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The symplectic vortex equations
and invariants of Hamiltonian group actions

KA1 CieLIEBAK!, A. RiTA GAIO?,
IGNASI MUNDET I RIERA, DIETMAR A. SALAMON

In this paper we define invariants of Hamiltonian group actions for
central regular values of the moment map. The key hypotheses are
that the moment map is proper and that the ambient manifold is
symplectically aspherical. The invariants are based on the sym-
plectic vortex equations. Applications include an existence theo-
rem for relative periodic orbits, a computation for circle actions on
a complex vector space, and a theorem about the relation between
the invariants introduced here and the Seiberg—Witten invariants
of a product of a Riemann surface with a two-sphere.

1. Introduction.

In this paper we study the vortex equations with values in a symplectic
manifold (M,w). We assume that (M,w) is equipped with a Hamiltonian
action by a compact Lie group G that is generated by an equivariant moment
map

w:M —g.

The symplectic vortex equations have the form
(1) d5a(u) =0, *xFq 4+ p(u) =T

Here P — X is a principal G-bundle over a compact Riemann surface,
u : P — M is an equivariant smooth function, and A is a connection on
P. To define the terms in (1) we must fix a G-invariant almost complex
structure on M, a Riemannian metric on X, and an element 7 € Z(g) in
the center of the Lie algebra. The expression O 7,4 denotes the nonlinear
Cauchy—Riemann operator, twisted by the connection A, and * denotes the
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Hodge *-operator on X. Equations (1) were introduced in [6, 14, 25]. In the
physics literature these equations are known as gauged sigma models in the
case where the target space M is a complex vector space. Special cases of the
symplectic vortex equations include pseudoholomorphic curves in symplectic
manifolds (G = {1}), the usual vortex equations over ¥ (M = C with the
standard S'-action [3, 16]), Bradlow pairs (M = C? with the standard
U(2)-action [4, 36]), anti-self-dual instantons over a product X x S (M is
the infinite dimensional space of SO(3)-connections over S and G is the
gauge group), and the Seiberg—Witten equations over X x S (M is the space
of pairs, each consisting of a connection on a line bundle L — S and a
holomorphic section, and G is the gauge group of L). In the present paper
the symplectic manifold M is always finite dimensional.

In the Kahler case the symplectic vortex equations admit an algebro
geometric interpretation. For example, if M is a complex vector space then
the map u defines a holomorphic section of a vector bundle over 3 and the
solutions of (1) correspond to stable pairs.

We impose the following conditions on the triple (M, w, u).

(H1) The moment map p is proper.

(H2) There exists a (strongly) convex structure (f,J) on M. This means
that J is a G-invariant and w-compatible almost complex structure on
M, f: M — [0,00) is a proper G-invariant function, and there exists
a continuous function Z(g) — R : 7+ ¢(7) such that

(WV f(z),v) + (V5 Vf(z),Jv) >0,

f(@)2c(r) = df (z)J(x) Ly (p(x) —7) >0

for every x € M, v € T,M, and 7 € Z(g). Here V denotes the Levi-
Civita connection of the metric (-,) = w(-,J-) and L, : g — T, M
denotes the infinitesimal action.

(H3) The manifold (M,w) is symplectically aspherical, i.e.

/ v'w =0
52

for every smooth function v : $? — M.

Hypothesis (H2) is a natural generalization of the existence of a plurisub-
harmonic function on noncompact symplectic manifolds [12]. Both hypothe-
ses (H1) and (H2) are natural in the context of this paper and are needed
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to obtain any kind of compactness theorem for the solutions of (1). Hy-
pothesis (H3) constitutes a more severe restriction and should in the future
be removed or weakened. It implies that M is noncompact whenever there
exists a G-orbit of positive dimension. However, there are many interesting
examples where all three hypotheses are satisfied, e.g., linear actions on C"
with proper moment maps [6]. The three hypotheses together guarantee
that the moduli space of gauge equivalence classes of solutions of (1) is com-
pact. As a result one can use these moduli spaces to define invariants which
are analogous to the Gromov—Witten invariants in the nonequivariant case.
Let B € HE'(M ; Z) denote the equivariant homology class represented by
the map u. Then the invariants take the form of a homomorphism

RET HE(M;Q) — Q

whenever T is a central regular value of . This homomorphism takes integer
values on integral cohomology classes whenever G acts freely on p~1(7). It
depends only on the component of 7 in the open set of central regular values.
We emphasize that the complex structure on X is fixed in the definition of
our invariant. There should be natural extensions which involve varying
complex structures on the domain ¥ and dispense with hypothesis (H3).
However, the definition of the invariants in these cases will probably require
a considerable amount of nontrivial analysis. For first steps in this direction
see [25, 26].

As a first application we establish the existence of relative periodic orbits
for time dependent G-invariant Hamiltonian systems. This can be viewed
as an equivariant version of a theorem of Gromov [17].

Theorem A. Assume (H1-3) and let T € Z(g) be a central reqular value of
w such that p=(7) # 0. Then every time-dependent 1-periodic G-invariant
Hamiltonian system admits a contractible relative periodic orbit in u='(7).

If G is abelian then the hypothesis that 7 is a regular value can be
dropped and we obtain a contractible relative periodic orbit on every
nonempty level set of p. It is natural to conjecture that this should con-
tinue to hold under hypothesis (H1) only. Our proof of Theorem A follows
closely Gromov’s argument in [17] for the nonequivariant case. The pseudo-
holomorphic curves in Gromov’s proof are replaced by the solutions of the
perturbed symplectic vortex equations.

In some cases the invariants can be computed explicitly. We carry out
such a computation for linear circle actions on C". Suppose S! acts on C?
with positive weights ¢1,..., ¢, and denote the correponding moment map
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by pe. Then there is only one nontrivial chamber for the regular values of
e and we denote by ®C"#¢ the invariant in this chamber.

~Y

Theorem B. Let X be a compact Riemann surface of genus g, d € 7 =2
H5'(C*,Z) an integer, and ¢ € HZ,(C";Z) = 7 the positive generator.
Suppose that

n

mi=Y (db,+1-g)+g—1>0.

v=1

Then

n 9 n
= (o) e
v=1 v=1

In the case £, = 1 and d > 2g — 2 this was proved by Bertram—
Daskalopoulos—Wentworth [2]. The proof of Theorem B involves the Atiyah-
Singer index theorem for families of Cauchy—Riemann operators.

Our invariants are related to the Seiberg—Witten invariants of certain
four-manifolds. The key observation is that the symmetric product of a Rie-
mann surface S can be interpreted as a symplectic quotient of the infinite
dimensional space whose elements are pairs, each consisting of a connection
and a holomorphic section of a line bundle L — S of degree d. In this
situation the symplectic vortex equations, with M replaced by the infinite
dimensional space of which Symd(S) is a quotient, are the Seiberg—Witten
equations on X x.S. When d > 2gg — 2 one can write the symmetric product
as a quotient of a finite dimensional symplectic manifold Mg g (called the
vortex manifold of the pair (d,S)) by a Hamiltonian S' action with a mo-
ment map 4, which satisfies (H1 — 3). The following theorem relates the
invariants of (Mgg, pta,5) to the Seiberg-Witten invariants. It is a special
case of a result for general ruled surfaces in [27].

Theorem C ([27]). Let S be the Riemann sphere and ¥ be a compact
Riemann surface of genus g. Let d and k be nonnegative integers such that

m:=d(l1—g)+(d+1)k>0.

Then
M ] m
OGS (™) = SWes (Vrd)s

where i, q denotes the spin®-structure determined by k and d. Moreover, if

k>2g9—2,
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then u u
(pk7Xd:,SaHd,S (cm) — (I)dg,zylik,z (cm)

Combining Theorems B and C one can recover the computation of the
Seiberg—Witten invariants of product ruled surfaces by Li-Liu [21] and Ohta—
Ono [28].

It is also interesting to examine the relation between our invariants and
the Gromov—Witten invariants of the symplectic quotient

M := M))G(7) := () /G

whenever G acts freely on p~!(7). Such a relation was established in [15]
under the hypothesis that the quotient is monotone. Under this condition
(and hypotheses (H1 — 3)) it is shown in [15] that there exists a surjective
ring homomorphism
¢+ Hy(M) — QH™ (M)
(with values in the quantum cohomology of the quotient) such that
Y7 (0) = GWi s (#(a)

for every o € H§, (M) and every B € Hy(M;Z), where B denotes the image
of B under the homomorphism Hy(M;Z) — HS (M;7Z). The proof is based
on an adiabatic limit analysis which relates the solutions of the symplec-
tic vortex equations in M to pseudoholomorphic curves in the symplectic
quotient M. This analysis is analogous to the proof of the Atiyah-Floer
conjecture in [11].

The present paper is organized as follows. In Section 2 we discuss the
basic properties of solutions to the symplectic vortex equations such as the
energy identity, unique continuation, and apriori estimates under the con-
vexity hypothesis (H2). Section 3 establishes the basic compactness and
regularity theorems and Section 4 discusses the Fredholm theory. In Sec-
tion 5 we establish the integer invariants under the hypothesis that G acts
freely on p~1(7). Section 6 is of preparatory nature. In it we recall some
background from [7] about the equivariant Euler class of G-moduli problems.
Section 7 establishes the rational invariants in the presence of finite isotropy
and discusses some relations between the invariants. Theorems A, B, and C
are proved in Sections 8, 9, and 10. Appendix A establishes existence and
uniqueness for a coupled Kazdan-Warner equation that appears in the proof
of Theorem C. Appendix B gives a proof of the local slice theorem for gauge
group actions in a form needed for the compactness and regularity results
of Section 3.
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2. The geometry of symplectic vortices.
2.1. The vortex equations in a symplectic manifold.

Let (M,w) be a (not necessarily compact) symplectic manifold and G be
a compact Lie group which acts on M by symplectomorphisms. Let g =
Lie(G) denote the Lie algebra and

g — Vect(M,w) : § — X¢

denote the infinitesimal action. We assume that the action is Hamiltonian.
This means that the action is generated by an equivariant map p: M — g
that satisfies

U Xe)w = d{p, &)
for every £ € g. Here (-,-) denotes an invariant inner product on g. The
function p is called a moment map for the action.

Let P — 3 be a principal G-bundle over a compact connected oriented
Riemann surface (X, Jy,dvoly). We emphasise that the volume form and
the complex structure on 3 are fixed. Denote by C& (P, M) the space of
equivariant functions u : P — M and by A(P) the space of connections
on P. We think of A € A(P) as an equivariant Lie algebra valued 1-form on
P which identifies the vertical tangent space with g. Its curvature is a 2-form
F4 on ¥ with values in the associated Lie algebra bundle gp := P Xq g.

In this paper we study the following system of nonlinear first order partial
differential equations, for pairs (u, A) € C& (P, M) x A(P),

d5,.4(u) =0, *«Fq + p(u) = 7.

Here 7 € Z(g) is an element in the centre of the Lie algebra, Jg(M,w)
denotes the space of G-invariant and w-tame almost complex structures
on M, and J : ¥ — Jg(M,w) is a smooth family of such almost complex
structures. The space of such families of almost complex structures will be
denoted by

J =JE Muw,pu):=C®E,Je(M,w)).

The covariant derivative of u with respect to the connection A is the 1-form
dau € QY(P,u*TM) given by

dau :=du + X 4(u).

This 1-form is equivariant and horizontal and hence descends to a 1-form
on ¥ with values in v*TM/G. The family of almost complex structures J
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determines a G-invariant complex structure

on the bundle v*T'M — P and hence a complex structure on the bundle
u*TM/G — ¥, which will also be denoted by J,,. The term d; 4(u) denotes
the (0,1)-part of this 1-form and so is a (0,1)-form on ¥ with values in
w*TM/G. Its lift to a 1-form on P with values in «*T'M will also be denoted
by 0;.4(u) and is given by

= 1
0a(u) == 3 (dau+ Jodguo Jy).

The right hand side is well defined since dau is horizontal. Namely, given
a tangent vector v € T, P, lift the vector Judn(p)v € TrpX to TP, and
apply the linear map J(7(p), u(p))dau(p) to the lift. The resulting vector
in Ty(p)M is independent of the choice of the lift, because the 1-form dau
vanishes on vertical tangent vectors. Equations (1) were introduced in [6,
14, 25]. They are a generalized form of the vortex equations. In the case
of linear actions on C" they are known in the physics literature as gauged
stgma models.

Remark 2.1. The space CZ(P,M) x A(P) is an infinite dimensional
Fréchet manifold and admits a natural symplectic structure. The gauge
group G(P) acts on this space by

9*(u, A) = (g7 'u, g tdg + g~ ' Ag).
This action is Hamiltonian and the function
(2) C&(P,M) x A(P) — C*(Z,gp) : (u, A) — *F4 + pu(u)

is a moment map for this action (see [6]). The space of solutions of (1)
is invariant under the action of G(P). The quotient can be interpreted
as a symplectic quotient whenever the space of pairs (u, A) that satisfy
d7,.4(u) = 0 is a symplectic submanifold of CF (P, M) x A(P).

2.2. Hamiltonian perturbations.

Le C& (M) be the space of smooth G-invariant functions on M. A Hamil-
tonian perturbation is a 1-form H € Q'(X,C&(M)). One can think of
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H as a G-equivariant section of the vector bundle T*% x M — ¥ x M. The
space of Hamiltonian perturbations will be denoted by

H=H(Z, M,w,pu) = Q (2, CF(M)).

For H € H and ¢ € T.X we write H¢ := H,(¢) € C&(M) and denote by
Xn, € Vect(M,w) the G-invariant Hamiltonian vector field of He, i.e.

U( Xy, )w=dH;.

A Hamiltonian perturbation H € H and a section v € C& (P, M) determine
a 1-form Xy (u) € QY(P,u*T M) given by

(X (4)p(v) = Xy, (w(P))-
This 1-form is equivariant and horizontal and so is
du.a(u) :==dau+ Xg(u).

Hence X g (u) and dy,a(u) descend to 1-forms on ¥ with values in «*T'M/G.
We denote

B aw) = (dig,a ()" = Bpa(w) + (Xp()®! € QY (S, " TM/C)
and replace (1) by the perturbed equations
(3) 5J,H7A(U) =0, *Fy + ,u(u) =T

2.3. Energy.

Fix a central element 7 € Z(g), an almost complex structure J €
J(E,M,w,u), and a perturbation H € Ql(Z,C‘éO(M)). The energy of
a pair (u, A) € C& (P, M) x A(P) is defined by

1
B(u, 4) = 5 /E (Idn,a ()P + [Fal + u() = 7] dvols:

This functional is invariant under the action of the gauge group G(P). De-
note by [w+7—pu] € H?(Mg; R) the equivariant cohomology class determined
by the symplectic form w and the moment map p — 7 (see [6]), and denote
by [u] € Ha(Mg;Z) the homology class determined by u. More precisely,
there is an equivariant classifying map 6 : P — EG and hence the map
(u,0): P — M x EG descends to a map

ug 20— Mg = M xg EG.
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The class [u] € Ha(Mg;Z) is defined as the pushforward of the fundamental
class [¥] under the map induced by ug. For every pair (u, A) € C3°(P, M) x
A(P) the cohomology pairing between the classes [w+7— u] and [u] is given
by

(w7 —plul) = /E (v'w —d(p(u) — 7, 4)).

This topological invariant appears in the following energy identity. Another
ingredient in this formula is the curvature of the Hamiltonian connection H.
Since X carries a volume form this curvature can be expressed as a function
Qg : X x M — R which is invariant under the G-action on M. It is defined
by the formula

1
Qg dvoly, := d2H+§{H/\H} c QX(Z,C¥(M)),

where {-,-} denotes the Poisson bracket for functions on M. The Hofer
norm of the curvature Qp is defined by

Q2| :=/ (sup Qi (2,2) - inf Qpr(z, :v)) dvols;.
¥ \zeM

This quantity is independent of the volume form of 3. The next proposition
states the basic energy identity. The first term on the right is the L?-norm
of the terms in equation (3), the second term is a topological invariant, and
the last term is bounded by ||Qg||.

Proposition 2.2. For every A € A(P) and every v € C& (P, M),

@  Bwa- | (|a]HA P+t |*FA+M(>_T|2)dv012
(w7 — i, [ul) + /E Qi (u) dvols.

In particular, E(u, A) < (w+ 7 — ], [u]) + ||Qu|| for every solution of (3).

Proof. Choose a holomorphic coordinate chart ¢ : U — X, where U C C is
an open set, and let ¢ : U — P be a lift of ¢, that is 7 o ¢ = ¢. Then u, A,
and H are in local coordinates given by

W i=uod, G A=dds+Vdt, ¢*H=Fds+Gdt
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where ®, ¥ : U — g and F,G : U x M — R. The pullback volume form on
U is dvoli® = A2 ds A dt for some function A : U — (0, 00) and the metric is
A\2(ds? 4 dt?). Hence

¢*Qu = A2 (0,G — O, F +{F,G}),
¢ Fp= (0,9 — 8,® + [®,]) ds A dt,
¢ dau = (asuloc n Xq>(u1°")> ds + (atubc + Xq;(u1°°)> dt,
<% A 1
¢ aJ,A(u) = 5(5 ds — Jloc(sa tauloc)gdt)a
where {F, G} := w(XF, X¢) denotes the Poisson bracket on M,

g:: 8Suloc +X(I>(u100) T JlOC(S7t7u10C) <8tuloc +X\p(uloc)> 7

and J'%(s,t,x) := J(¢(s,t),x) for (s,t,2) € U x M. In the following we
shall drop the superscript “loc”. Then (3) have the form

(5) Osu + Xo(u) + Xp(u) + J (Opu + Xy (u) + Xg(u)) =0,
W — 04 ® + [®, U] + A2 (u(u) — 7) =0,

The pullback of the energy integrand under ¢ : U — X is given by eds A dt
where e : U — R is the function

1 1
e = §|8Su+Xq>(u)+XF(u)|2—|—§|8tu+Xq;(u)+Xg(u)|2
L 0w - 0 4 (@, P+ ) —
oxe 19 t ) 2 plu T

1
= 5 |0su+ Xo(u) + Xp(u) + J (Ou + Xu(u) + Xa(uw)
)\2 -9 2
+5 A2 (0¥ — 0y ® + [@,F]) + p(u) — 7|” + R.
The remainder term R has the form

R = w(Osu+ Xo(u)+ Xr(u), 0w+ Xo(u) + Xg(u))
_<85\I/ - at(I) + [(I)a \I/]vu(u) - T>
= w(0su,0u) = 95 (G(u) + (u(u) = 7,9)) + 8; (F(u) + (p(u) — 7, D))
+ (0sG — O F + {F,G}) ou.

This proves (4). O
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2.4. Unique continuation.
A solution (u, A) of (3) is called horizontal if dy a(u) =0 and p(u) = 7.

Lemma 2.3. Let (u,A) be a solution of (3) with H = 0. Then (u,A) is
horizontal if and only if the homology class [u] € Hao(Mg;Z) is torsion.

Proof. The “if” part follows from the energy identity. To prove the converse
note that A is flat for every horizontal solution (u, A) of (3) and hence, in
the case H = 0, every equivariant cohomology class vanishes on [u] (see [6]).

O

Lemma 2.4. Suppose u and A satisfy (3) with H =0. Ifdau and p(u) —7
vanish to infinite order at some point py € P then (u, A) is horizontal.

Proof. Replacing pu by p — 7 we may assume that 7 = 0. Counsider the
equations in their local coordinate form (5). In the case H = 0 they read
vy +Jug =0, /i—i—)?p(u) =0

foru:U — M and ®,¥ : U — g, where vs,v; : U - uw*TM and k: U — ¢
are defined by

Vs 1= Osu + L, P, v i= Ogu + L, W, k:=0s¥ — 0,® + [P, ¥],

where L, : g — T, M denotes the infinitesimal action given by L,n := X, ().
Let us denote

Vas€ = Vo€ +VeXo(u), Vas& = Vi + VeXyg(u),
Vasn = 0sn+[®,n], Vagn = Om+[¥,n],

for £ : U - uw*T'M and n: U — g. Then

(6) Va,s0t — Vavs = Lyk = —)\2Lu,u(u)

(7) Va,sLyn — Ly Vasn = VUSXn(u), VaiLuyn — Ly Vam = Vthn(u).
Since du(u) = — L J we have

(8)  Vasp(u) =du(u)vs = —Lyuvy, Vap(u) = dp(u)vy = Ljvs.
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It follows from (6), (7), and (8) that
(9)  Vau (Vauws — Vasv) = (0A%) Lup(u) + A2dp(u)vg + AV, X ) (w).
Since 0 = (Lx, J)¢ = (Vx, J)§ + JVe X, — Vje X,), we obtain
Vasd = Vo, J + 0sJ, VaiJ =V, J + 04 J,
and hence, using the identity (V,,J)v: = (W, J)vs,

(10) vA,svs + VA,t'Ut = vA,t(J'U:s) - vA,&‘(Jvt)
= (0¢J)vs — (05T )0 + N2 T Ly ().

This gives rise to an inequality of the form
IVa,s (Va,svs + Va,vi)| < e ([vs| + [0svs| + |0svs] + |u(u)]) -
Moreover, by (9),
[Va,e (Vavs = Vasv)| < ez (Jos| + |(w)))
and, by the curvature identity V4 sVa 1§ — Va+Va s& = R(vs,v)+ Ve Xk (u),
|Va,sVa1ve — V4t Va svi| < c3vs).
Putting these three inequalities together we obtain
Va,sVa,svs + Vi Vavs| < s (Jvs] + [05vs] + [00vs] + |1(u)]) -
Moreover,
Va,s(Ly€) — Ly, Va,s€ = p(vs, §), Via(Ly€) — Ly Vag€ = p(vr, §),

where p € QQ(Mvg) is defined by (7770(51752» = <vle777§2> (See [15])
Hence, by (8) and (6),

Va,sVasp(u) + Va i Vap(u) = )\ZLZLUIU,(U) — 2p(vs, v¢).
Hence there exists a constant ¢ such that
|Avs| < e (|vs] + |9svs| + [Orvs| + [(u)]), |Ap(u)| < c(Jp(u)] + |vs]) -

Hence it follows from Aronszajn’s theorem that, if vs and p(u) vanish to
infinite order at a point in U and U is connected, then v, and p(u) vanish
identically on U. O
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Lemma 2.5. Suppose u and A satisfy (3) with H = 0. If there exists an
open set U C P such that dau(p) = 0 and Ly : 9§ — Typ)M is injective
for every p € U then (u, A) is horizontal.

u(p

Proof. By (6), Ly(pu(u) —7) =0 in U. Hence p(u) = 7 in U and hence, by
Lemma 2.4, we have dqu = 0 and p(u) = 7. O

2.5. Convexity.

Definition 2.6. A convex structure on (M,w,u) is a pair (f,J) where
J € J(M,w) is a G-invariant w-compatible almost complex structure on M
and f : M — [0,00) is a smooth function satisfying the following conditions.

(C1) f is G-invariant and proper.
(C2) There exists a constant ¢y > 0 such that
f@)za = (V)8 +(VieVi(z),JE) 20

for every x € M and every & € T, M. Here V denotes the Levi-Civita
connection of the metric (-, ) = w(-, J-).

(C3) There exists a constant ¢gp > 0 such that
f@)2c = df(z)J(z)Lep(x) 20
for every x € M.

The second hypothesis says that the upward gradient flow of f expands the
metric outside of a sufficiently large compact set. It is sometimes useful to
assume condition (C3) for all moment maps pu — 7.

(C3’) There exists a continuous function Z(g) — R : 7+ ¢o(7) such that
f@)zcl(r) = df(x)J(x)Le(pu(x) —7) 20
for every 7 € Z(g) and every z € M.

A convex structure (f,J) that satisfies (C3') is called strongly convex.

Lemma 2.7. Fiz a homology class B € Hy(Mg;Z) and let (f,Jo) be a
convex structure for (M,w,u — 7). Denote

My:={z e M|f(z) <co},
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where ¢y = ¢o(T) is chosen such that (C2) and (C3') are satisfied and

2 (w+7—pfB)

) f@se = ) - i)

Let P be a principal G-bundle over a compact Riemann surface X, suppose
that J € J agrees with Jo outside My, and let H € H be a Hamiltonian per-
turbation with support in My. Then every solution (u, A) of (3) representing
the class B satisfies u(P) C M.

Proof. Assume without loss of generality that 7 = 0 and continue the nota-
tion of the proof of Lemma 2.4. Since V f is a G-invariant vector field we
have [V f, X;| = 0 for every n € g and hence

Va,sVf(u) =V, Vi(u), ViV f(u) =WV, V().
Let A := 9? + 97 denote the standard Laplacian. If f(u) > ¢y then
Af(u) = 0s(V f(u),vs) + 0:(V f(u), vr)
- <VA,Svf U’)v”s) + <VA,tvf(u)7vt> + <Vf(u), VA,SUS + VA,tvt>

= (Vo Vf (), vs) + (Y, VF (u), ve) + X*(V f(w), T Lups(u))
> (Yo, Vf(u),vs) + (W, V f (), vr).

—~~ ~—

Here the third equality follows from (10) and the last inequality from (C3).
Now suppose, by contradiction, that m := maxp f o u > ¢y and choose a
local coordinate chart as above near a point where fow attains its maximum.
Since f o u is subharmonic it follows from the mean value inequality that
fou = m in a neighbourhood of this maximum. Hence the subset of P
where f ou =m is open and closed, and hence f ou = m. Hence, by (11),

E(u,A) > /E |w(u)|? dvoly, > Vol(%) irlgf|,uou|2 > ([w — ], B).

Since Qp vanishes on the image of u, this contradicts the energy identity.
O

Example 2.8 ([6]). Consider the linear action of a compact Lie group G on
C"™ by a homomorphism p : G — U(n) with proper moment map p, : C* — g

given by
-
pp(x) :=m, —51e
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where 7, := p* : u(n) — g is the dual operator of the Lie algebra homomor-
phism p : g — u(n) with respect to the inner product (4, B) := trace(A*B)
on u(n). A strongly convex structure for p is the pair (f,J) with J =4 and

1
F(@) = Lol
To see this note that V f(z) = z and

df (x)J Ly (pp(2) = 7) = (pp(2); prp() — 7)

Note that the pair (f,4) with f(z) = |u(z)|?/2 need not be a convex struc-
ture. An example is the action of T on C? by (t1,t2)- (21, z2) = (t121, tax2).

Example 2.9 (Contact boundaries). Suppose (M,w) is a compact sym-
plectic manifold with boundary dM, equipped with a Hamiltonian G-action
generated by a moment map p : M — R. Suppose that X € Vect(M) is a
G-invariant vector field which points out on the boundary and satisfies

Lxw=w, w(Xu, X)>0

near 0M. Such a vector field gives rise to a convex structure as follows.
Let ¢; denote the flow of X and choose a G-invariant w-compatible almost
complex structure J on M such that

dpi(z)J (z) = J($1(2))dge(z),  w(X(z),J(2)X(z)) =1,

and w(X(z),J(xz)v) =0 for x € OM, v € T,O0M, and —e < t < 0. Then the
function f : M — R, defined by

f(de(z)) =1t

for xt € OM and —e < t < 0 defines a convex structure near OM. Its
gradient is the vector field X and its covariant Hessian is half the identity.
Moreover, the manifold can be extended by attaching a cylindrical end of
the form OM x [0,00) with the obvious extensions of the symplectic and
almost complex structures to obtain a noncompact manifold as above.

Example 2.10 (Convex fibrations). Let G and H be compact connected
Lie groups with Lie angebras g = Lie(G) and h = Lie(H). Let (M,w) be a
(not necessarily compact) symplectic manifold equipped with Hamiltonian
action by both Lie groups G and H, generated by moment maps ug : N — ¢



558 K. Cieliebak, A.R. Gaio, I. Mundet i Riera, D.A. Salamon

and pug : N — h. We assume throughout that the action of G commutes
with the action of H. This is equivalent to the condition

pa(he) = pa(x),  pu(ge) = pu(z)

for g€ G, h € H, and z € M. Let (S,0) be a compact symplectic manifold
and g : @ — S be a principal H-bundle. We assume that @ is equipped with
a connection B € A(Q) C 2'(Q, h) with nonpositive curvature. This means
that there exists a o-compatible almost complex structure Jg € J(S,0)
such that

(12) dr(q)w' = Jedm(q)w == (Fp(w,w"), ug(z)) <0.

Then the manifold :
M := Q Xy M

carries a symplectic form w € Q2(M ) whose pullback under the projection
m:Q X M — M is given by

'@ = mow — d(B, pg) + 710,

where m1 : @ XM — S and 73 : Q x M — M denote the obvious projections.
A moment map i : M — g for the obvious G-action on M is given by

fillg, z]) == pa(z)

for ¢ € Q and x € M. Here [q,7] = [gh,h~'z] denotes the equivalence
class of the pair (¢,z) in @ xug M. Note that if ug is proper then so is fi.
Note also that every H-invariant and w-compatible almost complex structure
J € Ju(M,w) induces an almost complex J € J(M,o) which acts by Jg
on the horizontal subbundle and by J on the vertical subbundle of TM. If
J is invariant under both G and H, then J in invariant under the G-action
on M.

Now suppose that (J, f) is a convex structure for the G-action on M (as
in Definition 2.6). Suppose also that J and f are H-invariant. Then the
above almost complex structure J and the function f : M — [0,00) given
by 5

F(laa)) = f(x)
define a convex structure for the G-action on M. To see this, note that the
gradient Vf is given by Vf([g,]) = [0, Vf(x)]. Let ¢; : M — M denote
the (upward) gradient flow of f. Then the gradient flow of f is given by

¢e([g, 2]) = [g; e ()].
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for ¢ € @ and x € M. Hence dqzt([q,x])[w,g]N: [w, dp(x)€]. In particu-
lar, the image of a horizontal tangent vector §y := [w, —Yp_()(z)] under

dqgt([q, x]) is the horizontal vector

€ = [0, ~Yp, () (#1(2))] € Tig g1 (o) M,

and so
&> = ldms(q)w|® + |déi(2) Y, ()| — (Fa(w,w'), pu(z)),

where w' € T,Q satisfies drg(q)w’ = Jgdrg(q)w. Here we have used the
fact that ¢, commutes with the action of H and so pp © ¢ = pn. It follows
from the hypotheses on (J, f) that the function ¢ — |&| is nondecreasing

whenever f([g, ¢:(z)]) is sufficiently large.
3. Compactness and Regularity.
3.1. Regularity.

The next theorem asserts that every weak solution of equations (3) is gauge
equivalent to a strong solution. For an integer £ > 1 we denote by

jﬁ — je(EaMawalJ’)
the space of almost complex structures of class C¢ and by
HE = H(Z, M, w, 1)

the space of Hamiltonian perturbations of class C¢ (see Section 2.2). Thus
H¢ is the vector space of G-equivariant Cf-sections of the vector bundle
T*Y>x M — X x M. For £ = oo we write J*° =: J and H* =: H. Consider
the symplectic fibre bundle

M:=PxgM—>X

with fibres diffeomorphic to M. There is a one-to-one correspondence be-
tween sections @ : ¥ — M and G-equivariant functions u : P — M via

Gom(p) = [p,u(p)]

for p € P. For a positive integer k and a constant p > 2 we denote by
Wé’p (P, M) the Banach manifold of all continuous G-equivariant functions
u : P — M such that the corresponding section @ : ¥ — M is of class WP,
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Theorem 3.1. Fiz a constant p > 2 and let £ be either a positive integer
or be equal to co. Let J € J* and H € H**Y. Ifu € Wé’p(P,M) and
A € AYP(P) satisfy (3) then there exists a gauge transformation g € G*P(P)
such that g~ 'u and g*A are of class WP, For £ = oo this means that
g 'u and g* A are smooth.

Proof. Let (u, A) € WIP(Z, P xg M) x AP(P) be a solution of (3). Assume
first that there exists a smooth connection Ay € A(P) such that

(13) 4, (A — Ag) =0.

Under this assumption we shall prove that the pair (u, A) is of class wttlp,
Denote a := A — Ay € W'P(S,T*Y ® gp). Then the first equation in (3)
has the form

(14) 81,40 (1) = —(Xa(u) + Xg ()™,

where the (0,1)-part of the 1-form X,(u) — Xg(u) on ¥ with values in
w*TM/G is understood with respect to J,. The second equation in (3)
and (13) together have the form

(15)  daja = —Fa — %[a Aol + (7 — p(w) dvoly,  dh o= 0.

We prove by induction that u and A are of class W*P for every integer
k < ¢+ 1. For k = 1 this holds by assumption. If u and A are of class
WHP for some k < £ then, by (15), da, and d, o are of class WHP and
hence « is of class W*tLP. Moreover, by (14), 0j.4,(u) is of class WkP
and the complex structure .J, on the bundle v*TM/G is also of class W*P.
Hence u is of class W*+1P (see [23, Proposition B.4.7]). This completes the
induction. Hence the pair (u, A) is of class WHLP and is smooth in the
case { = oo.

Thus we have proved the theorem under the assumption that A satis-
fies (13) for some smooth connection Ay. In general, it follows from the local
slice theorem (see Theorem B.1) that there exists a smooth connection A
and a gauge transformation g € G*P(P) such that

& (geAg — A) = 0.

Then g* A satisfies (13) and hence the pair (g~ 'u, g*A) is of class W*LP,
and is smooth in the case ¢ = oo. O
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3.2. Compactness with bounded derivatives.

In this section we prove a compactness result for solutions of (3) with values
in a fixed compact subset of M under the hypothesis that the first derivatives
satisfy a uniform L*°-bound. We assume that w, € Q?(M) is a sequence
of symplectic forms on M converging uniformly with all derivatives to a
symplectic form w and that u, : M — g is a sequence of moment maps
(corresponding to a sequence of w,-Hamiltonian G-actions on M) that con-
verges uniformly with all derivatives to the moment map p. We assume that
wy, agrees with w and p, agrees with p outside of a compact set. We assume
further that dvoly , is a sequence of volume forms on ¥ converging in the
C°-topology to dvoly and Jx, is a sequence of complex structures on X
converging in the C*°-topology to Jx.

Theorem 3.2. Let ¢ be either a positive integer or be equal to co. Suppose
that
(J,, H)) € TN, M,w,, 1) x HEYE, M, w,, )

s a sequence such that J, converges to J € .72(2, M, w,u) in the Ct-norm
on every compact set, and that H,, converges to H € 7—[“1(2, M, w, p) in the
C**-norm on every compact set. Suppose further that 7, € Z(g) converges
to T. For every v let (u,, Ay) € Wé’p(P, M) x AYP(P) be a solution of (3)
with (p, Jx, dvoly, J, H, T) replaced by (p, Jx ,,dvoly ,, Jy,, H,, 7). Suppose
that there exist a constant ¢ > 0 and a compact set K C M such that

uy(P) C K, lda,uv|[pe < c

for every v. Then there exists a sequence of gauge transformations g, €
G%P(P) such that the sequence (g, 'u,,g:A,) has a C*-convergent subse-
quence.

Lemma 3.3. Fiz positive integers k and n, a real number p > 2, an open
set U C C, and a compact subset K C U. Let J, C R>*?" denote the
set of complex structures on R®™. Then for every constant cg > 0 there
exists a constant ¢ = c(co, K,U,n,k,p) > 0 such that the following holds. If
J € WkP(U, J,,) satisfies

HJHW’%;D(U) <

then every function u € WkH’p(U, Rzn) satisfies the inequality

lullwessaey < € (105 + T0ullyro + [ulwisw) + Tl )
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Proof. We argue by contradiction. Suppose that there exist sequences J, €

WkP(U, J,) and u, € WFLP(U, R?™) such that

“JuHWk,p(U) < co, ||UV||W’€+1’1’(K) — 0

and
|05 + JuatUVHWk,p(U) + HU’V“W’“,P(U) + ||uV||W1,°°(U) <L

Passing to a subsequence, if necessary, we may assume that there is a com-
plex structure Jo € W*P(U, J,,) such that J, converges to Jy in the weak
WkP_topology and in the strong C°-topology. Choose a smooth cutoff func-
tion B : U — [0,1] with compact support such that 5|x = 1 and define

vy = PBuy.
Then v, is bounded in W*P and W and it satisfies the identity
9svy + JoOvy, = B(Osuy + Ju0puy) + (9s8)uy + (9¢8)Jyuw + (Jo — Juv)Orvy.
The elliptic estimate for the operator 0; + JgO; has the form
ollrssn) < € (1060 + Jodllyro) + [0lwis)

for some constant ¢ > 0 and every function v : U — R?" with compact
support (see for example [23, Proposition B.4.7]). Hence

fovlpronoy < (1800 + 200 e
+ [[(0s8)uw + (atB)JuuuHWk,p(U)

# 10 = 200ty + g

IN

d (“asuu + JljatuVHWk,p(U) + ||Uu||Wk,p(U)

+ || Jo — Ju||Wk,p(U) ||atUV||L°°(U)
+ 90 = Lol ooy HUV“W’C“”’(U))

for every v. If v is sufficiently large then ¢’ ||Jo — J, || oo (1) < 1/2 and hence

loulwesioy < 2¢ (195t + Jodwllynnwy + o o

+4c e 10wy || poo 17y -
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This contradicts the fact that [[u, ||y k1) diverges to co. O

Proof of Theorem 3.2. The proof consists of three steps.

Step 1. Fiz a constant p > 2 and a smooth reference connection Ay € A(P).
We may assume without loss of generality that the sequence A, — Aqg is
bounded in WP,

Since Fy, = (1, — pw(uy))dvoly , it follows from the assumptions that

Sup || Fa, [| oo < 00
14

Hence, by Uhlenbeck compactness [32, 37|, there exists a sequence of gauge
transformations g, € GP(P) such that the connections g%4, € AYP(P) sat-

14

isfy a uniform W'P-bound. Replace the sequence (u,, 4,) by (g, u,, g A,).

Step 2. We may assume without loss of generality that A, converges weakly
in WP and strongly in C° to a connection A € A*1P(P), that u, converges
weakly in WP and strongly in C° to a section u € Wé+1’p(P, M), and that

dy(A, — A) = 0.

By Step 1, the sequence A, — Ag is bounded in WP and, by assumption,
the sequence u,, is bounded in WP, Hence, by the theorems of Alaoglu and
Rellich, we may assume, after passing to a subsequence if necessary, that A,
converges weakly in WP and strongly in C° to a connection A, € AP (P),
and u, converges weakly in WP and strongly in C° to a section us €
WLP(S,E). Since 0y, m,,4,(uy) converges weakly in LP to Oy m 4. (Uso)
and Fy, converges weakly in LP to Fs_ it follows that the limit (ueo, Aoo)
satisfies (3). By Theorem 3.1, there exists a gauge transformation g €
G*P(P) such that the pair

(u, 4) = (97 tos, §" Axo)

is of class W12, Moreover, g* A, converges weakly in WP and strongly
in C° to A and g 'u, converges weakly in WP and strongly in C° to w.
By the local slice theorem (Theorem B.1), there exists a sequence of gauge
transformations h, such that

dy(hig* A, — A) = 0



564 K. Cieliebak, A.R. Gaio, I. Mundet i Riera, D.A. Salamon

and

Jim [|hg" Ay — All, =0, sup [hig™ Ay = Allya, < co.

Passing to a subsequence, if necessary, we may assume that h}g*A, con-
verges weakly in the WP-norm and strongly in the C%-norm. The limit is
necessarily equal to A. Moreover, the sequence h, is uniformly bounded in
the W2P-norm. Passing to a further subsequence we may assume that h,
converges weakly in W?2P and strongly in WP to a gauge tranformation
h € G*P(P). This gauge transformation satisfies

h*A=A

and hence is of class W*t2P. It follows that h, g lu, converges weakly
in WP and strongly in C° to h~'u. Now replace A, by hXg*A,, u, by
h;'g~'u, and u by h~lu.

Step 3. The sequence (u,, A, — A) is bounded in WP,

We prove, by induction, that (u,,A, — A) is bounded in W*P for 1 <
k < ¢+ 1. For kK = 1 this was proved in Step 1. Let o, := A, — A and
assume, by induction, that the sequence (u,,c, ) is bounded in W*? for
some k € {1,...,¢}. In local Jy; ,-holomorphic coordinates on ¥ and local
coordinates on M the equation 0, g, 4, (u,) = 0 has the form

Osuy + Ju(8,t,u) 0y, = —Xp, 4 u,0,) (W) — Ju(s,t, ) Xa, 4+, w,) (W)

where A, = ®,ds + ¥, dt and H, = F,ds + G, dt. This local equation
holds in an open set U C C, the function u, : U — R?" takes values in
an open set V' C R?", the function J, : U x V — J, is of class C* (with
a uniform C*-bound), and the functions F,,G, : U x V — R are of class
C**! (with uniform C**!-bounds). Since u, is uniformly bounded in W*»?
so is the complex structure U — J,, : s + it — J,(s,t,u,(s,t)). Moreover,
the sequences ®,,¥, : U — g are bounded in W*P. Hence the sequence
Ostiy + J,(5,t,u,)0u, : U — R2™ is bounded in W*P. By assumption, the
sequence u, : U — V is bounded in W', Hence, by Lemma 3.3, the
sequence u, is bounded in W**LP, Now, by Step 2, we have

1 *
dao, = —Fy4 — §[a,, Aoy + (1 — pw(uy)) dvols, dia, = 0.

Since the sequences «, and u, are bounded in Wk it follows that dya,, is
bounded in W*P and hence the sequence a, is bounded in W*+12. This
completes the induction. Hence, by Rellich’s theorem, the sequence (u,, 4,)
has a C*-convergent subsequence. O
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3.3. Bubbling.

The following theorem removes the hypothesis of a uniform L*° bound on
the first derivatives in Theorem 3.2. The manifold (M,w) is called sym-

plectically aspherical if
/ v'w =0
SZ

for every smooth map v : $2 — M. This implies that there is no nonconstant
J-holomorphic sphere (for any almost complex structure on M that is tamed
by w).

Theorem 3.4. Suppose that M is symplectically aspherical and fiz a com-
pact subset K C M. Let £ be either a positive integer or be equal to oo.
Let wy, py, dvols,, Js., Ju, H,, and 7, be as in Theorem 3.2. For
every v let (u,,A,) € Wé’p(P, M) x AYP(P) be a solution of (3) with
(u, Jx, dvoly, J, H, ) replaced by (p,, Js,,,dvols, ,, J,, H,,7,) such that

u,(P) C K
for every v and

(16) sup([wy — py], [u]) < oo.

12
Then there exists sequence of gauge transformations g, € G>P (P) such that
the sequence (g, *u,,giA,) has a Ct-convergent subsequence.

Proof. By Theorem 3.2, it suffices to prove that

(17) sup ||da, uyl| ;- < 00.

Fix a constant p > 2. By Step 1 in the proof of Theorem 3.2, we may
assume that the sequence A, — A satisfies a uniform WP-bound for some
(and hence every) smooth connection Ayg. Now suppose, by contradiction,
that the sequence ||da,uy||;~ is unbounded. Passing to a subsequence, if
necessary, we may assume that this sequence diverges to co. Choose a
sequence p, € P such that

cy = |da,u(py)| = ||dAuU’V||L°° — Q.

Passing to a subsequence, we may assume without loss of generality that p,
converges. Let poo := lim, 00 Py and 2z := T(Poo). Choose a convergent
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sequence of local Jx, ,-holomorphic coordinates s + it on ¥ near z,, and lift
these to a convergent sequence of local sections of P that pass at the origin
through po. In this local frame equations (3) have the form

Osty + X b, 4 (u,,0,) (W) + Ju(s,t,w) (Beuw + X, +(u, 0,y (W) =0,
83\111/ - 8t<I)l/ + [q)lfa \IIV] + )\2(;1,(’(1,,/) - TV) =0

Now consider the rescaled sequence

1
vy (s, t) = uy(eys, ent), £y 1= —
Cv
This sequence satisfies
O0svy + J,,(E,,S, evt, 'Uu)atvu = —&Wy,

where
wy = Xéu(sys,aut) (v) + XF, (evs, e0t,vy)

+ Ju(evs,ent,vy) (Xq,y(sus,&,t) (vy) + Xa, (eus, eut, v,,)).

The sequences ®, and ¥, satisfy uniform W'P-bounds and, by construc-
tion, the sequence v, satisfies a uniform W1 *°-bound on every compact set.
Hence the sequence w, satisfies a uniform W'P-bound on every compact
set. By Lemma 3.3, the sequence v, satisfies a uniform W?P-bound on
every compact set. It follows that v, has a subsequence which converges
strongly in C' on every compact set. The limit is a nonconstant pseudo-
holomorphic curve v : C — K with respect to the almost complex structure
Joo := J (200, -). We prove that it has finite energy. To see this note that, for
every R > 0,

E(v; BR)

2
:/ |0sv]7_
Br

. 2
— 14
o ulggo Br |85’U * EVXq)V(EVS’EUt)(UV) +ev X, (vs, evt,vy) Ju(evs,ent,vy)

— lim |8Suy + X<I>V (ul/) + XFIJ (87t7 uV)|?],,(

V—00 BF.‘VR

< limsup E, (uy,, A,).

vV—r00

Satvuu)
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By (16) and the energy identity in Proposition 2.2, the sequence E(u,, A,) is
bounded. Hence v has finite energy, and hence, by the removable singularity
theorem (see for example [23, Theorem 4.2.1]), it extends to a nonconstant
Joo-holomorphic sphere in K. Since M is symplectically aspherical such a
Joo-holomorphic sphere does not exist. This contradiction proves (17). O

Combining Theorem 3.4 with the apriori estimate of Lemma 2.7 we ob-
tain the following compactness result for the moduli space of solutions of (3).

Corollary 3.5. Suppose (M,w, u) is symplectically aspherical and admits a
strongly convex structure (f,Jo) as in Section 2.5. Let £ be either a positive
integer or be equal to co. Let wy, p,, dvoly ,, Jx ., Ju, H,, and 7, be as in
Theorem 3.2. Let ¢y : Z(g) — (0,00) be as in (C3'), suppose that (11) holds
with co = co(T), that each J, agrees with Jy outside of the compact set

Mo :={z € M| f(z) < co(7) + 1},
and that each Hamiltonian H, is supported in My. Then, for every se-
quence (u,, A,) of WHP-solutions of (3), with the tuple (u, Js, dvols, J, H,T)
replaced by (u,,,Jz,y,dvolg,y,Jy,Hy,Tu), such that u, represents a fixed

equivariant homology class there exists a sequence of gauge transformations
gy € G*P(P) such that (g, 'u,,giA,) has a C*-convergent subsequence.

Proof. By Lemma 2.7, u,(P) C My for every v. Hence the result follows
from Theorem 3.4 with K = M. [l

4. Fredholm theory.

Fix a symplectic 2n-manifold (M,w) with a Hamiltonian G-action and mo-
ment map p : M — g, a compact Riemann surface (3, Jy, dvoly), an almost
complex structure J € J, a Hamiltonian perturbation H € H, an equiv-
ariant homology class B € Hy(Mg;Z), and a principal G-bundle P — ¥
whose characteristic class [P] € H2(BG;Z) is the image of B under the
homomorphism Hy(Mg;Z) — H2(BG;Z). In this section we examine the
moduli space

MVB,z = MVB,E(T; J,H)
= {(u,4) e WEP(P, M) x AY(P)| (u, A) satisfy (3), [u] = B} .
The quotient by the action of the gauge group will be denoted by
Mgy = Mpx(r;J,H) == Mps(r;J, H)/G*P(P).
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In this section we prove that, for a generic Hamiltonian perturbation, the
subspace M7 5, of irreducible solutions is a finite dimensional manifold.

4.1. Regular and irreducible solutions.

Let J € J° and H € H’ (see Sections 2.2 and 3.1 for the notation). We
denote by G, := {g € G| gz = x} the isotopy subgroup of x € M.

Definition 4.1. A solution (u, A) € Wé’p(P, M) x AYP(P) of (3) is called
regular if

(18) dan=0, L,n=0 = n=20

for every n € W2P(Z,gp). It is called irreducible if there exists a point
p € P such that

Note that every irreducible solution is regular. Note also that an element
T € Z(g) is a regular value of the restriction of the moment map

W' (P, M) x AYP(P) — LP(Z,gp) : (u, A) + *Fa + p(u)

to the space of pairs (u, A) such that 95 4(u) = 0 and [u] = B if and only
if every pair (u, A) € ./’\_/7372(7‘; J, H) is regular. The next lemma shows that,
if 7 is a regular value of u then regularity can be achieved by choosing a
Riemann surface with large volume.

Lemma 4.2. Let T € Z(g).

(1) If T is a regular value of p then there exists a constant 6 > 0 with the
following significance. If B, X, and H satisfy

(w+7—pf,B)+ Q4]
Vol(X)

(19) <4
then every solution (u, A) of (3) (for every J € J*) with [u] = B is
regular.

(ii) If G acts freely on p '(7) then there exists a constant § > 0 with the
following significance. If B, 3, and H satisfy (19) then every solution
(u, A) of (3) (for every J € J) with [u] = B is irreducible.
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Proof. Choose § > 0 such that
lu(z) — 7] <6 = ker L, = {0}.

Let (u,A) € Wé’p(P, M) x AYP(P), be a solution of (3) such that [u] = B.
Then, by Proposition 2.2, we have

inf lisu(p) 71" < s [ ltu) = 7P ol
_ E(w,A)
~ Vol(%)
_ {lw-+7 -4, B)+ 1]

- Vol(X%)
<é.

The last inequality follows from (19). Hence there exists a point py € P

such that |u(u(pe)) — 7|> <  and so, by definiton of &, the linear map

Ly(po) : 8 = Tu(py)M is injective. Now suppose that 1 € WLP(%, gp) satisfies
dan =0, Lyn=0.

Then 7(pp) = 0 and hence n = 0. This proves (i). To prove (ii) choose § > 0
such that

lu(z) — 7> <6 = Gz ={1}, imL,NimJ(z,z)L,; = {0}
for all (z,x) € £ x M and argue as in the proof of (i). O

Given 7 € Z(g) and (J,H) € J x H, we denote the set of irreducible
solutions of (3) by

./T/l/}},g = M*B7E(M,w,/,t,7'; J,H) := {(u,A) e Mpx|(u,A) is irreducible}
and the quotient space by

Mpy = Mps(M,w,p,7;J,H) := M}}’E(M,w,um; J,H)/G*P(P).
Remark 4.3. The regularity criterion of Lemma 4.2 is useful in certain

situations (e.g. for the adiabatic limit argument in [15]). However, the
condition is rather restrictive and in many cases the solutions are regular
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under much more general hypotheses. For example, in the case of linear
torus actions, one can consider the element 7y € g defined by

(20) T =T — Voll(E) /EFA

for A € A(P). This element is independent of the connection A. Suppose
M = C" and G is abelian and acts linearly on M. If G and acts freely
(respectively with finite isotropy) on pu~!(7p) then the gauge group acts
freely (respectively with finite isotropy) on the space of solutions of (3) for
every Hamiltonian perturbation. To see this note that, for every subgroup
H C G, the set

MY .= {z e M|HCG,}

is a linear subspace of M = C" and so u(M*H) is a closed convex cone.
Applying this to the subgroup

H:.= ﬂ Gu(p),

peP
where *Fy + p(u) = 7, we find that

1
= —— dvol M.
70 VolD) /E,u(u) voly, € p(M™)
Hence, if G acts freely on p~!(), it follows that H = {1} and, if 7 is a
regular value of yu, it follows that H is finite. Since H is isomorphic to the
isotropy subgroup of the pair (u, A), this proves the claim.

4.2. The linearized operator.

Cauchy-Riemann operators. Fix an almost complex structure J € J
and a Hamiltonian perturbation H € H. We begin with a discussion of the
Cauchy-Riemann operator on the vector bundle E, := «*TM/G — ¥ asso-
ciated to a pair (u, A) € CF (P, M) x A(P). This operator will be denoted
by Dy a : C®(Z,E,) — Q%(Z,E,). It is obtained by differentiating the
first equation in (3) with respect to v and is given by

(21) Dy a6 = (Vg a€)™' — 5T (Ve)s,4(w)

for £ € C*°(%, Ey). Here V denotes the Levi-Civita connection of the met-
ric w(-,J-) on M. Since J depends on the basepoint z € ¥ so does the
connection V. The connection Vi 4 on E, is given by

(22) V46 = VE+ Ve X a(u),
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where the 1-form Xy 4 : TP — Vect(M,w) is given by
(Xn,4)p(v) = X4, (0) + X by

p)v

for v € T,,P.

Remark 4.4. In conformal coordinates s-+it on ¥ the connection Vi 4 has
the form

Vi, 4,56 = Vel + Ve Xo + Ve XF, Vi, a:é = Vi€ + Ve Xo + Ve Xq.

Here Q C C is an open set, u : 0 — M is a smooth function, V denotes the
Levi-Civita connection of the metric (-, )5+ = w(:, Js¢-), and

A=dds+Tdt, H=Fds+Gdt

where &,V : Q - gand F,G : 2 x M — R. Thus the Cauchy-Riemann
operator has the form

1
Du,A£ = 5(5, ds + Jé., dt)a

where

1
gl = VH,A’5§ + JVH’A7t§ - §J(V§J)(’US — J?Jt)

and
vs = Osu + L, ® + Xp(u), vy = O+ L, ¥ + X (u).

The covariant derivatives of J = J(s,t,u(s,t)) with respect to the connec-
tion Vg 4 are given by

Vh,a,sd = Vi, J +0sJ — Lx . J, Vuad =V, J +0iJ — LxJ.

Remark 4.5. We obtain a Hermitian connection ﬁH, 4 on u*T'M by the
formula

Vit 4 = Vig a6 — 3 (Vig 4T
The complex linear part of D, 4 is given by £ — (6H,A§)O’1 and, moreover,
Duaé = (Vi a€)™ + TN (E Dsm.a(u)) + 5 (T (L, — F)E)
(see [15]). Here

N(§1>§2) = 2J(VE2 ‘])51 - J(V§1J)§2

denotes the Nijenhuis tensor of J = J,.
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An abstract setting. Consider the infinite dimensional Banach manifold
B:= B .= WEP(P, M) x A*P(P).
The tangent space of B at (u, A) € B is given by
Ti,a)B=W*"P(S,E,) x WP (S, T*S @ gp),  Eu:=u"TM/G.

The almost complex structure J € J determines a complex structure J, on
E, and hence a vector bundle £ = £¥~1P — B with fibres

Eua) = Eu 1= WHEIP(S, AV T*S @ B,) x WEIP(3, gp).

The action of the gauge group G2?(P) on B lifts to an action on €. For every
Hamiltonian perturbation H € H there is a G*P(P)-equivariant section

f:fH,J:B—)E

given by
Fu,g(u,A) = (05m,a(u), *Fa + p(u) — 7).

The space MB,E(M,w, w, 75 J, H) is the zero set of this section.

The linearized operator. The vertical differential of F at a zero (u, A)
gives rise to an operator

Dya: Tu,a)B" = €77 @ WEHP(S, gp)
given by
3 Dy,a§ + (Luc) !
(23) Dy,a < N ) = Lt — dha
du(u)é + *daa
Here the linear map L, : g — T, M is given by the infinitesmal action, i.e.

Lyn:= Xn(x)

for x € M and n € g, and L} : T, M — g denotes its dual operator with
respect to the given invariant inner product on g and the inner product
w(-, J(z,x)-) on T, M. Note that this inner product, in general, depends
both on x € M and on the point z € X.



The symplectic vortex equations 573

Proposition 4.6. Assume J € J* and H € H'™! and letk € {1,...,0+1}
and p > 2. Then the operator Dy 4 : T(uyA)Bk’p — el g WkE=1P(2 gp),
defined by (23), is a Fredholm operator for every pair (u,A) € B¥P. It has
real index

index D, 4 = (n — dim G)x(Z) 4 2(cF (T M), [u]),

where ¢§(TM) € H*(Mg;Z) denotes the first Chern class of the vertical
tangent bundle TM xg EG — M xg EG = Mg.

Proof. The operator

Ql(zagP) - QO(ngP) ® QO(Eng) o (_djlav *dAa)

has index —x(X)dim G and, by the Riemann-Roch theorem, the Cauchy-
Riemann operator Dy 4 : C®(%, E,) — Q%(3, E,) has index nx(X) +
2c1(Ey), where ¢1(E,) := (c{(TM),[u]) denotes the first Chern number

of the complex vector bundle E, — . The operator D, 4 is a compact
perturbation of the direct sum of these operators. [

The adjoint operator. The formal L?-adjoint operator

D 4 ESTP @ WP (S gp) — Ty, 2)B"P

is given by
(24) \ Z _ ( D 40+ Lu¢ + JLut) >
wA ¥ Lin — da¢ — xdayp

for n € Q3 (Z, E) and ¢,¢ € Q°(Z, gp).

Proposition 4.7. If u and A satisfy (3) then

n Dy, aD}y 40+ (Lo Lin)®' + (Dy,aJ — I Dy a) Lutp
DyaDya| ¢ | = d*dad + L Ly
(] d*da + L Lytp + Li(Dy aJ — JDy 4)*n

forn € Q51(8, Ey) and ¢, € Q°(S, gp).
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Proof. We shall abbreviate D := D,, 4 and use the identities
dya = —*dg x a, *dadag = [xFa, B,

du(u)d = Ly, dp(u)Lud = [, p(u)]
for a € Q}(3,gp) and ¢ € Q°(X, gp). With this understood we obtain

Du,AD:;,,A (777 ¢7 1/)) = (77/’ &7 1/;)7

where

i = D(D*n+ Lud + JLuth) + (Lu(Lin — dad — xdah))®!
= DD*n+ (L Lyn)™
+ DLy¢ — (Ludad)®' + DJLytp — (Ly * dap)™',
¢ = Ly(D'n+ Lup+ JLytp) — dy(Lyn — dad — xdath)
dydag + Ly Ly + Ly D*n — dy Lyn + [*Fa + p(u), Y],
Y = du(u)(D*n+ Lu¢ + JLutp) + #da(Lin — dad — *d a1)
= djday + LyLyp + Ly J" D™+ dy + Lyn — [*Fa + p(u), 4].

The assertion then follows from the fact that

(25) J(Lya)t = (L, * )Y, Ly J*n=—xL;n,

for a € QY(X, gp) and n € Q%(Z,Eu), and

(26) Osmalu) =0 = DL,¢ = (Lydag)*!

for ¢ € Q°(Z, gp). The first equation in (25) follows from the fact that
= —q o Jy

for every 1-form o on ¥ (with values in any vector bundle) and hence

1
(Lya)™t = E(Lua + JLy(ao Jy))
1
= 5((Lu*a)ng—JLu*a)
= —J(L,*a)".

The second equation in (25) follows from the first by duality. Next we
observe that the operator (u, A) — 0; g 4(u) is a section of the bundle over B
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with fibres Qg’ul (X, Ey). Its vertical differential at a zero (u, A) is the operator
(&, ) = Dy, aé+(Ly,a). Since the section (u, A) + 8,1 4(u) is equivariant
under the action of G(P) it follows that the pair (§,a) = (Lyp, —da¢) is
contained in the kernel of the vertical differential at any zero (u, A). This
proves (26). O

Proposition 4.8. Let 7 € Z(g). Then the following holds.

(i) If (u,A) 1s a regular solution of (3) then Dy 4(n,$,¢) = 0 implies
¢ =0.

(ii) If H =0, J =0, J is integrable, and (u, A) is a regular solution of (3)
then Dy, 4(n, ¢,%) = 0 implies ¢ = =0, D; 4n=0, and Lyn = 0.

u

(iii) If H =0, J = 0, J is integrable, (u,A) is a regular solution of (3),
and Ly(p) 1 8 = Typ)M is onto for some p € P then Dy, 4 is onto.

(iv) fH=0,J=0,dau=0, p(u) =7, Z =52, and (u, A) is irreducible
then Dy a is onto.

Proof. If u and A satisfy (3) and D, 4(n, ¢,%) = 0 then, by Proposition 4.7,
da¢p = 0 and Lyu¢p = 0. Since (u, A) is regular it follows that ¢ = 0. This
proves (i). If u and A satisfy (1) and J is integrable then

Du,AJ = JDu,A

and, by Proposition 4.7, we have

n Dy a D} + (LuLin)o!
DuaDia| ¢ | = ddad + LyLug
¥ ddath + L Lyt

This proves (ii). To prove (iii) suppose that (u,A) is a regular solution
of (1), J is integrable, and D} ,(n, #,v) = 0. Then, by (ii), ¢ = =0 and
D:,An =0, Lyn = 0. Since LZ(;;) is injective for some p € P it follows that n
vanishes on some open set. Hence, by unique continuation, n = 0. Thus we
have proved that D] , is injective. Hence D, 4 has a dense range and hence,
by elliptic regularity: D, 4 is onto. To prove (iv) note that, by Remark 4.5,
The operator D, 4 is complex linear whenever H = 0, J= 0, and dau = 0.
Hence D ,(n,¢,v) = 0 implies ¢ =+ = 0 and D} 4,n =0, Lyn = 0. Since
nis a (0, i)—form we have ’

du(u)n = —LyJn = Ly(no Js) = 0.
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Since dqu = 0 the image of w is an orbit of some point g € M under
the G-action. Since (u, A) is irreducible, G;, = {1}. Hence 1 defines an
element of the cokernel of the Cauchy—Riemann operator along the constant
function u = [zg] : & — M = M//G(7). Since ¥ = S?, it follows from the
Riemann-Roch theorem, that n = 0. U

4.3. Transversality.

In this section we establish transversality for the irreducible solutions of (3)
for generic Hamiltonian perturbations.

Definition 4.9. A pair (J,H) € J X H is called regular (for the sixtu-
ple (B,X,M,w,u, 7)) if the operator D, 4 is surjective for every (u,A) €
NEE(M ,w, i, 7y J, H), i.e. for every irreducible solution of (3) representing
the class B.

Given an almost complex structure J € J we denote by Hyeg(7,J) C H
the set of Hamiltonian perturbations H such that the pair (J, H) is regular.
Given 7 € Z(g) and B € Hy(Mq;Z) we denote by Jreg(7,B) C J the set
of almost complex structures J such that the pair (J, H = 0) is regular for
B. If (J, H) is regular then it follows from Proposition 4.6 and the infinite
dimensional implicit function theorem that M7, s.(M,w, p, 75 J, H) is a finite
dimensional smooth manifold of dimension ,

(27)  dim M 5(M,w, u, 75 J, H) = (n — dim G)x(Z) + 2(cf (TM), B).

Theorem 4.10.

(i) For every J € J and every T € Z(g) the set Hreg(T,J) is a countable
intersection of open and dense subsets of H.

(ii) Assume B is not a torsion class. Then, for every T € Z(g), the set
Treg (T, B) is a countable intersection of open and dense subsets of J .

Proof. Fix a sufficiently large integer ¢, a constant ¢ > 0, a compact set
K C M, and a real number p > 2. Consider the space of pairs (u, A) €
W(l}’p(P, M) x AYP(P) that satisfy

(28) wP)CK,  [ldaulp~ <c
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and, for some pg € P and all 1,2 € g,

. 1
(29) G:gfﬂ} [u(po) — 2| = —, Il + 2] < ¢|Lugo)ym + J Lugp)m2] -

Denote
MK (H) = {(u, A) € Mpx(M,w, 1,7 J,H) |u and A satisfy (28-29)} .
By Theorem 3.2, the moduli space
MEK(H) = M () /g2 (P)

is compact, and it consists entirely of irreducible solutions of (3). We shall
examine the universal moduli space

uf,c,K — L?E’C’K/g2’p(P),
ubeK = {(u,A, H)|H e 1, (u, A) € MK (H), (28 - 29)} .

We prove that U%“¥ is a Banach manifold. To see this we must show that
the linearized operator

Duy,am - B(lfA) oH" — L ® LP(S,0p)
given by

: ey ([ ()
(30) Du,A,H « = Du,A ( ) + 0 )
N « 0

H

is surjective for every triple (u, A, H) € UK. The proof of Theorem 3.1
shows that we may assume, without loss of generality, that u and A are of
class W%P. By Proposition 4.6, Dy, a is a Fredholm operator and hence it
suffices to prove that D, 4 g has a dense range. Let 1/p + 1/q¢ = 1 and
assume that the triple

(777 ¢717[}) € Lq(szg;lT*Z & Eu) X Lq(E,gp) X Lq(E,gp)

is L? orthogonal to the image of Dy,a,g- Then, in particular, the triple
(n, ¢, %) is L%-orthogonal to the image of D, 4. Since u and A are of class
W4 and H is of class C? it follows from elliptic regularity that n, ¢, and
are of class WP (and hence of class C*~1) and

(31) Dy, a(n,¢,%) = 0.
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Moreover,
(32) / (n, X (w)) dvol; = 0
X

for every H e H’. Since u is irreducible, there exists a pg € P such that

(33) Gu(po) = {]1}, im Lu(po) N JLu(po) = {0}

We prove that the linear map 7, : T, P — T (p,) M is equal to zero. Suppose
otherwise that 7,, # 0 and choose vy € T}, P such that np,(vo) # 0. Since
the linear map 7y, : Tpo P — Ty (p,)M vanishes on py - g we have vg ¢ po - g.
Denote

(po

xg := u(po), 2 := m(po), Co :=dm(po)vo # 0,

and choose v1 € T, P such that

1 := dm(po)v1 = —Jx(o, Tpo (V1) = J (20, ©0) o (V0)-

The last identity follows from the fact that n is a (0, 1)-form. By (33), 7, (v0)
and 7p,(v1) cannot both lie in the image of the map Ly, : g — T, M. Let
us assume, without loss of generality, that

Tlpo (Ul) ¢ im Lg,.

Since Gy, = {1} there exists a G-invariant neighbourhood Uy C M of zg
such that G, = {1} for every x € Uy. Since G, = {1} for every = € Uy
there exists a smooth G-invariant function Hy : M — R, supported in Up,
such that

dHo(0)po (v1) > 0.
Hence
(X7, (W(P0)) mpo (v0)) = w(Xpg (x0), (20, 20)7p, (v0))
= w(Xp, (z0),Mpo (V1))
= dHo(0)mp, (v1)
> 0.

Now let { : ¥ — TX be a vector field such that ((zp) = (p. Choose a
neighbourhood Vj of zg such that, for every p € P and every v € T,,P,

m(p) € Vo, dr(p)v=((m(p)) = (Xpg (u(P)),np(v)) >0
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Now choose a cutoff function 8 : ¥ — [0, 1] which is supported in Vp and
satisfies B(z9) = 1. Define H € H by the conditions

fig(z) = ﬂ(z)ﬁg, IA{JEC(Z) =0.

Then (1, X 5(u)) > 0 at the point zp and (n, X 5(u)) > 0 everywhere. Hence

/(n,Xﬁ(u)) dvoly > 0
X
in contradiction to (32). Thus we have proved that, for every p € P,

Moreover, by (31) and Proposition 4.8, we have that ¢ = 0. Since ker L,,(,) =
0 whenever Gy (,) = {1}, it follows from (24) and (32) that

Gup) ={l} = 9(p) =0

Hence n and @ vanish simultaneously on some open subset of P. Since
D; 4(n,0,9) = 0 it follows by unique continuation for first order elliptic
opérators that n =0 and ¢ = 0.

Thus we have proved that the operator D, 4 g has a dense range for
every (u, A, H) € Zje’c’K, as claimed. Since D, 4 is Fredholm, the operator
Dy, a,u has a right inverse. Hence, by the implicit function theorem, Utk
is a separable Banach manifold of class C*~!. The projection

,ITZ,C,K . uZ,C,K N H@

is a Fredholm map of index (n — dim G)x(X) + 2(c§f (T M), B). Hence, for
¢ sufficiently large, it follows from the Sard-Smale theorem, that the set
?—Lfé‘é’K(T, J) C H¢ of regular values of 74 is dense in H¢. Moreover, the
moduli space

MOK(H) = {[u, A ([u, A), H) € U<}

is compact for every H. Hence the set /Hfé%’K(T, J) is open and dense in H*.

Hence the set ’Hfég (r,J) = ’HféCg’K(T, J)NH is dense in H! and hence is also
dense in H. That it is open follows again from compactness. Hence the set

Hreg (7—7 J) = m ,Hgélg{ (7-7 J)
o, K
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is a countable intersection of open and dense subsets of . This proves (i).

We sketch the proof of (ii). Assume B is not a torsion class. Then, by
Lemma 2.3, every solution (u, A) of (3) with H = 0 representing the class B
satisfies d 4u # 0 and so, by Lemma 2.5, dau # 0 almost everywhere. Hence,
for every irreducible solution (u,A) of (3) with H = 0 that represents the
class B, there exists a point pg € P such that

Gu(po) = {]1}, im Lu(po) Nim JLu(po) = {0}, dA(u(po)) 7é 0.

With this understood the proof of assertion (ii) is almost word by word the
same as that of (i) and will be omitted. O

4.4. Cobordisms.

Let (7, Jx) € Z(g) x J and Hy € Hreg(a,Jn) for A = 0,1 . For every
smooth homotopy

{Ta, I, HyYo<a<1 € Z(g) x I x H

from (79, Jo, Ho) to (71, J1, H1) we consider the space

Wi s =Whs({m, I i) = [ (A} UME s (i Ja, Hy).
0<A<1

Definition 4.11. A homotopy {7y, Jx, Hx}x is called regular (for the tu-
ple (B, X, M,w,u)) if Hy € Hieg(Tr,Jn) for A = 0,1 and, for every triple
(A [u, 4]) € W} s, we have

: R
&y =1im Du,A + span C)\,u,Av

Va(07y,Hy,4 (1)
(34) C)\,u,A = 0
—O\T)

Here the expression V) (9, u,,4(u)) is independent of the (Hermitian)
connection used to define it. If {7y, Jx, Hy}, is a regular homotopy then the
moduli space WE’Z({T)\, Jx, Hx}») is a smooth finite dimensional manifold
with boundary

6W§,E({T,\7 J,\,H)\},\) = {0} X ME,E(TO; J(),Ho) U {1} X ME,E(Tl; Jl,Hl).
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Let #%'(Hy, H;) denote the space of smooth paths [0,1] — H : X — Hy
with fixed endpoints Hy and H;. Given a homotopy {7, J)}a from (79, Jo)
to (71, J1) denote by %Lg}gl} (Ho, Hy; {1y, Ja}x) C HIOU(Hy, Hy) the set of all
smooth homotopies { Hy }, from Hy to H; such that the triple {7y, Jx, Hx}
is regular. The next theorem asserts the set of regular homotopies is of the

second category in the sense of Baire.

Theorem 4.12. Assume G =T is a torus. Let {75, Jx}o<a<1 be a smooth

homotopy in C*(X,Z(g)) x J and let Hy € Hyeg(Tr, Jn) for A =0,1. Then

the set ’Hg;’gl] (Ho, H1; {7, Jx}A) is a countable intersection of open and dense

subsets of HIV(Hy, Hy).

Proof. The proof is similar to that of Theorem 4.10 and we only sketch the
main points. Denote by H the set of all C* homotopies from Hy to Hj.
Fix a constant ¢ > 0 and a compact set K C M and consider the universal
moduli space of all gauge equivalence classes of quadruples

(\u, A, {Hy}y) € [0,1] x WEP(P, M) x AYP(P) x H*

such that (u, A) € M*B 5(7a; I, Hy) and u and A satisfy (28-29). The proof
of Theorem 4.10 shows that this space is a separable Banach manifold. The
projection

(A [w, Al {Hx}x) = {Ha}a

is then a Fredholm map and a smooth homotopy {H)}, is a regular value
of this projection for every triple (K, ¢, ¥) if and only if

{Ha}bx € HIM (Ho, Hy; {7, A}).
Hence the result follows from the Sard-Smale theorem. O

4.5. Orientation.

In this subsection we shall prove that the moduli spaces ME,E (M, w,u; J, H)
carry natural orientations. Consider the determinant line bundle

det(D) - B=C&(P,M) x A(P)
whose fibre over (u, A) is the 1-dimensional real vector space

det(Dy 4) := A (ker D, 4) ® A (ker D, 4)
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(See, for example, [31, Appendix A] for a detailed exposition.) Here
Du,A = Du,A : T(U7A)B — &y

denotes the Fredholm operator given by equation (23). The orientation of
the moduli spaces is an immediate consequence of the following proposition.
The proof is reminiscent of the arguments in [23, 31].

Proposition 4.13. The determinant line bundle det(D) — B admits a nat-
ural G-invariant orientation.

Proof. The tangent space
Tw,0)B = C%(Z, E) ® Q(, gp)

admits a natural complex structure given by the complex structure J, on
E, and the Hodge *-operator on Q!(X). The fibre

gu = Qg,ul(EaEu) D QO(Eng) & QO(EagP)

also admits a complex structure given by the complex structure J, on E,
and by the map (¢, ) — (=, ¢) on Q°(Z, gp) @ Q°(E, gp). The only term
in the formula (23) for the operator D, 4 that is not necessarily complex
linear, is the operator

Dy,a: C®(3, Ey) — Q51 (3, Ey).

However, by Remark 4.5, the complex anti-linear part of D, 4 is of zeroth
order and is therefore compact. Hence D, 4 is a compact perturbation of a
complex linear operator and hence admits a natural orientation. It follows
that the real line bundle det(D) — B admits a natural orientation (see [23]).

Now let g € G(P) and choose a pair (u, A) € B. Linearizing the action
of the gauge group gives rise to isomorphisms

(35) ker Dy 4 — ker Dy-1, g4 : (§, ) = (g7, g7 ag),

ker Dy 4 = ker D)1y o q: (0,6,9) = (9 '1,9 "¢g,9 '¢g).
We prove that the resulting isomorphism of determinant lines is orientation
preserving with respect to the natural orientations introduced above. To

see this, we assume first that H = 0 and J(z, ) is integrable near u(p) for
every z € ¥ and every p € P with w(p) = z. Then the operators D, 4 and
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Dy-14,4+4 are both complex linear, and hence the orientations of det(Dy, 4)
and det(D,-1, 4+ 4) both agree with the orientations induced by the complex
structures. Hence, in this case, the result follows from the fact that the
maps (35) are complex linear. In general, the result follows from the fact
that the spaces H and J are both connected and hence the isomorphism
det(Dy,4) — det(Dy-1, 4+ 4) is orientation preserving for some pair (H, J) if
and only if it is orientation preserving for every pair (H,J). O
Proposition 4.14. Let {H)}) € Hﬁg’g” (Ho, Hi;{7x, Jx}»). Then the moduli
space WE,Z({T/\, JIx, Hx}a is an oriented cobordism from Mg s (105 Jo, Ho) to
ME,E(Tl; Ji, Hy).

Proof. The tangent space of Wy 5, at a triple (A, u, A) is the kernel of the
operator
D)\,u,A ‘R x T(u,A)B — gu

given by A A A
D/\,u,A()‘a 57 Oé) = DU,A(£7 Oé) + )\C-A,U,A

for A € R and (§,a) € Ty,4)B, where ()4 € &, is given by (34). Since
Dy u,4 is surjective, the orientation of the kernel is determined by the orien-
tation of the determinant line. Thus we must examine the determinant line

bundle

det(D) — [0,1] x B
whose fibre over a triple (A, u, A) € [0,1] x B is det(D) 4, 4). The homotopy
t — t(\u,4 yields a natural isomorphism

det(D) = priT[0,1] ® pri det(D) = pr} det(D),

where pry : [0,1] x B — [0, 1] and prz : [0, 1] x B — B denote the obvious pro-
jections. This is because the tangent space T3[0, 1] is canonically isomorphic
to R and, for t = 0, we have

ker D 2 R x ker D, cokerD 2 cokerD.

Hence det(D) inherits the orientation of det(D) and, since the orientation
of det(D) is invariant under the action of G so is the orientation of det(D).
It follows that the manifold W5 5, admits a natural orientation.

Now choose a triple (A, [u,A’]) € W5 s, such that D, 4 is onto. Then a
positively oriented basis of Ty |y, A])Wgzy has the form

(17507 a())v (07517 al)v AR (0,§k70ék),
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where the vectors (§1, 1), ..., (&, ax) form a positively oriented basis of the
kernel of D, 4. With the standard convention for orienting the boundary
(the outward unit normal vector comes first) the result follows. g

5. Integer invariants.

Let (M,w, u) be a symplectic manifold of (real) dimension 2n equipped with
a Hamiltonian action by a compact Lie group G which is generated by a mo-
ment map p : M — g. Suppose that the triple (M,w, ) satisfies (H1 — 3).
We shall define rational invariants of the triple (M, w, ) for central regular
values of the moment map under these hypotheses. Conditions (H1 — 2)
are needed to prove that the moduli spaces are compact. It should be pos-
sible to remove condition (H3), however, the construction of the invariants
without this condition will probably require considerably more analysis than
has been carried out in the present paper. This would include a full ver-
sion of compactness for the solutions of (3) without loss of energy and with
preservation of the homotopy class in the limit, as well as the construction
of virtual moduli cycles analogous to the definition of the Gromov-Witten
invariants for general symplectic manifolds as in [13, 20, 22, 29]. On the
other hand, there are many interesting examples that satisfy (H1 — 3), such
as linear actions on complex vector spaces. (In this case (H1) implies (H2),
and (H3) is obvious.) In the present section we define integer invariants
under the additional assumption that G acts freely on u~!(7) for some cen-
tral element 7 € Z(g). This hypothesis will in Section 7 be replaced by the
assumption that p has a central regular value.

5.1. Smooth moduli spaces.

Fix an equivariant homology class B € Ha(Mg;Z) and a compact Riemann
surface (X, Jy,dvoly). Recall from Section 4 the definition of the moduli
space s
M(r;J,H) = Mpyx(r;J,H) = Mpx(r;J,H)/G(P)
of gauge equivalence classes of solutions of (3) for a (family of) almost com-
plex structures J € J and a Hamiltonian perturbation H € H. Consider
the set
Zo(g) == {7 € Z(g) | G acts freely on (1)}

By (H1), this set is open and we assume here that it is nonempty. Choose
a smooth function ¢ : Zy(g) — (0, 00) such that

(36) |u(z) —7|* <d(r) = Gp={1}, imL,NimJ(z,z)L, = {0}
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for all (z,z) € ¥ x M and 7 € Zy(g). If

(w7 —p],B) +[|Qu]
Vol(X)

(37) < 6(7)

then the moduli space Mp x(7;J, H) consists entirely of irreducible solu-
tions (Lemma 4.2) and hence is a smooth manifold for a generic Hamiltonian
function H that satisfies (37) (Theorem 4.10). Moreover, Mp x(7;J, H) is
compact whenever H has compact support and J agrees with the almost
complex structure Jy of hypothesis (H2) ouside of some compact subset of
M (Corollary 3.5). Let us denote by Jy the space of almost complex struc-
tures that agree with Jy outside of a compact set, by H(7;0) the space of
compactly supported Hamiltonian perturbations that satisfy (37), and, for
T € Zo(g) and J € Jo, denote by

Hreg (7, J;0) 1= Hreg(T,J) NH(T;0)
the subset of regular perturbations in the sense of Definition 4.9. Let
B*CB=C&(P,M) x A(P)

denote the subset of irreducible pairs (u, A) € B (see Definition 4.1). By
the local slice theorem (see Theorem B.1) the quotient space B*/G is an
infinite dimensional Fréchet manifold (determined by p, P, and ¥). The next
theorem summarizes our results about the moduli spaces Mp x(7;J, H).

Theorem 5.1. Assume (H1 — 3) and let 7 € Zy(g). Then the following
holds.

(i) For every pair (1,J) € Zo(g) X Jo the set Hreg(T, J;9) is open and dense
in H(T;9).

(ii) For every pair (1,J) € Zo(g) x Jo and every H € Hyeg(T,J;6) the
moduli space Mpx(r;J,H) is a compact smooth naturally oriented
submanifold of B*/G of dimension

dim Mg s (1; J, H) = 2m := (n — dim G)x(Z) + 2(c (T M), B).
(iii) For A = 0,1 let (75, Jy) € Zo(g) X Jo and Hy € Hreg(Tr, Jr;0). Sup-
pose that 79 and 11 belong to the same component of Zy(g). Then the

moduli spaces M(to; Jo, Hy) and M(1y;J1, H1) are oriented cobordant
in B*/G, i.e. there exists a compact oriented submanifold

W cCl[0,1] x B*/G
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of dimension 2m + 1 such that

oW = {1} X M(Tl; J1,H1) — {0} X M(Tg; Jo,Ho).

Proof. By Corollary 3.5, the moduli space M(7;J, H) is a compact subset
of B/G and, by Lemma 4.2, it consists entirely of irreducible solutions of (3)
for every H € H(7;6). Hence the set Hieg(7,J;6) is open in H(7;5). By
Theorem 4.10, it is dense. This proves (i).

That M*(7; J, H) is a smooth submanifold of B*/G of dimension 2m for
H € Hieg(T, J;0) follows from the definitions, from Proposition 4.6, and from
the implicit function theorem. That M(7;J, H) = M*(r; J, H) follows from
Lemma 4.2, and that M(; J, H) is orientable follows from Proposition 4.13.
This proves (ii). Assertion (iii) follows from Theorem 4.12, Corollary 3.5,
and Proposition 4.14. [l

5.2. Definition of the invariants.

The evaluation map. The group G x G acts freely on the product B* x P
by
(9,h)*(u, A,p) := (9w, g" A, pg(p) 'h)
for g € G, h € G, (u,A) € B*, and p € P. Hence there is a principal
G-bundle
P:=(B*xP)/G— B*/G x %.

The classifying map B*/G x ¥ — BG of this bundle lifts to a map 6 :
B* x P — EG that is G-invariant and G-equivariant:
0(9~"u, 9" A,pg(p) ™" h) = h™'0(u, A, p).

Likewise, the evaluation map B* x P — M : (u, A,p) — u(p) is G-invariant
and G-equivariant. These two maps together give rise to a map

evG:B*/ng—>MG :ZMXGEG
given by
evg([u, 4,p]) = [u(p),0(u, 4, p)].

The composition of evg with the projection pys : Mg — BG is the classifying
map of P:

B*/G x ¥ —%5 Mg

S

BG
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If M is contractible, then the projection pps : Mg — BG is a homotopy
equivalence.

The projection. Now fix a point py € P, denote by Gy := {g € G | g(po) =
id} the based gauge group, and consider the space

Ag =A Xg EG,

where G acts by g*(4,e) := (g*4, g(po)~'e). This space can be identified
with A/Gy xg EG. Since G acts freely on B* there is a principal G-bundle

Py :=B* /Gy — B*/G.

The classifying map of this bundle lifts to a G-equivariant map 6y : B* — EG,
which is equal to the restriction of 6 to B* x {pg}. It satisfies

60(9™"u, 9" A) = g(po) 00 (u, A)

and gives rise to a projection
TA - B*/g — .Ag

given by
mA([u, 4]) == [A, Oy(u, A)].

The composition of 74 with the projection p 4 : Ag — BG is the classifying
map of Py:

B*/G A~ Ag

N

BG

The invariants. We define invariants of the sixtuple (M,w,u,,B,X)
with 7 € Zy(g) by integrating suitable cohomology classes over the moduli
space Mp x(7;J, H). Such cohomology classes can be obtained by pulling
back equivariant cohomology classes on M under the evaluation map evg
and equivariant cohomology classes on A/Gy under the projection m4. Let
a € H*(Ag;Z), pr,...,Bk € H*(Mg;Z), and v1,...,v € H.(X;Z) such
that

k k
deg(a) + Y deg(B;) — Y deg(y:) = 2m,
=1 =1
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and define
M,pu—
CI)B,S T(a;ﬂl,...,,@k;’yl,...,’yk)

= / T~ evgPi/m = - — evi B/ V-
Mp, 5 (7;J,H)

Here the map HY(B*/G x $;7Z) x H;(%;Z) — HI"Y(B*/G;Z) : (B,7) — B/
denotes the slant product, J € Jy, and H € Hyeg(7, J;6), where the function
d: Zo(g) — (0,00) satisfies (36).

Theorem 5.2. Assume (H1 — 3) and let 7 € Zo(g) (i.e. G acts freely
on p~Y(7)). The invariant @g”g_T(a;ﬂi;%) is independent of the almost
complex structure J and the Hamiltonian perturbation H used to define it. It
depends only on the triple (M, w, ), on the (co)homology classes B, ., B;, Vi,

and on the component of T in Zy(g).

Proof. The space B*/G depends on M, the G-action, ¥, and P. The invariant
is defined by pairing an integral cohomology class on B*/G, determined
by «,Bi,7:, with the homology class [Mpx(7;J, H)] € H.(B*/G;Z). By
Theorem 5.1, the latter is independent of J and H and depends only on the
component of 7 in Zy(g). That it is also independent of the metric on ¥
follows by a similar cobordism argument. O

Remark 5.3. The hypothesis that the Hamiltonian is small (compared to
the volume of ¥) is quite restrictive. If we allow for more general (abstract)
perturbations of the symplectic vortex equations, then the condition that
all solutions of (3) are irreducible can be replaced by the weaker condition
that the gauge group acts freely on the space of solutions of (3). In the
case of linear torus actions this condition is satisfied for every Hamiltonian
perturbation whenever G acts freely on u !(7), where 79 € g is defined
by (20) (see Remark 4.3).

6. G-moduli problems and the Euler class.

In this section we review the results of [7] about the Euler class of G-moduli
problems. They play a crucial role in the definition of the rational invariants
in the presence of finite isotropy.

Definition 6.1. Let G be a compact oriented Lie group. A G-moduli
problem is a triple (B, £, S) with the following properties.
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e 3 is a Hilbert manifold equipped with a smooth G-action.

e £ is a Hilbert space bundle over B, also equipped with a smooth G-action,
such that G acts by isometries on the fibres of £ and the projection
& — B is G-equivariant.

e §: B — £ is a smooth G-equivariant Fredholm section of constant Fred-
holm index such that the determinant bundle det(S) — B is oriented,
G acts by orientation preserving isomorphisms on the determinant
bundle, and the zero set

M :={z € B|S(z) =0}
is compact.

A finite dimensional G-moduli problem (B, E,S) is called oriented if B
and F are oriented and G acts on B and E by orientation preserving diffeo-
morphisms. A G-moduli problem (B,€&,S) is called regular if the isotropy
subgroup G, := {g € G|g*z = x} is finite for every z € M.

G-moduli problems form a category as follows.

Definition 6.2. Let (B,&,S), (B,£',S") be G-moduli problems. A mor-
phism from (B,&,S) to (B',£',S’) is a pair (¢, ¥) with the following proper-
ties. ¥ : By — B’ is a smooth G-equivariant embedding of a neighbourhood
By € B of M into B/, ¥ : & := E|g, — &' is a smooth injective bundle
homomorphism and a lift of ¢, and the sections S and S’ satisfy

Sop=ToS, M =pM).

Moreover, the linear operators dgv : T, B — sz(x)B' and ¥, : £, — S{b(w)
induce isomorphisms

(38) dz : ker D, — ker D:/)( ¥, : cokerD, — cokerD:b(x),

z)’
for x € M, and the resulting isomorphism from det(D) to det(D’) is orien-
tation preserving.

Let (B,&,8) and (B',&',S’) be G-moduli problems and suppose that
there exists a morphism from (B,&,S) to (B',&',S8’). Then the indices of
S and S’ agree. Moreover, (B,&,S8) is regular if and only if (B/,&',8') is
regular.
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Definition 6.3. Two regular G-moduli problems (B,¢&;,S;), i = 0,1, (over
the same base) are called homotopic if there exists a G-equivariant Hilbert
space bundle £ — [0, 1] x B and a G-equivariant smooth section S : [0, 1] x
B — & such that & = E|yj«p and S; = S|y for i = 0,1, the triple
(B, &, St), defined by & := |y« and S¢ = S|y« is a regular G-moduli
problem for every ¢ € [0, 1], and the set M := {(¢,z) € [0,1] x B|S(z) = 0}
is compact.

The following theorem in proved in [7]. It states the properties of the
Euler class. We denote by H{(B) the equivariant cohomology with real
coefficients.

Theorem 6.4. There exists a functor, called the Euler class, which as-
signs to each compact oriented Lie group G and each regular G-moduli prob-
lem (B,E,S) a homomorphism x5S H¢(B) — R and satisfies the follow-
ing.

(Functoriality) If (¢, %) is a morphism from (B,E,S) to (B',E',S’) then
XBES (pra) = xB S (a) for every a € HE(B').

(Thom class) If (B,E,S) is a finite dimensional oriented regular G-
moduli problem and T € QL (E) is an equivariant Thom form supported
in an open neighbourhood U C E of the zero section such that U N E,
is convex for every x € B, U N7~ (K) has compact closure for every
compact set K C B, and Sil(U) has compact closure, then

XB’E’S(a):/ alNS*r
B/G

for every closed form o € Q(B).

(Transversality) If S is transverse to the zero section then

EES@ = [ o
M/G

for every a € HE(B), where M := S71(0).

(Homotopy) If (B,&y,So) and (B,&1,81) are regular homotopic G-moduli
problems then X505 (a) = xB151(a) for every a € HE(B).

(Subgroup) If (B,£,S) is a regular G-moduli problem and H C G is a
normal subgroup acting freely on B then

XB/H,g/H,S/H(a) — XB’S’S(TF*Q)
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for every a € HE/H(B/H), where T : Ha/H(B/H) — HE(B) is the

homomorphism induced by the projection = : B — B/H.
(Rationality) If o € HE(B; Q) then X555 (a) € Q.

The Euler class is uniquely determined by the (Functoriality) and (Thom
class) azioms.

7. Rational invariants.

Our next goal is to drop the hypothesis that G acts freely on p~!(7) and
construct invariants for every central regular values 7 € Z(g) of the moment
map ¢ : M — g. In this case we must deal with the presence of finite
isotropy subgroups. We assume as before that the hypotheses (H1 — 3) are
satisfied.

7.1. The setup.

Let us fix the following data:
e an equivariant homology class B € Ha(Mg;Z),

e a compact connected Riemann surface (¥, Jy,dvoly) and a principal G-
bundle 7 : P — X whose characteristic class is the image of B under
the homomorphism Hy(Mg;Z) — Ha(BG;Z),

e a point pyp € P and an integer k£ > 2.

We emphasize that the purpose of fixing the point pg is not in the definition
of the evaluation map, but to obtain an action of the gauge group on the
classifying space EG of G. Throughout we shall denote by G := GFT1.2(P)
the group of gauge transformations of P of class W**+1:2 and by

Go := Gy (P) := {9 € GM12(P) | g(po) = 1

the (normal) subgroup of based gauge transformation. When the need arises
we shall think of the gauge group G as acting on EG by g*e := g(po) 'e. So
the subgroup Gy acts trivially on EG.

The above data give rise to a G-moduli problem (B, &, S) as follows. The
Hilbert manifold B is the quotient

_ WE*(P,M; B) x A*2(P)

(39) B: g§+1’2(P)

)
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where Wg’2(P, M;B) :={(ue€ Wé’2(P, M) |[u] = B}. The Hilbert manifold
B carries a G-action since the quotient group G/Gy is isomorphic to G.
Consider the bundle £ — B with fibres

(40) Eway = WHE (S, A T*S @, w*'TM/G) & WEH2(S, gp).

The action of the gauge group identifies &, 4) With Eg-1, 4-4) for every
g € G. Thus & carries a G-action. More precisely, the fibre of £ over a point
[u, A] € B is the union of the spaces -1, - 4) over all g € Gp and any two
such spaces are identified by the action of the based gauge group. Then
the quotient group G = G/Gp acts on both £ and B and the projection is
G-equivariant. For every Hamiltonian perturbation H the left hand side of
equation (3) defines a G-equivariant section S : B — & given by

(41) S([u, A]) == [0y m.a(u), *Fa + p(u) — 7).
Lemma 7.1. Assume (H1 —3) and let 7 € Z(g) be a regular value of p.

(i) The triple (B,E,S) defined by (39), (40), and (41) is a G-moduli prob-
lem (see Section 6) of index

index(S) = (n — dim G)x(X) + 2(c§ (T M), B) =: 2m.

(ii) There exists a constant 6 > 0 such that the G-moduli problem (B, E,S)
is reqular whenever

(42) (o — p+ 71, B) + | Qu]) < VoI(Z).

Proof. That £ is a Hilbert space bundle over a Hilbert manifold is a con-
sequence of the local slice theorem (for W*?2 connections). That S is a
Fredholm section follows from Proposition 4.6 and so does the index for-
mula. That the zero set of § is compact follows from Corollary 3.5. This
proves (i). Assertion (ii) follows from Lemma 4.2. O

We can now evaluate the Euler class x5, defined in Section 6, on
equivariant cohomology classes of B. As in Section 5.2, such cohomology
classes can be obtained by pulling back equivariant cohomology classes on M
with the evaluation map and equivariant cohomology classes on A/Gy with
the projection onto the space of connections. More precisely, abbreviate
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A := AB2(P) and G = GF12(P). Consider the action of the group G x G
on the space
X :=Ax P xEG

by
(9,h)*(A,p,e) := (3" A, pg(p) *h, g(po) ‘e).

Lemma 7.2. There exists a continuous function 6 : X — EG which is
G-invariant and G-equivariant. Thus

(43) 0(g" A, pg(p)~*h, g(po) ‘e) = h'0(A, p, €)

for (A,p,e) € X, g € G, and h € G. Any two such maps 6y,6, : X — EG
are homotopic through maps satisfying (43). Moreover, 8 can be chosen such
that

0(A,po,e) =e.

Proof. The group G x G acts freely on X. Hence the quotient X'/G is a prin-
cipal G-bundle over X' /(G x G). The classifying map of this bundle lifts to a
G-equivariant map from X'/G to EG. The composition of this map with the
projection X — X' /G is the required map 6. The last two assertions follow
from the fact that any two classifying maps are equivariantly homotopic. [

Note that we can identify the space B xg EG with the quotient of the
space W2 (P, M; B) x A*2(P) x EG by G = GF12(P), where the action
of the gauge group is given by g*(u, 4,e) := (g7 u,g*A, g(po) 'e). Hence
there is an evaluation map

eVGZ(BXGEG)XE—)MXGEG,

defined by
eVG([uvAve]vW(p)) = [u(p),e(A,p, e)]a

and a projection
w4 BxgEG— Ag := A xg EG

defined by
mA([u, A e]) :=[A,e].
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7.2. Definition of the invariants.

Let
aeH*(Ag)a Bla"'aﬂkeH*(MG)a ’)/1,...,’YkEH*(E)
such that
k k
deg(a) + Z deg(B;) — Z deg(vi) = 2m,
i=1 i=1
and define

M,p—1
(I)B,,XIJL (a;ﬁla"'aﬁk;ryla"'afyk)

BES (

=X T~ evgPBi/y ~ -~ evaBe/ k) -

Here the map HY((BxgEG) x %) x H;(X) — HI {(BxgEG) : (B,7) — B/
denotes the slant product, the G-moduli problem (B, £, S) is defined by (39),
(40), and (41), where the Hamiltonian perturbation H satisfies (42), and the
Euler class %€ : HE(B) — R is defined in Section 6.

Theorem 7.3. Assume (H1 — 3) and let 7 € Z(g) be a regular value of
w.  The invariant @g’g_‘r(a;ﬂi;%) is independent of the almost complex
structure J, the Hamiltonian perturbation H, the point pg € P, and the
integer k used to define it. It depends only on (M,w, ), on the genus of 3,
on the component of T in the (open) set of central reqular values of u, and

on the (co)homology classes B, a, i, ;.

Proof. The independence of k follows from the fact that a finite dimensional
reduction for k = 2 is also a finite dimensional reduction for every k£ > 2, and
that the classifying map 6%2 : X2 — EG can be defined as the restriction
of the classifying map 62 to the subspace X*? c X?2. The independence
of J, H, Jy, dvoly, and 7 follows from the (Homotopy) axiom for the Euler
class.

We prove the independence of the basepoint pg. Let p; € P and suppose
that H = 0 and that J is independent of the point z € Y. Choose a dif-
feomorphism ¢ : ¥ — X that is isotopic to the identity and a G-equivariant
lift v : P — P such that ¥(p;) = pp. Then the G-moduli problem with
po, Jx, and dvoly, replaced by p; = ¥ (pg), ¢*Jx, and ¢*dvoly, respec-
tively, is diffeomorphic to the original one. The diffeomorphism is given by
[u, A] > [uo),9* A]. Hence the invariants are the same. O
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Remark 7.4. We emphasize again that the condition (42) on the Hamilto-
nian perturbation is quite restrictive and that much more general regularity
criteria are available in the abelian case. For example, if G is abelian and
acts linearly on M = C" and the element 7y € g, defined by (20), is a reg-
ular value of p then, for every Hamiltonian perturbation and every almost
complex structure, the gauge group acts on the space of solutions of (3) with
finite isotropy (see Remarks 4.3). So in this case the smallness condition (42)
on the Hamiltonian can be dropped. Such more general criteria can also be
obtained in the nonabelian case.

Theorem 7.5. Assume (H1—3) and let T € Z(g) such that G acts freely on
pw 1(1). Then the invariant @g’g_‘r(a;ﬂi;%) defined in this section agrees

with the one defined in Section 5.2.

Proof. By Theorem 5.1, there exists a Hamiltonian perturbation H that
satisfies (42) and is regular in the sense of Definition 4.9. For such a per-
turbation the section § : B — &, defined by (41), is transverse to the zero
section. Hence the result follows from the (7Transversality) axiom for the
Euler class. 0

7.3. Relations.
There are two kinds of relations between the invariants defined in Section 7.2,
namely those arising from relations between the slant product and the cup
product and others arising from relations between certain universal bundles

in gauge theory.

Proposition 7.6. Let ¢ : X — X X X denote the inclusion of the diagonal
and suppose that 3,', 8" € H*(Mg;Z) and v,v.,v)! € Ho(X;Z) satisfy

m
B=p —B",  y=) %o
i=1
Then

M.—
QB,’S T(a;/Bvﬂla"'7/3k;7771,-..,’yk)

m
4 "INy = M p—
= (_1)deg(%)deg(6 /%)(I)B,,g T(a;/BIwB”aBl:'--a;Bk;71{77z{I7717"'77k)-
i=1
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In particular, if v; = [pt] for every i, then

M,p— M,pu—
(I)B,g T(a;ﬂla s 7/8k;pt7' .. 7pt) = ¢B7£ T(a;/Bl o Bkapt)

Proof. This follows from the formula

for o/, 0 € H*(%;Z). O
Let us denote by
04:Ag x X — BG

the map
04([A, €], m(p)) == [0(A, p,e)],

where 6 is as in Lemma 7.2. This is a classifying map for the bundle
Pa:=(AxPxEG)/G— Ag x %,

where the gauge group G acts by g*(4,p,e) := (g*A,pg(p)~t, g(po)le).
Recall that pps : Mg — BG denotes the projection.

Proposition 7.7. For every c € H*(BG;Z) and every v € H.(%;7Z),

M,p—1 *
(}B,g (a;pMcaﬁlv"'aﬂk;’)/v’)/la"'a’}/k)

M, —T *
= 0% (a— (04¢/7); B s Brs My -+ W)

Proof. By definition of the maps, there is a commuting diagram

(BxgEG) x £ —%= M x¢ EG .

rrAxidl lpM

AgXE BG

A
Hence, for every class ¢ € H*(BG;Z) and every v € H.(X;Z), we have
evepue/v = ((ma xid)*0uc) /v = ma(6ac/7)-

This proves the proposition. [l
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Let us now consider the abelian case G = T'. Then the constant gauge
transformations act trivially on A. Hence there is a principal bundle

Pujgi=(Ax P)/Gy — A/G x 3,
where Gy is the based gauge group. Let us denote by
04/ A/G x E — BG.
It lifts to a map 6y : A x P — EG that satisfies
0o(9"A,pg(p) 1) = g(po) *60(A,p).

Consider the homomorphism 14/g : HY(BG;Z) x H; (3;Z) — H? *(A/G;Z)
defined by
tasg(e,y) =0y ,gc/v € H*(A/G; Z).

Let my/g : Ag — A/G denote the obvious projection.

Proposition 7.8. Assume the abelian case G = T. Then, for every c €
H*(BG;Z) and every v € H,(X;7Z) such that

deg(vy) >0,

we have

M —T £
q)B:XL)L (a;pMC?/Bh"'aﬁk;777la"-77]6)

M, —T *
= (I)B,XIJL (Oé ~ WA/gMA/g(C: 7);517 s ,,Bk;’}’l, s 77k:)

Proof. In the abelian case the projection
Ag — A/G x BG

is a homeomorphism. We define the tensor product of two principal T-
bundles 71 : P — X and mo : P, — X as the quotient

P ® Py :={(p1,p2) € P x P2|m(p1) = ma(p2)} /T
by the diagonal action. With this notation
Pa=(Pag xBG)® (A/G x T x EG) — A/G x ¥ x BG.

An explicit bundle isomorphism is [A4,p,e] — [([4,Dlo,[€]), ([4],[p],e)],
where [A,plo € Pa/g = (A X P)/Go denotes the equivalence class under
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the action of Gy, and [A], respectively [p] and [e], denote the equivalence
classes under the action of G, respectively G. Hence

deg(y) >0 = Oac/y = 7Tj4/g(‘9j4/gc/’7) = WZ/QMA/Q(C, )

and hence the result follows from Proposition 7.7. O

The classes 14,g(c,v) are easy to compute and they generate the coho-
mology of A/G = A/Gy. Let A := exp (1) C t and denote by W C t the
dual lattice (of elements whose periods on A are integer multiples of 2m).
Then every w € W determines a homomorphism

pw: T — S,
given by py (exp(7)) := exp(i(w, 7)) and hence complex line bundles
LY :=EG x,, C = BG, LY := P x,,C— X%
The first Chern class of LV will be denoted by
cw :=c1(LY) € H*(BG; Z).

We describe the map 7 +— p4/g(cw,?7) explicitly. Every w € W and every
loop 7 : S' — ¥ determine a real valued 1-form on A given by

(44) TAA:QI(E,t)—)RZOH—)—%/(W,OO.
g

This 1-form is closed and G-invariant, so it descends to a closed 1-form
fiw (7) € QY(A/G). Similarly, every 2-chain o on ¥ induces a function ji(o)
on A/G defined by

By Stokes’ Theorem, dfiw(0) = fiw(00) and hence there are induced homo-
morphisms jiy : H1(3;Z) — HY(A/G;Z) and iy : H2(Z;7Z) — H°(A/G; 7).
The following lemma asserts that jiw () = p4/g(cw,7)-

Lemma 7.9. For every w € W the following holds.

(1) masg(ew, [pt]) =0 and pa/g(ew, [Z]) = (e1(LY), [X]) € HY(A/G;Z).
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(ii) For v € H1(%;7Z) the class pasg(cw,”) € H'(A/G;Z) is represented
by the closed 1-form on A/G induced by (44). The Poincaré dual of
pa)g(cw,7) is represented by the cycle

Cutw) = {141 € /6| [ (w4 a0) =0}

with the orientation determined by —w.
(iii) The map
W@ Hi(%5Z) = HY(A/G;Z) : (w,7) = pasg(cw, )
induces an isomorphism from the exterior algebra on the free Z-module
W ® Hi(X;Z) to H*(A/G;Z).
Proof. The bundle Py/g = (A x P)/Go — A/G x ¥ carries a universal
connection induced by the Gp-invariant 1-form A € Q!(A x P,t),
M) (@,0) = Ap(v) + (d*d) " d"a(p).
Here d*d denotes the isomorphism
d*d: Q°(Z,t) — im(d* : QY(Z, 1) — QU(D, 1)).

The curvature Fy of A is given by

(Fa) (a0 ((@,0), (8,0)) = Fa(v,0) + az(w) = B(v)
for v,w € T,X and o,B € QY%,iR). Let [y] € Hi1(3;Z) and [4] €
H,(A/G;Z) be represented by loops v : R/Z — ¥ and A : R — A such

that A(t+1) = g*A(t) for some g € G. Since the closed 2-form —(w, Fy)/2m
represents the cohomology class c; (0:‘4 /gﬁw) =07 /GCw> We have

el DL 1A) = =5 [ [ or, Fa(Ao). 30 dsa

_ _/01 (%/7<W,A(s)>) ds
_ .

= (Bw([7]), [A
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This proves (ii). Assertion (i) is proved similarly. To prove (iii) let m :=
dim 7T and pick integer bases w1, ..., Wy, of W and 71, ...,724 of Hi(%;7Z).
Now let a;; € Q1(Z,t) be a harmonic 1-form such that

1
5 /7 AW aigr) = Giundyjr

for i,/ =1,...,2g and 5,7’ = 1,...,m. Then the map
T29m — Rng/ZZQm — A/Q : [t] — Ao + Ztijaij
ihj
is a homotopy equivalence and identifies the cohomology class of the 1-form
dtij with ,U:A/g(ij,%')- O

8. Relative periodic orbits.

Let G be a compact Lie group and (M, w, u) be a symplectic manifold with
a Hamiltonian G-action. Let R x M — R : (¢,z) — Hy(z) = Hyr1(z) be
a G-invariant Hamiltonian. A relative periodic orbit is a pair (zg, go),
where gg € G and zg : R — M is a smooth function such that

(45) ao(t) + Xm, (20(t)) =0, zo(t+ 1) = goxo(t)-

It follows from the G-invariance of H; that the function ¢ — u(zo(t)) is
constant for every relative periodic orbit (xg, go). The group G acts on the
space of relative periodic orbits by

g* (20, 90) := (9 'm0, 9 *g09).

If go belongs to the identity component of G then there exists a smooth
function g : R — G such that

(46) g(t+1) = gog(t).
Define z : R — M and £ : R — g by
2(t) = g(t) txot),  &(t) = g(t)'g(t).
Then
(47) @(t) + Xey (2()) + Xm, (2(t)) = 0, z(t+1) =x(t), &(E+1) =E(@0).

A solution (z,&) of (47) is called contractible if the loop = : R/Z — M is
contractible. A solution (zg, go) of (45) is called contractible if there exists
a smooth path g : R — G satisfying (46) such that the loop g lzg : R/Z —
M is contractible.
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Remark 8.1. The loop group LG := C*(R/Z,G) acts on the space of
solutions of (47) by

9" (%,8) = (g 'z,g 'g+9 &)

If M is compact then this action preserves the space of contractible loops.
The proof uses Floer homology (see for example [24, Chapter 10]).

Remark 8.2. If (z,¢) is a solution of (47) then

9 a0) + [0, nx(1))] = 0.

In particular, if u(z(t)) € Z(g) for some ¢ € R then the function t — p(z(t))
is constant.

Theorem 8.3. Assume (H1 — 3) and suppose that 7 € Z(g) is a regqular
value of u such that u=' (1) # 0. Then, for every time dependent G-invariant
Hamiltonian Hy = Hyyq : M — R, there exists a contractible relative peri-
odic orbit in p~(7).

Corollary 8.4 (Gromov). Let (M,w) be a compact symplectic manifold
such that ([w], m2(M)) = 0. Then every time-dependent 1-periodic Hamilto-
nian system on M has a contractible periodic orbit.

Proof. Theorem 8.3 with G = {1}. O

Corollary 8.5. Assume (H1—3) and suppose that G is abelian. Then, for
every time dependent G-invariant Hamiltonian Hy := Hyy1 : M — R and
every T € g such that u=1(7) # 0, there exists a contractible relative periodic
orbit in p= ().

Proof. We may assume without loss of generality that G =T is a torus and
M 1is connected. Then there exists a subgroup H C G, called the principal
orbit type, such that H = G, for every x in an open dense subset of M (see
Audin [1]). Since H C G, for every z it follows that (du(x)v,n) = 0 for all
v € T,M and all n € b := Lie(H). Since M is connected this shows that
the image of p is contained in an affine subspace go C g parallel to h. The
assertion about the principal orbit type now shows that u(M) is equal to
the closure of its interior relative to go. Hence, for every 7 € pu(M), there
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exists a sequence 7, € u(M) converging to 7 such that 7, is a regular value
of the composition pg : M — g¢ of the moment map with the projection
onto go. Now apply Theorem 8.3 to the action of G/H on M to obtain, for
every v, a contractible relative periodic orbit (z,,g,) in u (7). Every such
sequence has a convergent subsequence. O

Example 8.6. Consider a Hamiltonian action of U(2) on (M, w) which fac-
tors through the determinant U(2) — S'. Then the moment map has no
central regular values.

Conjecture 8.7. Assume (H1). Then, for every time dependent G-invari-
ant Hamiltonian H; := H; 1 : M — R and every 7 € g such that u~1(7) # 0,
there exists a contractible relative periodic orbit in (7).

Example 8.8. Hypothesis (H1) cannot be removed in Conjecture 8.7. For
example, consider the case G = {1} and M = T? x R? with the Hamiltonian
function H(z,y) = a1y1 + a2y2, where a; and ay are rationally independent.
Then there are no (relative) periodic orbits and the moment map is not
proper.

Remark 8.9. It should be possible to extend the techniques developed in
this paper to the case where (H3) is not satisfied, however, the moduli
spaces will then no longer be compact. Such an extension should give rise
to a proof of Conjecture 8.7 under hypotheses (H1) and (H2).

Remark 8.10. The proof of Theorem 8.3 shows that the result continues
to hold if hypothesis (H3) is replaced by the condition

1
. 1 .
/ (max Hy —min H;)dt < = min / viw.
0 2 consi;#’u:52—>M S2

9y (v)=0

Proof of Theorem 8.3. The proof is the analogue of Gromov’s argument,
with pseudoholomorphic curves replaced by the solutions of the perturbed
symplectic vortex equations.

Let P := 5? x G be the trivial bundle and B := 0 € Ha(M xg EG;Z).
We prove that

48 M1 (g :/ a
) T
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for every a € QImM=2dmGAr » 4 EG). To see this note that, by
Lemma 2.3, every solution (u, A) € C*®(5%, M) x Q1(S?,g) of the unper-
turbed equation (1) over S? is horizontal. Since every flat G-connection
on the trivial bundle over 52 is gauge equivalent to the zero connection, it
follows that every solution of (1) is gauge equivalent to a solution of the
form

u(z) =z, A=0.

For any such solution and any almost complex structure J € Jg(M,w) it
follows from Remark 4.5 (with H = 0) that the Cauchy-Riemann operator
Dy a: C®(S?,u*TM) — Q%1(S% u*T M) is complex linear. Moreover, the
bundle ©w*TM — S? is a direct sum of complex line bundles of degree zero.
Hence it follows from the Riemann-Roch theorem that D, 4 is surjective.
Combining these observations with Proposition 4.7 we find that the operator
Dy, 4, defined by (23), is surjective. Now consider the setup of Section 7 and
let (B,&,S) be the G-moduli problem defined by (39), (40), and (41). Let
(B, E, S) be the finite dimensional G-moduli problem defined by

B:=E :=pu (1), S=0.

Since D, 4 is surjective for every [u, A] € S71(0), the obvious inclusions
B — B and E — & define a morphism from (B, E,S) to (B,£,S) in the
sense of Definition 6.2. Hence (48) follows from the (Functoriality) and
(Transversality) axioms of the Euler class.

By Kirwan’s theorem [19], the homomorphism

HE(M) — Hg(n™' (7))

is surjective for every 7 € Z(G). Since p~!(7) is nonempty and G acts
with finite isotropy, there exists a G-invariant horizontal volume form on
p~ (7). This implies that there exists a G-closed equivariant differential
form a € Q‘éimM_MimG(M) such that

/ a #0.
p=H(r)/G

Hence, by Lemma 7.1 and Theorem 7.3, there exists a constant 6 > 0 such
that, for every metric on S2, every J € Jg(M,w), and every compactly
supported Hamiltonian perturbation H € Q!(S?, C(M)),

(49) 124 <OVol(S?) =  Mgg(r;J,H) #0.
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For T > 0 choose a metric on S? = C U {oco} such that the map [T, T] x
R/Z — C : (s,t) — 757 is an isometric embedding. Let pr : [-T,T] —
[0,1] be a smooth cutoff function sucht that +p7(s) > 0 for £s > 0 and
pr(s) = 1for |s| < T —1. Fix a compactly supported 1-periodic G-invariant
Hamiltonian function R/Z x M — R : (t,z) = Hy(z). On the cylinder
[—T,T] x R/Z consider the Hamiltonian perturbation Hy := pr(s)H;(x)dt
and extend it by zero to all of S?. The Hofer norm of the curvature of ﬁT
is given by

1
g I =21H],  |H] ;:/ (max Hy — min Hy) dt.
0

Hence it follows from (49), that
MO,S2 (7-7 J7 -?IT) ?é Q)

for T sufficiently large. This implies that for 7' > Ty there exist functions
u=uyp: [-T\T| xR/Z - M and ® = &9, ¥ = Uy : [-T.T| xR/Z — g
such that
(50) Osu + Xo(u) + J (Oru + Xw(u) + pr(s) X, (u)) =0,

0V — 0@ + [@, V] + p(u) — 7 =0,

and
1 T—1

(51) / / (1900 + L¥ + X () + (o) — 71) dsd < 2] H]].
0 —T+1

The inequality (51) follows from the energy identity in Proposition 2.2.
Choose sy € [T + 1,T — 1] such that

1
H
/<|8tu+Lu\I/+XHt(u)|2+|,u(u)—7|2> (sT,t)dtg—ZU ”1.
0

Gauge transforming the solution at s = sy we may assume, without loss of
generality, that

Ur(sr,t) =: &7, lér| <,

where c is the diameter of G with respect to our biinvariant metric. Namely,
choose g : R/Z — G such that

Og(t) +¥(sr,t)g(t) =0,  ¢(0)=1.
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Then write g(1)™! = exp(é7), where |¢é7| < ¢, and gauge transform uz and
U by the product g(t) exp(tér). Now (i.e. after gauge transforming) define
xzp : R/Z — M by

a:T(t) = UT(ST, t).
Then

1
lim (‘:tT(t) + Ly ér + X, (@r(t)]” + [p(er(t) T|2) dt = 0.
T—oo Jg
This shows that the L? norm of &7 is bounded and so z7 is bounded and
equicontinuous. Hence, by the Arzela-Ascoli theorem, there exists a se-
quence T; — oo such that z7, converges uniformly, 7, converges weakly in
L?, and &7, converges in g. The limit (z, &) is the required solution of (47).
Since a7 is contractible for every T, so is . This proves the theorem for
compactly supported Hamiltonian functions. The general case follows by
cutting off the Hamiltonian function outside of p=1(7). O

9. Weighted projective space.

Consider the symplectic manifold M = C" with the standard symplectic
form and the S'-action

e =Nz, .. Xray,),

where {1, ...,4, are positive integers. Then a moment map is given by
7: n
(52) ,UJZ(m) = _5 ZIEV|$V|2‘
v=

Suppose that ¥ has genus g and let P — ¥ be an S'-bundle of degree d.
Consider the complex line bundle

L:=P X g1 C— E,
where S! acts on P x C by
N2, ¢) = (A A1),

Then the symplectic vortex equations (1) with u = py given by (52) can be
written in the form

_ . = 4 u, |
(53) Oauy, = 0, *(Fy + Z —5 =7

v=1
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where u,, is a section of L& for v =1,...,n and A € A(L) is a Hermitian
connection on L. Let us denote by Mg, the space of gauge equivalence
classes of solutions (uq,...,up,A) of (563). The moduli space is nonempty
only if

2nd
Vol(%)”

Moreover, Mg 4 has virtual dimension

T >

dim Mg, =2 (dzn:&, —(n—1)(g— 1)) =:2m.

v=1

For d sufficiently large the dimension is positive. We write ‘bgr;’” ¢

@g"é” T for the invariant in the nontrivial chamber. Let ¢ € H 21 (CY7) =

)

H?(BS';Z) = Z denote the positive generator.

Theorem 9.1. Assume

mi=>» (dl,—g+1)+g—1>0.

v=1

Then, for a =0, 8 =™, and v = pt, the invariant is

n 9 n
Cnv . J— - v -
@d,g“[(O,cm,pt)— (Zﬁ,j> HEV‘M to-1,
v=1 v=1

In the case £, =1 and d > 2g — 2 Theorem 9.1 was proved by Bertram-—
Daskalopoulos—Wentworth [2]. In this case the invariant @32’“ £(0,c™; pt)
corresponds to the Gromov—-Witten invariant given by counting holomorphic
maps u : ¥ — CP" ! of degree d (with a fixed complex structure on ¥
and a generic Hamiltonian perturbation) that pass at m distinct specified
points on ¥ through m specified hyperplanes in CP*~!. For a proof of this
correspondence in the case ¥ = S? see [15]. We emphasize that in the higher
genus case the Hamiltonian perturbation is needed in order to destroy the
constant holomorphic maps ¥ — CP"~! which are not regular. If one wants
to work with the unperturbed Cauchy-Riemann equations one has to work
with stable maps.

Proof of Theorem 9.1. We simplify (53) and consider instead the equations

_ ) 2md = 2
(54) Oauy =0, *xiFy = Vol(z)’ 1/2—:1&/ Juw 2 =1



The symplectic vortex equations 607

for u, € Q%(3,L®%) and A € A(L). There are two ways to establish the
correspondence between equations (53) and (54). One can use the action of
the complexified gauge group and the Kazdan—Warner equation, or one can
show that the corresponding S'-moduli problems are homotopic. We use
the latter approach. Consider the 1-parameter family of equations

= . 2md € 1 - 2
v = y F _—— = — _— v v
(55)  Oaw, =0 A Vol(Z) 2 (Vol(E) VZ_f | )

for 0 < e < 1. For € = 0 this equation is equivalent to (54) and for ¢ =1
it is equivalent to (53) with 7 = (2wd 4+ 1/2)/Vol(X). Note, in particular,
that Y, 4 ||uy|3. = 1 for every e > 0 and every solution of (55). Thus
we may formulate the S'-moduli problems as follows. We shall not bother
with Sobolev completions and formulate the problems in terms of smooth
sections.

Fix a point zg € X and consider the based gauge group

go = {g S COO(E,SI) |g(z0) = ]_} .
Define B by

B = {(A,ul,...,un)|A € A(L),

U, € QO(Z,L®£"), ZEV ||U,,||iz = 1}/g0
v=1

The bundle H — B has fibres
Ha = Q0N L) @ - 0 QVY(Z, L%) 3 Q5(2)

over [A,u] = [A,u1,...,u,] € B, where Q)(X) denotes the space of smooth
real valued functions of mean value zero. The section S; : B — H is given
by

_ - 2wd
Au) = o Bpun, #iFy — —TC
SE( ,U) <8Au1a ,8AU *1L A VOI(E)

€ 1 -
— | == - l 2 .
2 (Vol(E) 2 ol ))
v=1
With appropriate Sobolev completions this gives rise to a homotopy of reg-
ular S'-moduli problems (B, H,S;). In fact, if df, > 2g—2 for every v then,
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by Serre duality, S; is transverse to the zero section for every € and so the
zero sets of S give rise to a (trivial) cobordism from the moduli space of
solutions of (54) to the moduli space of solutions of (53). In any case (even
without df, > 2g — 2) it follows from the (Homotopy) axiom for the Euler
class that our invariant is given by

(56) Dy () = XPHS (e = xS (),

where 7 : B xg1 ES! — BS! denotes the obvious projection. We shall now
compute the last term in (56) using a localization formula for circle actions
and the index theorem for families.

Fix a reference connection Ay € A(L) and consider the space

2md
Vol(X)

AWWZ{AGA@)*MQZ

, d"(A— Ay) = 0}
of projectively flat connections in Coulomb gauge relative to Ag. The group
Gl = {ge C(%, 8 |d*(g dg) = 0}

of harmonic gauge transformations acts on A" and the quotient
Aceul /geoul ig diffeomorphic to the torus T2?9 (the Jacobian of degree d line
bundles over ). An explicit diffeomorphism can be constructed as follows.
Choose 2g embedded loops 71, ...,72¢ in X such that

Y Vgt =1

and 7; - y; = 0 for j' # j £ g. Choose a dual basis a; := PD(v;) € H'(X)
of the space of harmonic 1-forms so that

/%ZWWa /%A%H:L
0% %

Let 729 — G : k — g; be a group homomorphism such that

1

27 "

g; tdgy, = k;

for every k € 7?9 and every j € {1,...,2g}. Then the map R?9 — Acul .
t — Aq, defined by
29
At = Ao + Z 27ritjaj,
j=1
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descends to a diffeomorphism T29 — Acoul / Geoul . Note that
(57) Appp = gltAt
for t € R29 and k € Z29. Now consider the action of 729 on R?9 x L via

k- (¢ [p,¢]) = (t+ &, [p, g (p) 'C])-

This action gives rise to a universal line bundle

_R¥xL

Ty~ T X 3.

L:

For any integer k € Z we denote by L* = L®- - - ® L the kth tensor power of
L. From now on we denote by ¢ an equivalence class in T?9 = R29 /7?9, For
t € T29 denote by LLF — X the restriction of L* to ¢t x . By (57), the bundle
]]_4c is equipped with a connection Af and hence with a Cauchy—Riemann

operator B
oF Uz, LF) — Q% (%, 1F).

Denote the topological index (as a K-theory class) of this family of Cauchy-
Riemann operators by

IND" .= U{t} x ker 0F © cokerdf € K (T29).
t

Now consider the vector bundle
E=L"@ - 9oL - T% x %.
For t € T?9 denote by [E; the restriction of E to {t} x ¥ and by
O : QV(S, ) — QVY(Z,Ey)

the corresponding Cauchy-Riemann operator. The L?-norm of a section
u € Q°(%, ;) is given by

[z =

n
ZEV “UVH%Z,
v=1

where the sections u, € QY(%, L‘f”) denote the components of u. This gives
rise to an S'-moduli problem as follows. Define

B:={(t,u) |t € T, u, € (L, E), |lufl. =1}.
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The circle S' acts on B by
Nt ug, .. un) = (A", . A uy,)
for A € S'. The bundle H — B has fibres
H, = Q% (S, LY - 0 Q0L L) = QYD Ey)

and the section S : B — H is given by

S(t, u) := Oru.

The obvious embeddings define a morphism from (B, H, S) to (B,H,Sp) and
so, by the (Functoriality) axiom for S'-moduli problems and (56), we have

cr, *
q’d,g H(c™) = XB’H’S(WBCm)a
where 7 : B x g1 ES' — BS! is the projection. Here the action of S! on
B x ES! is given by \*(t,u,e) = (t, \"“uy, ..., A\ u,, A7 te).

Now the S'-moduli problem (B, H,S) satisfies the hypotheses of the lo-
calization formula for circle actions in [7, Theorem 11.1] and we get

n 1
58 QY M (M) = .
( ) d,g (C ) T20 HZZI C(INDEV,EV)

Here ¢(ZN'D,-) denotes the Chern series of the K-theory class ZND €
K(T?9). 1t is defined by

c(IND(D),n) := > 7PV ¢;(IND(D)),
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where index(D) := dim ker D — dim coker D is the Fredholm index.
The right hand side of (58) can be computed by means of the Atiyah—
Singer index theorem for families (see [31]). It asserts that

ch(ZN'DF) = / td(T)ch(LF) € H*(T%9).
X

Here the Todd class and the Chern character of a line bundle L with first
Chern class ¢i(L) = x are defined as

td(L) := ———,  ch(L) = €.

1l —e’
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The Todd class of T'Y is given by
td(T2) =1+ (1 — g)o,

where 0 € H 2(E; Z) denotes the positive generator, represented by a volume
form with respect to which X has volume one. By Lemma 7.9, the first Chern
class of L* is given by

2g
a(l®) =k Zaj A T; +do
j=1

where a; = PD(y;) € HY(X) and 7; := [dt;] € H'(T?9;Z). Let us denote by
g
Q:= ZTJ' A Tgij
j=1

the cohomology class of the standard symplectic form on T?9. Then the
Chern character of L is given by

k\2
ch(LF) = 1—|—C1(]L’°)+Cl([;)
2g
= 14dko—FPoAQ+k) aj ATy
j=1
Hence
29
td(TE)ch(L¥) =1+ (dk+1—g)o — k2o AQ+k Y _aj ATy,
j=1

and integration over the fibre gives

ch(ZN'DF) = / td(T)ch(LF) = dk + 1 — g — k2Q.
%

This implies (cf. [31])
1 J
E\ _ 12 _ A k
e (IND ) =KX, ¢ (IND ) o <IND ) ,
and so the Chern series of ZND* is given by

c (INDk, 77) = 129 exp(—n~1E%Q).
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Since the integral of 9/g! over T is one, we obtain from (58) that

n 1
(p(c 11274 Cm
dg (") 120 [[7_, ¢(ZN'D% ,4,)
= [ 1
el 129 [[,_1 exp(—£,8)
= Hf;d&’ﬂ’_l/ Hexp(ﬁ,,ﬂ)
v=1 T2 v=1
n n
— ¢, dotel / ex 0,9
n 9 n
= (Z eu> [Te %t
v=1 v=1
This proves the theorem. [l

10. Seiberg—Witten invariants.

In this section we explain how the Seiberg—Witten invariants of a product
X=¥xS

are related to our invariants is the case where either S or ¥ is a sphere. The
relation will be established by considering the symplectic vortex equations
over X with a suitable target manifold Mg. The space Mg is a symplectic
manifold with a circle action and the quotient Mg /S is the d-fold symmetric
product of S. In fact, the space Mg itself consists of (gauge equivalence
classes of) solutions to the vortex equations over S. It is a special case of
the socalled master space for the vortex equations constructed in [5]. Here
is how this works.

Let (S, Js,dvolg) be a compact Riemann surface of genus gs and L — S
be a complex Hermitian line bundle of degree

deg(L) =d > 2gs — 2.

For a Hermitian connection A € A(L) and a section © € Q°(S, L) consider
the vortex equations

- . |92 1 / 9 271d
(59) 040 =0, iy + 5 Vol(S) /s |O|* dvolg Vol(9)
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The gauge group Gs := C*°(S, S') acts on the space of solutions of (59) and
the action is free whenever ® # 0. Fix a point g € S and consider the
homomorphism pg : Gg — S* defined by

po(g) = exp(~£(zo))g(zo),  d*dE = d* (g~ dg), /S édvols = 0.

Its kernel is the subgroup Gsg C Gs of all smooth maps g : S — S! of the
form g = go exp(¢), where go : S — S! is a harmonic map that vanishes at
xzg and & : § — iR has mean value zero. Thus the Lie algebra of Ggq is the
space of imaginary valued functions of mean value zero:

Lie(Gso) = QY(S, iR) := {5 € Q(S,iR) | /S gdvolg = o} .
Let us denote the space of solutions of (59) by

Mg = {(A, ©) € A(L) x Q°(S, L) ‘ A and © satisfy (59)}
and the quotient by the action of Ggq by

Ms = Ms/Gso.

The tangent space of Mg at a pair (A, ©) can be identified with the space
of all pairs (a,6) € QL(S,iR) x Q°(S, L) that satisfy the linearized equation

(60) o0 + %o =0,
1
. 1 le —
*ida + (O, 6) Vol(9) /S<®, 6)dvolg = 0,
1
o . B i le — 0.
d*a +1i(10,6) Vol(S) /Sz<z®,0>dvo s=0

Here the last equation asserts that the pair («,#) belongs to the local slice
of the Ggo-action, i.e. it is L? orthogonal to the Ggp-orbit of the pair
(A,0). The left hand side of (60) defines a surjective Fredholm operator
from Q9(S, L) ® Q(S,iR) to Q¥1(S, L) & Q3(S,C) whenever © # 0. The
condition d > 2gg — 2 guarantees surjectivity also in the case ® = 0. So
in this case Mg is a manifold of dimension 2d + 2. Unfortunately, the case
d > 2gs — 2 is only interesting when S has genus zero (see Remark 10.5
below). If d < 2gg — 2 the space Mg has singularities at the points where
O = 0. In the case d < 2gg — 2 and gg > 0 the space Mg can be desingular-
ized by a blowup construction, however this leads to holomorphic spheres in
the ambient space Mg and so our theory does not apply in its present form.
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A symplectic form wg on Mg is given by
6D ws(@0) (@0 = [
S

for two solutions (a,6) and (o/,6') of (60). One can think of Mg as the
symplectic quotient of the space of all pairs (A, ©) that satisfy 940 = 0 by
the (Hamiltonian) Ggp-action. The linear map

(e, 0) — (xa,10)

ahad + / (i6,6")dvolg
s

on the space of solutions of (60) defines a complex structure Jg on Mg that
is compatible with wg. Thus (Mg, wg, Jg) is a Kéhler manifold.

Now the circle S* acts on Mg through the constant gauge transforma-
tions. This action is Hamiltonian with moment map

¢ 2
45(4.0) = ~ g /S 10[2dvols.
The factor 1/Vol(S) arises from the fact that we identify the circle with the
subgroup of Gg of constant gauge transformations and use the standard L2
metric on Lie(Gg) = QY(S,iR) to define the moment map as a function with
values in the Lie algebra, and not its dual.

Let us recall some standard facts about the space Mg (see [3, 16]). There
is a one-to-one correspondence between Hermitian connections A € A(L)
and holomorphic structures on L via A — 04. Moreover, the Kazdan—
Warner equation shows that every pair (A4,0) € A(L) x C*°(S,L) such
that 940 = 0 is complex gauge equivalent to a solution of (59) by a gauge
transformation of the form g = e/ where f : S — R has mean value zero
(see Proposition A.3). Hence the space Mg can be identified with the space
of G§,-gauge equivalence classes of the space of pairs (4,©) that satisfy
040 = 0. For d > 2g5 — 2 it follows from Serre duality that this is a vector
bundle over the Picard variety of holomorphic bundles of degree d over S,
Pic?(S) = T29, with fibre C¢*1795. The circle acts trivially on the base and
by the standard action on the fibres.

This shows that the triple (Mg, wg, ug) satisfies hypotheses (H1 — 3),
namely, pg is proper, the moment map is convex at infinity, and ma(Mg) = 0.
Moreover every nonzero imaginary number is a regular value of pg and S*
acts freely on the preimage under ug. The quotient is nonempty if and only
if the imaginary part is negative.

Remark 10.1. The symplectic quotient
Mg := Mg //S'(—i/2Vol(S))
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is a bundle over T29 with fibre CP4~95. On the other hand, this quotient
is the space of effective divisors of degree d on S, so Mg = Sym?(S) is the
d-fold symmetric product of S.

The next theorem states that the invariants of the triple (Mg,ws, us)
for a Riemann surface X agree with the Seiberg—Witten invariants of the
product X x S. We denote by ¢ € HQ(BSl; Z) the positive generator and by
mg : Mg x g1 ES' — BS! the obvious projection. For a nonnegative integer

k € Z denote by

Ms,us . gMs,ps+i/2
QL =05

the invariant in the nontrivial chamber. Let
Ek,d —2xS

be the complex line bundle which has degree k over ¥ and degree d over S,
and denote by v ¢ € Spin®(X x S§) the spin® structure obtained by twisting
the standard spin® structure -y (associated to the complex structure) by
Eiq. If both ¥ and S have positive genus the four-manifold ¥ x S has
b* > 1 and carries a well-defined Seiberg-Witten invariant

SWyxs : Spin€(X x S) — Z.

If ¥ or S is the sphere then bt = 1, so there are two chambers for the
Seiberg-Witten invariants. In this case we denote by SWx g the Seiberg—
Witten invariant in the positive chamber, where “positive” is defined in the
proof of Theorem 10.2 below. A result similar to the next theorem was
proved in [27].

Theorem 10.2. Let S and X be a compact Riemann surfaces of genera gg
and gs;, respectively, and k, d be nonnegative integers such that
m:=d(1—gs) +k(1—gs)+dk >0, d > 2gg — 2.

Then
‘I’%é”‘s (0, m5c™; pt) = SWxxs(Vk,d)-

If m < 0 then both invariants are zero.

Corollary 10.3 ([21, 28]). Let S be the Riemann sphere, ¥ a compact
Riemann surface of genus gs and k, d be nonnegative integers such that

m:=d(l—gs)+(d+1)k>0.

Then
SWxys(Yr,a) = (d+ 1)9=.
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Proof. Since S is the Riemann sphere the manifold Mg is diffeomorphic to
C4t1 as a Kahler manifold with an S! action. Hence the result follows from
Theorem 10.2 and Theorem 9.1 withn=d+1land {; =---=4¢,=1. O

Corollary 10.4. Let S and % be a compact Riemann surfaces of genera gg
and gy, respectively, and k, d be nonnegative integers such that

m:=d(1—gs)+ k(1 —gs)+dk >0, d>2gs—2, k> 2gs — 2.

Then
@SS (0, mhe™; pt) = @y $HE(0, mHe™; pt),

where Mg is associated to a bundle of degree d over S wvia (59) and My is
defined analogously, with S and d replaced by ¥ and k.

Proof. Interchange the roles of ¥ and S in the proof of Theorem 10.2. [

Remark 10.5. The statements of Theorem 10.2 and Corollary 10.4 are
only interesting when one of the two surfaces has genus zero. Otherwise
both invariants are zero. To see this, suppose that both genera are posi-
tive. Then ¥ X S is a minimal Kahler surface with b+ > 1. It follows (see
for example [31]) that the Seiberg-Witten invariant is nonzero only for the
canonical spin® structure and its dual, i.e. ford =k =0 or d = 2gg — 2 and
k = 2gy, — 2. These cases are excluded by our hypotheses.

Proof of Theorem 10.2. Our proof follows the argument outlined in [6]. The
Seiberg-Witten equations for the spin® structure vy, 4 on X := 3 x S have
the form

(62) pOy + 0502 =0,  Fy? —(09,0s) =0,

2 2
(63) i(FB)a + [0l ~ 162 5 2 _ T
where 7 is a real number, B € A(FE) is a connection on E := Ej 4, ©9 €
Q%9(X, E), and O, € Q°2(X, E). Here we denote by (-,-) a Hermitian inner
product on FE, i.e. the inner product takes values in C, it is complex anti-
linear in the first variable and complex linear in the second variable. In the
last term the function Q2(X,iR) — QY(X,iR), n — nq is defined by

na = *(n A Q),
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where py : X — 3 and pg : X — S denote the projections,
Q := pLdvoly, + pidvolg € Q%(X)

denotes the symplectic form, and * denotes the Hodge *-operator on X.

In the Kéhler case it follows from (62) that either ©p or ©2 vanishes.
The positive chamber for the Seiberg—Witten invariants corresponds to the
condition

2wk 2md

(64) T Nol(®) T Vol(8)’

In the Kéahler case this condition implies ©2 = 0.

The S'-moduli problem associated to equations (62) and (63) is defined
as follows. As in the proof of Theorem 9.1 we shall not explain the (obvious)
Sobolev completions and describe the problem in terms of smooth data. Fix
a point (z9,z9) € £ x S and denote by Gxo the based gauge group of all
smooth functions g : X — S' such that the restriction of g to {20} x S
belongs to the subgroup Gsg C Gs determined by the point xg:

Gxo :={g € C®(E x 5,5") [ gl{z}xs € Gso} -
Then the base BSW is the quotient

{(B,60,02) € A(E) x Q°(X,E) x Q%*(X,E)|(63)}
Gxo

BSW .

Y

the bundle £S5V — BSW is given by

SW._ BSW % (Qo’l(X, E) D QO,2(X))

£
Gx0

and the section SSW : BSW — £5W is given by

SSW(B,@(),@Q) = (53@0 + 5%@2,Fg’2 — <®0,®2>> .

With appropriate Sobolev completions this is a regular S*-moduli problem in
the sense of Definition 6.1 and the Seiberg—Witten invariant can be expressed
in the form

SWswxs(Vkd) = xBTS (e ey,
where m = d(1 — gx) + k(1 — gs) +dk, nsw : B3W x g1 ES! — BS! denotes
the projection, and ¢ € H?(BS';Z) is the positive generator.
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Now let us examine the symplectic vortex equations with values in Mg.
Let P — X be a principal S'-bundle of degree k. Consider the associated
bundle

LPIZPXSQC—)E

and denote by

Ep :=p5Lp ®@ psL

the corresponding bundle over X = ¥ x S, where py : X — ¥ and pg :
X — S denote the projections. In explicit terms it can be represented as
the quotient

)\*((z,p), (xv U)) = ((z,p)\), (xv Ailv))'

This vector bundle has degree k over % and degree d over S and hence
is isomorphic to E. Henceforth we shall drop the subscript P and write
E .= Ep.

The space A(P) x CF (P, Mg) embeds into the space A(E) x Q°(X, E)
as follows. A connection Ay, on P determines a connection p§,Ay, on p3,Lp.
An S'-equivariant function u : P — Mg consists of an S'-invariant function
A: P — A(L) and an S'-equivariant function © : P — Q°(S,L). The
latter can be interpreted as a section of £ and the two connections together
determine a connection

PeAs ® 1+ 1@ pyA € A(E).

To understand this correspondence better let us choose holomorphic local co-
ordinates s+t € U C C on X and a trivialization of P along this coordinate
chart. In such a trivialization the connection As; has the form ®; ds+ ¥ dt
where ®1,¥; : U — iR. The function u is a map U — A(L) x Q°(S, L)
denoted by

U— AL): (s,8) = A(s,t), U — QUS,L): (s,¢) = O(s, t).

The corresponding connection on E is given in this local frame by A(s,t) +
®(s,t)ds+ ¥i(s,t)dt. The pair (Ay,u) satisfies equation (1) if and only if
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there exist functions ®q, g : U — Q9(S,iR) such that, for all s and ¢,

(65) 040 =0,
0s0 + (Po+ 21)0 + i (0:0 + (Yo + ¥1)0) =0,
0, A — d‘I)O + *S(atA — d\Ifo) =0,

2
/ |02 dvolg = md

1
*S’iFA + §|@|2

2V1 Vol(S)’
) 2md
A2(0,U) — 8,B;) — —— /%11:—' _ .
(0591 — 0,®1) 2Vol(S) S|@| VS = T T Vol(s)

Here g denotes the Hodge *-operator on S and A : U — (0, 00) represents
the volume form A% ds Adt on ¥. The factor A~? in the last term arises from
the Hodge *-operator on Y. The functions ®g and ¥y are needed to project
the terms in the second and third equation onto the quotient by the gauge
group Ggo. Let us abbreviate

P := Py + Py, V.= Uy + ¥y,
Then (65) can be written in the form

(66) 040 =0,
050 + ®0 +i (6,0 + ¥O) =0,
0sA — d<I>+*S O A — d¥) =0,

27rd
xg1F'5 + —| dvolg =
Vol(S)’
ixT2 27d
S U — §,®) dvol 2dvolg =
Vol(S)/S(8 %2) VOS+2V1 /|®| YOS =TT NOI(S)

(cf. [6]). Now consider the connection
B := A(s,t) + ®(s,t)ds + ¥(s,t)dt

on E and think of © as a section of E. Then the first two equations in (66)
are equivalent to 9g©® = 0. The curvature of B is the 2-form

Fp=Fy+dsN (0sA—d®)+dt A (OA—d¥)+ (0;¥ — 0;P)ds A dt.

The third equation in (66) asserts that FB’Q = 0. The last two equations
can be written in the form
iA?
Vol(S)

1
/ (65\1’ — 8t(1)) dvolg + *giF'4 + §|@|2 =
S
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or in terms of the connection B,

1 . : o
(67) VT(,S) /S *ZFB + *Z(FB A dVOlE) + T =T.

Here the integral denotes integration over the fibre. Hence a pair (Ay,u) €
A(P) x CF (P, Mg) satisties the symplectic vortex equation (1) if and only
if the corresponding pair (B,0) € A(E) x Q°(X, E) satisfies equation (67)
and

(68) dpO =0, Fp*=0.
Integration of equation (67) over ¥ yields

2k . 2nd . 1 /|®|2d ol —
Vol(Z) © VoI(S) * 2Vol(Z) Jy, Vol =T

If (64) holds then © # 0 for every solution of (67). Hence equations (67)
and (68) give rise to an S'-moduli problem as follows. The space B’ is the
quotient

o 1(B,0) € AB) x 20X, B) | (67)}
' Gxo

)

the bundle £2 — B is given by

B° x QYY1 X, E)

£ .=
Gxo

)

and the section SY : BY — £9 is
S%(B,0) := 936.

Since © # 0 the first equation in (67) implies the second equation. Hence
the zero set of S is the space of gauge equivalence classes of solutions (B, ©)
of (67) and (68).

At first glance SY doesn’t look like a Fredholm section. Note, however,
that S® is a two-dimensional Cauchy-Riemann operator in disguise. The
condition dg® = 0 assserts, at the same time, that the restriction of (B, ©) €
B to every slice {z} x S belongs to the finite dimensional manifold Mg and
that, as a function P — Mg, this map is a solution of the (two dimensional)
symplectic vortex equations. Hence, with appropriate Sobolev completions,
the triple (B°,£°,8Y) is a regular S'-moduli problem and

(I:,Ms,us

. (07 ﬂ_gcm; pt) _ XBO,SO,SO (ﬂ_*cm),

0
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where 7 : BY x g1 ES! — BS! is the projection.

A morphism from (B%, €% 8% to (BSW,E5W S5W) can be defined as
follows. The group of complex gauge transformations g : X — C* acts on
the space of solutions of (67) via

9*(B,©):= (B+g~'0g — g '9g,97'0).

Given a pair (B,0) € B’ we look for a complex gauge transformation of
the form g = ef, where f : X — R, such that the triple (Bf,0¢,0) :=
(¢/)*(B,©,0), given by

By = B+ 0f — 8f, 0; =e 7O,

satisfies equation (63):

. Oy|?
Z(FBf)Q"i_ | 2f| =T
A short computation yields
2i00f = —d%ds f dvoly, — d%ds f dvolg,

where dg : Q°(5) — QL(9) and dy : Q°(Z) — QY(X) are the respective
differentials and d§ and d% their L2-adjoints. Therefore (2i90f)q = —d*df,
and equation (63) for (Bf,©y,0) is equivalent to the Kazdan- Warner equa-
tion
Eli
5 ¢
It follows from the theorem of Kazdan and Warner ([18], see also Ap-
pendix A) that this equation has a unique solution f whenever

S 1 / e A= 2k n 2md
"7 Vl(D)Vol(S) Jy.g 227 T Vol(D) T Vol(S)

—d*df + “% =1 —i(Fp)q.

(see (64)). So we have constructed a map
B° — BV . (B,0) ~ (By,0;,0).

We claim that the image of this map is the submanifold of all triples of the
form (B, ©,0) € BSW.

A left inverse BSW — B0 can be constructed as follows. Given a triple
(B,0,0) € B3W we must find a complex gauge transformation of the form
g =ef, where f : X — R, such that the pair (Bf,©¢), given by

B;:=B+0f - 0f, 0;:=e 0,
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satisfies (67):

W(S) /S ¥iFp, + *i(Fp, A dvoly) + =T

This translates into the equation

. y Il , .
—dids fy — didsf +e 2f7 =T~ ®) Js «iFg — *i(Fg A dvoly),
where )
= dvolg : 2 — R.
fs Vol(S) /sf volg : X —

By Theorem A.1l of the appendix, this equation has a unique solution f €
CO(%, W2P(S)). If B and © are smooth one checks easily that f is smooth.
This shows that for every pair (B, 0,0) € BSW there exists a unique complex
gauge transformation of the form g = e/ such that ¢*(B,0) € B°. That
this map is a left inverse of the map B° — BSW follows from the uniqueness
statement in Theorem A.1: Let (B, ©) € B and g = e/ be a complex gauge
transformation such that ¢g*(B,©0) € B’. Then f satisfies the equation

—os|OF _ |0

—dyds fs —dgdsf +e 5 5

and f = 0 by uniqueness.

It follows that the map B® — BSW defines an embedding of Fréchet man-
ifolds and lifts naturally to an embedding of £° into £5W
the two sections and idenitifies the kernels and cokernels of the linearized
operators along the zero set of S°. The proof of [7, Theorem 7.4] shows that
there exists a finite dimensional reduction (B, E?, SY) of (BY,£%,8Y) in the
smooth category (not involving Sobolev completions). The composition of
the inclusion B® — B with the inclusion B — BSW (and of their lifts to the
vector bundles) now defines a morphism of S*-moduli problems as in Defi-
nition 6.2. With this established, the result follows from the (Functoriality)
axiom for the Euler class. g

which intertwines

Remark 10.6. There should be an analogue of Theorem 10.2 in the case
where the product ¥ x S is replaced by a topological Lefschetz fibration
X — 5% on a symplectic manifold [8, 9]. Here ¥ should be replaced by
S? and S by the generic fibre of X. To carry this out one has to over-
come several major technical difficulties. The interesting case is where the
degree d of the bundle over the fibre satisfies d < 2gg — 2, and so the
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space Mg has singularities. Moroever, one has to deal with the singular-
ities of the fibration as in [10]. In addition, the complex techniques with
the Kazdan—Warner equation only work in the Kihler case. In the noninte-
grable case the correspondence between the Seiberg—Witten equations (62),
(63) and the symplectic vortex equations (67), (68) is much more subtle and
requires a hard adiabatic limit analysis as in the proof of the Atiyah—Floer
conjecture [11] or as in [15] (see [30] for an outline of the Seiberg-Witten
analogue). If this program can be carried out then, combined with the work
of Donaldson—Smith in [10], it might lead to an alternative proof of Taubes’
theorem [33, 34, 35] about the relation between the Seiberg—Witten and the
Gromov invariants.

Appendix.

A. The coupled Kazdan—Warner equation.

Let (X, Jy,dvoly) and (S, Jg,dvolg) be compact connected Riemann sur-
faces. Fix a constant p > 1. Given a function v € LP(X x S) we define
uy, € LP(E) by
1
= -) dvol
us() == gy [ (e dvols

for z € ¥. In the following we shall denote by dg : Q°(S) — Q!(S) and
ds : Q9(Z) — QYX) the respective differentials and by df and d% their
L?-adjoint operators.

Theorem A.1. Let p > 1 and f,h € C°(Z x S) such that

h >0, / h >0, f>0.
xS xS

Then there exists a unique function u € C°(X, W?P(8S)) such that uy €
W2P(X) and

(69) dy.dsuy, + dgdsu + e*h = f.
Moreover, if h and f are smooth then so is the unique solution u of (69).

The proof of the theorem is based on a lemma and two propositions.
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Lemma A.2. Let S be a compact Riemann surface. Then there exists a
constant cg > 0 such that the following holds. Let p > 1, C > 0, and
0<a<A Ifh e C%S) and u € W2P(S) satisfy

1
h>0,  hyi= hdvolg > 0,
= 07 Vol(s) /S Vol
and
(70) a—e'h < dydsu < A— f He“)h

almost everywhere, where f(r) := reC, then
a A A

lo — | <u< lo — | +—(C+csllh ).

nghm) g(%) e (€ +eshll )

Proof. Assume first that v and h are smooth. Choose cg > 0 such that
/vdvols —0 — 2ol < cs [ldudso]l .
S
for every v € C*°(S). Let v € C*°(S) be the unique solution of the equation
dgdsv = h — hy, / vdvolg = 0.
S
Since [|h — hol|jo0 < ||P|| ;e it follows that
—minv < bl ;oo -
maxv —minv < cs Rl
Now fix a constant € > 0 and denote
_A+te

We 1= v+ u

ho

Choose z € S such that w.(z.) = supg we. Then

0 < didswe(ze)

= A;—Ed*sdsv(xg)—i-d*sdsu(xs)
0
A
< S8 (hwe) — ho) + A — (o) (e4e9)
0

= —e+h(z.) (Af;e - f (e“(wf)>> :
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It follows that h(z.) > 0 and f~1 (e“(”cg)) < (A +¢€)/ho. Since f is strictly
monotone, this implies

A A A
u($6)<log<f< }j;6>):log< ;{;6)—1—0 h-:E.

Since we(x) < we(x,) for all z € S it follows that

A-+te

w(z) < wu(ze)+

(v(ze) —v(2))

A A

< log< i;l;e>+ };E(C—kmng—mgnv)
A+e A+e

< tog (4E5) 4+ AEE v es ).

This holds for every € > 0 and every = € S. Hence
A A
supu <log | — | + — (C+cs||h]l ;) -
S ho ho

To prove the first inequality we choose zp € S such that u(zg) = infg u.
Then
0> didsu(zo) > a — e*@)h(zp) > a — ) ||h| 1

and hence

a
inf u = u(zg) > log < ) .
s 1l oo

This proves the lemma in the smooth case.

Now suppose that h € C°(S) and u € W?P(S) satisfy the hypotheses
of the lemma. Then u is continuous and (70) shows that dgdsu € L*(S).
Choose sequences a,, — a and A,, — A such that

O<a,<a<A<A,.

Then there exist sequences of smooth functions w,,h, € C*(S) such that
h, converges uniformly to h, u, converges to u in the W?2P-norm, h, > 0,
and

a, —e“h, < dgdgu, < A, — f_l(e“”h,,).

To see this, we may first choose a sequence w, € C*°(S) converging to d§dsu
in the LP norm and satisfying a, — e*h < w, < A, — f~}(e*h). Then define
u, as the solution of the equation didsu, = w, with fs(u,, —u)dvolg =0
and choose any sequence h, € C*°(S) converging uniformly to h to obtain
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the required estimate for u, and h,. It then follows that u, and h, satisfy the
hypotheses of the lemma with a and A replaced by a, and A,, respectively.
Hence they satisfy the conclusion and so the required estimate for u and h
follows by taking the limit v — oo. 0

Proposition A.3. Let p > 1. For every t € R and every h € C°(S) such
that h > 0 there exists a unique solution u € W*P(S) of the equation

1 1
“h dvol —~ | wdvolg = ¢.
Vol(S) /Se M ATES) /S“ vols

Moreover, if h € W*P(S) for some integer k > 1 then u € Wkt2P(S).
If kp > 2 then the map (h,t) — u which assigns to each pair (h,t) €
WkP(S) x R that satisfies h > 0 the unique solution u € W*+2P(8) of (71)
extends to a smooth map between open subsets of Banach spaces.

(71) sdsu+e'h =

Proof. The proof has three steps.

Step 1. For every p > 1 and every ¢ > 0 there exists a constant ¢, > 0
such that, if h € C%(S) and t € R satisfy

1 1
72) h >0 ho = ———— | hdvolg > - Woiw <ec, |t <ec
() B2, hoi= g [hdvls> o e <e <

then
ullyze < cp

for every solution u € WP(S) of (T1).
Let u be a solution of (71) and denote

1
= v lg.
a Vol(S)/Se h dvolg

Then, by (72) and Lemma A.2 with C' =0 and A = a, we have

log <%> <u <log (}%) + C;‘Za.

Integrating the first inequality over S gives

a 1
1 -1 < le =t <
Og(c) _Vol(S)/SudVOS tse
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and hence a < ce€. Moreover,

a 2 3 c
et < _eccga/ho < ace €% < c2eCec cse’
0

Hence e satisfies a uniform upper bound, depending only on S and ¢. Hence
there exists a constant ¢’ = ¢/(¢) > 0 such that ||didsul/=~ < ¢ for every
solution of (71). Since Vol(S) ™! [gudvols =t € [—c, ], Step 1 follows from
elliptic regularity for the Laplace operator on S.

Step 2. Consider the Banach spaces
X :=W?P(S),  Y:=IL5S) xR,

where L{(S) denotes the space of LP-functions on S with mean value zero.
For h € C°(S) define Fr,: X — Y by

1 1
= (did “h— ——— “hdvolg, ———— dvolg | .
Frn(u) <S su+e VOI(S)/Se Vo S’VOI(S)/SU vo S)

Ifh > 0 then the differential dFp(u) : X — Y is a Banach space isomorphism
for every u € X.

The differential of F}, is given by

dFp(u)€ = (d*gdsﬁ + e“h§ — %1;(5) /S e“h& dvolg, V%(S) /Sgdvolg> .

Hence dFp(u) : X — Y is a Fredholm operator of index zero. Multiplying
the first component of dFp(u)¢ by € and integrating over S we find that the
kernel of dFy(u) consists of all functions & € W?P(S) that satisfy

/ |ds€]? dvolg + / 'R ¢ dvolg = 0, /gdvols =0.
S S S

Hence dF},(u) is bijective whenever h > 0.
Step 3. We prove the proposition.

If h = 0 then every solution of (71) is constant and hence u = ¢ is the only
solution. Now assume h = 1 and let u € W2P(S) be a solution of (71).
Then

1
dsd 4= “ dvol
sasu + e Vol(S)/Se volg

and hence, by Lemma A.2,
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This implies e* = constant and hence u = ¢t. Thus we have proved the
existence and uniqueness statament in the cases h = 0 and A = 1. Now let
h € C%(S) be any nonnegative function such that fS hdvolg > 0, and define

he :=(1—¢)h+e.

We prove that the number of solutions of (71) with h replaced by h. is
independent of €. To see this consider the set

M :={(e,u)[0<e <1, ue WP(S), Fp(u) = (0,t)}.

By Step 2, this set is a smooth 1-manifold with boundary and the projection
M — [0,1] : (e,u) — € is a submersion. That M is compact follows from
the fact that, by Step 1, there exists a constant ¢, > 0 such that

(e,u) e M = [ully2p < cp.

Hence every sequence (g, u;) € M has a subsequence such that u; converges
in CO(S) and ¢; converges. Hence, for this subsequence, e“‘h,, converges
in C°(S) and so, by elliptic regularity for the Laplace operator on S, u;
converges in W2P(S) (for any p > 1). Thus M is compact and so the number
#f,;l(o,t) is independent of € € [0,1]. For € = 1 this number is one and
this proves the existence and uniqueness statement. That h € W*P implies
u € Wk2P follows from elliptic regularity for the Laplace operator. That
the map (h,t) — u is smooth follows from the implicit function theorem and
Step 2. O

Proposition A.4. Leta > 0 and H C C°(X x S) be a compact set such that
h > 0 for every h € H. Then there exists a constant § = §(%,S,H,a) > 0
such that the following holds. If p > 1 and u € CO(X, W?P(S)) satisfies
uy, € W2P(X) and

(73) d%dzUz + d*Sdsu +e"h=a
for some h € H then dsdxus, is continuous and

dhy < a — dsdsuy, < § Lsuph, §g<et<§l
S

Proof. The proof has three steps.
Step 1. Let cg be the constant of Lemma A.2 and choose ¢ > 0 such that

heH = |l <c
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Define f :[0,00) — [0,00) by f(r) :=res". Then

f_l(e")hg <a-—dydsus < e“suph
S

for every h € H and every solution u of (73).
Integrating (73) over S we obtain

a — dsdyuy, = w%(s)/seuhdvolg > 0.
In particular, di,dsus is continuous. If hlg.1g = 0 then a = djdsus(z)
and hx(z) = 0. So the assertion of Step 1 holds trivially at the point z.
If hl{z3xs Z 0 then a — d5dsux(z) > 0 and so the restrictions of h and u
to {z} x S satisfy the requirements of Lemma A.2 with C =0 and a = A
replaced by the constant a — dy,dyux(z). Hence

log <a — d*zdgu2> < u<log <a — d*zdgu2> n ces (a — dydyus)
supg h hs hx

This implies the assertion of Step 1 in the case hx(z) # 0.
Step 2. There exists a constant 6 = §(X,S,H,a) > 0 such that

§<ew <t

for every h € H and every solution u of (73).
By the proof of Step 1, we have

log (a — dngUE) < us < log <a — dgdguE) N ces (a — didsus)

c hs hs,
whenever hx(z) > 0 and hence
a —ce"™ < dypdyruy < a— f_l(euz)hg.

Hence uy € W?2P(X) satisfies the second inequality in (70) with A = a,
C = ccg, and h replaced by hy. It satisfies the first inequality with h
replaced by c. Hence, by Lemma A.2,

a aVol(X) ¢(cs + cx) aVol(X)
1 S <1 .
og (i) < us <log ( T s dvolg> T he dvol

This proves Step 2.
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Step 3. We prove the proposition.

For h € H and z € ¥ denote by h, : S — R the function h,(z) := h(z,x)
and let 7y, : R — W?2P(S) be the map which assigns to every ¢t € R the
unique solution u = T, (t) € W*P(S) of (71) with h replaced by h,. Then
every solution u : ¥ x S — R of (73) satisfies

u(2,-) = Th.(us(2))-

By Proposition A.3, the map H x . x R — W2P(S) : (h,z,t) — Tp_(t) is
continuous. Since H is compact it follows that there exists an € > 0 such
that

heH, zeX, §<e'<d' = [Th.(t)llpo(s) < log(e)l-

This implies ¢ < e* < e ! for every h € H and every solution u of (73). The
inequality for a — d,dsus, now follows from Step 1. O

Proof of Theorem A.1. The proof has four steps.
Step 1. It suffices to prove the theorem if f is constant.

Let vy, € W2P(Z) be a solution of the equation

1
dsd = — = dvol
vdsvy = fy —a, a Vol(E)/EfE voly,

and let v € CO(Z, W2P(S)) be the unique solution of the equation

1
dsdsv = f — —_— dvolg = vy.
sdsv=f - fs, Vol(S)/SU volg = vy
This equation is understood pointwise for z € ¥.. Then v is continuous and
ds.dsvy, + dsdsv = f — a.

Note that if f is smooth then so is v. Moreover, u is a solution of (73) with
h replaced by eh if and only if u + v is a solution of (69).

Step 2. Let h € C°(S) such that h > 0 and define f, : R — R by

1 u
fu(t) == Vol(9) /Se hdvolg,
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where u € W?P(S) is the unique solution of (71). Then f;(t) > 0 for every
t € R with equality if and only if h = 0.

Let u € W2P(S) be the unique solution of (71) and ¢ € W2P(S) be the
unique solution of the equation

1 1
dsdsé + €*hé = Vol (5) /Se“h£ dvolg, Vol(S) /S§dvolg =1

Then

fL(t) = ﬁ(s)/se“hf dvolg = ﬁ(s)/s <|dg§|2 +evh |§|2) dvolg > 0.
Equality implies that £ = 1 and h = 0.
Step 3. Given a nonzero continuous function h : ¥ x S — [0,00) define
Fp : WHP(Z) — LP(X) by
Fi(uz)(2) = dydsus(2) + fa. (ux(2))
for z € &, where h, := h(z,-) € C°(S). Then dFy(ug) : W?P(X) — LP(X)
is a Banach space isomorphism for every us € W2P(3).
This follows directly from Step 2.
Step 4. We prove the theorem.

By Step 1 we may assume f = a. Assume first that A~ = 1. We claim that
in this case u = log(a) is the only solution of (73). To see this, note that, by
Proposition A.3, the restriction of u to each fibre {z} x S is constant, hence
u = uy, and dydsus, + e* = a, and hence, again by Proposition A.3, u =
uy, = log(a). Now let h € C°(X x S) be any nonzero nonnegative function.
Note that F(us) = a iff u is a solution of (73). Define h. € C°(Z x S) by
he := (1 — €)h + € and consider the set M C [0, 1] x W?P(X) given by

M = {(e,ug) |0<e<1l,uy€ W2’p(2), Fh.(ug) = a}.

By Step 3, this is a l-manifold with boundary and the projection M —
[0,1] : (¢,ux) + € is a submersion. To prove that M is compact note that,
by Proposition A.4, there exists a constant ¢ > 0 such that

lusllwzr < ¢

for every (e,uy) € M. Hence every sequence (g, u;) € M has a subsequence
such that &; converges and u; converges in C°(X). The equation

dydsui(z) + fn., . (ui(z)) = a



632 K. Cieliebak, A.R. Gaio, I. Mundet i Riera, D.A. Salamon

now shows that u; converges in W2P(X). Hence M is compact and so the
number #F,- !(a) is independent of e. For ¢ = 1 we have seen that this
number is one. This proves the existence and uniqueness statement.

Now suppose that A is smooth. Then the function ¥ x R — R : (z,¢) —
fn.(t) is smooth and hence, by a standard elliptic bootstrapping argument,
the unique solution uy : ¥ — R of the equation

dy,dyus(2) + fa. (us(2)) = a

is smooth. Hence, by Lemma A.2, the unique solution u : 3 x S — R of the
equation

1 1
dsdsu +e"h Vol(S)/Se hdvolg, Vol(S)/SudVOS us,

is smooth. This proves the theorem. O
B. The local slice theorem.

Let G be a compact Lie group and P — X be a principal G-bundle over
a compact n-manifold X. For p > n/2 denote by GF+*1P = GF+LP(P) the
space of all W*+LP_gections of the bundle P x,q G — X. Fix a smooth
reference connection A € A(P) and denote by

A2y :={A+alae W (X, T"X @ gp)}

the space of W1P-connections. This space is independent of the connec-
tion A.

Theorem B.1. Let p,q be positive real number such that

np

n
(74) q>p> q>n, ifpénthenq<m-

2 ?
Then, for every Ay € AYP(P) and every positive constant cg, there exist
positive constants ¢ and § such that the following holds. If A € AYP(P)
satisfies

A= Aollyrr <co, A= Aol <6

then there exists a gauge transformation g € G>P(P) such that
da,(9"A— Ag) =0
and

1g°A = Allpa <cllA=Aollpas  llg"A = Allyrr < cllA = Aollyrs-
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Lemma B.2. Let p,q,r be positive real numbers such that
TSpa TSQ7 -+ -< =4+
p
Then there exists a constant ¢ > 0 such that

1fgllwrr < ellfllwr lgllwra-

for f,g € C§°(R™). In particular, this holds when p and q satisfy (74) and
r =p. It also holds when p=q=1 > n.

Proof. By Hélder’s inequality and the product rule, we have

N fallwrr < N fllwow N9l roro—ry + 1l prazca—r 191w -

If ¢ > n the Sobolev embedding theorem asserts that the L™/ (P~")_norm of
g can be estimated from above by the W14-norm. The same holds for ¢ = n
since then it follows from the hypotheses that p > r. If ¢ <n we have r < p

and
rp (1 1 _1< 1 1 _1_ ngq
p—r \r p qg n n—gq

and hence the L™/ (P~")_norm of ¢ can again be estimated from above by
the Wh4-norm. Similarly, the L"%/(¢=")-norm of f can again be estimated
from above by the W1P-norm. O

Lemma B.3. If A € AY?(P) and p > n/2 then the following holds for
every r > 1.

(i) If p < n assume in addition v < np/(n — p). Then the operator da :
WL (X,gp) — L"(X,T*X ® gp) is a compact perturbation of dj.
Similarly for d.

(ii) For r < p the operator dy : W?"(X,gp) — WI(X,T*X ® gp) is a
compact perturbation of d ;. Similarly for d’.

(iii) For r < p the operator d*d4 : W*"(X,gp) — L"(X,gp) is a compact
perturbation of d}d i

Proof. For ¢ € Q°(X,gp) and a € Q'(X, gp) we have

~

daé —dzé =[(A-A),8, dia—dja=xxA-A)Aa].
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Assume first that p < n. Then r < np/(n — p) and hence there exists
a real number s > 1 such that 1/s + (n — p)/np = 1/r. Since 2p < n it
follows that s < nr/(n — r) whenever 7 < n. Hence the Sobolev embedding
theorem asserts that the inclusion W17 (X, gp) < L*(X,gp) is compact. It
also asserts that A — A e Lmp/(n=p) (X,T*X ® gp) and hence, by Holder’s
inequality, the operator L*(X,gp) - L™ (X, T*X Q@ gp) : { — [(A — fl),f] is
bounded. Hence the composition with the inclusion W' < L* is compact.
If p > n choose any number s > r such that the inclusion Wh"(X,gp) —
L*(X, gp) is compact and use the fact that A— A € L™/6~")(X, T*X @ gp).
This proves (i).
We prove (ii). By Lemma B.2 the operator

Whi(X,gp) - W (X, T*X ® gp) : £ = [(A - A), ¢]

is bounded whenever r < p, r < s,and 1/p+1/s < 1/n+1/r. If r > n then
p > n and we may choose s = r. If » < n then, since 2p > n, we have

1 n—r 1 1
n o r

p nr

and hence may choose s such that 7 < s < nr/(n —r). In either case
the Sobolev embedding theorem asserts that the inclusion W2" (X, gp) <
W$(X,gp) is compact. This proves (ii). Assertion (iii) follows directly
from (i) and (ii). O

Lemma B.4. Suppose p and q satisfy (74) and let A € AYP(P). Then
there ezists a constant ¢ = ¢(A) = ¢(A,p,q) > 0 such that, for every a €
WLP(X,T*X ® gp), there exists a £ € WP(X,gp) such that

(75) dyda€ = o
and
(76) [€llw2e < clldacllps, 1€l < cllellzq -

Proof. Let r :=q/(q — 1) so that

1 1

-+-=1

q T
By Lemma B.3, the operator dq : W1¥(X,gp) — L°(X,T*X ® gp) is a
compact perturbation of d ; for s = g and s = r. Let

WX, gp) o= (W (X, g2))
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and denote by d* : LY(X,T*X ® gp) — W~14(X, gp) the dual operator of
da: WY(X,gp) — L"(X,T*X ® gp). Then

(77) dik4dA : Wl’q(Xv gP) - W_lyq(Xa gP)

is a compact perturbation of d}d 4 and hence is a Fredholm operator of
index zero. Likewise, it follows from Lemma B.3 that the operator

(78) djzldA : WQ’p(Xa gP) — Lp(Xa gP)

is a compact perturbation of d*d; and hence is also a Fredholm operator
of index zero. The operator (77) is a natural extension of (78). Taking the
L%-inner product of d%d ¢ with ¢ for € € W?P(X, gp) we see that the kernel
of (78) is the finite dimensional subspace

H°(X,A) :=ker dy C W*P(X,gp).

The operator (77) has the same kernel, because every ¢ € Wh4(X, gp) with
da& = 0 lies in W2*P(X,gp). Choose a complement E' of HY(X, A) in the
Sobolev space W'4(X,gp). Then

E:=E NnW??(X,gp)

is a complement of H°(X, A) in W?P(X,gp). Let F' denote the image of
the operator d% : LY(X,T* X ®gp) — W~14(X, gp) and F denote the image
of the operator d*% : WhP(X,T*X ® gp) — LP(X,gp). Then H°(X, A) C
WLr(X, gp) annihilates F’ and is L?-orthogonal to F. Moreover F’ contains
the image of (77) and F' contains the image of (78). Hence, for dimensional
reasons, F’ is equal to the image of (77) and F' is equal to the image of (78).
Thus d%d is a Banach space isomorphism from F to F' and extends to a
Banach space isomorphism from E’ to F’

Now let o € WP(X,T*X ® gp). Then d*a € F and hence there exists
a unique { € E that satisfies (75). By the open mapping theorem, this
solution of (75) satisfies

||§||W2,p < H(dfaldA)ilHqF,E) Hd;laHLp-
Since £ € E' it also satisfies

1€lwra < [(dada) ™| 2o oy Iaellyp o
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Now

(n, daa)wir w-1a
|daally-1a = sup :
W n#£0 ||77||W1w

(dam,a)pr L
sup ~————~
n20 |y

ldanll - lell Lq

nz0  nllws
< cllaflge,

IN

where the constant ¢ depends only on A and r. Hence ¢ satisfies (76). O
Lemma B.5. Suppose p and q satisfy (74) and fiz a constant cy > 0. Then
there ezists a constant ¢ = c(co,p,q) > 0 such that the following holds. If
¢ € W2P(X, gp) satisfies ||€]|yr2p < co then, for every A € AYP(P), we have

lexp(€)*A — A= dagllyrn < e (1+]| 4= 4] ) I€lwra l€lwen

lexp(€)*A = Allyan < ¢ (1+]|A= 4] ) lelhwas

lexp(€)"A— Al < e (1+[4= 4| ) el

Proof. The function «(t) := exp(t§)*A — A satisfies the differential equation
a(t) = da€ — [€,a(t)] and a(0) = 0. Hence

o ktk+1
k=0
and hence
(79) exp(€)* ) dag.
Now
ldatllse < lldaglo + A - A).4]
< fdgglle+ |44 el
< c(vea=A| ) il




The symplectic vortex equations 637

and, by Lemma B.2,

ldagllwrn < g€l + |14- Ael]
< dalys +¢ A=A llelwa
1" A
< (14 ]a-A4,,,) Il
Hence the assertion follows from (79) and Lemma B.2. O

Proof of Theorem B.1. The proof is by Newton’s iteration.

Step 1. Fiz a connection Ay € A (P) and a constant co > 0. Let c(Ag)
be the constant of Lemma B.4 with A replaced by Ay. Then there exists a
constant c; = c1(Ao, co) such that the following holds. If A € AYP(P) such
that

1A = Aollyrr < co

and ¢ € WP(X, gp) is a solution of the equation
d:k40dA0§ = dik40 (AO - A)

such that
(80)
I€llw2 < c(Ao) [|dia, (A= A0)|| 1oy I€llwra < c(Ao) |4 — Aol a s
then g := exp(§) and Ay := g* A satisfy
(81) [ A1 — Aol o + ||, (A1 = Ao)|| , < e1 |4~ Aollza
(82) A1 — Aolly1r < 1 [|[A = Aol -

By Lemma B.3 and (80), we have

HgHW?y;D < c ||A - AO”Wl,p < copca.

for some constant ca = c2(Ag) > 0. Now let c3 be the constant of
Lemma B.5, with A replaced by Ag and ¢y replaced by coca. Then

141 = Allyis = lg"A = Allprs
<ca(1+|a=4| ) lellwen
< coc3 (1 +co+ HAO — Ale,p> 1A = Aollyre

< g ||A = Aol
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for some constant ¢4 = c4(Ao, co). This proves (82). Similarly,

A1 = All g < ¢e5[|A = Aolla -

for some constant cs5 = c5( Ao, cp)-
Now consider the identity

dy, (A1 — Ag) = d3,(9"A — Ao)
=dy,(g"A—A) + d}y, (A — Ao)
=d,(9"A — A —da,8)
=dy,(g"A — A —ds&) + dy, [(A— Ao) NE].

We have
Ao [(A = Ao) NE] = [, (A = Aog) N E] + *[da€ A *(A — Ag)].

Let r := gp/(q — p) so that

If p < n then r < np/(n — p) and hence there is a Sobolev embedding
W?2P — WL, For p > n such an embedding exists as well. Hence, in either
case,

|, [(A = Ao) A ]|,
(HdAOA 40)[ o €l o + 14 — AonandAosny)
(!dAO (A= A0)||, lEllyne + 14 — Aol ||s||W2p)

A= Aollyye |1A — Aollza -

<cg

Moreover, it follows from Lemma B.5 that
|, (9" A — A—dag)||p < collg™A— A—dallyrn

e (1+ A= 4| ) lellwes IEllwra
< e [|A = Aollyre |IA = Aoll o -

These two estimates imply

|, (A1 — Ao)|| ,» < coles + cn) |A = Aol 1
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and this proves (81).
Step 2. Define the sequence Az, As, ... inductively by

Ay =g, gy =-exp(&),
where &, € W?P(X,gp) is chosen such that
day*daoéy = da," (Ao — Ay)
and, with ¢ = ¢(Ay),
83)  &llwene < cf|day(Av = Ao)|| s €ullpre < cllAv = Aollga -

There exist constants 6 > 0 and c12 > 0 such that the following holds. If

|A— Aol <6
then, for everyv > 1,
(84) [, (A — Ao)|| 1, < 2 er |4 — Aol
(85) 1Ay = Aollyrr < 2coct,
(86) [, (Avr1 = Ao)|| 1 < 12l 4y — Aol o ldag™ (Ay — Ao) | o -

For v = 1 the inequalities (84) and (85) were established in Step 1. Let
v > 1 and assume, by induction, that (84) and (85) have been established
with v replaced by j € {1,...,v}. We prove first that (86) holds under these
assumptions. As in the proof of Step 1, we have

Qo (Avir — o) = 3, (g34y — Ay — da ) + 3, [(A, — 4) A&
and
I, [(Ay — 40) A& s
<c (dei,o(Ay = A0)|| 1 160 lwrra + 14w — Aol ||§u||W2,p)
< cia || Ay — Aollpa ||y (A — Ao)| 1 -
It follows from (83), the induction hypothesis, and Lemma B.3, that

(87) 1€l < c(Ao) [|di, (A — Ao)||
< d(Ao) 45 = Aol
< 2cpc1c (Ap)
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for 5 = 1,...,v. Now we can apply Lemma B.5, with ¢g replaced by
2¢cpc1c (Ap), to obtain, for some positive constant ¢15 = ¢15(Ao, ¢o),

delo (gV*AI/ - AI/ - dAyé-V)HLp

<an(1+ 4= 4], ) lelhwsa el

< c16 || Ay — Aol| pq ||di, (A — AO)HLP ’

where c16 := ¢(Ap)2e15(1 4 2coc1 + || Ao — Ally1.s). Hence (86) holds with
12 = C14 t C16-
Now we prove that (85) holds with v replaced by v + 1. By (87), the

section { = {; satisfies the hypotheses of Lemma B.5 for j = 1,...,v, with
co replaced by 2cpc1c/(Ap). Hence

4551 = Ailys < exs(1+ [ = 4], ) 1650
< ¢(Ao)ers <1 + 45 - AHWLP) 4, (A5 — Ao)|l
for j =1,...,v. Hence, by (84),
(88) 14541 = Ajllyprp < 17277 |4 = Aoll s -
for j = 1,...,v, where c17 := 2¢(Ap)e15(1 4 2coct + [|Ao — Allyip)er. If

c17 |A — Aol e < coct

then

12
1Av11 = Aollwie < ) A1 — Ajllypas + A1 = Aol
=1
< crl|[A— Aol + e [|[A = Aollys
< 26001.

This proves (85) with v replaced by v + 1.

Now we shall use (86) and the induction hypothesis to prove that (84)
holds with v replaced by v + 1. Since (88) holds for j = 1,...,v — 1, we
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have
v—1
(89) 1A, — Aoll e <) lAj41 — Ajll e + 141 — Aoll e
j=1
v—1
<es Y N Ajr1 = Ajllyae + 1AL = Aoll
=1

< (c1re1is +c1) |A — Aol 1 -

Here cig is the constant in the Sobolev embedding WP — L4. If

1
ci2(crre1s +c1) [|[A — Aol < 3

then, by (86),

a4, (Avs1 = Ao)|| 1 < 12 | Ay — Aol a ||y, (A — Ao) || 1,
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< cia(crreis +c1) [|A — Aol| 1 |‘dZO(A,, - AO)HLP

1
< Dz, - a0,

This proves (84) with v replaced by v + 1.
Step 3. We prove the theorem.

By (88), the sequence A, converges strongly in the W1P-norm and the limit

connection

A := lim A, € AYP(P)

vV—00

satisfies

o0
4o = Aollyre < D 14511 — Ajllyae < (c1+ crrers) [[A — Aol -

=0
Moreover, by (89),

[Ace — AollLa < (c1 + crrcis) | A — Aol Lq
and, by (84),

&, (Ao — Ag) = lim dfy, (A, — Ag) = 0.

vV—00

Write
A, =hlA, hy, = 99192 gu.

v
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Consider the identity
(90) dh, = h,A, — Ah,

in a local frame. The right hand side of (90) is bounded in L? and hence
h, is bounded in W4, Now the product inequality of Lemma B.2 with
r = p shows that h,A, — Ah, is bounded in W'? and, by (90), h, is
bounded in W?P. Hence h, has a subsequence, still denoted by h,, which
converges in the W9-norm. Since A, converges in the W1P-norm it follows
from Lemma B.2 with ~ = p that h, A, — Ah,, converges in the WP-norm.
By (90), h, converges in the W2P-norm. The limit

heo := lim h, € GZP(P)
V—r00

satisfies
Ay = lim hj A =h} A
V—>00
This proves the theorem. [l
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