Ω1(Σ; g).

Here and throughout 〈 ·∧· 〉 indicates that the values of the differential forms
are paired by the inner product. Note that for any metric on Σ, the Hodge
operator ∗ is a complex structure on A(Σ), which is compatible with ω and
induces the L2-metric ω(α, ∗β) = 〈 α, β 〉L2 .

It was observed by Atiyah and Bott [2] that the action of the gauge group
G(Σ) on A(Σ) can be viewed as Hamiltonian action of an infinite dimensional
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Lie group. The Lie algebra of G(Σ) is Ω0(Σ; g) and the infinitesimal action
of ξ ∈ Ω0(Σ; g) is given by the vector field

Xξ : A(Σ) −→ Ω1(Σ; g), Xξ(A) = dAξ.

This is the Hamiltonian vector field of the function A 
→
∫

Σ〈 µ(A) , ξ 〉, where

µ : A(Σ) −→ Ω0(Σ; g), µ(A) = ∗FA

can be considered as a moment map. Its differential is dµ(A) = ∗dA, so one
indeed has for all β ∈ Ω1(Σ; g)

ω(Xξ(A), β) =
∫

Σ
〈 dAξ ∧ β 〉 = −

∫

Σ
〈 ξ, ∗dAβ 〉 = −

∫

Σ
〈 dµ(A)β, ξ 〉.

The zero set of µ is the set of flat connections. So the moduli space of
flat connections on Σ can be seen as the symplectic quotient of the gauge
action,

RΣ = Aflat(Σ)/G(Σ) = µ−1(0)/G(Σ) = A(Σ)//G(Σ).

This quotient RΣ ∼= Hom(π1(Σ),G)/G is singular at the reducible represen-
tations, but for irreducible4 A ∈ Aflat(Σ), it is a smooth manifold near the
gauge equivalence class [A]. To understand its tangent space, notice that the
linearized action T1lG(Σ) → TAA(Σ) is given by dA : Ω0(Σ; g) → Ω1(Σ; g).
At a flat connection A ∈ Aflat(Σ), it fits into a chain complex with the
differential of the moment map (since dA ◦ dA = 0),

Ω0(Σ; g) dA−→ Ω1(Σ; g) ∗dA−→ Ω0(Σ; g).

So the tangent space to RΣ at [A] is the twisted first homology group, which
can be identified with the harmonic 1-forms,

T[A]RΣ = ker ∗dA/im dA
∼= ker dA ∩ ker d∗

A =: h1
A.

Hodge theory gives a corresponding L2-orthogonal splitting

(4) Ω1(Σ; g) = im dA ⊕ im (∗dA) ⊕ h1
A,

where im dA ⊕ h1
A = ker ∗dA is the tangent space to µ−1(0) = Aflat(Σ) and

im (∗dA) ⊕ h1
A = (im dA)⊥ is the local slice of the gauge action through A.

We have seen that the moduli space of flat connections RΣ is a smooth
manifold of dimension (2g − 2) dimG with singularities at the reducible
connections. Moreover, the symplectic structure (3) on A(Σ) is G(Σ)-
invariant and induces a symplectic structure on the smooth part of RΣ.
For harmonic representatives α, β ∈ h1

A
∼= T[A]RΣ, it is again given by

ω(α, β) =
∫

Σ〈 α ∧ β 〉. In this representation of the tangent space, we also

4A connection A ∈ Aflat(Σ) is called irreducible if its isotropy subgroup of G(Σ) (the
group of gauge transformations that leave A fixed) is discrete, i.e., dA|Ω0 is injective. For
a closed Riemann surface, this is equivalent to d∗

A|Ω1 being surjective.
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see that the Hodge operator ∗ descends to RΣ. So (RΣ, ω) is a (singular)
symplectic manifold with compatible almost complex structure ∗.

The Chern–Simons functional and instanton Floer homology Let
Y be a compact oriented 3-manifold. The Chern–Simons 1-form λ on
the space of connections A(Y ) is given by

λA(α) :=
∫

Y
〈 FA ∧ α 〉 for α ∈ TAA(Y ) = Ω1(Y ; g).

This 1-form is equivariant, λu∗A(u−1αu) = λA(α). If ∂Y = ∅ or FA|∂Y = 0,
then λ is also horizontal and thus descends to the (singular) moduli space5

B(Y ) := A(Y )/G(Y ). Indeed, a tangent vector to the gauge orbit through
A ∈ A(Y ) has the form α = dAξ with ξ ∈ Ω0(Y ; g), and by Stokes’ theorem
and the Bianchi identity

(5) λA(dAξ) = −
∫

Y
〈 dAFA, ξ 〉 +

∫

∂Y
〈 FA, ξ 〉 = 0.

To calculate the differential of λ consider α, β ∈ Ω1(Y ; g) as (constant)
vector fields on A(Y ), then their Lie bracket vanishes and

dλ(α, β) = ∇α(λ(β)) − ∇β(λ(α))

=
∫

Y
〈 dAα ∧ β 〉 −

∫

Y
〈 dAβ ∧ α 〉 =

∫

∂Y
〈 α ∧ β 〉.(6)

So for ∂Y = ∅, the Chern–Simons 1-form descends to a closed 1-form on
B(Y ). In fact, λ is the differential of the Chern–Simons functional

CS(A) := 1
2

∫

Y
〈 A ∧

(

FA − 1
6 [A ∧ A]

)

〉.

For a more illuminating definition, let X be a compact 4-manifold with
boundary ∂X = Y , then for any Ã ∈ A(X) with Ã|∂X = A

CS(A) = 1
2

∫

X
〈 FÃ ∧ FÃ 〉.

For closed X, the right hand side is a topological invariant of the bundle. We
fix G = SU(2), then this invariant is 4π2c2(P ), where Ã is a connection on
the bundle P → X. From this, one can see that the Chern–Simons functional
descends to an S1-valued functional CS : B(Y ) → R/4π2

Z since it changes
by CS(A) − CS(u∗A) = 4π2 deg(u) ∈ 4π2

Z under gauge transformations.
If Y is a homology 3-sphere, then Floer [7] used the generalized Morse
theory for this functional to define the instanton Floer homology HFinst

∗ (Y ).
Roughly speaking, the Floer complex is generated by the zeros of dCS = λ,
i.e., by the flat connections A ∈ Aflat(Y ) modulo G(Y ). The differential

5Note that B(Y ) is not the moduli space of flat connections RY , but the infinite
dimensional and singular space of all connections modulo gauge equivalence.
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on the complex is defined by counting negative gradient flow lines, so we
choose a metric on Y and thus fix an L2-metric on A(Y ). Then the gradient
of CS is A 
→ ∗FA and a negative gradient flow line is a path A : R → A(Y )
satisfying

∂sA = − ∗ FA.

Equivalently, one can view this path as connection Ξ = Φ ds+A ∈ A(R×Y )
in the special gauge Φ ≡ 0. Then the above equation is the anti-self-duality
equation FΞ+∗FΞ = 0 for Ξ. For a general connection Ξ ∈ A(R×Y ), this so-
called temporal gauge can always be achieved by the solution u ∈ G(R × Y )
of ∂su = −Φu with u|s=0 ≡ 1l. So the negative gradient flow lines of the
Chern–Simons functional modulo G(Y ) are in one-to-one correspondence
with the anti-self-dual connections Ξ ∈ A(R × Y ) modulo G(R × Y ). An
extensive discussion of instanton Floer homology for closed 3-manifolds can
be found in Donaldson’s book [4].

If Y has nonempty boundary ∂Y = Σ, then the differential (6) is the
symplectic form ω on α|Σ, β|Σ ∈ A(Σ), compare (3). To render λ closed, it
is natural6 to pick a Lagrangian submanifold L ⊂ A(Σ) and restrict λ to

A(Y,L) := {A ∈ A(Y ) |A|Σ ∈ L}.
More precisely, we fix a p > 2 and make the following assumptions to ensure
that λ defines a closed 1-form on B(Y,L) := A(Y,L)/G(Y ).

(i) L ⊂ A0,p(Σ) is a Banach submanifold that is isotropic, ω|L ≡ 0, and
coisotropic in the sense of the following implication for all α ∈ A0,p(Σ):
If ω(α, β) = 0 for all β ∈ TAL, then α ∈ TAL.

(ii) L is invariant under G1,p(Σ).
(iii) L ⊂ A0,p

flat(Σ) lies in the space of weakly flat connections.7

Here (ii) ensures that G(Y ) acts on A(Y,L), and (iii) implies that λ is hori-
zontal by (5). These assumptions also imply that L descends to a (singular)
Lagrangian submanifold in the (singular) moduli space of flat connections,

L := L/G1,p(Σ) ⊂ RΣ = Aflat(Σ)/G(Σ).

The assumptions (i)–(iii) also imply the orthogonal splitting, see Section 5,

Ω1(Σ; g) = TAL ⊕ ∗TAL for all A ∈ L.

Compare this to (4) and note that im dA ⊂ TAL ⊂ ker dA due to (ii),(iii). So
the TAL are determined up to a choice of Lagrangian subspaces in h1

A. Con-
versely, any Lagrangian L ⊂ RΣ lifts to a (possibly nonsmooth) L ⊂ A0,p(Σ)
as above. In order to obtain a well-defined Floer homology, one should
moreover assume that L is simply connected (which ensures a monotonicity

6If L ⊂ A(Σ) is any submanifold, then the closedness of λ|A(Y,L) is equivalent to
ω|L ≡ 0, and the maximal such submanifolds are precisely the Lagrangian submanifolds.

7See [20, Section 3] or use the fact A0,p
flat(Σ) = G1,p(Σ)∗Aflat(Σ) as definition. The

conditions (ii) and (iii) are equivalent when G is connected and [g, g] = g, e.g., for SU(2).
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property). In general, L is not simply connected, but its fundamental group
cancels with that of G(Σ). This is the reason why λ is not exact but can only
be written as the differential of the multi-valued Chern–Simons functional

CSL(A) = 1
2

∫

Y
〈 A ∧

(

FA − 1
6 [A ∧ A]

)

〉 +
∫ 1

0

∫

Σ
〈 Ã(t) ∧ ∂tÃ(t) 〉 dt.

This involves the choice of a path Ã : [0, 1] → L with Ã(1) = A|Σ and
Ã(0) = A0 a fixed reference connection in L. Again we fix G = SU(2) to
obtain a functional CSL : A(Y,L) → R/4π2

Z, which directly descends to
B(Y,L) since the gauge group G(Y ) is connected. We now propose to define
a new Floer homology HFinst

∗ (Y,L) from the generalized Morse theory of the
functional CSL : B(Y,L) → R/4π2

Z.
A critical point in this theory is a flat connection A ∈ Aflat(Y ) with

Lagrangian boundary condition A|Σ ∈ L (modulo G(Y )), and a negative
gradient flow line is a path A : R → A(Y ) (modulo G(Y )) satisfying

(7) ∂sA = − ∗ FA, A(s)|Σ ∈ L ∀s ∈ R.

Again, this is the anti-self-duality equation for Ξ = A + Φ ds ∈ A(R × Y )
in the temporal gauge Φ ≡ 0. So the gauge equivalence classes of the gradi-
ent flow lines are in one-to-one correspondence with the gauge equivalence
classes of anti-self-dual instantons with Lagrangian boundary conditions,
i.e., solutions Ξ ∈ A(R × Y ) of the boundary value problem

(8) FΞ + ∗FΞ = 0, Ξ|{s}×Σ ∈ L ∀s ∈ R.

Lagrangians and handle bodies We have seen before how a Rie-
mann surface Σ gives rise to a (singular) symplectic manifold RΣ =
Hom(π1(Σ),G)/G , which is a finite dimensional reduction of a symplec-
tic Banach space A(Σ) = Ω1(Σ; g) that arises from gauge theory on Σ. We
will now discuss a class of examples of Lagrangian Banach submanifolds
LH ⊂ A(Σ) that arise from gauge theory on a handle body H with ∂H = Σ
and that reduce to finite dimensional (singular) Lagrangian submanifolds
LH

∼= Hom(π1(H),G)/G ⊂ RΣ. Here and throughout a handle body is
an oriented 3-manifold with boundary that is obtained from the 3-ball by
attaching a finite number of 1-handles.

For this purpose, let G be a compact, connected, and simply connected
Lie group (e.g., G = SU(2)) and let Σ be a Riemann surface. For a start let
H be any compact 3-manifold with boundary ∂H = Σ. Then

LH :=
{

Ã|Σ
∣
∣ Ã ∈ Aflat(H)

}

⊂ A(Σ)

satisfies the assumptions (ii) LH ⊂ Aflat(Σ), (iii) G(Σ)∗LH = LH ,8 and is
isotropic: consider paths Ã1, Ã2 : (−ε, ε) → Aflat(H) with Ãi(0) = Ã, then

8This uses the assumption π1(G) = {0} and the fact that π2(G) = {0} for every
compact Lie group, so that every gauge transformation u : Σ → G extends to ũ : H → G.
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dÃ∂tÃi(0) = ∂t

∣
∣
t=0FÃi

= 0 and hence with the symplectic form (3)

ω
(

∂tÃ1(0), ∂tÃ2(0)
)

=
∫

∂H〈 ∂tÃ1(0) ∧ ∂tÃ2(0) 〉
=

∫

H〈 dÃ∂tÃ1(0) ∧ ∂tÃ2(0) 〉 − 〈 ∂tÃ1(0) ∧ dÃ∂tÃ2(0) 〉 = 0.

So LH descends to an isotropic subset in the symplectic quotient

LH := LH/G(Σ) ⊂ RΣ = A(Σ)//G(Σ).

The holonomy provides an isomorphism

LH
∼= Hom

(
π1(Σ)

∂π2(H, Σ)
,G

)

/G ⊂ RΣ ∼= Hom(π1(Σ),G)/G .

This is since the holonomy of a flat connection on H is trivial on the con-
tractible loops in ∂π2(H, Σ); and all representations of π1(Σ)/∂π2(H, Σ) can
be realized by a flat connection on H since that quotient embeds into π1(H)
by the long exact sequence for homotopy

· · · −→ π2(H) −→ π2(H, Σ) ∂−→ π1(Σ) ι−→ π1(H) −→ π1(H, Σ) −→ . . .

This also shows that π1(Σ)
∂π2(H,Σ)

∼= π1(H) if H is a handle body (so π2(H)
and π1(H, Σ) vanish). Now consider the commuting diagram of long exact
sequences for homology and cohomology with the vertical Poincare duality:

H2(H, Σ) ∂−→ H1(Σ) ι−→ H1(H)
� � �

H1(H) ι∗−→ H1(Σ) ∂∗
−→ H2(H, Σ)

One can read off that (im ∂)⊥ ∼= (im ι∗)⊥ = (ker ∂∗)⊥ = im ∂, and we obtain
dim H1(Σ)

∂H2(H,Σ) = 1
2 dim H1(Σ). Hence dim LH = 1

2 dim RΣ at smooth points.
So a general compact 3-manifold H with ∂H = Σ gives rise to a (singular)
Lagrangian LH ⊂ RΣ, and in fact LH ⊂ A(Σ) is Lagrangian up to possible
singularities. If H is a handle body, then one can prove that LH is in fact
smooth,9 which is essentially due to the fact that π1(Σ)

∂π2(H,Σ)
∼= π1(H) is a free

group.
This correspondence between low dimensional topology, symplectic topol-

ogy, and gauge theory is summarized in a table on page 20. To round off this
discussion, note that a Heegard splitting H0 ∪Σ H1 of a 3-manifold into two
handle bodies H0, H1 with common boundary ∂Hi = Σ gives rise to a pair
of (singular) Lagrangians in a symplectic manifold, LH0 , LH1 ⊂ RΣ. Now by
the Atiyah–Floer conjecture there should be a natural isomorphism between
the topological invariant HFinst

∗ (H0 ∪Σ H1) and the symplectic invariant
HFsymp

∗ (RΣ, LH0 , LH1)—assuming that the first is defined, i.e., H0 ∪H1 is a
homology 3-sphere, and that the second can be defined in spite of the singu-
larities. On the gauge theoretic side one obtains two smooth (though infinite

9Its Lp-completion is a Banach submanifold of A0,p(Σ), see Section 5.
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dimensional) Lagrangian submanifolds LH0 ,LH1 ⊂ A(Σ), to which we can
associate the new invariant HFinst

∗ ([0, 1] × Σ,LH0 × LH1). This invariant is
more generally defined in the setting below, where we again fix G = SU(2).
Here we replace [0, 1] × Σ by a more general 3-manifold Y with boundary
with boundary ∂Y = Σ. Then for a union of handle bodies H =

⊔
Hi

with boundary ∂H =
⊔

Σi = Σ, we denote by LH ⊂ A(Σ) the Lagrangian
submanifold LH0 × · · · × LHN

⊂ A(Σ0) × · · · × A(ΣN ).

Theorem 2.4. ([15]) Let Y be a compact, oriented 3-manifold with bound-
ary Σ. Let H be a disjoint union of handle bodies with ∂H = Σ, and suppose
that Y ∪Σ H is a homology 3-sphere (with Z-coefficients). Then the Floer
homology HFinst

∗ (Y,LH) is well defined and independent of the metric and
perturbations of (7) and (8) used to define it.

In this setting, Floer’s original invariant HFinst
∗ (Y ∪Σ H) is also defined,

and we expect our invariant to carry the same information.

Conjecture 2.5. There is a natural isomorphism

HFinst
∗ (Y,LH) ∼= HFinst

∗ (Y ∪Σ H).

Hence the new Floer homology with Lagrangian boundary conditions
fits into the Atiyah–Floer conjecture as well as for an approach to defin-
ing an invariant for more general 3-manifolds. In the next section, we
explain its definition in more detail for the model case Y = [0, 1] × Σ
and LH = LH0 × LH1 , which also is the relevant case for the Atiyah–Floer
conjecture.

3. Instanton and symplectic Floer homologies

This section sketches the instanton and symplectic versions of Floer theory
and compares the analytic behaviour of the underlying trajectory equa-
tions. The purpose of this is to explain the definition of the new instan-
ton Floer homology with Lagrangian boundary conditions (in-L) and to
show how it fits between the instanton Floer homology (inst) and the sym-
plectic Floer homology (symp) and thus provides an intermediate invari-
ant for approaching the Atiyah–Floer conjecture. In fact, its trajectories
exhibit this interpolation between anti-self-dual instantons (in their interior
behaviour) and pseudoholomorphic curves (in their semiglobal behaviour at
the boundary).
(inst): Let Y be a homology 3-sphere, i.e., a compact oriented 3-manifold
with integer homology H∗(Y, Z) ∼= H∗(S3, Z). The instanton Floer homology
HFinst

∗ (Y ) was defined by Floer [7]. The basic analytic results for this setup
that will be quoted below are mainly due to Uhlenbeck [17, 18].
(in-L): Let Y = H0 ∪Σ H1 be the Heegard splitting of a homology 3-
sphere into two handle bodies H0, H1 with common boundary ∂Hi = Σ.
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We describe the special case HFinst
∗ ([0, 1]×Σ,LH0 ×LH1) of the new instan-

ton Floer homology with Lagrangian boundary conditions of Theorem 2.4.
The analytic results for this case are established in [21, 22].
(symp): Let (M, ω) be a compact symplectic manifold and assume that
it is simply connected, positive (c1(TM) = λ[ω] with λ > 0), and has
minimal Chern number N ≥ 2 (where 〈 c1, π2(M) 〉 = NZ). Let L0, L1 ⊂ M
be two simply connected Lagrangian submanifolds. Then the symplectic
Lagrangian intersection Floer homology HFsymp

∗ (M, L0, L1) is defined by [8]
and many other authors. The underlying analytic fact here is Gromov’s
compactness for pseudoholomorphic curves [10].

The instanton cases use the trivial SU(2)-bundle as before. In the third
case one should think of M = RΣ and Li = LHi . However, their Floer
homology is not yet well defined due to the quotient singularities. We do
not give complete definitions of the Floer homologies here. More detailed
expositions can be found in, e.g., [4, 13]. In particular, we do not mention
the necessary perturbations of the equations for critical points and trajec-
tories.

Definition 3.1. A critical point is

(inst): A flat connection A ∈ Aflat(Y ).
(in-L): A flat connection A + Ψ dt ∈ Aflat([0, 1] × Σ) with Lagrangian

boundary conditions A(j) ∈ LHj for j = 0, 1.
(symp): An intersection point x ∈ L0 ∩ L1.

In all three cases, the Floer chain complex is generated by the critical points,

CF∗ =
⊕

x crit.pt.

Z〈 x 〉.

(In the two instanton cases, the generators actually are gauge equivalence
classes x = [A] or x = [A + Ψ dt], and the trivial connection is disregarded.)
The boundary operator ∂ : CF∗ → CF∗ is defined by counting trajectories,

∂〈 x− 〉 =
∑

x+ crit.pt.

#M0(x−, x+)〈 x+ 〉.

Here M0(x−, x+) is the 0-dimensional part of the space of trajectories from
x− to x+. This will be a smooth, compact, oriented manifold, so its points
can be counted with signs. The trajectory equations will be given below for
the three cases. The main issue that we then discuss is the compactness
of the space of trajectories, which will allow the definition of ∂. To obtain
a chain complex, one moreover has to establish ∂ ◦ ∂ = 0 by identifying
the boundary of the 1-dimensional part of the space of trajectories with the
broken trajectories that contribute to ∂ ◦ ∂. The Floer homology in the
different cases then is the homology H∗(CF, ∂) of the corresponding Floer
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chain complex. It is graded modulo 8 in the instanton cases and modulo 2N
in the symplectic case.

The trajectory equation depends on the choice of auxiliary data, which the
Floer homology will not depend on. In the instanton cases, this is a metric
on Y or [0, 1]×Σ, respectively. (In the second case, we will give the equation
for a product metric.) In the symplectic case, we fix an ω-compatible almost
complex structure J on M . The moduli space of trajectories then is the space
of solutions of the trajectory equation modulo time shift (in the R-variable)
and modulo gauge equivalence in the instanton cases.

Definition 3.2. A trajectory is a solution of the trajectory equation (T ).

(inst): An anti-self-dual instanton on R × Y :

B : R −→ A(Y ) satisfying

(T ) ∂sB + ∗FB = 0

(in-L): An anti-self-dual instanton on R × [0, 1] × Σ with Lagrangian
boundary conditions:

(A, Ψ) : R × [0, 1] −→ A(Σ) × C∞(Σ, su(2)) satisfying

(T )

⎧

⎪⎨

⎪⎩

∂sA + ∗(∂tA − dAΨ) = 0
∂sΨ + ∗FA = 0

A(s, j) ∈ LHj ∀s ∈ R, j ∈ {0, 1}

(symp): A J-holomorphic strip with Lagrangian boundary conditions:

u : R × [0, 1] → M satisfying

(T )
{

∂su + J∂tu = 0

u(s, j) ∈ Lj ∀s ∈ R, j ∈ {0, 1}

Pictures of these trajectories and a table that summarizes the definitions
and results for the three Floer theories can be found on page 20 and 21.
The equation in case (in-L) is ∂sB + ∗FB = 0 for B = A + Ψ dt, and in
both instanton cases, this is the anti-self-duality equation for the connection
Ξ = 0 ds + B in temporal gauge; c.f. Section 2.

To ensure that the trajectories converge to critical points as the R-variable
tends to ±∞, one needs some a priori bound. This is provided by energy
functionals given in the lemma below (a consequence of Theorems 3.4 and
3.5).

Lemma 3.3. If a trajectory has finite energy E, then it converges
(exponentially) to critical points as R � s → ±∞.
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(inst):

E(B) =
∫

R×Y
|∂sB|2 < ∞

=⇒ B(s) −→
s→±∞

B± ∈ Aflat(Y )

(in-L):

E(A, Ψ) =
∫

R×[0,1]×Σ
|∂sAi|2 + |FAi |2 < ∞

=⇒ A(s) + Ψ(s)dt −→
s→±∞

A± + Ψ±dt ∈ Aflat([0, 1] × Y );

A±(0) ∈ LH0 , A±(1) ∈ LH1

(symp):

E(u) =
∫

R×[0,1]
|∂su|2 < ∞

=⇒ u(s, ·) −→
s→±∞

x± ∈ L0 ∩ L1

In the two instanton cases, the energy of a trajectory equals to the Yang–
Mills energy 1

2

∫

|FΞ|2 of the corresponding anti-self-dual connection. In all
cases, the energy is conformally invariant, so by rescaling one solution one
can obtain a sequence of solutions (on a ball) whose energy is bounded, but
that blows up at one point – where all the energy concentrates. This effect
can be excluded by assuming that the energy density does not blow up. For
all three equations, this is enough to obtain C∞

loc-compactness.

Theorem 3.4 (Compactness). Consider a sequence of trajectories and
suppose that their energy density is locally uniformly bounded:
(inst): |∂sBi|2 is locally uniformly bounded on R × Y .
(in-L): ‖∂sAi‖2

L2(Σ) + ‖FAi‖2
L2(Σ) is locally uniformly bounded on R × [0, 1].

(symp): |∂sui|2 is locally uniformly bounded on R × [0, 1].
Then, after going to a subsequence, and in the cases (inst), (in-L) applying a
sequence of gauge transformations gi ∈ G(R×Y ) or gi ∈ G(R×[0, 1]×Σ), the
trajectories converge uniformly with all derivatives on every compact subset
(i.e., in the C∞

loc-topology) to a new trajectory.

The compactness statement in case (in-L) in fact also holds when the
Lagrangians LHi are replaced with general gauge invariant Lagrangians as
on page 712. This result was proven in [21] under the (stronger) stan-
dard assumption from gauge theory that |∂sBi|2 = |∂sAi|2 + |FAi |2 is locally
uniformly bounded on R × [0, 1] × Σ (or is locally Lp-bounded for p > 2).
The weaker assumption above implies pointwise bounds in the interior by a
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mean value inequality. Near the boundary, this is not a direct consequence,
but an extra argument [22, Lemma 2.4] provides local Lp-bounds for any
p < 3. Thus we can state the compactness result in this form, which already
hints at a similar behaviour to pseudoholomorphic curves on R× [0, 1]. This
stronger statement becomes crucial in the bubbling analysis below.

The goal of our analytic discussion of the trajectory equation is to
understand the compactness or compactification of the k-dimensional part
Mk(x−, x+) of the space of trajectories with fixed limits x±. (Here k = 0
and k = 1 are relevant for the definition of ∂ and for the proof of ∂ ◦ ∂ = 0.)

The assumptions in Theorem 3.4 are too strong for that purpose since
we only have a bound on the energy, not on the energy density, of trajec-
tories in Mk(x−, x+). In fact, in the three present cases, the energy of a
trajectory is uniquely determined by its limits x−, x+ and its index k via
a monotonicity formula. So we need to consider a sequence of trajecto-
ries with fixed energy and analyse the possible divergence of the sequence
when the uniform bounds in Theorem 3.4 do not hold. This divergence is
usually described by the “bubbling off” of some part of the trajectory: in
the case (inst) the “bubbles” are instantons on S4; in the case (symp) they
are pseudoholomorphic spheres or disks. In the new case (in-L), we also
encounter instantons on S4 “bubbling off” at both interior and boundary
points. Additional “bubbles” in the form of anti-self-dual instantons on the
half space were expected in [14]. Our result below now seems to indicate
a semiglobal bubbling effect at the boundary, which conjecturally might be
described as a holomorphic disk in the space of connections A(Σ). Fortu-
nately, the geometric understanding of the bubbles is not necessary for the
purpose of Floer theory in the monotone case. It can be replaced by an
analytic understanding of the bubbling in the form of the following energy
quantization result.

For the purpose of this statement, we abbreviate Y = [0, 1] × Σ in case
(in-L) and Y = [0, 1] in case (symp), so all trajectories are defined on R×Y .

Theorem 3.5 (Energy Quantization). There exists a constant � > 0
such that the following holds. Consider a sequence of trajectories whose
energy is bounded by some E < ∞.

Then, after going to a subsequence, the energy densities are locally
uniformly bounded as in Theorem 3.4 on (R × Y ) \

⋃N
k=1 Pk, the comple-

ment of a finite union of bubbling loci Pk as below. At each bubbling locus
Pk, there is a concentration of energy of at least � on neighbourhoods with
radii εi → 0.

(inst): Each bubbling locus is a point Pk = xk ∈ R × Y with
∫

Bεi (xk)
|∂sBi|2 ≥ �.
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(in-L): Each bubbling locus is either an interior point Pk = xk ∈ R×(0, 1)×
Σ with ∫

Bεi (xk)
|∂sAi|2 + |FAi |2 ≥ �,

or a boundary slice Pk = {(sk, tk)} × Σ, (sk, tk) ∈ R × {0, 1} with
∫

Bεi (sk,tk)
‖∂sAi‖2

L2(Σ) + |FAi |2L2(Σ) ≥ �.

(symp): Each bubbling locus is a point Pk = (sk, tk) ∈ R × [0, 1] with
∫

Bεi (sk,tk)
|∂sui|2 ≥ �.

In case (in-L), both an instanton on S4 bubbling off at a boundary point
and the conjectural holomorphic disk in A(Σ) are described by a boundary
slice as bubbling locus. The proof in case (in-L) goes along the lines of an
energy quantization principle explained in [23] but deals with some addi-
tional difficulties. In the cases (inst) and (symp), the above result can be
obtained straight forward from this principle and a control on the Laplacian
(and normal derivative) of the energy density. See Section 6 for details.

The combination of Theorems 3.4 and 3.5 can be rephrased as: “ There
is a C∞

loc-convergent subsequence if the energy is locally small.” In the cases
(inst) and (symp), it is sufficient to assume that every point in R × Y or
R × [0, 1] respectively has a neighbourhood on which the energy of each
trajectory in the sequence is less than �. In the case (in-L), this assumption
is the same for points in the interior R × (0, 1) × Σ. For a point (s, j, z) ∈
R×{0, 1}×Σ on the boundary, however, it is not enough to assume that the
energies are small on a neighbourhood of that point, but one needs to assume
that there is a neighbourhood of the whole boundary slice {(s, j)} × Σ on
which the energy of each trajectory in the sequence is less than �.

The full consequence of Theorems 3.5 and 3.4 is the following compact-
ness.

Corollary 3.6. Consider a sequence of trajectories with energy bounded
by E < ∞. Then, after going to a subsequence, there exist finitely many
bubbling loci P1, . . . , PN as in Theorem 3.5, and in the cases (inst) and
(in-L), there exists a sequence of gauge transformations in G((R × Y ) \
⋃k

i=1 Pk), such that the trajectories converge (after gauge transformation)
in the C∞

loc-topology on (R × Y ) \
⋃k

i=1 Pk to a new solution of the trajectory
equation (T) on (R × Y ) \

⋃k
i=1 Pk with energy E ≤ E − N�.

Keep in mind that the bubbling loci Pk and thus the singularities of the
new solution obtained in Corollary 3.6 are always points, except for the case
(in-L) where 2-dimensional singularities can occur at the boundary. The
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next step in the compactification (or proof of compactness) of the spaces
of trajectories is to remove these singularities. We give a general statement
that is a consequence of the subsequent removable singularity theorems for
the local models of the singularities.

Here Bn denotes the unit ball in R
n centred at 0, and D2 := B2 ∩ H

2 is
the unit half ball in the half space H

2 = {(s, t) ∈ R
2
∣
∣ t ≥ 0} with centre 0.

In the two boundary cases, the Lagrangian submanifold LH or L can be
either of the two LHi or Li, respectively.

Theorem 3.7 (Removal of Singularities). Consider a smooth solution
of the trajectory equation (T) on (R×Y )\

⋃N
k=1 Pk that has finite energy E.

Then (in case (inst) and (in-L) after applying a gauge transformation in
G((R × Y ) \

⋃N
k=1 Pk)), the solution extends to a trajectory on R × Y with

energy E.

(inst), (in-L, interior): Suppose that Ξ ∈ A(B4 \ {0}) satisfies

FΞ + ∗FΞ = 0 and
∫

B4\{0}
|FΞ|2 < ∞.

Then there exists a gauge transformation g ∈ G(B4 \ {0}) such that g∗Ξ
extends to a solution Ξ̃ ∈ A(B4).

(in-L, boundary): Suppose that Ξ ∈ A((D2 \ {0}) × Σ) satisfies
{

FΞ + ∗FΞ = 0

Ξ|{(s,0)}×Σ ∈ LH ∀s
and

∫

D2\{0}

∫

Σ
|FΞ|2 < ∞.

Then there exists a gauge transformation g ∈ G((D2 \ {0}) × Σ) such that
g∗Ξ extends to a solution Ξ̃ ∈ A(D2 × Σ).

(symp, boundary): Suppose that u ∈ C∞(D2 \ {0}, M) satisfies
{

∂su + J∂tu = 0

u(s, 0) ∈ L ∀s
and

∫

D2\{0}
|∂su|2 < ∞.

Then u extends to a solution ũ ∈ C∞(D2, M).

(symp, interior): Suppose that u ∈ C∞(B2 \ {0}, M) satisfies

∂su + J∂tu = 0 and
∫

B2\{0}
|∂su|2 < ∞.

Then u extends to a solution ũ ∈ C∞(B2, M).

In the case (in-L), Uhlenbeck’s removable singularity theorem [17] applies
to the bubbling loci in the interior. At the boundary, we have to remove 2-
dimensional singularities of an anti-self-dual instanton. In the interior, there
would be an obstruction to removing such singularities: the holonomies
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of small loops around the singularity might have a nontrivial limit. So
it is important to note that this “pseudoholomorphic behaviour” of the
(in-L) trajectories only occurs at the boundary, where one does not have
an obstruction since there are no loops around the singularity. One can
then imitate the removal of the singularity of a pseudoholomorphic curve on
D2 \ {0} with Lagrangian boundary conditions to remove the singularity of
an anti-self-dual instanton on (D2 × {0}) × Σ. This uses an isoperimetric
inequality for a local Chern–Simons functional instead of the local sym-
plectic action. So far, the definition of this local Chern–Simons functional
crucially uses the fact that the Lagrangian boundary condition arises from
a handle body.

The final result of the analysis of trajectories in Theorems 3.4, 3.5, and 3.7
is that the moduli spaces of trajectories are compact up to “bubbling” and
“breaking of trajectories.” Here “bubbling” means the concentration of
energy at a bubbling locus as in Theorem 3.5. The “breaking of trajecto-
ries” occurs when a sequence of trajectories with constant energy converges
smoothly on every compact set to a new trajectory, but the limit has less
energy. In that case, the energy difference must have moved out to s → ±∞
and can be recaptured as the energy of a limit of shifted trajectories. A
standard iteration of such shifts yields a finite collection of trajectories (a
“broken trajectory”) whose total energy equals to the fixed energy of the
sequence.

To proceed with the definition of ∂ and the proof of ∂ ◦ ∂ = 0, one
needs to perturb the trajectory equation (T ) so that the moduli spaces
Mk(x−, x+) of trajectories become smooth manifolds. Here a priori k ∈ Z

is the index of a Fredholm operator (the linearization of (T )) associated to
the trajectories. For a smooth moduli space, k equals to the dimension of
the component, hence Mk(x−, x+) is empty for k ≤ −1. By a monotonicity
formula, k moreover determines the energy of the trajectories such that a
trajectory of lower energy has to lie in a moduli space of lower dimension.
From this one can deduce that M0(x−, x+) is compact (and thus can be
counted to define ∂): it consists of trajectories with the minimal energy
that allows to connect x− to x+. So bubbling can be ruled out since (after
removal of the singularities) it would lead to a trajectory of even lower
energy. The breaking of trajectories is ruled out by a similar index-energy
argument.

Bubbling is also excluded in Mk(x−, x+) for k ≤ 7 (or 2N − 1 in the
symplectic case) since x− and x+ determine the index k modulo 8 (or 2N).
So a loss of energy corresponds to a jump by 8 (or 2N) in the dimen-
sion. The breaking of trajectories is no longer ruled out; on the contrary,
∂ ◦ ∂ = 0 follows from the fact that the ends of the 1-dimensional moduli
spaces exactly correspond to the broken trajectories, which are counted by
∂ ◦ ∂.
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4. The Atiyah–Floer conjecture

To give a precise statement of the Atiyah–Floer conjecture, we need to refine
the notion of handle bodies and Heegard splittings. A handle body is an
oriented 3-manifold with boundary that is obtained by attaching finitely
many 1-handles to a 3-ball. The spine of a handle body H is a graph
S ⊂ H embedded in its interior that arises from replacing the ball by a
vertex and the handles by edges with ends on this vertex. Its significance is
that H \ S ∼= [0, 1) × ∂H, so H retracts onto S. For each genus g ∈ N0, we
fix a standard handle body and spine S ⊂ H.

Definition 4.1. A Heegard splitting of a closed oriented 3-manifold Y
consists of two embeddings ψi : H ↪→ Y of a standard handle body H such
that ψ0(∂H) = ψ1(∂H) = im ψ0∩im ψ1. We abbreviate the Heegard splitting
by Y = H0 ∪Σ H1, where Hi := ψi(H) ⊂ Y and Σ := ψi(∂H) = H1 ∩ H2.

Next, a homology 3-sphere is a compact oriented 3-manifold Y whose
integer homology is that of a 3-sphere, H∗(Y, Z) ∼= H∗(S3, Z).

Conjecture 4.2 (Atiyah–Floer). Let Y be a homology 3-sphere. Then
every Heegard splitting Y = H0 ∪Σ H1 induces a natural isomorphism

HFinst
∗ (Y ) ∼= HFsymp

∗ (RΣ, LH0 , LH1).

Here “natural” in particular means that the isomorphism should be invari-
ant under isotopies of the Heegard splitting. Note that for nonisotopic
Heegard splittings of the same genus, one can identify the RΣ, but the
pairs of Lagrangians (and thus the conjectured isomorphism) will be differ-
ent. The conjecture would then provide isomorphisms between the symplec-
tic Floer homologies arising from different Heegard diagrams of the same
3-manifold.

The first task posed by this conjecture is to give a precise definition of
the symplectic Floer homology for the Lagrangians LH0 , LH1 in the sin-
gular symplectic space RΣ. They can be viewed as symplectic quotients
of the gauge action on the smooth Banach-manifolds LH0 ,LH1 ⊂ A(Σ) [2
Section 2]. For finite dimensional Hamiltonian group actions, Salamon and
coworkers [3] introduced invariants based on the symplectic vortex equa-
tions on the total space. Gaio and Salamon [11] identified these with
the Gromov–Witten invariants for smooth and monotone symplectic quo-
tients. In view of this result, a plausible definition of HFsymp

∗ (RΣ, LH0 , LH1)
could be to replace its ill-defined trajectories (pseudoholomorophic curves
in the singular symplectic quotient) by solutions of the corresponding
symplectic vortex equations: a triple of maps A : R × [0, 1] → A(Σ) and
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Φ, Ψ : R × [0, 1] → C∞(Σ, su(2)) ∼= T1lG(Σ) that satisfy
⎧

⎪⎨

⎪⎩

(∂sA − dAΦ) + ∗(∂tA − dAΨ) = 0,

∂sΨ − ∂tΦ + [Φ, Ψ] + ∗FA = 0,

A(s, i) ∈ LHi ∀s ∈ R, i ∈ {0, 1}.

(9)

Here Φ 
→ dAΦ is the infinitesimal action and A 
→ ∗FA is the moment
map of the gauge action, where ∗ is the Hodge operator of a metric gΣ
on Σ. This system is the anti-self-duality equation with Lagrangian bound-
ary conditions for the connection Φ ds + Ψ dt + A on R × [0, 1] × Σ with
respect to the metric ds2 + dt2 + gΣ, i.e., the trajectory equation of Defini-
tion 3.2 in temporal gauge Φ = 0. So in this case the symplectic vortex equa-
tions lead directly to the new Floer homology HFinst

∗ ([0, 1] × Σ,LH0 × LH1),
which is well defined since ([0, 1]×Σ)∪ (H0 �H1) ∼= H0 ∪Σ H1 is a homology
3-sphere. Defining HFsymp

∗ (RΣ, LH0 , LH1) via (9) would reduce the Atiyah–
Floer Conjecture 4.2 to the subsequent special case of Conjecture 2.5. We
intend however to give a less far fetched definition of the symplectic Floer
homology and use the following only as first step towards a proof of the
Atiyah–Floer conjecture.

Conjecture 4.3. Every Heegard splitting Y = H0 ∪Σ H1 of a homology
3-sphere induces a natural isomorphism

HFinst
∗ (Y ) ∼= HFinst

∗ ([0, 1] × Σ,LH0 × LH1).

To prove this, one has to identify the critical points and trajectories of
both Floer homologies. Our idea for a proof uses the following decom-
position of Y . We restrict the embeddings ψi to the complement of the
spine H \ S ∼= [12 , 1) × Σ and glue them at {1

2} × Σ to obtain an embedding
ψ : (0, 1) × Σ ↪→ Y such that ψ(1

2 , ·) = idΣ and ψ(t, Σ) converges to the spine
ψi(S) ⊂ Hi as t → i for i = 0, 1. Then

Y = Hδ
0 � Yδ � Hδ

1 ; Yδ := ψ([δ, 1 − δ] × Σ).

Here the Hδ
i ⊂ Y are isotopic to the open handle bodies int(Hi) and

Yδ
∼= [0, 1] × Σ via ψ ◦ τδ, where τδ : [0, 1] × Σ → [δ, 1 − δ] × Σ is the obvious

linear isomorphism. With this, the critical points can be identified elemen-
tary as follows: every Ã ∈ Aflat(Y ) can be decomposed and pulled back
to a triple (A, Ã0, Ã1) of A ∈ Aflat([0, 1] × Σ) and Ãi ∈ Aflat(Hi) such that
A|{i}×Σ = Ãi|∂Hi

. So every critical point [Ã] ∈ RY corresponds to the gauge
equivalence class of a flat connection on [0, 1] × Σ with boundary values in
LH0 and LH1 . One can check that this in fact gives a bijection between the
critical points. In order to prove Conjecture 4.3, one needs to show that the
induced map between the Floer complexes is a chain isomorphism.

For that purpose, we fix a metric on Y and for a corresponding met-
ric on [0, 1] × Σ try to establish a bijection between the trajectories that
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contribute to the differential on the two Floer complexes. (Of course, we
have to prove later that the isomorphism is independent of the choices.)
A fixed metric on Y gives rise to a family of metrics gδ on [0, 1] × Σ
via pullback by ψ ◦ τd : [0, 1] × Σ → Yδ ⊂ Y . The metrics gδ degenerate
on {0} × Σ and {1} × Σ for δ → 0, but for sufficiently small δ > 0, we
expect to find a bijection between the trajectories of HFinst

∗ (Y ) and those of
HFinst

∗ ([0, 1] × Σ,LH0 × LH1) with respect to gδ.
The first are anti-self-dual instantons (in temporal gauge) on R ×Y , that

is, B : R → A(Y ) satisfying

∂sB + ∗FB = 0 on R × Y.

The latter are anti-self-dual instantons (in temporal gauge) A + Ψ dt on
R × [0, 1] × Σ with Lagrangian boundary conditions. Here the metric gδ on
[0, 1] × Σ is not of product form, so the equation (T ) in Definition 3.2 has
to be adjusted: the pair (A, Ψ) is a trajectory if A + Ψ dt = τ∗

δ ψ∗B, where
B : R → A(Yδ) is anti-self-dual with respect to the fixed metric on Y and
has boundary values in LH0 and LH1 , that is,

⎧

⎪⎨

⎪⎩

∂sB + ∗FB = 0 on R × Yδ,

B|ψ({δ}×Σ) = B̃0 for some B̃0 : R → Aflat(Hδ
0),

B|ψ({1−δ}×Σ) = B̃1 for some B̃1 : R → Aflat(Hδ
1).

The task in identifying the trajectories is to consider anti-self-dual instantons
on Yδ and transfer between extensions B̃i : R → A(Hδ

i ) that are slicewise flat
(FB̃i

= 0) and extensions that are anti-self-dual (∂sB̃i + ∗FB̃i
= 0). Here the

handle bodies Hδ
i ⊂ Y are small tubes around their spines ψi(S) ⊂ Y . The

restriction of given (anti-self-dual) connections B̃i to the spines is up to gauge
equivalence determined by their holonomies, i.e., SU(2)-representations of
π1(Hi). One can then pick flat connections on the Hδ

i that have the same
holonomy and are close to the B̃i (compared to their energy). For the
converse, we will have to use special flat extensions B̃i with a control on
∂sB̃i as in lemma 5.3. Combined with the small volume of Hδ

i , this should
make B̃i close to anti-self-dual.

Degenerations of the metric on [0, 1] ×
∑

.
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The key to this plan of proof is the fact that one can degenerate the metric
on [0, 1] × Σ (as sketched on the left in the above figure) without changing
the invariant HFinst

∗ ([0, 1] × Σ,LH0 × LH1). In the limit of the degeneration,
one should obtain the invariant HFinst

∗ (Y ) for the closed manifold. The basic
idea of the second step for the Atiyah–Floer conjecture is to use a second
degeneration (on the right in the above sketch) to transfer from anti-self-
dual instantons to pseudoholomorphic curves. This idea was successfully
employed by Dostoglou and Salamon [6] in their proof of a mapping torus
analogon of the Atiyah–Floer conjecture.

A trajectory of the symplectic Floer homology should be a pseudoholo-
morphic map u : R × [0, 1] → RΣ with boundary values in LH0 and LH1 ,

(10) ∂su + J(u)∂tu = 0, u(s, i) ∈ LHi ∀s ∈ R, i = 0, 1.

Here we choose the almost complex structure J on RΣ that is induced by
the Hodge operator of some fixed metric gΣ on Σ. Let us first assume that
u takes values in the irreducible representations, so the pseudoholomorphic
equation for u actually makes sense since RΣ is smooth near its image. If
we consider a lift A : R × [0, 1] → A(Σ) of u, then this means that every
A(s, t) has stabilizer {±1l} ⊂ G(Σ), or equivalently dA(s,t) is injective on
Ω0(Σ; su(2)). This lift is not unique, but it always takes values in Aflat(Σ).
So for every A = A(s, t), one has the Hodge decomposition (4)

Ω1(Σ; su(2)) = dAΩ0(Σ; su(2)) ⊕ ∗dAΩ0(Σ; su(2)) ⊕ h1
A.

Here h1
A = ker dA∩ker d∗

A
∼= T[A]RΣ and dAΩ0(Σ; su(2)) is the tangent space

of the G(Σ)-orbit through A. So one can express ∂su + J(u)∂tu = 0 in terms
of the lift: the projection of ∂sA + ∗∂tA onto h1

A
∼= T[A]RΣ vanishes; i.e.,

∂sA + ∗∂tA = dAΦ + ∗dAΨ for some Φ, Ψ : R × [0, 1] → Ω0(Σ; su(2)). More
precisely, (10) for u mapping to the irreducible representations is equivalent
to the existence of a lift A : R × [0, 1] → A(Σ), u(s, t) = [A(s, t)], and some
Φ, Ψ : R × [0, 1] → Ω0(Σ; su(2)) such that

⎧

⎪⎨

⎪⎩

∂sA − dAΦ + ∗
(

∂tA − dAΨ
)

= 0,

∗FA = 0,

A(s, i) ∈ LHi ∀s ∈ R, i = 0, 1.

(11)

One can also consider this as a boundary value problem for the connection
Φ ds + Ψ dt + A on R × [0, 1] × Σ. Just note that A determines Φ and
Ψ uniquely since ∆AΦ = dA∂sA, ∆AΨ = dA∂tA, and ∆A = d∗

AdA are invert-
ible for irreducible A = A(s, t). If A is allowed to become reducible, then Φ
and Ψ have some extra freedom. If for example A ≡ 0, then any two func-
tions Φ, Ψ : R × [0, 1] → su(2) would provide a solution of (11). Quotienting
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out by the gauge action, this moduli space is still infinite dimensional.
We expect however that one can use perturbations of (11) to obtain finite
dimensional smooth moduli spaces of trajectories in the cases that are rele-
vant for HFsymp

∗ (RΣ, LH0 , LH1), i.e., when at least one critical point is irre-
ducible. Once this symplectic Floer homology is defined via (11), one should
be able to adapt the adiabatic limit in [6] to this boundary value problem
and establish the following second step towards the Atiyah–Floer conjecture.

Conjecture 4.4. If Y = H0 ∪Σ H1 is a Heegard splitting of a homology
3-sphere, then there is a natural isomorphism

HFinst
∗ ([0, 1] × Σ,LH0 × LH1) ∼= HFsymp

∗ (RΣ,LH0 ,LH1).

Again, the critical points of both Floer theories are naturally identified.
In the instanton Floer homology, the critical points are flat connections on
A + Ψ dt on [0, 1] × Σ (where flatness means FA = 0 and Ȧ − dAΨ = 0)
with boundary values A(0) ∈ LH0 and A(1) ∈ LH1 . One can always make
Ψ vanish by a gauge transformation, then A becomes t-independent, so
A(0) = A(1) ∈ LH0 ∩ LH1 . Thus the gauge equivalence classes of these
critical points can be identified with intersection points of the Lagrangian
submanifolds LH0 and LH1 in the moduli space RΣ–which are exactly the
critical points of the symplectic Floer homology.

In order to identify the moduli spaces of trajectories, we can choose an
appropriate metric on [0, 1] × Σ in the definition of the instanton Floer
homology. Let us fix the metric gΣ on Σ as in (11) and consider the family
of metrics dt2 +ε2gΣ for ε > 0. With respect to these metrics, the trajectory
equation (9) of the instanton Floer homology becomes

⎧

⎪⎨

⎪⎩

∂sA − dAΦ + ∗
(

∂tA − ∗dAΨ
)

= 0,

∂sΨ − ∂tΦ + [Φ, Ψ] + ε−2 ∗ FA = 0,

A(s, i) ∈ LHi ∀s ∈ R, i ∈ {0, 1},

(12)

for the triple of A : R × [0, 1] → A(Σ) and Φ, Ψ : R × [0, 1] → Ω0(Σ; su(2)).
Their energy

E(A, Φ, Ψ) =
∫

R×[0,1]×Σ
|∂sA − dAΦ|2 + ε−2|FA|2

is determined, independently of ε, by the index and the limits at ±∞ (via a
monotonicity formula). Analogously to [6], we expect that sequences of such
anti-self-dual instantons for ε → 0 converge (modulo gauge) to solutions of
(11). Now the gauge equivalence classes of these solutions would exactly be
the trajectories of the symplectic Floer homology. Conversely, an implicit
function argument should show that for sufficiently small ε > 0 near every
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solution of (11) one finds a solution of (12). This would give the required
bijection between the trajectories of the symplectic and the instanton Floer
homology.

Dostoglou and Salamon indeed dealt with the same equations. However,
they considered a mapping torus R × Σ/ ∼ (with (t + 1, z) ∼ (t, f(z))
for some diffeomorphism f of Σ) instead of our manifold with boundary
[0, 1] × Σ, so the boundary conditions in (11) and (12) are replaced by a
twisting condition. The analytic setup for the definition of the new instanton
Floer homology should also allow us to deal with the boundary conditions
in this context. There are however additional difficulties due to reducible
connections on the trivial SU(2)-bundle over Σ, whereas [6] deals with the
nontrivial SO(3)-bundle over Σ that has no reducible connections.

5. Lagrangians in the space of connections

The purpose of this section is to describe some more properties of the
Lagrangian submanifolds in the space of connections that were introduced
in Section 2. We again consider more generally a trivial G-bundle over a
Riemann surface Σ, where G is any compact Lie group with Lie algebra g.
We fix p > 2, then the space of Lp-regular connections A0,p(Σ) is a sym-
plectic Banach space with symplectic form ω given by (3). The gauge group
G1,p(Σ) acts smoothly on A0,p(Σ) and preserves ω. Moreover, recall that if
we equip Σ with any Riemannian metric, then the corresponding Hodge ∗
operator induces an ω-compatible complex structure on A0,p(Σ).

We have proven in [20, Theorem 3.1] that an Lp-connection is flat in
the weak sense iff it is gauge equivalent to a smooth flat connection. So
for our purposes, here we simply define the space of flat Lp-connections as
A0,p

flat(Σ) := G1,p(Σ)∗Aflat(Σ) ⊂ A0,p(Σ). With this definition, it is clear that
the based holonomy at any z ∈ Σ is well defined as a map

holz : A0,p
flat(Σ) → Hom(π1(Σ), G).

(Here and in the following, one actually has to fix one point z in each
connected component of Σ.) It is invariant under the based gauge group

G1,p
z (Σ) :=

{

u ∈ G1,p(Σ)
∣
∣ u(z) = 1l

}

.

Next, we call a Banach submanifold L ⊂ A0,p(Σ) Lagrangian if is isotropic,
ω|L ≡ 0, and coisotropic in the sense of the following implication for all
A ∈ L and α ∈ A0,p(Σ): if ω(α, β) = 0 for all β ∈ TAL, then α ∈ TAL. The
main properties of gauge invariant Lagrangian submanifolds are summarized
below. For proofs see [20, Lemma 4.2, 4.3]. (In the case G = SU(2) and
for any other connected, simply connected Lie group with discrete centre,
the gauge invariance and Lagrangian property imply that L lies in the flat
connections; for general groups, we make this additional assumption.)
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Lemma 5.1. Let L ⊂ A0,p(Σ) be a Lagrangian submanifold. Suppose that
L ⊂ A0,p

flat(Σ) and that L is invariant under the action of G1,p(Σ). Then the
following holds:

(i) L ⊂ (A(Σ), ∗) is totally real with respect to the Hodge ∗ operator for
any metric on Σ. That is, Ω1(Σ; su(2)) = TAL ⊕ ∗TAL for all A ∈ L.

(ii) Fix any z ∈ Σ. Then L has the structure of a principal G1,p
z (Σ)-bundle

G1,p
z (Σ) ↪→ L holz−→ M.

Here M ⊂ Hom(π1(Σ), G) is a smooth manifold of dimension g ·dimG.

Property (i) is crucial for the elliptic theory for the boundary value prob-
lem (8) in the proof of Theorem 3.4. Property (ii) gives rise to Banach
submanifold coordinates for the Lagrangian that fit well with the Hodge
decomposition of Ω1(Σ; su(2)). This also is the crucial point that forces us
to work on Lp-spaces with p > 2. One does not have a corresponding state-
ment for Lagrangians in A0,2(Σ) unless one can find a generalization of the
based gauge group in the W 1,2-regular gauge transformations. This would
have to be a subgroup that acts freely but has finite codimension.

Next, we consider the Lagrangians given by handle bodies. For that
purpose, we suppose that G is connected and simply connected and that
Σ = ∂H is the boundary of a handle body H. (Both H and Σ might have
several connected components, in which case “fixing z ∈ Σ’ below should be
replaced by “fixing a point in each component.”)

Let LH be the Lp(Σ)-closure of the set of smooth flat connections on Σ
that can be extended to a flat connection on H,

LH := cl
{

A ∈ Aflat(Σ)
∣
∣ ∃Ã ∈ Aflat(H) : Ã|Σ = A

}

⊂ A0,p(Σ).

Here again the assumption p > 2 is crucial for the subsequent properties. In
particular, it is not clear whether the L2-closure is a smooth submanifold.

Lemma 5.2 [20, Lemma 4.6].
(i) LH =

{

u∗(A|Σ)
∣
∣ A ∈ Aflat(H), u ∈ G1,p(Σ)

}

(ii) LH ⊂ A0,p(Σ) is a Lagrangian submanifold.
(iii) LH ⊂ A0,p

flat(Σ) and LH is invariant under the action of G1,p(Σ).
(iv) Fix any z ∈ Σ. Then10

LH =
{

A ∈ A0,p
flat(Σ)

∣
∣ holz(A) ∈ Hom(π1(H),G) ⊂ Hom(π1(Σ),G)

}

,

So LH obtains the structure of a G1,p
z (Σ)-bundle over the g-fold product

M = G × · · · × G ∼= Hom(π1(H), G),

G1,p
z (Σ) ↪→ LH

holz−→ Hom(π1(H),G).

10Here we identify Hom(π1(H), G) ∼=
{
ρ ∈ Hom(π1(Σ), G)

∣
∣ ρ(∂π2(H, Σ)) = {1l}

}
.
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Next, although the Lagrangian LH does not necessarily have a smooth
L2-closure, the L2(Σ)-norm on LH can be used to control the corresponding
flat connections on H in L3(H). This extension property is the crucial trick
that circumvents dealing with the W 1,2-topology on the gauge group.

Lemma 5.3. There exists a constant CH such that the following holds.
(i) For every smooth path A : (−ε, ε) → LH ∩ A(Σ), there exists a path

Ã : (−ε, ε) → Aflat(H) with Ã(s)|∂H = A(s) such that

‖∂sÃ(0)‖L3(H) ≤ CH‖∂sA(0)‖L2(Σ).

(ii) For all A0, A1 ∈ LH ∩ A(Σ), there exist extensions Ã0, Ã1 ∈ Aflat(H)
with Ai = Ãi|∂H such that

(13) ‖Ã0 − Ã1‖L3(H) ≤ CH‖A0 − A1‖L2(Σ).

The proof in [22, Lemma 1.6] uses the coordinates in Lemma 5.2 (iv).
Extensions with the correct holonomy can be constructed by hand, and the
estimates are immediate on this finite dimensional part. For dealing with
the gauge transformations, the crucial fact is that there is a continuous
extension operator from W 1,2(Σ) to W 1,3(H). In (i), this fact is used for
functions with values in su(2), whereas (ii) requires the nonlinear version for
maps to SU(2). The latter is a nontrivial construction of Hardt–Lin in this
borderline Sobolev case (the maps are not automatically continuous).

6. Rough guide to the analysis

In this section, we give outlines of the proofs of Theorems 3.4, 3.5, and 3.7
for instantons with Lagrangian boundary conditions.11 The detailed proofs
can be found in [21, 22]. They actually hold for more general domains and
metrics than considered here, which becomes important when proving the
metric independence of the Floer homology and when defining products. We
study the boundary value problem (8) for SU(2)-connections Ξ ∈ A(H2×Σ),

(14) FΞ + ∗FΞ = 0, Ξ|{(s,0)}×Σ ∈ LH ∀s ∈ R.

Here H
2 = {(s, t) ∈ R

2
∣
∣ t ≥ 0} denotes the half space and we equip H

2 × Σ
with a metric ds2 + dt2 + gs,t, where the metric gs,t on Σ varies smoothly
with (s, t) ∈ H

2 and is constant outside of a compact subset.

6.1. Proof of Compactness. For all results in this subsection, the
Lagrangian LH in (14) can be replaced by a general gauge invariant
Lagrangian submanifold L ⊂ A0,p(Σ). The compactness Theorem 3.4 in case
(in-L) is a consequence of the following lemma and theorem. The lemma

11The methods will be suitable for generalization to gauge invariant Lagrangians as on
page 10. The special form of the Lagrangians arising from handle bodies is only used for
the bound on ∂

∂ν
e in Lemma 6.4 and for the isoperimetric inequality in Proposition 6.6.
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yields the local Lp-bounds that are assumed in the theorem. It is based on
mean value inequalities and will thus be proven later in Section 6.2. Here
Br(x) ⊂ R

2 is the closed 2-dimensional ball of radius r > 0 centred at x ∈ R
2,

and we denote Dr(x) := Br(x)∩ H
2. In particular, Dr := Dr(0) ⊂ H

2 is the
closed half ball of radius r.

Lemma 6.1 [22, Lemma 2.4]. Let Ξν ∈ A(H2 × Σ) be a sequence of anti-
self-dual connections and suppose that for some x0 ∈ H

2 and δ > 0

sup
ν

sup
x∈D2δ(x0)

∥
∥FΞν (x)

∥
∥

L2(Σ) < ∞.

Then for every 2 < p < 3, sup
ν

∥
∥FΞν

∥
∥

Lp(Dδ(x0)×Σ) < ∞.

If in fact Bδ(x0) ∩ ∂H = ∅, then moreover sup
ν

∥
∥FΞν

∥
∥

L∞(Bδ(x0)×Σ) < ∞.

Theorem 6.2. Let p > 2. Suppose that Ξν ∈ A(H2 × Σ) is a sequence of
solutions of ( 14) such that supν ‖FΞν‖Lp(K) < ∞ for every compact subset
K ⊂ H × Σ. Then there exists a subsequence (again denoted by Ξν) and a
sequence of gauge transformations uν ∈ G(H2×Σ) such that uν ∗Ξν converges
uniformly with all derivatives on every compact subset of H

2 × Σ.

Note that it is crucial to establish this compactness for 2 < p < 3 since the
previous lemma only provides those curvature bounds near the boundary.
Next, we outline the steps of the proof in [21, Theorem B] of Theorem 6.2.
By standard gauge theoretic arguments, it boils down to the boundary regu-
larity theory in 5(b)–(f) below. The crucial step is (f), where the Lagrangian
enters as totally real boundary condition for a Cauchy–Riemann equation.
The case 2 < p ≤ 4 requires a separate treatment described in (a’) and (f’).
(1) Reduction to compact domains: By a Donaldson–Kronheimer

trick [19, Prop. 7.6], it suffices to prove the assertion on Dk×Σ for every
k ∈ N. Then the gauge transformations on Dk × Σ can be extended to
H

2 × Σ and can be interpolated with gauge transformations obtained
on larger domains. A diagonal subsequence then satisfies the claimed
C∞

loc-convergence on H
2 × Σ.

So we consider a sequence Ξν ∈ A(H2 × Σ) of solutions whose cur-
vature is in particular Lp-bounded on U × Σ, where U ⊂ H

2 is some
compact domain with smooth boundary and Dk ⊂ int(U). Then we
need to find gauge transformations and a convergent subsequence on
Dk × Σ.

In the subsequent steps, one frequently gets a new estimate only on
a smaller domain Ui ⊂ int(U). (Note that the interior includes points
on ∂H

2.) However, we can always choose these such that Dk ⊂ int(Ui).
(2) Weak convergence: We can apply Uhlenbeck’s weak compactness

Theorem 2.1 on U × Σ. It provides a subsequence (still denoted Ξν)
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and gauge transformations uν ∈ G2,p(U × Σ) such that uν ∗Ξν → Ξ∞

in the weak W 1,p-topology with a limit connection Ξ∞ ∈ A1,p(U × Σ).
(3) Regularity for limit solution: The limit Ξ∞ now also solves (14).

For the boundary conditions, this is due to the compact Sobolev
embedding W 1,p(U × Σ) ↪→ C0(U , Lp(Σ)). In the nonstandard case
2 < p ≤ 4, this embedding is established in [21, Lemma 2.5].

Now one finds a gauge transformation u ∈ G(U1×Σ) such that u∗Ξ∞

is smooth on U1 ×Σ. (This is proven analogously to the iteration in 5),
with estimates replaced by regularity statements. For the local slice
theorem in (4), it suffices to pick a smooth connection Ξ0 that is W 1,p-
close to Ξ = Ξ∞.) One thus finds that (uνu)∗Ξν → Ξ0 in the weak
W 1,p-topology on U1 × Σ, with a smooth limit Ξ0 = u∗Ξ∞.

(4) Relative Coulomb gauge: Next, the local slice Theorem 2.2 provides
a sequence of gauge transformations vν ∈ G(U1 × Σ) such that still
vν ∗Ξν → Ξ0 converges W 1,p-weakly, and in addition each Ξ = vν ∗Ξν

satisfies

(15) d∗
Ξ0

(Ξ − Ξ0) = 0, ∗(Ξ − Ξ0)|∂U1×Σ = 0.

(5) Elliptic estimates for (14) and (15): From (2)–(4) we have a sub-
sequence and gauge transformations vν such that each Ξ = vν ∗Ξν

satisfies (14), (15), and ‖Ξ‖W 1,p(U1×Σ) ≤ C1 for some uniform con-
stant C1. By iterating the following steps (a)–(f), one next finds uni-
form constants C
 such that ‖Ξ‖W �,p(U�×Σ) ≤ C
 for all � ∈ N and
for all Ξ = vν ∗Ξν . Finally, due to the compact Sobolev embeddings
W 
,p(Dk ×Σ) ↪→ C
−2(Dk ×Σ), one then finds a diagonal subsequence
that converges with all derivatives on Dk × Σ. This is what was to be
shown according to (1).

For (a)–(f), we give the arguments in the case � = 2 and p > 4. This
first step is considerably harder for 2 < p ≤ 4 and requires a separate
iteration, which is roughly indicated in (a’) and (f’). The iteration for
� ≥ 3 and any p > 2 then works completely analogous to the arguments
below.

(a) Interior estimates: From (14) and (15), we obtain the Hodge
Laplacian

∆Ξ = −d∗(1
2 [Ξ ∧ Ξ] + 1

2 ∗ [Ξ ∧ Ξ]
)

+ dd∗
Ξ0

Ξ0 + d ∗ [Ξ0 ∧ ∗Ξ].(16)

Here the right hand side is bounded in Lp, and the leading order of
the left hand side in local coordinates is the Laplacian on the com-
ponents of Ξ. Thus the elliptic estimate for the Laplace equation
yields a W 2,p-bound on Ξ in the interior of U1 \ ∂H

2.
Going through the arguments up to this point also proves Theo-
rem 3.4 in the instanton case (inst) without boundary.
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(a’) Special iteration for W2,p-bounds with 2 < p ≤ 4: In this
case, the right hand side of (16) lies in Lq for some q < p, so one
only obtains a W 2,q-bound. However, by a Sobolev embedding,
this also gives a W 1,p′

-bound for some p′ > p. Iteration of (a) then
yields W 2,qi-bounds for a strictly increasing sequence, which reaches
qN ≥ p after finitely many steps. An analogous iteration will work
for steps (b)–(f).

(b) Splitting the equation near the boundary: It remains to
obtain a W 2,p-bound on Ξ near Dk ∩ ∂H

2. For that purpose we
rewrite (14) and (15) in the splitting Ξ = Φ ds + Ψ dt + A (and
analogous for the smooth Ξ0) with Φ, Ψ ∈ W 1,p(U1 × Σ; su(2)) and
A ∈ W 1,p(U1 × Σ, T∗Σ ⊗ su(2)),

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(∂sA − dAΦ) + ∗(∂tA − dAΨ) = 0,

∂sΨ − ∂tΦ + [Φ, Ψ] + ∗FA = 0,

∇s(Φ − Φ0) + ∇t(Ψ − Ψ0) − d∗
A0

(A − A0) = 0,

(Ψ − Ψ0)|t=0 = 0,

A(s, 0) ∈ L ∀s ∈ R.

(17)

Here we use the notation ∇s = ∂s + [Φ0, ·] and ∇t = ∂t + [Ψ0, ·].
(c) Estimates for Ψ: From (16), we know that ∆Ψ is Lp-bounded. In

addition, we have the inhomogeneous Dirichlet condition Ψ|t=0 =
Ψ0|t=0. Thus the elliptic estimate for the Dirichlet boundary value
problem implies a W 2,p-bound on Ψ up to the boundary.
(d) Estimates for Φ: Again, ∆Φ is Lp-bounded due to (16).
Moreover, we have an inhomogeneous Neumann condition ∂tΦ|t=0 =
(∂sΨ0 + [Φ, Ψ0])|t=0 since the Lagrangian boundary condition with
L ⊂ A0,p

flat(Σ) in particular implies FA|t=0 = 0. Then the ellip-
tic estimate for the Neumann boundary value problem (e.g., [19,
Theorem 3.2]) provides a W 2,p-bound on Φ.

(e) Estimates for ∇ΣA: We can now rewrite (17) to express the
differential and codifferential of A(s, t) ∈ Ω1(Σ; su(2)) for every
(s, t) ∈ U1 as

∗dΣA = −1
2 ∗ [A ∧ A] − ∂sΨ + ∂tΦ − [Φ, Ψ],

d∗
ΣA = ∇s(Φ − Φ0) + ∇t(Ψ − Ψ0) + ∗[A0 ∧ ∗A] − d∗

A0
A0.

Due to the previously established bounds on Φ and Ψ, the right
hand sides are bounded in W 1,p(U2×Σ), that is, in W 1,p(U2, L

p(Σ))
and Lp(U2, W

1,p(Σ)). Now the elliptic estimates from the Hodge
decomposition for each (s, t) ∈ U2 can be integrated to give bounds
on ∇ΣA in the same spaces, and hence a W 1,p-bound. For a detailed
statement and proof see [21, Lemma 2.9].
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(f) Estimates for ∂sA, ∂tA: So far A is bounded in Lp(U2, W
2,p(Σ))

and W 1,p(U2, W
1,p(Σ)). To achieve a W 2,p-bound, it remains to

find an estimate in W 2,p(U2, L
p(Σ)), that is, on ∂sA and ∂tA. At

this point, the full Lagrangian boundary condition needs to be used.
Up to now, we only used its local part, the slice-wise flatness. The
additional holonomy conditions are of global type (requiring knowl-
edge of the connection on loops in Σ), so this information is lost
when one localizes, i.e., goes to a coordinate chart in Σ.
The solution is to consider A as map from U1 to the Banach space
A0,p(Σ). This is a complex space when equipped with the Hodge
∗ operator. So we can rewrite (17) and recall Lemma 5.1 (i) to
see that A satisfies a Cauchy–Riemann equation with totally real
boundary conditions:

(18) ∂sA + ∗∂tA = dAΦ + ∗dAΨ, A(s, 0) ∈ L ∀s ∈ R.

Now one basically has to go through the proof of Theorem 3.4 for the
holomorphic curves in case (symp) with the extra difficulty that the
target space is infinite dimensional. This would be fairly standard
for a Hilbert space. However, the iteration only works for p > 2 and
we also need to work with p > 2 to make sure that the Lagrangians
are smooth submanifolds.
Here we use the general theory in [20] for maps to a complex
Banach space X. The crucial assumption is that X is a closed
subspace of an Lp-space for some 1 < p < ∞ on a closed mani-
fold (for example X = A0,p(Σ)). Then the elliptic Lp-estimates
(with the same Sobolev exponent as in X) hold for the Dirich-
let and Neumann problem. One can then use the usual argu-
ment for the Cauchy–Riemann equation with totally real bound-
ary conditions: in a submanifold chart, the components of the map
u : U → Tz0L × Tz0L ∼= X satisfy Dirichlet and Neumann bound-
ary conditions — at the expense of the complex structure becoming
u-dependent. From an Lp-bound on (∂2

s + ∂2
t )u, one then obtains

a W 2,p-estimate on u. Due to this nonlinearity from the complex
structure, however, the Lp-estimate on (∂2

s + ∂2
t )u requires W 1,2p-

bounds on u and ∂su + J∂tu.
In (18) the right hand side is bounded in W 1,p(U , Lp(Σ)) due to the
previous bounds on Φ and Ψ (on some domain U ⊂ int(U1) with
U2 ⊂ int(U)). By the above discussion we now have to write p = 2p′

and we only obtain W 2,p′
-estimates for A : U → X = A0,p′

(Σ) with
∂sA + ∗∂tA ∈ W 1,2p′

(U , X). So this last step yields a bound on Ξ
in W 2, p

2 (U2 × Σ). For p > 4, we still have p
2 > 2 and the further

iteration yields W 
, p
2 -bounds for all � ∈ N.
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(f ’) Special case 2 < p ≤ 4 for W2,p-bounds: In this case, we only
have q < p in the W 2,q- and W 1,q-bounds on Φ, Ψ, and ∇ΣA from
(c)–(e). So the right hand side in (18) is of even lower regularity
that will not fit in the above arguments. However, it is bounded
in Lr(U , Lp(Σ)) for some r > p. So one can use the submanifold
charts for L ⊂ A0,p(Σ) to write A as a map u : U → TA0L × TA0L,
where TA0L ⊂ A0,p(Σ) is a closed subspace. The two components
of u then satisfy weak Dirichlet and Neumann equations with the
weak Laplacian in W−1,r(U , Lp(Σ)). The previous general theory
unfortunately only works when we replace the r > p by p and it
would then give a bound on u in W 1,p(U2, L

p(Σ)), which is what
we started out with. However, one can use all the usual elliptic
estimates when the target is a Hilbert space. So we consider u as
map into A0,2(Σ)×A0,2(Σ) with a W−1,r-bound on its weak Lapla-
cian. This yields a W 1,r(U2, L

2(Σ))-bound on u with r > p. The
previous bounds in (e) moreover imply a W 1,q(U2, L

s(Σ))-bound on
u, where q < p but s > p since it results from the Sobolev embed-
ding W 1,q(Σ) ↪→ Ls(Σ). Now these two bounds can be interpolated
to obtain a W 1,p′

(U2 × Σ)-bound with p′ > p. This bound on u

also translates into a W 1,p′
-bound on A, which fits into the same

iteration as in (a’).

6.2. Mean value inequalities. The proof of Theorems 3.5 and 3.7 as well
as Lemma 6.1 makes use of some mean value inequalities which we summa-
rize here. These are based on a generalization of the mean value inequality
for subharmonic functions. Here we state it for the Euclidean half space
H

n. In the interior case, this is well known for general metrics. In the case
of balls intersecting the boundary, this was proven in [23, Theorem 1.3] for
the Euclidean metric.

Proposition 6.3. For every n ≥ 2, there exists a constant C and for all
a, b ≥ 0 there exists �(a, b) > 0 such that the following holds:

Let Dr(y) ⊂ H
n be the partial ball of radius r > 0 and centre y ∈ H

n.
Suppose that e ∈ C2(Dr(y), [0,∞)) satisfies for some constants A, B ≥ 0

{
∆e ≤ Ae + ae(n+2)/n,
∂
∂ν

∣
∣
∂Hne ≤ Be + be(n+1)/n,

and
∫

Dr(y)
e ≤ �(a, b).

Then e(y) ≤ C
(

An/2 + Bn + r−n
) ∫

Dr(y) e.

For all three types of Floer theory that are discussed in Section 3, the
energy densities satisfy the differential inequalities for Proposition 6.3 with
exactly the critical nonlinearities. These estimates are summarized below.
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Lemma 6.4. Consider a solution of the trajectory equation (T) in Defini-
tion 3.2. Its energy density e satisfies the following nonlinear bounds on ∆e
and ∂

∂ν e with constants a, b, C.

(inst): e = |∂sB|2 : R × Y → [0,∞) satisfies ∆e ≤ C e + a e3/2.
(in-L, interior): e = |∂sA|2 + |FA|2 : R × [0, 1] × Σ → [0,∞) satisfies

∆e ≤ C e + a e3/2.

(in-L, boundary): e = ‖∂sA‖2
L2(Σ) + ‖FA‖2

L2(Σ) : R × [0, 1] → [0,∞)
satisfies

∆e ≤ C
(

1 + ‖FA‖L∞(Σ)
)

e, ∂
∂ν e ≤ C e + b e3/2.

(symp): e = |∂su|2 : R × [0, 1] → [0,∞) satisfies

∆e ≤ a e2, ∂
∂ν e ≤ b e3/2.

Indications of Proofs of Lemma 6.4
For the holomorphic curves in case (symp) one picks up linear terms in

the estimates if the almost complex structure J varies over the domain. The
bound on the Laplacian can be found in, e.g., [12, Lemma 4.3.1]. The bound
on the normal derivative was well known and is proven in [23, Lemma A.1]
using Darboux-Weinstein coordinates near the Lagrangian.

For the anti-self-dual instantons in case (inst) this estimate is a direct
consequence of a Bochner-Weitzenböck formula, see, e.g., [23, Lemma A.2].
It was used by Uhlenbeck [17, Lemma 3.1] in a slightly different formu-
lation. For the anti-self-dual instantons with Lagrangian boundary condi-
tions, one has the same bound on the Laplacian, as stated in (in-L, interior).
However, this only provides estimates in the interior (on balls that do not
intersect the boundary) since one does not have a bound on the normal
derivative.

In view of the global methods in Section 6.1 (f) that were necessary for
the proof of the basic compactness Theorem 3.4, it should not be surpris-
ing that we were not able to obtain any bound on ∂

∂ν e in terms of e, let
alone by b e5/4. It is highly unclear how the (nonlocal) holonomy part of the
Lagrangian boundary condition should be utilized for such a local estimate.
On the other hand, there are examples showing that such an estimate can-
not follow only from the (local) flatness part of the Lagrangian boundary
condition.

Thus it seems natural that the full Lagrangian boundary condition is
only captured by the 2-dimensional energy density given in (in-L, bound-
ary). Indeed, we obtain the same bound on the normal derivative as in case
(symp). The proof in [22, Lemma 2.3] works as follows: a simple calculation
using the trajectory equation (T ) in Definition 3.2 (that is (14) in temporal
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gauge) gives the normal derivative at the t = 0 boundary component:

−1
2

∂
∂te

∣
∣
t=0 = −

∫

Σ
〈 ∂sA ∧ ∗∂s

(

∗∂sA
)

〉
∣
∣
t=0

≤
(

C
∥
∥∂sA

∥
∥2

L2(Σ) +
∫

Σ
〈 ∂sA ∧ ∂2

sA 〉
)∣
∣
∣
t=0

.

Recall that e = ‖∂sA‖2
L2(Σ) + ‖FA‖2

L2(Σ) and FA

∣
∣
t=0 = 0 by the boundary

condition. So the first term on the right hand side is just Ce for a constant C.
The crucial second term is ω(∂sA, ∂2

sA) for a path A : (−ε, ε) → LH in the
Lagrangian and with the symplectic form (3).

This term would vanish if the Lagrangian was straight — as in Darboux–
Weinstein coordinates. Otherwise, the curvature of the Lagrangian leads
to a cubic term. For general infinite dimensional Lagrangians, the
curvature might not be suitably bounded, and it is not clear whether
Darboux–Weinstein coordinates even exist. Fortunately, we are dealing with
Lagrangians that are compact modulo gauge transformations. A proof along
this line would require a subtle linear estimate for gauge transformations in
the critical Sobolev space W 1,2(Σ), which has not been carried out yet.
For the special Lagrangian LH arising from a handle body, we can use the
following trick based on the extension property in Lemma 5.3 (i).

We have A(s) = Ã(s)|∂H for a path of extensions Ã : (−ε, ε) → Aflat(H)
such that ‖∂sÃ‖L3(H) ≤ C‖∂sA‖L2(Σ). Now Stokes’ theorem gives

∫

Σ
〈 ∂sÃ ∧ ∂2

s Ã 〉 =
∫

H
〈 dÃ∂sÃ ∧ ∂2

s Ã 〉 −
∫

H
〈 ∂sÃ ∧ dÃ∂2

s Ã 〉

=
∫

H
〈 ∂sÃ ∧ [∂sÃ ∧ ∂sÃ] 〉

≤ ‖∂sÃ‖3
L3(H) ≤ C3‖∂sA‖3

L2(Σ) = C3e3/2.

Here we used the fact that FÃ ≡ 0, hence dÃ∂sÃ = ∂sFÃ = 0, and moreover
0 = ∂2

sFÃ = dÃ∂2
s Ã + [∂sÃ ∧ ∂sÃ]. This proves ∂e/∂ν ≤ C e + b e3/2.

The price for going to the more global energy density in (in-L, bound-
ary) has to be paid when considering the Laplacian. The straight forward
calculations in [22, Lemma 2.3] yield

∆e ≤ C
(

‖∂sA‖2
L2(Σ) + ‖FA‖2

L2(Σ)

)

− 20〈 FA , [∂sA ∧ ∂sA] 〉L2(Σ).

The first term is just Ce. The second term should also be bounded in terms
of the L2-norms of the curvature components ∂sA and FA. However, the
best bound that we can find is ‖FA‖L∞(Σ)‖∂sA‖2

L2(Σ) ≤ ‖FA‖L∞(Σ)e. Here
we use the L∞-norm on FA since this has better analytic properties, in par-
ticular Dirichlet boundary conditions FA|t=0 = 0, whereas ∂sA only satisfies
Lagrangian boundary conditions (of global type). This will be crucial in
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the proof of the energy quantization Theorem 3.5, where we will find that
∆e ≤ C(1 + ‖FA‖L∞(Σ))e is essentially bounded by Ce2.

Proof of Lemma 6.1. This is a consequence of the mean value inequality
in Proposition 6.3 applied to the energy densities eν = |∂sA

ν |2 + |F ν
A|2 =

1
2 |FΞν |2 from case (in-L, interior) of Lemma 6.4. The assumption can be
read as

(19)
∫

Σ
eν(x, ·) ≤ K for all x ∈ D2δ(x0)

with some uniform constant K. On 4-dimensional balls B4
ε (y) that are

entirely contained in D2δ(x0)×Σ, this implies
∫

B4
ε (y) eν ≤ πKε2. Now there

is a maximal radius ε0 ∈ (0, δ) such that for all ε ≤ ε0, this energy is less
than �(a) and thus one has the mean value inequality

(20) eν(y) ≤ C(1 + ε−4)πKε2.

In the interior case, one fixes a radius 0 < ε ≤ ε0 less than the distance
dist(Bδ(x0), ∂H

2) > 0. Then all balls B4
ε (y) for y ∈ Bδ(x0)×Σ are contained

in D2δ(x0) × Σ and (20) is the claimed uniform bound.
In the boundary case x0 = (s0, t0) with t0 ≤ δ, one cannot use a fixed

radius for the balls near the boundary. At y = (s, t, z) ∈ Dδ(x0) × Σ,
the maximal ball that is entirely contained in D2δ(x0) × Σ has radius
ε = min(t, δ). So for all (s, t, z) ∈ Dδ(x0) × Σ with 0 < t ≤ ε0, the mean
value inequality (20) gives

eν(s, t, z) ≤ C ′(t2 + t−2).

Away from the boundary, for t ≥ ε0, this also holds with some modified
constant C ′ by (20) with a fixed radius. Now this bound blows up as t → 0,
but it can be interpolated with (19) to give an Lp-bound on |FΞν | = (eν)1/2

by the following integral which is finite for 2 < p < 3.
∫

Dδ(x0)×Σ
(eν)p/2 ≤

∫

Dδ(x0)

(

C ′(t2 + t−2)
)p/2−1

∫

Σ
eν ≤C ′′

(

1 +
∫ t0+δ

0
t2−p dt

)

.

�
6.3. Proof of Energy Quantization. The proof of Theorem 3.5 for anti-
self-dual instantons without boundary and for the holomorphic curves is a
direct consequence of the mean value inequality in Proposition 6.3 applied
to the energy densities in Lemma 6.4. (See [23, Theorem 2.1] for this general
energy quantization principle.) For (inst) and the interior of (in-L), this is
the simplest version of the argument – on balls with no boundary condition
in dimension n = 4. Here we give the argument for the holomorphic curves
in (symp), more generally for a sequence of energy density functions ei :
R × [0, 1] → [0,∞) satisfying

∆ei ≤ K ei + a e2
i ,

∂
∂ν ei ≤ B ei + b e

3/2
i .
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We need to prove that if the energy densities blow up at some x ∈ R× [0, 1],

(21) sup
i

sup
Dδ(x)

ei = ∞ ∀δ > 0,

then (for a subsequence) a fixed energy quantum � > 0 concentrates there,

(22)
∫

Dδ(x)
ei > � ∀δ > 0.

The same needs to be proven in case (in-L) for boundary points x. For these
anti-self-dual instantons with Lagrangian boundary conditions, we use the
energy density ei = ‖∂sAi‖2

L2(Σ) + ‖FAi‖2
L2(Σ) as in (in-L, boundary) of

lemma 6.4. So the constant K above is replaced by the unbounded function
C(1 + ‖FAi‖L∞(Σ)). Moreover, the assertion (22) in this case implies the
concentration of energy near {x} × Σ ⊂ R × [0, 1] × Σ.

So let us assume (21). Then we find a subsequence and points xi → x
such that ei(xi) = R2

i blows up with a certain rate Ri → ∞. We will now
try to apply Proposition 6.3 on the balls Dδi

(xi) of radius δi := R
−1/2
i > 0.

For that purpose, we need to assume that
∫

Dδi
(xi)

ei ≤ � = �(a, b). If that
is the case, then we obtain the mean value inequality

R2
i = e(xi) ≤ C

(

K + B2 + δ−2
i

)
∫

Bδi
(xi)

ei.

Multiplication by R−2
i = δ2

i R
−1
i then implies

1 ≤ C�
(

KR−2
i + B2R−2

i + R−1
i

)

.

First assume that K is constant. Then the right hand side converges to 0.
Thus the assumption must have failed for all sufficiently large i ∈ N, that
is,

∫

Dδi
(xi)

ei > �. This implies the energy concentration (22).
If K is not a constant, then this argument still works as long as K ≤

C ′R2
i . In that case, the limit i → ∞ implies 1 ≤ CC ′

�. If one chooses
� ≤ (2CC ′)−1, then this gives a contradiction and thus proves the energy
concentration.

So for anti-self-dual instantons with Lagrangian boundary conditions in
case (in-L), we have to prove that if ei = R2

i blows up, then the functions
K = C(1 + ‖FAi‖L∞(Σ)) are bounded by C ′R2

i . This statement is slightly
weaker than a direct bound ‖FA‖L∞(Σ) ≤ C‖FΞ‖2

L2(Σ) = Ce would be, but
it still shows that ∆e ≤ C(1 + ‖FA‖L∞(Σ))e is essentially bounded by Ce2.

By using the Hofer trick within the previous argument, one can addition-
ally control ei by the blowup rate on small neighbourhoods. One then needs
to establish the following as in [22, Proposition 2.7].

Lemma 6.5 (Crucial Estimate). Let Ξi = Φi ds+Ψi dt+Ai ∈ A(H2 ×Σ)
be a sequence of solutions of (14). Consider a sequence of blowup points
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H
2 � xi → 0 with the blowup speed Ri → ∞. Assume an L2(Σ)-control on

the full curvature on (partial) balls of radius 2εi → 0 such that εiRi → ∞,

‖FΞi(x, ·)‖L2(Σ) ≤ Ri ∀x ∈ D2εi(xi).

Then one obtains an L∞-control on the curvature component

‖FAi(x, ·)‖L∞(Σ) ≤ CR2
i ∀x ∈ Dεi(xi).

The proof combines all previous techniques to a subtle contradiction. This
is what remains of the usual energy quantization proof via local rescaling:
(1) Assume the contrary: Then one finds sequences of solutions Ξi,

points (xi, zi) → (0, z) ∈ H
2 × Σ, and Ri → ∞, εi → 0, Ci → ∞ with

εiRi → ∞,

supx∈Dεi (xi) ‖FΞi(x, ·)‖L2(Σ) ≤ Ri, |FAi(xi, zi)| ≥ (CiRi)2.

(2) Local rescaling: The crucial case is when xi = (si, ti) converges
to ∂H

2 so fast that even tiRiCi → 0. So for simplicity, we assume
here that xi ∈ ∂H

2. Then we can restrict Ξi to half balls of radius
δi := (CiRi)−1 ≤ εi and rescale them to connections Ξ̃i(y) :=
Ξi((xi, zi) + δiy) on the half ball D4 ⊂ H

4 of radius 1 centred at 0.
The rescaled connections then satisfy

(23) |FÃi
(0)| ≥ 1.

(3) Lp-decay of FΞ̃ for p < 3: By a calculation similar to Lemma 6.1 for
the curvature of the rescaled connections, one obtains for all 2 < p < 3

(24) ‖FΞ̃i
‖Lp(D4) → 0.

(4) C0-estimates for FÃ in terms of Lp-bounds on FΞ̃ for p > 8
3 :

From (24) for p > 2 and Uhlenbeck’s weak compactness Theorem 2.1,
we know that (up to gauge and taking a subsequence) the rescaled
connections Ξ̃i ∈ A(D4) converge to a flat connection in the weak
W 1,p-topology. One obtains stronger estimates from the fact that the
rescaling preserves the anti-self-duality equation. This implies C∞-
convergence of the Ξ̃i away from the boundary ∂H

4. At the boundary,
the local rescaling has lost the global part of the Lagrangian boundary
condition, but the slice-wise flatness persists, FΞ̃i

|{(s,0)}×R2 = 0. With
this, one can go through the steps (b)–(e) in Section 6.1 to obtain
W 2,q-estimates on some components of the Ξ̃i. One then feeds these
back into (c) and (d) to obtain W 2,q-bounds on ∇Φ̃i and ∇Ψ̃i, where
the derivative ∇ is only in the R

2-directions corresponding to TΣ.
Now we need to assume (24) with p > 8

3 , then we can work with q > 2
and the above bounds are just strong enough to imply C0-convergence of the
curvature part ∗FÃ = ∂tΦ̃ − ∂sΨ̃ + [Ψ̃, Φ̃]. Since this convergence is to a flat
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connection, it provides a contradiction to (23). Note that this contradiction
between (3) and (4) crucially relies on the celebrated fact 8

3 < 3 .

6.4. Proof of Removability of Singularities. The proof of Theorem 3.7
in case (in-L, boundary) proceeds through the subsequent three propositions.
Throughout, we denote by Dr := Dr(0) ⊂ H

2 the half ball of radius r > 0,
by D∗

r := Dr \{0} the punctured half ball, and we will use polar coordinates
(r, φ) ∈ D∗

1 with r ∈ (0, 1] and φ ∈ [0, π].
We will consider solutions of (14) on D∗

1 × Σ, which is anti-self-dual con-
nections which satisfy the Lagrangian boundary condition on {(s, 0)} × Σ
for s �= 0. An important tool for a connection Ξ ∈ A(D∗

1 × Σ) with finite
energy

∫

D∗
1×Σ |FΞ|2 < ∞ is its energy function E : (0, 1] → [0,∞) given by

E(r) := 1
2

∫

D∗
r×Σ

|FΞ|2
[

= lim
δ→0

1
2

∫

(Dr\Dδ)×Σ
|FΞ|2 = lim

δ→0

(

E(r) − E(δ)
)

.

]

The above calculation shows that finite energy directly implies E(δ) → 0 as
δ → 0. For a finite energy solution of (14), one thus obtains mean value
inequalities as in Section 6.2 on sufficiently small punctured balls.

Proposition 6.6 [22, Lemma 5.4]. There are constants C and ε > 0 such
that the following holds. Let Ξ ∈ A(D∗

1×Σ) be a solution of (14) and suppose
that E(2r) ≤ ε for some r ∈ (0, 1

2 ]. Then for all φ ∈ [0, π]

(i) ‖FΞ(r, φ)‖L2(Σ) ≤ Cr−1
√

E(2r) ,
(ii) ‖FΞ(r, φ)‖L∞(Σ) ≤ C(r sin φ)−2

√

E(2r) .

Sketch of Proof. The estimate (ii) is the mean value inequality for e = |FΞ|2
that follows from Proposition 6.3. Since Lemma 6.4 does not provide a
control on ∂

∂ν e, we can only work on balls that are entirely contained in
D∗

2r ×Σ. When centred at (r, φ, z) ∈ D∗
1 ×Σ, their maximal radius is r sin φ.

Next, write the connection as Ξ = Φ ds + Ψ dt + A. For the curvature
component FA, which vanishes at the boundary φ ∈ {0, π}, we can improve
(ii) to ‖FA(r, φ)‖L∞(Σ) ≤ Cr−2. This follows from ‖FΞ(r, φ)‖L2(Σ) ≤ Cr−1

similar to Lemma 6.5 (‖FA‖L∞(Σ) is essentially bounded by ‖FΞ‖2
L2(Σ)). The

latter estimate is proven by an indirect argument as in Section 6.3. This uses
the mean value inequality for e = ‖FΞ‖2

L2(Σ) from Proposition 6.3, based on
Lemma 6.4 and again Lemma 6.5.

Once ‖FA(r, φ)‖L∞(Σ) ≤ Cr−2 is established that way, one can use it again
in the mean value inequality for e = ‖FΞ‖2

L2(Σ). It provides ∆e ≤ Cr−2e on
(partial) balls of radius 1

2r around (r, φ). The claim (i) then follows directly.
The curvature decay established here is almost sufficient to remove the

singularity. The exponent of r only has to be slightly improved to achieve the
conditions in the following removable singularity result. This improvement
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will finally be achieved in the crucial Proposition 6.8 by a control on the
speed of convergence of the energy function E(r) → 0 as r → 0. �

Proposition 6.7 [22, Theorem 5.3]. Let Ξ ∈ A(D∗
1 × Σ) and suppose that

for some constants C and β > 0 and for all (r, φ) ∈ D∗
1

(i) ‖FΞ(r, φ)‖L2(Σ) ≤ Crβ−1,
(ii) ‖FΞ(r, φ)‖L∞(Σ) ≤ C(sin φ)−2rβ−2 .

Then there exists p = p(β) > 2 and a gauge transformation u ∈ G2,p(D∗
1 ×Σ)

such that u∗Ξ extends to a connection Ξ̃ ∈ A1,p(D1 × Σ).
Moreover, if Ξ is a solution of (14), then Ξ̃ automatically solves (14) on

D1 × Σ. A further gauge tranformation then makes Ξ̃ ∈ A(D1 × Σ) smooth.

Sketch of Proof. To control the connection in terms of its curvature, we fix
a special gauge: trivializing the bundle along rays 0 < r ≤ 1 for fixed φ = π

2
and z ∈ Σ and then along 0 ≤ φ ≤ π for fixed r and z ∈ Σ we obtain

Ξ = A + R dr + 0 dφ with R|φ=π
2

= 0.

Here A : D∗
1 → Ω1(Σ; su(2)) and R : D∗

1 → Ω0(Σ; su(2)). In this gauge we
have |∂rΞ|

∣
∣
φ=π

2
≤ |FΞ| and |∂φΞ| ≤ r|FΞ| since the curvature decomposes as

|FΞ|2 = |FA|2 + |∂rA − dAR|2 + r−2|∂φR|2 + r−2|∂φA|2.
The bounds (i) and (ii) combine to |FΞ| ∈ Lp(D1 × Σ) for some p > 2 that
only depends on β. Roughly, they also imply Ξ|{(r, π

2 )}×Σ → A0 ∈ A0,p(Σ)
and Ξ|{r}×[0,π]×Σ → A0 ∈ C0([0, π],A0,p(Σ)) as r → 0, and A0 provides the
extension over {0} × Σ. In practice, one constructs a family of connections
(Ξε)ε≥0 on D1 × Σ that coincide with Ξ outside of D2ε × Σ and equal to
A(ε, π

2 ) on Dε × Σ. Using (i) and (ii), this cutoff construction can be done
such that ‖FΞε − FΞ‖Lp(D1×Σ) → 0 as ε → 0.

By Uhlenbeck’s compactness Theorem 2.1, one then finds a sequence εi →
0 and gauge transformations ui ∈ G(D1×Σ) such that u∗

i Ξεi converges W 1,p-
weakly to a limit connection Ξ̃ ∈ A1,p(D1 ×Σ). Note that on every compact
subset of D∗

1 ×Σ, the sequence Ξεi eventually coincides with Ξ. So the above
convergence also implies that (for a subsequence) the gauge transformations
ui converge to a limit u ∈ G2,p

loc (D
∗
1 × Σ) in the weak W 2,p-topology on every

compact set. Then by the uniqueness of the limit u∗Ξ = Ξ̃|D∗
1×Σ, so Ξ̃ is the

claimed extension. If moreover Ξ and hence Ξ̃ are solutions of (14), then
the regularity theorem [21, Theorem A] for this boundary value problem
asserts that Ξ̃ is gauge equivalent to a smooth solution. �

Proposition 6.8 [22, Lemma 4.1]. Let Ξ ∈ A(D∗
1 × Σ) be a solution of

(14) with finite energy E(1) < ∞. Then for all r ∈ (0, 1]

E(r) ≤ r1/πE(1).
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Sketch of Proof. By the anti-self-duality equation ∗FΞ = −FΞ, we have

1
2

∫

(Dr0\Dδ)×Σ
〈 FΞ ∧ ∗FΞ 〉 = 1

2

∫

(Dr0\Dδ)×Σ
d〈 Ξ ∧ (FΞ − 1

6 [Ξ ∧ Ξ]) 〉.

This converges to E(r0) as δ → 0. On the other hand, Stokes’ theorem
expresses this as integral over ∂(Dr0 \ Dδ) × Σ. Our goal is to rewrite it as
F(Aδ)−F(Ar0) for a functional F depending on Ar := A(r, ·) : [0, π]→A(Σ).
Here, as in Proposition 6.7, we work in the special gauge Ξ = A+R dr. Then
Proposition 6.6 (i) gives ‖∂φAr‖L2(Σ) ≤ C

√

E(2r) → 0 as r → 0, so the paths
Ar are L2-short paths connecting Ar(0), Ar(π) ∈ LH . These contribute to
F on the boundary components {r0} × [0, π] × Σ and {δ} × [0, π] × Σ. So
it remains to deal with the boundary components12 at φ = 0 and φ =
π. We identify these with ([−r0,−δ] ∪ [δ, r0]) × Σ and glue in the domain
([−r0,−δ] ∪ [δ, r0]) × H. Now extending the families Ar(0), Ar(π) ∈ LH by
Ãr(0), Ãr(π) ∈ Aflat(H) preserves the value of

∫

〈 FΞ ∧ FΞ 〉, and

(25) E(r0) = CS(Aδ, Ãδ) − CS(Ar0 , Ãr0).

Here we introduce the Chern–Simons functional for a path A : [0, π] → A(Σ)
with L2-close ends Ã(0), Ã(π) ∈ LH and extensions Ã(0), Ã(π) ∈ Aflat(H),

CS(A, Ã) = −1
2

∫ π

0

∫

Σ
〈 A ∧ ∂φA 〉 + 1

12

[∫

H
d〈 Ã(φ) ∧ [Ã(φ) ∧ Ã(φ)] 〉

]φ=π

φ=0

= −1
2

∫ π

0

∫ φ

0

∫

Σ
〈 ∂φA(θ) ∧ ∂φA(φ) 〉 dθ dφ

− 1
12

∫

H
〈
[

(Ã(0) − Ã(π)) ∧ (Ã(0) − Ã(π))
]

∧
(

Ã(0) − Ã(π)
)

〉.

This magic identity together with the special choice of extensions as in
Lemma 5.3 (ii) allow us to obtain the isoperimetric inequality

∣
∣CS(Ar, Ãr)

∣
∣ ≤ 1

2

(∫ π

0

∥
∥∂φAr

∥
∥

L2(Σ) dφ

)2

+ 1
12

(∥
∥Ãr(0) − Ãr(π)

∥
∥

L3(Y )

)3

≤
(1

2 + C3
H

12

∥
∥Ar(0) − Ar(π)

∥
∥

L2(Σ)

)
(∫ π

0

∥
∥∂φAr

∥
∥

L2(Σ) dφ

)2

.

12One could eliminate these by gluing in paths A′
r : [0, π] → LH in the Lagrangian con-

necting Ar(0), Ar(π) ∈ LH . This would reach the goal with a functional F = F(Ar, A
′
r).

For the subsequent argument, however, the L2-length of the path A′
r has to be controlled

by the L2-distance of its endpoints. The crucial point would be to establish this fact for
paths in a fixed gauge orbit — a subtle nonlinear W 1,2-estimate for gauge transformations.
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For sufficiently short Ar, this implies |CS(Ar, Ãr)| ≤ π
∫ π
0

∥
∥∂φAr

∥
∥2

L2(Σ). As
seen before, this converges to 0 as r = δ → 0, and moreover it is bounded
πrĖ(r). So (25) provides the differential inequality E(r) ≤ πrĖ(r). Integrat-
ing d

dr ln E(r) ≥ (πr)−1 then proves the claimed decay of E(r). �
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