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Holomorphic discs and the complex Monge-Ampere
equation

S.K. DONALDSON
1. Introduction.

In this paper we study a version of the Dirichlet problem for the homoge-
neous complex Monge-Ampeére equation. Let (V,wp) be a compact Kahler
manifold, of complex dimension n. We write g for the lift of wg to the prod-
uct D x V, where D is the closed unit disc in C, with boundary 0D = S'. If
T is a subset of D, a real-valued function ® on 7' X V may be considered as
a family of functions ¢, on V, parametrised by 7 € T, with ¢, (z) = ®(7, ).
We say that Qg + i00® is positive on the vertical slices over T if for each
7 € T the (1, 1)-form w + 03¢, on V is strictly positive, in the usual sense.
We will study the following

Problem 1. Suppose given a smooth function F': V x dD — R such that
Qo +300F is positive on the vertical slices over 0D. Find a smooth function
® : V x D — R which agrees with F on the boundary; with Qg + i00®
positive on all vertical slices over D and which satisfies the Monge-Ampére
equation

(Qo +i00®)" T =0

throughout V x D.

This paper is one of a sequence [4], [5], [6] investigating connections be-
tween Kahler manifolds and symplectic geometry (a point of view which goes
back to Mabuchi [8]). The boundary value problem above was introduced
and discussed in [5]. It is shown there that the solution ® to the problem,
if it exists, is unique. Moreover it is also explained that the problem can be
viewed as the search for an analogue of a standard factorisation theorem for
loops in Lie groups, where the pertinent group in this case is the symplecto-
morphism group of (V,wg). More generally, one can pose the corresponding
question where the disc is replaced by any Riemann surface-with-boundary
and, as explained in [5], in the case of the cylinder with rotation-invariant
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data the problem can be viewed as the search for geodesics in the space of
Kahler metrics. X-X. Chen has shown [2] that, with a suitable interpreta-
tion of the partial differential equation, there are always Cb! solutions to
these boundary value problems for any smooth boundary data. Thus the
issue remaining after Chen’s work is the smoothness of the solution. The
main question we address in this paper is the problem of deforming a smooth
solution under a small change of the boundary data. Our first result is

Theorem 1. The set of smooth functions F for which a smooth solution to
Problem 1 ezists is open in C*°(V x 0D).

In fact our proof will show that this set is open in the C? topology. The
set is obviously non-empty: for example the function F' = 0 admits the
solution ® = 0.

It seems quite likely that this result could be proved by applying the
Nash-Moser implicit function theorem, following the approach of Moriyon
[9] in a related problem. However in this paper we will take a different
route and obtain Theorem 1 as a consequence of an alternative geometric
interpretation of the problem, involving families of holomorphic discs. It is
well-known that a solution ® of the Monge-Ampeére equation as in Problem
1 yields a family of holomorphic discs in V. The new observation in this
paper is that these have natural holomorphic lifts to a larger space Wy
(which can be identified locally with the cotangent bundle of V') and the
solution can be reconstructed from these lifted discs. The virtue of this is
that it reduces the nonelliptic homogeneous Monge-Ampere equation to a
family of elliptic problems, so one can ultimately deduce Theorem 1 from
the standard implicit function theorem in Banach spaces. There is also
the technical advantage that the method applies to perturbations which are
small in C?, while the approach of [9] would presumeably need a much larger
number of derivatives.

Our second result, which is another consequence of this alternative geo-
metric interpretation of the Problem, is a negative one:

Theorem 2. There are functions F for which Problem 1 does not have a
smooth solution.

Thus the strongest analogue of the loop-group factorisation result (The-
orem 8.1.1 in [10]) fails, but one may still hope that much more can be
said about the nature of the singularities of Chen’s solutions (and Chen has
already shown, in [2], that the C'™! solutions give useful geometric informa-
tion).
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In Section 2 we set up the alternative geometric interpretation of the
problem using holomorphic discs. This involves a number of steps, but
each is essentially elementary. Our treatment here is self-contained and we
have intentionally presented the arguments in a rather concrete, co-ordinate
based, notation with the aim of avoiding too much abstraction. In Section
(2.2) we explain how the arguments can be cast in a more conceptual form
using the theory developed in [5], [6]. With this alternative interpretation
in place, attenton turns to the corresponding linearised problem, describing
the deformations of each disc. In Section 3 we introduce a notion of “super-
regularity” which implies that the discs appearing in our family are “regular”
in the ordinary sense of nonlinear Fredholm theory, and thus that the disc-
families deform in a simple way. The proofs of the main Theorems 1 and 2
are given in Section 4. The proof of Theorem 2 involves the construction of
a holomorphic disc and boundary conditions which are not “super-regular”.

One can hope to extend the techniques of this paper in two directions.
First, one can take the ideas over to the case of the Dirichlet problem over
the cylinder which is relevant to the geodesics in the space of Kalher metrics.
There is also a variant of this where one considers the punctured disc, with
some conditions over the puncture, which arises when one studies geodesic
rays in the space of Kahler metrics. Second, one can try to describe more
precisely when a smooth solution to Problem 1 exists, and if it does not
the nature of the singularities in Chen’s solutions. It seems possible that a
solution exists precisely when all the holomorphic discs satisfying the rele-
vant boundary conditions are super-regular and, when there are discs which
are not superregular, that these will be important in understanding the sin-
gularities. However we will leave all of these possible extensions for the
future.

A large part of this work was done while the author was at Stanford
University, and thanks are due to the Mathematics Department at Stanford
for their hospitality and for the stimulating atmosphere there. The author
has benefitted from many valuable discussions with X-X. Chen about these
topics.

2. Alternative formulation of the problem.

We begin by reviewing the construction, described in [6], of a holomorphic
fibre bundle 7 : Wy — V with the property that the Kahler metrics in the
class [wp] correspond to certain submanifolds of YWy . Suppose, in general,
that (W,0Ow) is any complex symplectic manifold; so O is a nowhere-
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degenerate holomorphic 2-form on W. Let ©1, ©2 be the real and imaginary
parts of Oy,. We say that a submanifold L C W is an LS submanifold if
it is Lagrangian with respect to ©; while O restricts to a non-degenerate
symplectic form on L. We construct the holomorphic fibre bundle Wy with a
complex symplectic structure such that the Kahler metrics on V' correspond
to the sections whose graphs are LS submanifolds of Wy .

We start with a local version of the construction. Let U be an open
subset of V, for example a ball, such that wy has a Kahler potential over
U; wo = id0p say. We let Wy be the cotangent bundle of U with its
standard complex symplectic structure. In local complex co-ordinates z,
on U we parametrise the complex 1-forms by ) {,dzq, 50 (24;€3) are local
co-ordinates on T*U. Then the holomorphic form is given by the usual
formula

0= déadza.

We will compare this with the ordinary real symplectic structure on T*U,
under the standard isomorphism between complex and real cotangent spaces
given by taking a complex linear map from TU to C to its real part. Write

Za = Lo t+ Wa, §o¢ = Ug t+ 1Vq.

Then the real part of the complex 1-form Y &,dzq is D uadTe — Vadya.-

This means that if we take (1...,2n,y1...,Yn) as real co-ordinates g; on
U then the corresponding coordinates p; are (up ...up, —v1,..., —vy). Now
if we write

©=01+i0; = (dugdre — dvadys) +1 Y _(duadys + dvadzs),

we see that the real part ©; of © is the standard real symplectic form
> dpjdg; on the cotangent bundle. As such, the sections of T*U whose
graphs are Lagrangian with respect to ©1 correspond to the closed 1-forms
on U and hence, if H!(U) = 0, to the derivatives of real-valued functions. In
complex notation, if ¢ is a real valued function on U we have a corresponding

section with
L0 oy

_—

0z, Oz e

The pull-back of © by this section is the pure imaginary form

€a

2
(1) 2y 0 ¢_ dZgdze = —200,
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so the imaginary part of © is nondegenerate on the section if and only if i00v
is a nondegenerate Hermitian form. Thus to a Kahler metric wy + i00¢ =
i00(p + ¢) over U we associate the LS section defined as above by the
derivative of ¢ = p + ¢.

To construct Wy we take a cover V.= UU, of V by balls and write
wy = i58p,\ over Uy. Then we glue the cotangent bundles T*U) over the
intersections Uy N U, by the additive transition functions 0(py — pu). That
is we glue a point £ in a fibre in T*U), to the point £ + 8(,0“ — py) in the cor-
responding fibre in T*U,,. The transition function respects the holomorphic
2-forms in the different pieces, so we get a holomorphic form © on the total
space Wy .

Suppose we are given a function ¢ on V such that wy + i09¢ is every-
where positive. We define a section of Wy as above, given by the derivative
of px + ¢ over Uy, and this is clearly an LS submanifold of Wy . Slightly
more is true. Recall that, in general, if L is a Lagrangian submanifold of
a real symplectic manifold M the normal bundle of L in M is canonically
identified with its cotangent bundle and the infinitesimal deformations of L,
as a Lagrangian submanifold, correspond to the closed 1-forms. A smooth
one-parameter family L; of Lagrangian submanifolds is called an ezact de-
formation if at each time the derivative corresponds to an exact 1-form and
this generates an equivalence relation on the set of Lagrangian submani-
folds. Now in our case it is clear that the LS-submanifolds of Wy obtained
by our construction are all in the same exact equivalence class—in the fam-
ily wo + ti00¢ the t-derivative corresponds to the exact 1-form d¢. We will
call the LS-submanifolds in this equivalence class the ezact LS-submanifolds.
(Of course, this refinement is only relevant if H(V) # 0.) Now suppose we
have a section of 7w : Wy — V whose image is a LS-submanifold. Over each
ball Uy we write this as the derivative of py + ¢y where wo+i00¢y > 0. The
transition relation shows that ¢ — ¢, is constant on UyNU, and so defines a
Cech cohomology class in H'(V;R). It is easy to see that this class vanishes
if the section is an exact LS-submanifold so in this case, after changing the
¢ by the addition of suitable constants, the section corresponds to a global
Kahler form wq + i00¢. So in sum we have shown that the Kahler metrics
wo+100¢ are in one-to-one correspondence with the exact LS graphs in Wy .
(Locally, there are LS submanifolds which correspond to indefinite Kahler
metrics on V. But a form wy + i00¢ over the compact manifold V is nec-
essarily positive at the maximum of ¢, so there are no indefinite solutions

globally.)

The construction of Wy is in a sense a standard matter. Recall that the
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Kahler form defines a Dolbeault cohomology class in H'(T*V'). This defines
an extension of vector bundles

0TV -J =0 —=0.

The complex manifold Wy can be identified with the open subset of the
projectivisation

Wy =P(J)\ P(T*V),

and the 2-form © is a meromorphic form on P(J) with a pole of order n+1
along P(T*V'). There is further interpretation of this in the case when the
Kabhler class [wp] is integral, so there is a holomorphic line bundle £ — V'
with a hermitian connection whose curvature is —27iwg. The holomorphic
bundle J can then be identified with J1(L) ® L™, where J;(L) is the jet
bundle of 1-jets of sections of L. In this interpretation a Kahler metric wg +
i00¢ defines another unitary connection on the fixed holomorphic bundle £
and the section Ly is given by the projectivisation of the set of horizontal
jets, with respect to this connection.

2.1. Re-formulation.

Let F be a smooth function on 8D x V, as in the statement of Problem 1.
For each 7 € 0D the function F;(z) = F(7,z) defines a Kahler metric and
hence an LS submanifold A, of Wy . The main result of this section is

Theorem 3. There is a solution ® of Problem 1 if and only if there is a
smooth family of holomorphic discs g, : D — Wy parametrised by x € V
with

1. 7(g-(0)) =z € V;
2. for each T € OD and each x € V,

92(7) € Ar;

3. for each T € D the map x — w(gx(7)) is a diffeomorphism from V to
V.

To be precise we mean that there is a map G : D X V — Wy which is
smooth as a map on the manifold-with-boundary V' x D, which is holomor-
phic over the interior in the D-variable and which satisfies

G(0,z) =z, G(r,z) € A;.
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Here of course the two notations are related by setting
9z(7) = G(1, ).

The essence of our approach is to think of the map G in two ways; either as
a family of maps g, as above, or as a family of maps

Yr: V= Wy
with v, (x) = G(r, z).

We will now proceed to give a direct proof of Theorem 3. To begin,
suppose we have a solution ® of Problem 1. Changing the choice of wy,
there is no loss in supposing that ®(0,z) = 0 for all z. The Monge-Ampere
condition (Qo + i00®)"*! = 0 implies that the Hermitian form Qg + i00®
has a non-trivial kernel at each point and the hypothesis that the form is
strictly positive in the vertical slices implies that the kernel has complex
dimension 1. Since the 2-form is closed, these kernels define a foliation
transverse to the vertical slices, whose leaves are complex curves in D x V.
The disc D is simply connected so each of these leaves is a copy of D—the
graph of a holomorphic map from D to V. Thus for each x in V we have
a holomorphic map f, : D — V, with f,(0) = x, whose graph is the leaf in
D x V passing through (0,z). If we write f,(7) = o,(x) we get a family of
“monodromy” diffeomorphisms o, : V — V', with o9 = Idy.

Lemma 1. For each 7 € D, o}(wp + i00¢,) = wp.

To prove this we show that the 7-derivative of o*(wo +i00¢, ) vanishes.
So let v be a tangent vector on the disc at a point 7 and let © be the unique
tangent vector in the kernel of Qg + i00® at (7,x) € D x V which projects
to v. Then the derivative of o(wp + i00¢,) along v, is the pull-back by
oF of the restriction of the Lie derivative along @ of Qy + i09® to the slice
{7} x V. But this vanishes by the usual “homotopy” formula for the Lie
derivative on forms, since Qg + i00® is closed and © lies in its kernel.

Now for each fixed 7 in D we have a Kahler form wg + i58¢T on V and
hence a section s, : V' — Wy whose image is an exact LS graph A, in Wy.
We define G : D x V — Wy by

G(1,z) = sr(o-(x)).

Using the notation above, thinking of either of the variables as parameters,
we will write

G(z,7) = go(1) = 7 ().
Thus to sum up we have
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1. For each fixed z, g, : D — Wy is a lift of the holomorphic map
fz : D — V over the projection 7 : Wy — V;

2. For each fixed 7, v, : V — Wy is a diffeomorphism from V' onto an
LS graph A; C Wy and 72(0) = —2wyp.

Here the formula for v}(0) follows from (1) and Lemma 1.
The following Lemma completes the proof of one half of Theorem 3.

Lemma 2. The map G above is holomorphic in the D-variable, that s, for
each firted x € V, g, : D — Wy is holomorphic

The result is local so we may as well suppose that g, maps into a subset
of the form T*U C Wy, and choose local co-ordinates z, on U. We know
that the projection to the base gives the holomorphic map f, so it suffices
to consider the fibre component of 7*U. By definition this is

ov

—d
0zq4 8

where ¥ = ® + p. So we need to show that

0 0

ga‘l’(ﬂ fa(7))

vanishes. By the chain rule this is

52 N 2v  afP
070z, 5 020025 OT

where f;gﬂ ) are the components of the map f, in these local co-ordinates.
But this is the same as Qg 4 i00® evaluated on the two tangent vectors in
D xV:

0 o) o 8

o7 "2 Tor B2y’ Da

and this does indeed vanish since, by the definition of f;, the first tangent
vector lies in the kernel of Qg + 100®.

To sum up so far, we have shown that starting from a solution ® of
Problem 1 one can construct a family of holomorphic discs g, : D — Wy
satisfying the conditions of Theorem 3. We now move on to the reverse
direction.
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Proposition 1. Suppose given a function F on 0D x V as in Problem 1.
Suppose we have a map G : DXV — Wy and write G(7,z) = ¢,(7) = v, (x)
as before. Suppose that

1. G(0,z) =z for allz € V;
2. For each fized x, g, is a holomorphic map from D to Wy ;

3. For each fixed T, v, maps V diffeomorphically to an exact LS graph in
WV;

4. For T € 0D the image of v, is the exact LS graph L, defined by the
boundary data.

Then G arises from a (unique) solution ® of Problem 1 via the construction
above.

To prove this Proposition, recall that © is a closed holomorphic 2-form
on Wy so that its real and imaginary parts ©1,©2 are closed real 2-forms
and for any tangent vectors &,7 at a point in Wy :

where I denotes the usual endomorphism of the tangent space defined by
the complex structure. We consider the pull-backs G*(01), G*(02) to closed
2-forms on D x V. For clarity let us take (real) local co-ordinates g; in V" and
write 7 = u—+14v where u, v are real. Then the fact that each v, maps to a ©;-
Lagrangian submanifold of V' means that G*(©1) does not contain any terms
in dg;dg;. The fact that g, is holomorphic, combined with (2), means that
neither G*(©;) nor G*(02) contains a term in dudv. Further, (2) implies
that the dudg; component of G*(02) is equal to the dvdg; component of
G*(0©1) and the dvdg; component of G*(©3) is minus the dudg; component
of G*(©1). So we can write

(3) G*(©1) = ajdudg; + bjdvdg;,
(4) G*(@Q) = Z bjdudg; — ajdvdg; + Z rijdgidg;.
Now the fact that G*(©1) is closed implies that
Oa;  Oa;
5 ] =
©) dgi  Ogj
ob;  0b;

(6)

dq;  9g;’
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while the fact that G*(02) is closed implies that

oy Ob; b

7 - _

(7) ou dqi  0Ogj’
aTij . Gai (90,]'

(8) ov  9q; Ogq’

So it follows that r;; is independent of u,v. Thus G*(02) = —2€ is constant
along the horizontal slices in D x V.

Now the hypothesis that the v, map diffeomorphically to graphs in Wy
implies that the composites w oy, : V — V are diffeomorphisms. Let
or : V. — V be the inverse diffeomorphisms. So by assumption og is the
identity map. Let f; be the holomorphic map wo g, : D — V. Then
the graphs of the family of holomorphic maps f, make up a foliation F
of D x V' by holomorphic curves, transverse to the vertical slices. Define
R:DxV — DxV by R(r,z) = (1,0-(z)). Thus R maps the trivial product
foliation of D x V to the foliation JF, or in other words the diffeomorphisms
o, give the monodromy of the foliation F.

For each fixed 7 the image of v, is an LS graph in Wy and so corresponds
to a Kahler metric w, = wp + i58$T say, where (;37 is unique up to the
addition of a constant. We know from the above that v}(©2) = —2w,, so
0¥ (wr) = wp.

Now at each point (7,2) of D x V there is a unique Hermitian form
on the tangent space to D x V with the two properties

1. The restriction of €2 to the vertical slice through (7, z) is equal to w-.

2. The tangent space to the leaf of the foliation F at this point is the
kernel of €2.

Thus we have a (1, 1)-form Q on D x V. We claim next that € is closed. The
restriction of df2 to the vertical slices vanish by the first property above so
it suffices to show that the contraction i¢x(d€?) is zero, where X is a vector
field tangent to the foliation. But the fact, established in the preceding
paragraph, that oX(w;) = wp implies that Lie derivative of Q along X is
zero. This Lie derivative is d(ix(€2)) + ix(df2) and ix(€2) vanishes by the
second property. So we conclude that Q is a closed form of type (1,1) on
V x D.

The final step in the proof is to write Q = Qg + i00® for a suitable
function ®. This is a version of the d9-lemma, which brings in the condition
of exactness. Let us suppose first that H'(V;R) = 0. We can certainly
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choose a function @ such that x = Q — (Q + i99®P) vanishes on all vertical
slices, and by the given boundary conditions we may suppose that & = F'
on the boundary of D x V. In local co-ordinates we can write x as

Y HadzadT + o dZadT + fdrdT.
The fact that y is closed means that

Ota

=0.
0zp

Globally, " uadz, defines a holomorphic 1-form S on V. But if, as we are
assuming, the cohomology group H!(V) vanishes there are no non-trivial
holomorphic 1-forms so S = 0. Then, using again the fact that x is closed,
we have

of

0zq

so f is a function of 7. Then we solve a linear boundary value problem on
the disc to find a function h(7), vanishing on the boundary circle and with
i00h = fdrd7. The function ® = & — h is the solution we seek.

To deal with the subtlety involving exactness in the case when H'(V) is
non-trival we go back to (5),(6). We saw that the 1-forms

M=) ajdg, A =) bjdgj,

are closed on V. The discussion there was local but A;, A2 are globally
defined, as families of closed 1-forms on V parametrised by 7. The condition
that the family of LS submanifolds are all exact means precisely that we can
find functions s1, s2 with ds; = A;. Following through the construction, one
finds that the holomorphic 1-form S = ) padz, is just the pull-back under
or of d(s1 +is2). So S is an exact holomorphic 1-form and hence vanishes.
Then the proof can proceed as before.

0,

The next Lemma is the crucial step in completing the proof of Theorem
3.

Lemma 3. Suppose given boundary data F as in Problem 1 and that G :
D xV — Wy is a map such that for each x, g, : D — Wy is holomorphic
and for T € 0D, v maps V diffeomorphically to the LS graph L, defined by
the boundary data. Then for each T in D the map v, is an immersion of V
whose image is an exact O1-Lagrangian immersed submanifold on which ©9
is non-degenerate.
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To prove this we again consider the pull-back G*(©), a 2-form with
complex-co-efficients on D x V. We can decompose 2-forms on the product
into three pieces: let G*(0)y denote the component of G*(0) in A2T*V C
A*T*(D x V). Thus we can think of G*(0)y as a family of complex 2-forms
on V parametrised by 7 € D. The key point is that, since © is a holomorphic
form on Wy and the maps g, are holomorphic, this family is holomorphic
in 7. To see this we write, in the same notation as before,

G*(@l) = Z ajdudqj + bjdvqu' + Z sijdqidqj
G*(Gg) = Z bjdudqj - ajdvdq]- + Zrijdqidqj.
The fact that G*(©;) is closed implies that, in place of (5),(6) we have,

68@' _ 8ai 8aj

ou dq;  Og;
887;]' o ob; B (9bj
ov  8qg; Og’

with the same set of equations (7),(8) as before. This means that
£+,/_12 (7"'+*/—18'-)—0
ou ov) Y R

which is just the statement that G*(0)y is holomorphic in 7. We now use
the elementary fact that a holomorphic function on the disc which is real on
the boundary must be a constant. By hypothesis the form iG*(0)y is real
when 7 lies in the boundary of the disc. Applying this fact to the co-efficients
of the form we we see that the real part of G*(0)y vanishes everywhere—so
in fact the s;; are all zero— and the imaginary part is constant in 7. In
other words 7X(©;1) = 0 and v}(0©3) = € say. But, again by hypothesis,
when 7 is in the boundary 7, maps diffeomorphically to the LS submanifold
A, on which O, is non-degenerate. So 6 is a nondegenerate 2-form on V.
This means that, for each 7, 7, must be an immersion. The only remaining
thing to check is the exactness condition. We consider the family of complex
1-forms o, on V, parametrised by 7,

Or = Z(aj =+ ’ibj)dqj.

The hypotheses imply that for fixed 7, o, is closed on V, and the family
is holomorphic in 7. So we get a holomorphic map [o] from the disc into
H(V : C). Let c(t) be any path in the disc. By definition, the 1-parameter
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family g.(;) map into the same exact equivalence class of LS submanifolds if
the imaginary part of ¢(t)o.() is zero. Thus the hypothesis that the g, map
into exact LS submanifolds when 7 lies in the boundary of the disc means
that 7[o;] is pure imaginary when 7 lies in this boundary. Hence 7[o] is
constant, as above, and taking 7 = 0 we see that the constant must be zero.
So we conclude that o, is exact for each 7 € D, and this means that the
images of the maps g, are exact.

Combining Proposition 1 with Lemma 3, we have now completed the
proof of Theorem 3.

2.2. Complexifications of symplectomorphism groups.

So far we have presented the arguments in a somewhat explicit way, empha-
sising calculations in local co-ordinates. We will now explain how Theorem
3 can be obtained by a more conceptual approach, avoiding explicit cal-
culations. For simplicity we suppose that H'(V) = 0 and that V has no
non-trivial holomorphic automorphisms. (The first of these assumptions
means that we do not need to bother about the exactness condition.) Let
(P,w) be a symplectic manifold. Recall, following the discussion in Section
4 of [5], that by a complezification of the group SDiff p ,, of symplectomor-
phisms of (P,w) we mean an infinite-dimensional complex manifold Z with
a free action of SDiff p ,, such that the tangent space of Z at a point z is the
direct sum T'O, @ ITO, where O, is the orbit of SDiff p ,, through z and I
is the action of complex multiplication on tangent vectors of Z. In the case
when (P,w) = (V,wp) is Kahler it is explained in [5] that there is such a
complexification X' given by the set of pairs (f, $) where wy = wo +i00¢ > 0
and f:V — V is such that f*(wg) = wo. (Here, ¢ should really be consid-
ered as an element of C*° (V') modulo the constants.) The complex structure
on X could be seen in two ways:

1. Via the map (f,¢) — f*(I) which embeds X in the space of almost-
complex structures on V', compatible with wy.

2. Via the map (f,¢) — f which embeds X in the space Maps(V,V),
which has a complex structure defined by that on V' (regarded as the
target space).

Suppose now that (W, Oy ) is a complex symplectic manifold and (P, w)
is a real symplectic manifold with dimg P = dimcW. We consider the set
L of maps (in a given isotopy class) A : P — W such that

(9) A (O ) = —2w.



184 S.K. Donaldson

This set of “parametrised LS submanifolds” was discussed in [6], where
it was observed that £ is a complexification of SDiff p ,,. The point is that
the equation (9) is a holomorphic equation for A\, where we take the obvious
complex structure on Maps(P, W) defined by that on WW. Now the crucial
thing is that, when (P,w) = (V,wp) and W = Wy, these two constructions
are compatible. More precisely, we restrict attention to the open subset of
maps A from V to Wy whose images are LS graphs (which does not affect
the formalism). Then we have seen that such a graph defines a Kahler
metric wg on V and for A € £ the composite f = mo A : V — V satisfies
f*(wg) = wp. This induces an SDiff -equivariant bijection o from £ to X,
and o is obviously holomorphic since the projection 7 : Wy — V' is (using
the second description above) of the complex structure on X.

It is easy to deduce Theorem 3 from this alternative description of the
complexification. For, as explained in [5], a solution of Problem 1 corre-
sponds to a holomorphic map I' from the disc into X such that f‘(T) lies
in the SDiff -orbit defined by the given boundary data, for 7 € dD. By
the discussion above, this is the same as a holomorphic map I' : D — L
such that I'(7) maps to the LS graph A; defined by the boundary data, for
7 € 0D. But a holomorphic map from D to Maps(V, Wy ) is precisely a
family of holomorphic discs in Wy parametrised by V so we immediately
arive at the formulation of Proposition 1. The crucial Lemma 3, which says
that it suffices to find a map into the ambient space Maps(V, Wy'), satisfy-
ing the given boundary conditions, is a manifestation of the fact that £ is
a complex submanifold of Maps(V, Wy ). This means that any holomorphic
map of the disc into Maps(V, Wy ) which maps the boundary into £ must
map the whole disc into L.

3. Families of holomorphic discs.

We will now review the relevant theory of holomorphic maps with boundary
conditions. Suppose Z is a complex manifold of complex dimension m and
X C Z is a totally real submanifold. Recall that this means that X has real
dimension m and at each point of X

TXNI(TX)={0} CTZ.

We consider holomorphic maps from the disc D to Z which map dD into
X. The crucial thing is that this is an elliptic boundary value problem.
There is an extensive literature about this problem, from the point of view
of complex analysis [1] and symplectic geometry [7]. (In the symplectic
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geometry literature it is often assumed that the submanifold X is Lagrangian
with respect to a symplectic form which “tames” the complex structure but
this condition is only relevant to global compactness questions, and not to
the local deformation theory which is our concern here.) There is a linearised
problem associated to any such holomorphic map ¢ : (D,0D) — (Z,X). We
pull back the tangent bundle of Z to get a holomorphic bundle E, over the
disc with a Cauchy-Riemann operator

3y : O (E) — Q%H(B).

The tangent space of X defines a real sub-bundle FRr of E over the boundary
of the disc and so a projection p : E|sgp — E/Egr. The linearised equation
associated to the mapping problem is the linear elliptic boundary value
problem

(10) Bys =0 plslo) = 0.

The solution space Hy of this linear equation is a finite dimensional real
vector space. In the familiar way there is a Fredholm index ind (¢) associated
to this problem

ind () = dimH — dim H',

where H' is the finite-dimensional space of solutions of the adjoint boundary
value problem. Thus elements of H' are holomorphic, E:Z— valued 1-forms
A(T)dT over the disc such that at each point 7 of the boundary

(11) itA(1) € Ann (Er)

The index is a homotopy invariant of the data consisting of the bundle Ey,
over the disc and the totally-real sub-bundle Er over the boundary. We
say that the map 1 is a regular solution of the nonlinear boundary value
problem if H' = 0.

A complication in these mapping problems arises from the fact that a
single (non-constant) map 9 leads to 3-dimensional family by merely com-
posing with the automorphisms of the disc. Thus we have a canonical in-
jection from sl3(R) into Hy. To get around this we consider a situation in
which there is a fixed holomorphic map k : Z — C which maps X to the
boundary circle 9D. Then we consider “normalised” maps 1 such that ko1
is the identity map on the disc. The derivative of k£ defines a splitting of the
injection and hence a canonical direct sum decomposition

Hy = sh(R)© Hyy,



186 S.K. Donaldson

say.

Now suppose M is a compact, connected manifold parametrising a family
of normalised solutions to the boundary value problem. That is, we have
a smooth map B : D x M — Z such that for each m € M the map
tm(7) = B(1,m) is holomorphic in 7, maps 0D to X and k o ¢, = Idp.
For each m € M we get a deformation map

Rm : TMm — me’o,

reflecting the fact that Hy, is the space of solutions of the linearised prob-
lem.

Proposition 2.

1. Suppose that for eachm € M the map 1., is reqular. Let X' be another
totally real submanifold of Z with k(X') C D. If X' is sufficiently
close to X in the C topology, there is a map B' : D x M — Z, C'-
close to B, parametrising a family of normalised maps 1., : (D,0D) —
(Z,X").

2. Suppose in addition that Ry, is an isomorphism for allm € M. Then,
if X' is sufficiently close to X in the C' topology, the map B’ is unique
up to a diffeomorphism of M and any normalised holomorphic map 1)’
with ¢'(0D) C X' which is close in C* to some map ¥, is equal to
Y, for some m' € M.

Remarks.

1. In essence this Proposition asserts that compact families of regular,
normalised, solutions of the boundary value problem are stable under
small perturbations. We refer to the literature cited above for the
proof, which is essentially routine once one has set up the mapping
problem as a nonlinear Fredholm equation.

2. When we say that X' is close to X in the C! topology, we mean that
X' is the image of a smooth map from X to Z which is close in C* to
the inclusion map.

3. When we say, for example, that B’ is C''-close to B, we mean that the
C' distance between B and B’ is bounded by a function § of the C!
distance from X and X', with §(s) — 0 as s — 0. (In fact one can
take d(s) = Cs. )
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To apply this theory to our problem, we let Z be the product Wy x C
and k : Z — C be the projection map. Thus normalised holomorphic maps
from D to Z are just the graphs of holomorphic maps from D to Wy . Given
boundary data F' as in Problem 1, we define

(12) X=Xrp={(w,7) e Wy x0D: we A},

the LS graph defined by the boundary data. Then the normalised holomor-
phic maps from (D,9D) to (Z,X) precisely correspond to the graphs of a
map g : D — Wy of the kind considered in Theorem 3. (It is a matter of
choice whether one sets up the problem in the way we have done, taking
the product with an extra variable, or stays with maps into Wy but with
“r-dependent” boundary conditions.)

Lemma 4. The submanifold X is totally real in Wy x C.

For if £ and I¢ are both tangent vectors to X at a point (w, ) one sees
first, by considering the projection to C, that they lie in the tangent space
to A;. Now the restriction of ©®s to A, is nondegenerate so there is some 7
tangent to A, such that ©2(¢,7n) # 0. But then

61(I€a77) = _@2(€a77) ?é 07

which contradicts the fact that A, is ©;-Lagrangian.

Remark. One should be careful to distinguish here between the Lagrangian
nature of A, with respect to ®;—the real part of a holomorphic symplec-
tic form—and the Lagrangian submanifolds, often considered in such disc-
mappping problems, which are Lagrangian with respect to a Kahler form.

We are thus in exactly the position considered above. If we have solution
® to Problem 1 with some boundary data F' we get a family of normalised
holomorphic maps v, from (D,dD) to (Z, Xr), parametrised by the com-
pact manifold V:

b (1) = (7, 92(7))-

The crucial result we need, which is established in the next subsection, is:

Proposition 3. Each of the maps 1, arising from a smooth solution ® of
Problem 1 is regular with indez 2n.
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3.1. Analysis of the linearised problem.

We introduce a class of a linear boundary value problems: at the end of
this subsection we will see how the linearised mapping problem above can
be put in this form. Suppose A is a smooth map from the circle 0D to the
strictly positive definite Hermitian n X n matrices, and S is a smooth map
from the circle to the symmetric complex n X n matrices. We consider pairs
of C™-valued functions (u,v) over the disc satisfying the linear boundary
condition

(13) v(7) = Sr(u(r)) + Ar(a(r)),

for 7 € 0D. Here we have written the arguments of S and A as a subscript
for clarity. We have an operator

(14) s, : L (D) — L*(D),

where Lé’i1 denotes the L? vector valued functions s = (u,v) over the disc

satisfying the boundary condition (13). Thus the kernel Ker dg 4, which
we will denote by Hg 4, consists of holomorphic vector-valued functions
s = (u,v) on the disc which satisfy (13) on 9D.

Lemma 5. The operator 557,4 1s a real Fredholm operator of index 2n.

First, the fact that 55, 4 is Fredholm is standard theory, given that the
boundary conditions are totally real: i.e., for fixed 7 € 9D if two pairs of
vectors (u,v), (iu,iv) € C™ x C" satisty (13) then u = v = 0. Now to find
the index we can deform (S, A) to the constant pair (0, 7). The kernel Ho s
consists of holomorphic functions (u,v) with u = T over the boundary. It is
clear from the Taylor series expansion that the only solution occur when u, v
are constant and complex conjugate, so Ho,; has (real) dimension 2n. The
kernel of the adjoint of 50, 1 is given by pairs (w,#) of holomorphic 1-forms
over the disc with

w(r) =76(7)

for 7 € 0D, and one sees again from the Taylor series that there are no
non-zero solutions of this equation. Hence the index of WJ; and so also
55, A, 18 2n.

As usual, we say that boundary data (S, A) is regular if Hg 4 has dimen-
sion 2n, i.e., if the kernel of the adjoint is zero.
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Definition 1. We say the boundary data (.S, A) is super-regular if there are
2n elements (u;,v;) of Hg 4 such that for every 7 in D the vectors u;(7)
form an R-basis for C".

Proposition 4. If the boundary data (S, A) is super-regular then it is also
regular.

(Notice that this implies that, if (S, A) is super-regular, no non-trivial
element of g 4 can vanish anywhere on the disc.)

To prove Proposition 4 we need a preliminary observation. Given two
pairs of vectors s = (u1,v1), s2 = (u2,v2) € C™ x C™ we write (s, s2) for
the standard symplectic form

Q(s1,82) = ulTvg — ugvg.

Lemma 6. If s1,s0 € Hg 4 then iQ(s1(7), s2(7)) is real and independent of
T.

To see this observe that the function i€2(s1(7), s2(7) is holomorphic in 7
and on the boundary the condition (13) implies that the function takes real
values. So the result follows again from the fact that the only such functions
are constants.

We now prove Proposition 4. Suppose that there are 2n elements s; =
(ui,v;) of Hg 4 as in Definition 1. We claim that the values s;(7) are C-
linearly independent at the generic point 7 of the disc. For if not there
is a non-trivial linear relation Z]- Ajsj = 0 where the \; are holomorphic
functions over the disc. In particular on the boundary we have:

OZZ)\J'UJ':S Z)\jUj + A Z)\jﬂj =A Z)\ju_j ,
J J J
and it follows (since A is nondegenerate) that
Z Aju; = 0.
J

This means that, on the boundary

ZX]'U,J' = Z /\juj =0.
J J
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Thus, if \; = a; + ib; with a;,b; real,
Zajuj = zbjuj = 0,
J J

and it follows, from the assumption that the u; are R-linearly independent,
that a; = b; = 0. So the holomorphic functions \; vanish on the boundary
and hence are identically zero, contrary to the initial assumption.

Suppose now that the space Hs 4 has dimension strictly greater than 2n
and choose an element sg not in the span of si,...s2,. By Lemma 6 the
symplectic form €2 defines a skew form on the 2n 4 1-dimensional real vector
space Span (So, s1,...52n) C Hg 4. There must be a non-zero element s of
Span (s, S1, - - - S2n) such that

(15) Q(s,Span (s1,...,s2,)) = 0.
But this means that for each 7 in the disc and each j =1,...,2n,
(7). 55(7) = 0.
But by the fact established above the vectors s1(7),..., $2,(7) form a com-

plex basis for C™ x C™ at the generic point 7 of the disc and at such a point
(15) implies that s(7) = 0. Thus s vanishes at the generic point of the disc
and so is identically zero. This completes the proof of Proposition 4.

We can now go back to prove Proposition 3. The first thing is to see
that that the linearised problem associated to a disc ¥, can be put in the
form considered above. To see this in a down-to-earth way we consider first
the case when the image of the holomorphic map f, : D — V lies in a
co-ordinate neighbourhood, with complex co-ordinates wy, over which wy
can be written as i00p. Thus the map f, is given in these co-ordinates by
its components f&(7). Any nearby map f: D — V is likewise represented
by its components fa. The map g, : D — Wy is represented by f& and n
additional fibre components h?(7), i.e.,

9u(r) = (1), D hadés) |

in the canonical co-ordinates on Wy over the co-ordinate patch. Likewise
a nearby map § : D — Wy is represented by (§*,h"). The boundary
condition—that §(7) lies in A;—comes down to the equation:

_ 0(¢r +p)

Owg,

(16) R (7) (7)),
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for 7 € OD. To find the linearised equation we consider a 1l-parameter
family of such holomorphic map (f; , by ), equal to (£, h%) when ¢t = 0, and

T T

differentiate (31) with respect to ¢. The resulting equation is
¢T + P ¢T +p)_
17
(17) Z 8wa8w5 Z Qwa0wg ws(7),

where uq, v, are the t-derivatives of f?,ﬁ? , evaluated at t = 0, and the
partial derivatives on the right hand side of (17) are evaluated at fg'(7). We
see then that this is precisely of the form considered above, with

62¢-,- _ 0? (¢T + p)
(18) 5= (8wa8w5> A= < Owglwe ) ’

The global and invariant discussion is much the same. First consider
the standard complex symplectic form 2 on a direct sum U* @& U, where
U is an n-dimensional complex vector space and suppose we have a real
2n-dimensional subspace A C U* @ U which is:

1. Lagrangian with respect to the real part of ©,
2. symplectic with respect to the imaginary part of ©,
3. transverse to the summand U* C U* § U.

Such subspaces are precisely the graphs of R-linear maps
(19) ur— S(u) + A(u),

where S is complex linear and corresponds to a symmetric complex bilinear
form on U; while A is complex anti-linear and corresponds to a nondegener-
ate Hermitian form on U. The proof of this assertion essentially repeats the
discussion of the beginning of Section 2. Now let 1, : D — D x Wy be one
of the maps considered in Proposition 3, of the shape 1,(7) = (7, g(7)).
The pull-back of the tangent bundle ¢} (T'(D x Wy )) splits as the direct
sum of a trivial bundle C and the pull-back ¢%(TWy ). This latter fits into
an exact sequence

(20) 0= fo(T"V) = gz(TWy) = f;(TV) =0

Now all holomorphic bundles over ths disc are trivial so we can trivialise
[X(TV). We may also arrange that this trivialisation is smooth up to the
boundary (see the discussion in [3]). Likewise—since all higher cohomology
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groups over the disc vanish— we may split the exact sequence (20), so sec-
tions of gi(TWy ) are represented by pairs (u,v) of vector valued functions
over the disc. We may also choose the trivialisation in such a way that the
pull-back of the holomorphic symplectic form O is taken over to the stan-
dard form on C" x C". Now, by the preceding discussion, for each 7 € 8D
the tangent space of A, is represented in this trivialisation by the graph of a
linear map of the kind (34). To sum up then, the bundle E, associated to
the map v, is represented as the trivial holomorphic bundle C"®C" & C, so
we can represent a section by a triple (u,v,w) say. The boundary conditions
for 7 € 0D require that

v = S;u+ A7, ITm(r7'w) = 0.

Here S;, A; are the matrices of the linear maps (19) representing T'A; in the
chosen trivialisation, and the second equation corresponds to the boundary
of the disc in C. There is no coupling between the equations for (u,v)
and w. The w equation is regular, with index 3 and a solution space of
dimension 3 given by the holomorphic vector fields on the disc tangential
to the boundary. Thus the map v, is regular if and only if the equation
for (u,v) is regular in the sense above; in particular this is true if the latter
problem is super-regular, by Proposition 4. We say that a holomorphic disc
gz, with the boundary conditions A, is super-regular if the corresponding
linear data (S, A) is super-regular.

To complete the proof of Proposition 3 it only remains to show that
any holomorphic disc arising from a solution of Problem 1 is super-regular.
But this is rather obvious: we know that there is a 2n-dimensional familg
of holomorphic discs ¢g,(7) = G(7,z). Thus the partial derivative %
defines a linear map A from the tangent space of V' at x to the space Hs 4 of
solutions of our boundary value problem. We also know that for each 7 € D
the map v, embeds V as a graph in Wy. This means that for non-zero
& € TV, the V-component of A(£) is nowhere vanishing so the images under
A of any R-basis for TV give the desired 2n elements of Hg 4

Remarks.

1. There is no real need to use the fact that the sequence (20) can be
trivialised holomorphically over the disc, since one can easily adapt the
proof of Proposition 4 to general bundles with appropriate structure.

2. The matrix A, is just the matrix of the Kahler metric wy + i00¢, on
the tangent space of V' at f;(7), in the chosen trivialisation.
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3. Using the factorisation theorem in finite dimensional loop groups of
Chapter 8 of [10] one can always choose a preferred trivialisation of
fX(TV) in which the matrix A, is the identity for all 7 € 9D. The
remaining choice is then in the spliting of the exact sequence: changing
the splitting allows one to change the S; by the boundary value of any
holomorphic map from the disc to the symmetric matrices.

4. Proofs of the main theorems.

We begin with the proof of Theorem 1: this is just a matter of putting
together the work above. Suppose we are given boundary data F €
C*®(0D x V) for which there exists a smooth solution & to Problem 1.
By Theorem 3, this gives a family of holomorphic discs g,, parametrised by
x € V, and by Proposition 3 each of these discs is regular. Hence we can
apply Proposition 2 to deduce that for any nearby family of submanifolds
AT there is a family of holomorphic discs g, : D — W with g,(7) € ]&T for
each 7 € &D. In particular if F is close enough to F in C? this is true for the
LS-graphs A, defined by F. We define G : D x V — W by G(7,z) = gu(7),
so G is C'-close to G. Likewise we define 4, by 4,(z) = G(7, ), and for
each 7 € D the map 7, is Cl-close to v,. In particular we can suppose
(assuming that F is sufficiently close to F) that 7, is an embedding of V
in Wy and the projection 7 o 4, is a diffeomorphism of V' (since these are
C'-open conditions). Then, using Theorem 3 in the other direction, we see
that this holomorphic disc-family g, corresponds to a solution to Problem
1 with data F.

4.1. Proof of Theorem 2.

We require two Lemmas.

Lemma 7. For any n > 1 there are matriz-valued maps S, A on 0D such
that the boundary value problem (14) is not super-regular.

Choose holomorphic functions f,g on a neighbourhood of the unit disc
D such that f and g have simple zeros at 7 = 1 and no other zeros on 0D.
For example we could take f(7) = g(7) = 7 — 1. Then it is easy to verify

that the function % extends to a smooth function o on 0D. Thus we have

g=of+f
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on 0D. Now let A, be the identity matrix for all 7 € 0D and let S, be the
diagonal matrix with diagonal entries (c,0,...,0). Then the vector-valued
functions

u=(f,0,...,0), v={(g,0,...,0)

are solutions of the linear system (14) which vanish at the point 7 = 1.
But we have seen that the no solution of a super-regular system can vanish
anywhere on the disc, so this system is not super-regular.

Lemma 8. Let (V,wp) be a Kahler manifold and p be a point in V. Let Qp
denote the set of real quadratic forms on TV,. For any B € @, there is a
Kahler metric wy +i00¢ on V such the V¢ vanishes at p and the Hessian
of ¢ at p is B. More generally, if K is a compact space and k — B is a
continuous map from K to Q) there is a continuous map k — ¢y from K
to C®(V) such that, for each k € K, wg +i00¢y, is a Kahler metric, Vy,
vanishes at p and the Hessian of ¢ at p is B.

Fix a smooth function f on R such that f(z) =0if x > 2 and f(z) =1
if z < 1 and for each positive integer m define

fml@) = @)+ 1 (3) ++F (55) -

Then it is clear that zf/ (z),z?f" (z) are bounded, independent of m and
x. If we define g,,, by

1
gm(w) = m—Hfm@mHI)
then g, (x) = 1 for small positive z, while g,,(z) vanishes if z > 1 and

lzg!. ()], |z2g!" (x)| are bounded by C/m for some fixed C.

Now choose local complex co-ordinates z, around the point p in V', with-
out loss of generality defined on the unit ball in C™. In these co-ordinates
a quadratic form 8 € @, can be regarded as a quadratic function on this
co-ordinate ball and, for suitably large m, we define

¢5(2) = gm(|2])8(2),

extended by zero over the rest of V. This has the correct Hessian, since
gm(z) =1 for small z, and

[00¢5| < C' (|2l lgm(I2])] + |2llg (12])]) = O(m™).

Thus wo + i58¢5 is positive if m is large enough. The extension of the
argument to families is immediate.
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We now return to the proof of Theorem 2. We fix boundary data S, A,
of a linear system which is not super-regular, as in Lemma 7, and a point
pin V. In a basis of TV, the data S;, A; can be regarded as defining an
element of @, for each 7 € dD. By Lemma 8 we can find a family of
Kahler potentials ¢, such that V¢, vanishes at p and the Hessian at that
point corresponds to (S-, A;) via (18). The condition on the first derivative
means that the LS-graphs A, defined by the ¢, all pass though a fixed point
& in W. Thus the constant map g : D — W, mapping the whole disc to
&, is a solution of the boundary value problem defined by the A, and, by
construction, this holomorphic disc is not super-regular (for these boundary
conditions). So if we let F'(z,7) = ¢,(z) and if there is a smooth solution to
Problem 1 for this boundary data F' the holomorphic disc ¢ cannot appear
as one of the family associated to the solution. Now choose a two-parameter
family ¢, of Kahler potentials on V, for t € [0, 1], such that ¢, 1 = ¢, and
¢r0 = 0 for all 7 € 0D, and such that the derivative V¢, ; vanishes at p for
all 7,t. Then for each ¢ € [0, 1] the constant holomorphic disc g satisfies the
boundary conditions asociated to ¢,;. Suppose that a solution to Problem
1 exists for the boundary data ¢, for each t € [0,1]. Let U C [0, 1] be the
set of parameters ¢ such that the disc g appears in the family of holomorphic
discs associated to the solution. Thus the point ¢ = 0 certainly lies in U
(all the discs in the family are constant in that case), but we have shown
that ¢ = 1 does not lie in U. On the other hand Proposition 2 implies that
U C [0,1] is both open and closed, which gives a contradiction.
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