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Introduction
 In the treatment of malignant tumors, chemotherapy is frequently 

accompanied by hematopoietic side effects due to the myelosuppressive 
character of drugs used. A common neutropenia(accompanied by 
fever and possible infection), to a lesser extent, thrombocytopenia 
and anemia are frequently observed. To circumvent these side effects, 
an effective administration of granulocyte colony stimulating factor 
(G-CSF) is suggested in clinic practice [1-7], and now a standard post-
chemotherapy treatment for neutropenia. Mathematically, people try 
to understand G-CSF control by a variety of models [3,8-12].

A significant G-CSF support in clinic perspective is periodically 
repeated treatment of chemotherapy, and neutrophil is highly 
responsive and dependent on timing and protocol of the drug’s 
administration [13,14]. Experiment have reported that chemotherapy 
increases apoptosis in both proliferative HSCs (hematopoietic stem 
cells) and proliferative neutrophil precursors [15]. To idealize the 
effects of chemotherapy and G-CSF, a square wave temporal functions 
for the loss rates,neutrophil precursor proliferative rate are used, 
explained in reference [16]. The resonance between the perturbation 
due to the periodic chemotherapy and the intrinsic characteristic 
frequency in the neutrophil production have been discussed. The 
periodic damped oscillation in neutrophil levels [17] are also reported 
with the assumption of single dose of chemotherapy, which is simulated 
by exponential mathematically.

In this paper, we explain the hematopoietic dynamics with 
the pharmacokinetics of chemotherapy and G-CSF by periodic 
parametric excitation. The dependence of the neutrophil response on 
the stimulation frequency is examined and resonance phenomena is 
discussed.

The Model Equations
The combined dynamics of hematopoietic stem cells and neutrophil 

production is illustrated in Figure 1 and generally described by the 
following equations 
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The neutrophil system (1) consists of DDEs(delay differential 
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Abstract
The profound effects of chemotherapy on the combined dynamics of the hematological stem cells and their 

differentiated neutrophils is examined. G-CSF is often used to deal with this neutropenia and the response is 
highly variable. To shape the neutrophil response to chemotherapy and G-CSF, periodic parametric resonance is 
discussed. Periodic oscillation in neutrophil levels and the subharmonic 1:2 resonance phenomena are observed 
with the assumption of periodic chemotherapy is given. The work is aim to stimulate further investigations and the 
practical applications.
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Figure 1: A cartoon representation of system.
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equations) with two delays. These two equations takes into account 
the balance between the net production and loss terms of HSCs and 
circulating neutrophils, where Q and

N (both with unit cells/kg)are respectively hematopoietic stem cells 
and neutrophils. HSCs differentiate into the committed neutrophil 
compartment with term kN (N)Q. Delay τs denotes their duration days 
of proliferative phase of HSCs. HSCs either remain in the resting phase 
or enter into the proliferative phase at a rate β(Q). The differentiation 
of HSCs to neutrophil is controlled by kN (N) (the differentiated rate of 
circulating neutrophils), and HSCs proliferation is controlled by the 
resting HSCs population with proliferation rate β(Q). rs represents the 
apoptosis rate during the proliferation phase of HSCs. The circulating 
neutrophils survive with their averaged lifespan 1

Nγ
−  and thus with the 

ature death N Nγ .  Cells in the neutrophil lines experience a successive 
division with time period τNP and then enter into a purely maturation 
compartment with time period τNM, and the total time period τN =τNP 
+τNM.ηNP denotes the proliferative rate of neutrophils and γo denotes 
their death rate before neutrophils enter into the circulation. The 
parameter values in System (1).

Suppose chemotherapy is administrated periodically. Neutropenia 
is a common side-effect, and G-SCF is also administrated after 
chemotherapy. Both the effects of chemotherapy and G-SCF are 
maintained for several days. Chemotherapy increases apoptosis in 
both proliferative HSCs and proliferative neutrophil precursors. The 
perturbation of parameter values are supposed to be 
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Normally, the rates rs,ηNP and γo are constants, and therefore 
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Resonance
The response of neutrophil to chemotherapy, and the effect of 

G-CSF adminstration always can be strong as varying excitation 
frequency near natural frequency. Under the excited vibration of 
parameters rs,ηNP and γo, resonance oscillation can be initiated in 
the interval of the excitation frequency due to the nonlinearity. It is 
well known, system can be unstable due to the action of parametric 
excitation. In certain intervals of frequency Ω lying,system(1) may 
have phase lock solutions. Set ω1= ω2= ω3=Ω, and then let = p

q
ωΩ , 

in general, there exist intervals of excitation frequency Ω  with bigger 
width to induce 1:1 primary resonance or 1:2 subharmonic resonance 
phenomena. The combination parametric resonance can be triggered 
which induce the periodic solutions with large amplitude. To perform 
bifurcation analysis, we choose Ω  as bifurcation parameter, then 
define µ:=( Ω,τs), and set .φµ(Q,N;t) to be solution flow of system (1) 
with initial values Q(t-τ)= Q*,N(t-τ)=N* for 0tτ ≤ ≤ , where τ=max(τs, 
τN). Since Ω:ω=1:1, every point on its orbit is a period point. Define 
the amplitude || N|| to describe the difference between the maximal 
period point and the minimal period point. We varied Ω widely and, 
for each value, solved DDEs (1) for t=1200 days using initial values Q= 
Q*,N=N* for 0Nt tτ− ≤ ≤  due to delays τs<τN satisfied. The long term 
effect of chemotherapy and G-CSF for each simulation the last 400 
days are used to obtain the amplitude in neutrophil fluctuations. || N||  
continue to a bigger value to form the resonance in a widely varying 
scope of excitation frequency. The 1:1 resonance regime in parameter 

space (Ω,τs)plane is formed in a shaded regime as shown in Figure 2a. 
In special, choose τs =3.2, the response of neutrophil numbers near 1 
(the ratio of Ω/ω) are denoted by its amplitude exhibits large values 
continuously. The amplitude response corresponding to the ratio of 
Ω/ω is drawn in Figure 2b.

Vary excitation frequency Ω near ω/2 with ω being natural 
frequency, the 1:2 subharmonic resonance regime in parameter space 
(,τ) plane is also formed by shaded regime in Figure 3a. In special, 
choose  τs =3.2, the response of neutrophil numbers near 0.5 (the 
ratio of Ω/ω) are drawn which exhibits 1:2 subharmonic resonance 
phenomena as shown in Figure 3b. The amplitude response exhibits 
large values continuously. 

Conclusion
In a physiologically realistic point view, a two compartment 

model combined the dynamics of hematopoietic stem cells and the 
differentiated neutrophils with its response dependence on the period 
chemotherapy and G-CSF adminstration are given. The combined 
parametric excitation resonance phenomena are discussed. When the 
ratio between excitation frequency and eigenfrequency are rational, 
both 1:1 primary resonance and 1:2  subharmonic resonance are tracked 
which respectively form a resonance regime on plane of parameters.

Figure 2: Primary resonance phenomena in system (a) Resonance regime 
of 1:1 primary resonance formed in   parameter space. The shaded regime is 
the called 1:1 resonance regime. (b)The amplitude response of neutrophils 
versus varying ratio Ω/ω.
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Figure 3: Ubharmonic resonance phenomena in system (a) resonance 
regime of 1:2 subharmonic resonance formed in (Ω,τ) parameter space. 
The shaded regime is the called 1:2 resonance regime. (b)The amplitude 
response of neutrophils versus varying ratio Ω/ω.
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