
303

c⃝2020 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 72, No. 1 (2020) pp. 303–331
doi: 10.2969/jmsj/81438143

On superspecial abelian surfaces over finite fields II

By Jiangwei Xue, Tse-Chung Yang and Chia-Fu Yu

(Received Oct. 9, 2018)

Abstract. Extending the results of the current authors [Doc. Math.,

21 (2016), 1607–1643] and [Asian J. Math. to appear, arXiv:1404.2978], we
calculated explicitly the number of isomorphism classes of superspecial abelian
surfaces over an arbitrary finite field of odd degree over the prime field Fp. A
key step was to reduce the calculation to the prime field case, and we calculated

the number of isomorphism classes in each isogeny class through a concrete
lattice description. In the present paper we treat the even degree case by a
different method. We first translate the problem by Galois cohomology into

a seemingly unrelated problem of computing conjugacy classes of elements of
finite order in arithmetic subgroups, which is of independent interest. We
then explain how to calculate the number of these classes for the arithmetic
subgroups concerned, and complete the computation in the case of rank two.

This complements our earlier results and completes the explicit calculation of
superspecial abelian surfaces over finite fields.

1. Introduction.

Throughout this paper, p denotes a prime number and q is a power of p. An abelian

variety over a field k of characteristic p is said to be supersingular if it is isogenous to

a product of supersingular elliptic curves over an algebraic closure k̄ of k; it is said to

be superspecial if it is isomorphic to a product of supersingular elliptic curves over k̄.

As any supersingular abelian variety is isogenous to a superspecial abelian variety1, it is

common to study supersingular abelian varieties through investigating the superspecial

abelian varieties.

Our goal is to calculate explicitly the number of superspecial abelian surfaces over

an arbitrary finite field. This is motivated by the search for natural generalizations of

known explicit results of elliptic curves over finite fields to abelian surfaces, especially

from supersingular elliptic curves to supersingular abelian surfaces. Thus, studying su-

perspecial abelian surfaces becomes a vital step for this purpose. Explicit calculations for

supersingular abelian surfaces are certainly more complicated. However, if all supersin-

gular cases are understood, then we would have very good understanding of all abelian

surfaces over finite fields, because the cases of ordinary and almost ordinary (simple)

abelian surfaces are simpler and have been studied by Waterhouse [24]. That would
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improve our knowledge from d = 1 (elliptic curves by Deuring in the 1940’s) to d = 2

(abelian surfaces).

In [27] we calculated explicitly the number of superspecial abelian surfaces over an

arbitrary finite field Fq of odd degree over Fp. This extended our earlier works [25],

[26] and [31], which contributed to the study of superspecial abelian varieties over finite

fields. In this paper we treat the even degree case. Thus, this complements the results

in loc. cit. and completes an explicit calculation of superspecial abelian surfaces over an

arbitrary finite field.

A key step in [27] is the reduction to the case where the ground field is a prime

finite field. This step is achieved by a Galois cohomology argument. Then we calculate

case-by-case the number of superspecial abelian surfaces in each isogeny class over Fp.
This approach works fine when the field Fq is of odd degree over Fp because we have a

natural concrete lattice description for abelian varieties over Fp (see [31, Theorem 3.1]).

When the degree [Fq : Fp] is even, the Galois cohomology argument unfortunately yields

no immediate simplification. However, it leads to a seemingly unrelated problem, which

is important but also equally challenging, on counting conjugacy classes of elements of

finite order in arithmetic subgroups. Although the connection itself is straightforward,

it is applicable to a rather general setting; see Proposition 1.1.

For any group G, we denote by Cl(G) the set of conjugacy classes of G and Cl0(G) ⊂
Cl(G) the subset of classes of group elements of finite order. LetD = Dp,∞ be the definite

quaternion Q-algebra ramified exactly at p and ∞, and O be a maximal order in D.

Proposition 1.1. Let Fq be a finite field containing Fp2 , and d > 1 be an integer.

Then the set of Fq-isomorphism classes of d-dimensional superspecial abelian varieties

over Fq is in bijection with the set Cl0(GLd(O)).

By a classical result of Eichler [7], if d > 1, then the class number of Matd(O) is

equal to one, where Matd(O) denotes the ring of d× d matrices over O. Thus, for d ≥ 2,

any maximal arithmetic subgroup in GLd(D) is conjugate to GLd(O) by an element in

GLd(D), and hence Proposition 1.1 does not depend on the choice of the maximal order

O. We prove the following explicit formula (see Theorem 3.4).

Theorem 1.2. The cardinality of Cl0(GL2(O)) is equal to
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+ 2
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))2

+ 2o(5) + o(8) + o(12) + o(1, 2), (1.1)

where

o(5) =


1 if p = 5;

0 if p ≡ 1 (mod 5);

2 if p ≡ 2, 3 (mod 5);

4 if p ≡ 4 (mod 5);

o(8) =


1 if p = 2;

0 if p ≡ 1 (mod 8);

4 if p ≡ 3, 5, 7 (mod 8);

o(12) =


3 if p = 2, 3;

0 if p ≡ 1 (mod 12);

4 if p ≡ 5, 7, 11 (mod 12);

o(1, 2) =
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if p ̸= 3.

The number o(n) or o(n1, n2) is defined in (3.7) (see also Section 3.2), which is

the cardinality of a subset of Cl0(GL2(O)). Combining with Proposition 1.1, we obtain

an explicit formula for the number of superspecial abelian surfaces over Fq ⊇ Fp2 . By

Theorem 1.2, we see that the main term of |Cl0(GL2(O))| is o(1, 2) and obtain the

asymptotic behavior of |Cl0(GL2(O))|:

|Cl0(GL2(O))|
p2/9

−→ 1, as p→∞. (1.2)

In fact, the method we use for computing Cl0(GL2(O)) also provides a way of finding

structures of Cl0(GLd(O)) for higher d; see Section 3.1. However, as d increases, it

becomes a daunting or even hopeless task to carry out similar computations as in the

proof of Theorem 1.2 for d = 2. Nevertheless, it is an interesting question to figure out

the main term and error terms of |Cl0(GLd(O))| as d or p varies. Thanks to a finiteness

result of Borel (see Theorem 2.2), it also makes sense to ask the similar questions for

more general arithmetic subgroups.

This paper is organized as follows. In Section 2, we give a proof of Proposition 1.1.

Section 3 describes our main results in details. The remaining part of this paper fills in

the details of the computation in Theorem 1.2.
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2. Conjugacy classes of elements of finite order.

As in the introduction, for any group G, we denote by Cl(G) the set of conjugacy

classes of G, and by Cl0(G) ⊂ Cl(G) the subset of classes of elements of finite order in G.

In this section we reduce the computation of the number of d-dimensional superspecial

abelian varieties to that of Cl0(GLd(O)) (Proposition 1.1). Then we study the finiteness

of Cl0(G) for a certain special type of groups G. The latter part is of independent interest,

and will not be used in the rest of this paper.

2.1. Galois cohomology and forms.

Let X0 be a quasi-projective algebraic variety over an arbitrary field k, and denote

by Γk = Gal(ks/k) the Galois group of ks/k, where ks is a separable closure of k. Let

Σ(X0, ks/k) denote the set of isomorphism classes of ks/k-forms of X0. In other words,

Σ(X0, ks/k) classifies algebraic varieties X over k such that there is an isomorphism X⊗k
ks ≃ X0 ⊗k ks. A well-known result due to Weil states that there is a natural bijection

Σ(X0, ks/k)
∼−→ H1(Γk, G) of pointed sets, where G = Autks(X0) := Autks(X0⊗k ks) is

the group of automorphisms of X0⊗k ks over ks, equipped with the discrete topology and

a continuous Γk-action. If Γk acts trivially on Autks(X0), namely the natural inclusion

Aut(X0) ↪→ Autks(X0) is bijective, then H1(Γk, G) = Hom(Γk, G)/G, where G acts on

the set Hom(Γk, G) of continuous homomorphisms by conjugation. In addition, if Γk
is isomorphic to the profinite group Ẑ = lim←−Z/mZ, one obtains a natural bijection of

pointed sets:

Σ(X0, ks/k)
∼−→ Cl0(G), G = Aut(X0). (2.1)

Let X be an abelian variety over k and k′/k be a field extension. Denote by

Endk′(X) = Endk′(X ⊗k k′) the endomorphism ring of X ⊗k k′ over k′; we also

write End(X) for Endk(X). The endomorphism algebra of X ⊗k k′ is defined to be

End(X⊗k k′)⊗ZQ and denoted by End0k′(X). Applying Weil’s result to abelian varieties

over finite fields, one obtains the following proposition.

Proposition 2.1. Let X0 be an abelian variety over a finite field Fq such that the

endomorphism algebra End0Fq
(X0) is equal to End0(X0), and let G = Aut(X0). Then

there is a natural bijection of pointed sets Σ(X0,Fq/Fq) ≃ Cl0(G).

Note that the group G in Proposition 2.1 is an arithmetic subgroup of the reductive

group G over Q such that G(R) = (End0(X0)⊗Q R)
× for any Q-algebra R.

Proof of Proposition 1.1. We choose a supersingular elliptic curve E0 over

Fp2 with End(E0) = O under an isomorphism End0(E0) ≃ D. Put X0 = Ed0 ⊗Fp2
Fq,

then we have G = Aut(X0) = GLd(O) and the Galois group ΓFq acts trivially on G.

By Proposition 2.1, there is a natural bijection Σ(X0,Fq/Fq)
∼−→ Cl0(G). As X0 is

superspecial of dimension d > 1, for any d-dimensional superspecial abelian variety X

over Fq there is an isomorphism X ⊗Fq Fq ≃ X0 ⊗Fq Fq; see [13, Section 1.6, p.13].

Thus, Σ(X0, ks/k) classifies the d-dimensional superspecial abelian varieties over Fq up

to Fq-isomorphism. This completes the proof of the proposition. □
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2.2. Finiteness of Cl0(G) for some groups G.

We take the opportunity to discuss the finiteness of Cl0(G) for a group G that is of

the form H(F ) for a reductive group H over a global or local field F , or an arithmetic

subgroup of H(F ) for a global field F . The following is a fundamental result due to

Borel; see [4, Section 5].

Theorem 2.2. Let G be a reductive group over a number field F , and Γ ⊂ G(F )

an S-arithmetic subgroup, where S is a finite set of places of F containing all the

archimedean ones. Then there are only finitely many finite subgroups of Γ up to con-

jugation by Γ. In particular, Cl0(Γ) is finite.

We could not find the reference for a similar result of Theorem 2.2 under the condi-

tion that F is a global function field.

Proposition 2.3. (1) Suppose G is a linear algebraic group over a non-

archimedean local field F of characteristic zero. Then Cl0(G(F )) is finite.

(2) Let G be a linear algebraic group over R. Then the set Cl0(G(R)) is infinite if

and only if G(R) contains a non-trivial compact torus S.

Proof. (1) Since charF = 0, every element in G(F ) of finite order is semisimple

and hence it is contained in a maximal F -torus T of G. By [16, Section 6.4, Corollary 3,

p.320], there are only finitely many maximal F -tori up to conjugation by G(F ). There-

fore, one reduces the statement to the case where G = T is a torus. Choose a finite exten-

sion K of F over which T splits. Then one has T (F ) ⊂ (K×)d, where d = dimT . Since

there are only finitely many roots of unity in K×, the subgroup T (F )tors = Cl0(T (F )) is

finite.

(2) Suppose that every R-torus T of G is split. Then we use the argument in (1) to

prove that Cl0(G(R)) is finite, because for a split torus T , the set Cl0(T (R)) = T (R)tors
is finite. Now we prove the other direction. Suppose that G(R) contains a non-trivial

compact torus S. Then for any positive integer n there is an element of order n in S.

Since elements of different orders are not conjugate, the set Cl0(G(R)) is infinite. This

proves the proposition. □

Proposition 2.4. Let A be a finite-dimensional semisimple algebra over a number

field F . Then Cl0(A
×) is finite.

Proof. For each positive integer n, denote by HomF (F [t]/(t
n−1), A) the set of F -

algebra homomorphisms from F [t]/(tn−1) to A, and by Hom∗
F (F [t]/(t

n−1), A) the subset
consisting of all maps φ with ord(φ(t)) = n. The group A× acts on HomF (F [t]/(t

n− 1),

A) by conjugation, and we have orbit spaces

Hom∗
F (F [t]/(t

n − 1), A)/A× ⊂ HomF (F [t]/(t
n − 1), A)/A×.

Let Cl0(n,A
×) denote the set of conjugacy classes of elements of order n in A×. Clearly

this set agrees with the set Hom∗
F (F [t]/(t

n − 1), A)/A×.

Since A is separable over F and F [t]/(tn − 1) is semisimple, an extension of the

Noether–Skolem theorem ([17, Theorem 2], also see [30, Theorem 1.4]) states the set
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HomF (F [t]/(t
n − 1), A)/A× is finite. Thus, Cl0(n,A

×) is finite for each n. Note that

Cl0(A
×) is the union of Cl0(n,A

×) for all n, and that Cl0(n,A
×) is empty for almost all

n, because the degree of Q(ζn) is unbounded when n goes large, This proves the finiteness

of Cl0(A
×). □

Now we provide an example showing that Cl0(G(F )) can be infinite for a connected

reductive group G over a number field F . Take G = SL2 and F = Q. Consider the subset

Cl0(4, SL2(Q)) ⊂ Cl0(SL2(Q)) of classes of order 4. We choose a base point ξ0 =

(
0−1
1 0

)
and set K := Q(ξ0), which is isomorphic to Q(

√
−1 ). Every element ξ ∈ SL2(Q) of

order 4 is conjugate to ξ0 by an element g1 in GL2(Q), i.e. ξ = g1ξ0g
−1
1 . Two elements

g1 and g2 in GL2(Q) give rise to the same element ξ if and only if g2 = g1z for some

element z ∈ K×. Moreover, suppose ξ1 and ξ2 are two elements in SL2(Q) of order 4

presented by g1 and g2, respectively. Then ξ1 and ξ2 are conjugate in SL2(Q) if and only

if g2 = hg1z for some elements h ∈ SL2(Q) and z ∈ K×. Therefore, we have proved a

bijection

Cl0(4, SL2(Q)) ≃ SL2(Q)\GL2(Q)/K×. (2.2)

Taking the determinant, we have Cl0(4, SL2(Q)) ≃ Q×/NK/Q(K
×). Note that

NK/Q(K
×) consists of all non-zero elements of the form a2 + b2 with a, b ∈ Q. By basic

number theory, we obtain the following result.

Proposition 2.5. The set Cl0(4,SL2(Q)) is in bijection with the F2-vector space

generated by −1 and prime elements p with p ≡ 3 (mod 4). In particular, the set

Cl0(4, SL2(Q)) is infinite.

Remark 2.6. Another way to interpret the previous example is through the point

of view of stable conjugacy classes. LetG be a connected reductive group over F as before.

Two elements ξ1, ξ2 ∈ G(F ) are said to be stably conjugate if there exists g ∈ G(F ) such
that ξ1 = gξ2g

−1. Let Gξ be the centralizer of ξ ∈ G(F ). Langlands [12] establishes a

bijection between the set of conjugacy classes within the stable conjugacy class of ξ and

ker(H1(F,Gξ)→ H1(F,G)). In the example where G = SL2 and F = Q, every element

of order 4 in SL2(Q) is stably conjugate to ξ0. Since H
1(Q,SL2) = {1} and Gξ0 coincides

with the norm 1 torus T := ker
(
ResK/Q(Gm,K)

NK/Q−−−→ Gm,Q
)
, we recover the result

Cl0(4, SL2(Q)) ≃ H1(Q, T ) = Q×/NK/Q(K
×).

Wemention Springer and Steinberg [20] and Humphreys [10] as important references

for conjugacy classes of linear algebraic groups.

3. The cardinality of Cl0(GL2(O)).

Let D be a finite-dimensional central division Q-algebra, and O a maximal order

in D. Fix an integer d > 1. We explain the strategy for calculating the cardinality of

Cl0(GLd(O)), based on the lattice description of conjugacy classes in [27, Section 6.4].
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As remarked right after Proposition 1.1, |Cl0(GLd(O))| depends only on d and D, not on

the choice of the maximal order O. So it makes sense to set H(d,D) := |Cl0(GLd(O))|.
The strategy is carried out in detail for the case d = 2 and D = Dp,∞ in subsequent

sections under a mild condition on p (see Remark 3.7), and the resulting formula for

H(2, Dp,∞) is stated in Theorem 3.4. As a convention, N denotes the set of strictly

positive integers, and Z≥0 the set of nonnegative ones.

3.1. The general strategy.

Given an element x ∈ GLd(O) of finite order, its minimal polynomial over Q is of

the form

Pn(T ) = Φn1(T ) · · ·Φnr (T ), 1 ≤ n1 < · · · < nr (3.1)

for some r-tuple n = (n1, . . . , nr) ∈ Nr, where Φn(T ) ∈ Z[T ] denotes the n-th cyclotomic

polynomial. For simplicity, we denote the set of strictly increasing r-tuples of positive

integers by N̆r. Let C(n) ⊆ Cl0(GLd(O)) be the subset of conjugacy classes with minimal

polynomial Pn(T ). The subring Z[x] ⊂ Matd(O) (resp. subalgebra Q[x] ⊂ Matd(D))

generated by x is isomorphic to An (resp. Kn) defined as follows,

An :=
Z[T ]

(
∏r
i=1 Φni(T ))

, Kn :=
Q[T ]

(
∏r
i=1 Φni(T ))

∼=
r∏
i=1

Q[T ]/(Φni(T )). (3.2)

If r = 1, we omit the underline in n and write An andKn instead. HenceKn
∼=

∏r
i=1Kni ,

but this decomposition does not hold for An in general. Let Oopp (resp. Dopp) be the

opposite ring of O (resp. D).

Let V = Dd be the right D-space of column vectors. The left multiplication of

Matd(D) on V induces the identification Matd(D) = EndD(V ). The right scalar action

byD on V gives an embeddingDopp ↪→ EndQ(V ) ofDopp which commutes with Matd(D),

and we have EndQ(V ) = Matd(D)⊗Dopp. LetM0 = Od ⊂ V be the standard O-lattice in
V . Then EndO(M0) = Matd(O) ⊂ Matd(D). The conjugacy class [x] ∈ C(n) equips M0

with an (An,O)-bimodule structure which is faithful as an An-module, or equivalently,

a faithful left An ⊗ZOopp-module structure. Similarly, V is equipped with a faithful left

Kn ⊗Q D
opp-module structure.

For simplicity, we define

An := An ⊗Z Oopp, and Kn := Kn ⊗Q D
opp =

r∏
i=1

Kni ⊗Q D
opp. (3.3)

Clearly, An is an order in the semisimple Q-algebra Kn
∼=

∏r
i=1 Kni . Each Kn is a

central simple Kn-algebra, whose left simple module is denoted by Wn. Let

e(n) := dimDWn

as a left Dopp-space (or equivalently, a right D-space). Note that e(n) is also the smallest

e ∈ N such that there exists an embedding Kn ↪→ Mate(D).

The decomposition of Kn in (3.3) induces a decomposition
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V =
r⊕
i=1

Vni , (3.4)

where each Vni
is a nonzero Kni

-module. Hence Vni
≃ (Wni

)mi for some mi ∈ N.
Comparing the D-dimensions, we get a condition for (n,m):

d = m1e(n1) + · · ·+mre(nr). (3.5)

We refer to [30, Theorem 1.3] for discussions of the general case where the ground field

Q is replaced by an arbitrary field. The r-tuple m = (m1, . . . ,mr) ∈ Nr will be called

the type of the left Kn-module V , and the pair (n,m) the type of the conjugacy class

[x] ∈ C(n) ⊆ Cl0(GLd(O)).
A pair of r-tuples (n,m) ∈ N̆r ×Nr is said to be d-admissible if it satisfies equation

(3.5). Let C(n,m) ⊆ Cl0(GLd(O)) be the subset of conjugacy classes of type (n,m).

Then we have

Cl0(GLd(O)) =
⨿
n

C(n) =
⨿

(n,m)

C(n,m), (3.6)

where (n,m) runs over all d-admissible pairs. Let L (n,m) be the set of isomorphism

classes of An-lattices in the left Kn-module V of type m. According to the Jordan–

Zassenhaus theorem [6, Theorem 24.1, p.534], L (n,m) is a finite set.

Lemma 3.1. There is a bijection between C(n,m) and L (n,m).

Proof. As explained above, each conjugacy class [x] ∈ C(n,m) equips M0 = Od
with an An-module structure, thus defines a map from C(n,m) to L (n,m). Conversely,

for any member [M ] ∈ L (n,m), we regard M as an (An,O)-bimodule. Since the class

number of Matd(D) is one (as d > 1), we haveM ≃M0 as right O-modules. The faithful

left An-action on M provides an embedding An ↪→ EndO(M) ≃ EndO(M0) = Matd(O),
which makes M and M0 as isomorphic (An,O)-bimodules. This shows the surjectivity.

Let x, y be two elements of GLd(O) such that their conjugacy classes lie in C(n,m). Let

Mx (resp. My) be the (An,O)-bimodule structure on M0 obtained by the embedding

φx : An ↪→ Matd(O) determined by φx(T ) = x (resp. by φy(T ) = y). Then Mx ≃My if

and only if there is an O-isomorphism α :M0
∼−→M0 such that α(φx(a)m) = φy(a)α(m)

for every a ∈ An and m ∈ M0. Let g ∈ GLd(O) represent α. Then we have gx = yg.

This proves the injectivity and hence the lemma. □

Let us denote

o(n) := |C(n)| and o(n,m) := |C(n,m)| = |L (n,m)|. (3.7)

It follows from (3.6) that

H(d,D) = |Cl0(GLd(O))| =
∑
n

o(n) =
∑
(n,m)

o(n,m). (3.8)
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Now fix a d-admissible pair (n,m) ∈ N̆r×Nr and a left Kn-module V of typem. The

isomorphism class of an An-lattice Λ ⊂ V is denoted by [Λ]. Two An-lattices Λ1,Λ2 ⊂ V
are isomorphic if and only if there exists g ∈ EndKn

(V )× ⊂ GLd(D) such that Λ1 = gΛ2.

Clearly,

EndKn(V ) =
r∏
i=1

EndKni
(Vni), and EndKni

(Vni) ∼ Kni ⊗Q D, (3.9)

where ∼ denotes the Brauer equivalence of central simple algebras. On the other hand,

the algebra EndKni
(Vni) is the centralizer of Kni in EndD(Vni). So by the centralizer

theorem [8, Theorem 3.15],

[Kni : Q]2 [EndKni
(Vni) : Kni ] = [EndD(Vni) : Q] = [D : Q](mie(ni))

2. (3.10)

The structure of EndKn(V ) is completely determined by (3.9) and (3.10).

For each prime ℓ ∈ N, let Λℓ be the ℓ-adic completion of Λ, and Lℓ(n,m) the set

of isomorphism classes of An,ℓ-lattices in Vℓ. The profinite completion Λ 7→ Λ̂ =
∏
ℓ Λℓ

induces a surjective map

Ψ : L (n,m)→
∏
ℓ

Lℓ(n,m). (3.11)

For almost all primes ℓ, the order An,ℓ is maximal in Kn,ℓ, in which case Lℓ(n,m)

is a singleton by [6, Theorem 26.24]. So the right hand side of (3.11) is essentially a

finite product. Two lattices Λ1 and Λ2 are said to be in the same genus if Ψ([Λ1]) =

Ψ([Λ2]), that is, if they are locally isomorphic at every prime ℓ. The fibers of Ψ partition

L (n,m) into a disjoint union of genera. More explicitly, for each element L = (Lℓ)ℓ ∈∏
ℓ Lℓ(n,m), let

L (n,m,L) := Ψ−1(L) = {[Λ] ∈ L (n,m) | [Λℓ] = Lℓ, ∀ℓ }. (3.12)

Then L (n,m) =
⨿

L L (n,m,L), where L runs over elements of
∏
ℓ Lℓ(n,m).

Lastly, we pick an An-lattice Λ ⊂ V with [Λ] ∈ L (n,m,L) and write OΛ for its

endomorphism ring EndAn(Λ) ⊂ EndKn(V ). It follows from [21, Proposition 1.4] that

L (n,m,L) is bijective to the set Cl(OΛ) of locally principal right ideal classes of OΛ. In

particular,

|L (n,m,L)| = h(OΛ) := |Cl(OΛ)|. (3.13)

Another choice Λ′ with [Λ′] ∈ L (n,m,L) produces an endomorphism ring OΛ′ lo-

cally conjugate to OΛ at every prime ℓ, and hence gives rise to the same class num-

ber h(OΛ′) = h(OΛ). If An is maximal at ℓ, then (OΛ)ℓ is a maximal order in

EndKn(V )ℓ = EndKn,ℓ
(Vℓ).

In summary, the calculation of H(d,D) is separated into 3 steps:

(1) For each 1 ≤ r ≤ d, list the set T (d, r) of all d-admissible pairs (n,m) ∈ N̆r × Nr.
We set T (r) = T (d, r) if d is clear from the context.
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(2) For each (n,m), classify the genera of An-lattices in the left Kn-module V of type

m. This amounts to classifying the isomorphism classes of An,ℓ-lattices in Vℓ. Only

the primes ℓ with An,ℓ non-maximal come in to play.

(3) For each genus, write down (at least locally) the endomorphism ring of a lattice

member and calculate its class number. The sum of all these class numbers is

H(d,D).

Remark 3.2. We make a couple of simplifications for the calculations.

(i) The center Z(GLd(O)) = {±1} acts on Cl0(GLd(O)) by multiplication, and induces a

bijection between C(n) and C(n†), where n† is obtained by first defining an intermediate

r-tuple n‡ := (n‡1, . . . , n
‡
r) with

n‡i =


2ni if 2 ∤ ni,
ni if 4 | ni,
ni/2 otherwise,

(3.14)

for each 1 ≤ i ≤ r, and then rearranging its entries in ascending order. For example,

if n = (3, 4), then n† = (4, 6). Thus o(n) = o(n†) and only one of them needs to be

calculated.

(ii) Let u be the reduced degree of D over Q, and Λ an An-lattice in the Kn-module V

of type m. For almost all primes ℓ, we have Oopp ⊗ Zℓ ≃ Matu(Zℓ), and hence An,ℓ ≃
Matu(An,ℓ). Fix such an ℓ. It then follows from Morita equivalence that Λℓ ≃ (Λ′

ℓ)
u and

Vℓ ≃ (V ′
ℓ )
u, where Λ′

ℓ is an An,ℓ-lattice in the Kn,ℓ-module V ′
ℓ =

∏r
i=1 V

′
ni,ℓ

. Each V ′
ni,ℓ

is a free Kni,ℓ-module of rank

dimQ(D
mie(ni))/(u[Kni

: Q]) = umie(ni)/φ(ni). (3.15)

The association Λℓ 7→ Λ′
ℓ establishes a one-to-one correspondence between Lℓ(n,m)

and the set of isomorphism classes of An,ℓ-lattice in V ′
ℓ . Moreover, EndAn,ℓ

(Λℓ) ∼=
EndAn,ℓ

(Λ′
ℓ). This reduces the classification of lattices over the non-commutative or-

der An,ℓ to that over the commutative order An,ℓ, which is much easier. We make use of

this simplification in Section 5; see Table 2.

Remark 3.3. When D = Dp,∞, many numerical invariants discussed in this sub-

section admit natural geometric meanings. Assume that Fq has even degree a := [Fq : Fp]
over its prime field as in Proposition 1.1. Recall that an algebraic integer π ∈ Q is said

to be a Weil q-number if |ι(π)| = q1/2 for every embedding ι : Q(π) ↪→ C. One class

of examples is given by πn := (−p)a/2ζn for n ∈ N, where ζn denotes a primitive n-th

root of unity. By the Honda–Tate theorem, there is a unique simple abelian variety

Xn over Fq up to isogeny corresponding to the Gal(Q/Q)-conjugacy class of πn. It

is known [27, Subsection 6.2] that Xn is a supersingular abelian variety of dimension

e(n). Fix an integer d > 1 and let (n,m) ∈ N̆r × Nr be a d-admissible pair. By [27,

Proposition 6.11], o(n,m) counts the number of Fq-isomorphism classes of d-dimensional

superspecial abelian varieties over Fq in the isogeny class of Xn,m :=
∏r
i=1(Xni)

mi . In

particular, r measures the number of Fq-isotypic parts of Xn,m. By [27, Lemma 6.3], we
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have End0(Xn,m) ≃ EndKn(V ), where V is a left Kn-module of type m.

3.2. Explicit formulas for H(2, Dp,∞).

First, we list all 2-admissible pairs (n,m) ∈ N̆r×Nr for r = 1, 2. Note that e(n) ≤ 2

only if φ(n) = [Kn : Q] ≤ 4, i.e. n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. More explicitly,

• if n ∈ {1, 2}, then Kn = Q and e(n) = 1;

• if n ∈ {3, 4, 6}, then [Kn : Q] = 2. We have e(n) = 2 if p splits in Kn, and e(n) = 1

otherwise.

• if n ∈ {5, 8, 10, 12}, then [Kn : Q] = 4 and e(n) ≥ 2. We have e(n) = 2 if and only

if p does not split completely in Kn.

Thus we have

T (1) = {(n,m) ∈ N× N | n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12},me(n) = 2},

T (2) = {((n1, n2), (m1,m2)) ∈ N̆2 × N2 | n1 < n2, ni ∈ {1, 2, 3, 4, 6},mie(ni) = 1}.

Note that for each n ∈ N̆r with r = 1, 2, there is at most one m ∈ Nr such that (n,m)

is 2-admissible. For brevity, we omit m from the notation L (n,m) and write L (n)

instead. Similarly, we discuss only the value of o(n) rather than that of o(n,m). Thus

there should be no ambiguity of the notation o(1, 2) for n = (1, 2). Using this notation,

we have 19 2-admissible elements:

T (1) = {1, 2, 3, 4, 5, 6, 8, 10, 12},
T (2) = {(1, 2), (1, 3), (1, 4), (1, 6), (2, 3), (2, 4), (2, 6), (3, 4), (3, 6), (4, 6)}.

By Remark 3.2(i), we have

o(1) = o(2) = 1, o(3) = o(6), o(5) = o(10); (3.16)

o(1, 3) = o(2, 6), o(1, 4) = o(2, 4), o(1, 6) = o(2, 3), o(3, 4) = o(4, 6). (3.17)

Let q = pa be an even power of p. By Remark 3.3, each o(n) above counts the number

of isomorphism classes of superspecial abelian surfaces over Fq in a supersingular isogeny

class over Fq determined by n ∈ N̆r. If r = 1 so that n = n ∈ N, then the isogeny class

is isotypic; it is even simple if e(n) = 2. If r = 2, then the isogeny class is non-isotypic:

every member is Fq-isogenous to a product of two mutually non-isogenous supersingular

elliptic curves over Fq.

Theorem 3.4. Let D = Dp,∞ be the quaternion Q-algebra ramified exactly at p

and ∞, and O a maximal order in D. We have

H(2, Dp,∞) = |Cl0(GL2(O))| = 2 + 2o(3) + o(4) + 2o(5) + o(8) + o(12)

+ o(1, 2) + 2o(2, 3) + 2o(2, 4) + 2o(2, 6) + 2o(3, 4) + o(3, 6),
(3.18)

where the value of each o(n) is as follows :
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• o(3) = 2−
(
−3
p

)
;

• o(4) = 2−
(
−4
p

)
;

• o(5) =


1 if p = 5;

0 if p ≡ 1 (mod 5);

2 if p ≡ 2, 3 (mod 5);

4 if p ≡ 4 (mod 5);

• o(8) =


1 if p = 2;

0 if p ≡ 1 (mod 8);

4 if p ≡ 3, 5, 7 (mod 8);

• o(12) =


3 if p = 2, 3;

0 if p ≡ 1 (mod 12);

4 if p ≡ 5, 7, 11 (mod 12);

• o(1, 2) =



3 if p = 3;

(p− 1)2

9
+
p+ 15

18

(
1−

(
−3
p

))
+
p+ 2

6

(
1−

(
−4
p

))
+

1

6

(
1−

(
−3
p

))(
1−

(
−4
p

))
if p ̸= 3;

• o(2, 3) =
(
1−

(
−3
p

))(
p− 1

12
+

1

3

(
1−

(
−3
p

))
+

1

4

(
1−

(
−4
p

)))
;

• o(2, 4) =
(
p+ 3

3
− 1

3

(
−3
p

))(
1−

(
−4
p

))
;

• o(2, 6) =
(
5p+ 18

12
+

1

3

(
−3
p

)
− 1

4

(
−4
p

))(
1−

(
−3
p

))
;

• o(3, 4) =
(
1−

(
−3
p

))(
1−

(
−4
p

))
;

• o(3, 6) = 2

(
1−

(
−3
p

))2

.

Here if p = 2, then (·/2) is understood as the Kronecker symbol [1, Definition 10.2.1].

That is,

(n
2

)
=


0 if 2|n;
1 if n ≡ 1, 7 (mod 8);

−1 if n ≡ 3, 5 (mod 8).
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Corollary 3.5. Keeping the notation of Theorem 3.4, we have

lim
p→∞

H(2, Dp,∞)

p2/9
= 1. (3.19)

Proof. By Theorem 3.4, the dominant term of H(2, Dp,∞) is o(1, 2), which is

asymptotic to (p− 1)2/9 as p tends to infinity. □

Remark 3.6. Karemaker and Pries [11, Proposition 7.2] give a full classification of

the types of principally polarized simple supersingular abelian surfaces (A, λ) over a finite

field Fq with AutFq
(A, λ) = Z/2Z. They also prove [11, Proposition 7.6] that if p ≥ 3,

then the proportion of Fpt -rational points of the supersingular locus A2,ss which represent

(A, λ) with AutFp
(A, λ) ̸= Z/2Z tends to zero as t → ∞. They ask whether or not the

majority of principally polarized supersingular abelian surfaces over Fpt are those with

normalized Weil numbers (1, 1,−1,−1). From Theorem 3.4 and [27, Theorems 1.1 and

1.2] we see that the proportion of superspecial abelian surfaces over Fpt with normalized

Weil numbers (1, 1,−1,−1) (with t fixed) tends to one as p → ∞. However, to deduce

a similar result for supersingular abelian surfaces, one could use the argument of [28]

where we compute the size of the isogeny class corresponding to the Weil number
√
pt

with odd t.

In the calculations for Theorem 3.4, we make frequent use of Eichler orders, so

let us briefly recall the definition and basic properties. Let R be a Dedekind domain

with fractional field F , and D be a quaternion F -algebra (not necessarily division). An

R-order O in D is called an Eichler order if it can be written as the intersection of

two maximal orders; see [5, Corollary 2.2] for an equivalent characterization of Eichler

orders. The R-ideal index [19, Chapter III, Section 1] of an Eichler order O relative

to any maximal R-order is called the level of O. Assume further that R is a complete

discrete valuation ring, and let π be a local parameter of R. If D is division, then there

is a unique maximal order in D, hence a unique Eichler order O. Any O-lattice in a left

D-vector space of dimension m is isomorphic to Om. Next, suppose that D = Mat2(F ).

Then any maximal order of D is conjugate to M2(R). An order O is Eichler if and only

if there exists a nonnegative integer n ≥ 0 such that O is conjugate to On :=

[
R R

πnRR

]
.

Up to isomorphism, any On-lattice in the left Mat2(F )-module Mat2,m(F ) has the form

w⊕
i=1

[
R

πtiR

]si
, where

w∑
i=1

si = m and n ≥ t1 > · · · > tw ≥ 0. (3.20)

This gives rise to a bijection between the isomorphism classes of On-lattices in Mat2,m(F )

and the pairs of tuples (s, t) ∈ Nw × Zw≥0 (for some w between 1 and m) with s =

(s1, . . . , sw) and t = (t1, . . . , tw) satisfying (3.20). We refer to [22, Chapter II, Section 2]

and [2, Chapter 1, Subsection 1.2] for more details on Eichler orders.

Remark 3.7. We explain what we mean by “a mild condition on p” at the be-

ginning of Section 3. For ease of exposition of the present paper, we will work out the

calculation of each o(n) in Theorem 3.4 under the assumption that An,p = An ⊗Z Zp is
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an étale Zp-algebra. If r = 1, this simply requires p to be unramified in Kn. For r = 2,

an equivalent but more concrete assumption on p is made at the beginning of Section 5.

The purpose for this assumption is so that An,p = An,p ⊗Zp
Op is a product of Eichler

orders (cf. [14, Lemma 2.11]), and the proofs of Propositions 4.1, 4.2, and 5.1 rely on this

result (also compare with [14, Lemma 2.12] for the case where p is ramified in Kn). Note

that the assumption holds automatically when p ≥ 7 so it rules out at most p = 2, 3, 5.

The remaining part of the paper is organized as follows. Section 4 treats the isotypic

case where r = 1. The non-isotypic case where r = 2 is treated in Section 5. The calcu-

lation of class numbers of certain complicated orders arising in Section 5 is postponed to

Section 6. The handful of cases where the assumption fails will be treated in an upcoming

paper [29], where the ramification requires much greater care.

4. Computations of the isotypic cases.

We keep the notation of Section 3 and put D = Dp,∞, the quaternion Q-algebra

ramified exactly at the prime p and ∞. The goal of this section is to calculate the terms

o(n) with n ∈ {3, 4, 5, 8, 12} in Theorem 3.4, under the assumption that p is unramified

in Kn (i.e. p ∤ n). According to (3.16), this covers the isotypic case for such p. Note

that p splits completely in Kn if and only if p ≡ 1 (mod n). By the discussion at the

beginning of Section 3.2, if n ∈ {5, 8, 12} then we further assume that p ̸≡ 1 (mod n),

for otherwise o(n) = 0.

The cyclotomic field Kn with n ∈ {3, 4, 5, 8, 12} has class number 1 by [23, Theo-

rem 11.1]. For n ∈ {3, 4} and p ≡ 1 (mod n), let Dn denote the quaternion Kn-algebra

ramified exactly at the two places of Kn above p. Since Dopp is canonically isomorphic

to D, we have

Kn ≃ Kn ⊗Q D ≃

{
Dn if n ∈ {3, 4} and p ≡ 1 (mod n),

Mat2(Kn) otherwise.
(4.1)

The order An ⊂ Kn is maximal at every prime ℓ ̸= p. It is also maximal at p when

n ∈ {3, 4} and p ≡ 1 (mod n). Let V ≃ D2 be the unique faithful left Kn-module of

D-dimension 2 (as a right D-vector space). Then V is a free Kn-module of rank 1 if

n ∈ {3, 4}, and a simple Kn-module if n ∈ {5, 8, 12}. By (3.9) and (3.10), we have

En := EndKn(V ) ≃

{
Kn ⊗Q D if n ∈ {3, 4},
Kn if n ∈ {5, 8, 12}.

(4.2)

If n ∈ {3, 4}, then En is a quaternion algebra over the imaginary quadratic field Kn.

Hence En verifies the Eichler condition [18, Definition 34.3], and Nr(E ×
n ) = K×

n by [22,

Theorem III.4.1].

Let Λ be an An-lattice in V , and OΛ := EndAn(Λ). The order OΛ ⊂ En is maximal

at every prime ℓ ̸= p by the maximality of An,ℓ. If n ∈ {5, 8, 12}, then An ⊆ OΛ ⊂ Kn,

and hence OΛ = An, which has class number 1. If n ∈ {3, 4}, then OΛ is an An-order in

En. We claim that h(OΛ) = 1 in this case as well. If p is inert in Kn, then it will be shown

that OΛ is an Eichler order in Proposition 4.1, otherwise OΛ is maximal in En. Thus
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h(OΛ) = h(An) = 1 by [22, Corollaire III.5.7]. It follows that for all n ∈ {3, 4, 5, 8, 12}
and p ∤ n,

o(n) =

∣∣∣∣∏
ℓ

Lℓ(n)

∣∣∣∣ = |Lp(n)|. (4.3)

For each f ∈ N, let Qpf be the unique unramified extension of degree f over Qp,
and Zpf be its ring of integers.

Proposition 4.1. Suppose that n ∈ {3, 4} and p ∤ n. Then

o(3) = 2−
(
−3
p

)
and o(4) = 2−

(
−4
p

)
.

Proof. If p splits in Kn, then An is a maximal order in Kn, so there is a unique

genus of An-lattices in V . We have o(n) = 1 by (4.3).

Suppose that p is inert in Kn. Then e(n) = 1, and V is a free Kn-module of rank

1. We have An,p = An ⊗ Zp = Zp2 , so by [22, Corollaire II.1.7],

An,p = An,p ⊗Zp Op ≃
(
Zp2 Zp2
pZp2 Zp2

)
.

It follows from (3.20) that any An,p-lattice Λp ⊆ Vp is isomorphic to one of the following(
Zp2 Zp2
pZp2 pZp2

)
,

(
Zp2 Zp2
pZp2 Zp2

)
,

(
Zp2 Zp2
Zp2 Zp2

)
.

Correspondingly, (OΛ)p is isomorphic to the opposite ring of

Mat2(Zp2),
(
Zp2 Zp2
pZp2 Zp2

)
, Mat2(Zp2),

which verifies the claim above (4.3) that OΛ is an Eichler order when p is inert in Kn.

We conclude that o(n) = 3 by (4.3). □

Proposition 4.2. Suppose that n ∈ {5, 8, 12} and p ∤ n. Then the formulas for

o(n) in Theorem 3.4 hold. More explicitly,

(1) o(n) = 0 if p ≡ 1 (mod n);

(2) o(5) = 2 if p ≡ 2, 3 (mod 5);

(3) o(n) = 4 in the remaining cases.

Proof. Only part (2) and (3) need to be proved. Suppose that p ̸≡ 0, 1 (mod n).

Then e(n) = 2, and V is a simple Kn-module.

If n = 5 and p ≡ 2, 3 (mod 5), then

A5,p ≃ Zp4 , and A5,p = A5,p ⊗Zp Op ≃
(
Zp4 Zp4
pZp4 Zp4

)
.
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Any A5,p-lattice Λp ⊆ Vp is isomorphic to

(
Zp4
pZp4

)
or

(
Zp4
Zp4

)
. Hence o(5) = 2 in this

case.

For the remaining cases, we have

An,p = An,p ⊗Zp Op ≃ (Zp2 × Zp2)⊗Zp Op ≃
(
Zp2 Zp2
pZp2 Zp2

)
×
(
Zp2 Zp2
pZp2 Zp2

)
.

Every An,p-lattice Λp ⊆ Vp decomposes into Λ
(1)
p ⊕Λ(2)

p , where each Λ
(i)
p is a

(
Zp2 Zp2
pZp2 Zp2

)
-

lattice in the simple Mat2(Qp2)-module V
(i)
p ≃ (Qp2)2. There are 2 isomorphism classes

of Λ
(i)
p for each i = 1, 2. Therefore, o(n) = 22 = 4. □

5. Computations of the non-isotypic cases.

In this section, we calculate the values of o(n) with

n = (n1, n2) ∈ {(1, 2), (2, 3), (2, 4), (2, 6), (3, 4), (3, 6)}. (5.1)

According to (3.17), this treats all the non-isotypic cases. As mentioned in Remark 3.7,

we assume that An,p = An ⊗ Zp is étale over Zp. Equivalently, p is assumed to satisfy

the following two conditions:

(I) p is unramified in Kni = Q[T ]/(Φni(T )) for both i = 1, 2;

(II) An,p = Zp[T ]/(Φn1(T )Φn2(T )) is a maximal Zp-order in Kn,p.

This rules out at most p = 2, 3 according to Table 1 below. There exists a faithful left

Kn-module V ≃ D2 if and only if e(ni) = 1 for both i = 1, 2. Thus o(n) = 0 unless

p is inert in Kni when [Kni : Q] = 2. So we make further restrictions on p as listed in

Table 1.

5.1. General structures.

We explore the general structures of objects of interest such as An, Lp(n) and so

on for all n in (5.1). This sets up the stage for a case-by-case calculation of o(n) in the

next subsection.

By (3.4), V = Vn1⊕Vn2 , where each Vni is a simple Kni -module with dimD Vni = 1.

Therefore, En := EndKn(V ) = EndKn1
(Vn1)× EndKn2

(Vn2), and

∀i = 1, 2, EndKni
(Vni) ≃

{
D if Kni = Q;

Kni if [Kni : Q] = 2.
(5.2)

Let OKn = Z[T ]/(Φn1(T )) × Z[T ]/(Φn2(T )) be the maximal order of Kn. There is

an exact sequence of An-modules

0→ An → OKn

ψ−→ Z[T ]/(Φn1(T ),Φn1(T ))→ 0, (5.3)

where ψ : (x, y) 7→ x̄− ȳ. The indices [OKn : An] are listed in Table 1.
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Table 1.

n Kn = Kn1 ×Kn2 [OKn : An] En Conditions on p

(1, 2) Q×Q 2 D ×D p ̸= 2

(2, 3) Q×Q(
√
−3 ) 1 D ×Q(

√
−3 ) p ≡ 2 (3)

(2, 4) Q×Q(
√
−1 ) 2 D ×Q(

√
−1 ) p ≡ 3 (4)

(2, 6) Q×Q(
√
−3 ) 3 D ×Q(

√
−3 ) p ≡ 2 (3)

(3, 4) Q(
√
−3 )×Q(

√
−1 ) 1 Q(

√
−3 )×Q(

√
−1 ) p ≡ 11 (12)

(3, 6) Q(
√
−3 )×Q(

√
−3 ) 4 Q(

√
−3 )×Q(

√
−3 ) p ≡ 2 (3), p ̸= 2

Observe that A(2,3) and A(3,4) are maximal orders. Let p2 (resp. q2) be the unique

dyadic prime of A4 (resp. A3), and p3 be the unique prime ideal of A6 above 3. Then

A4/p2 ≃ F2 and A6/p3 ≃ F3. We write down the non-maximal orders An explicitly using

(5.3):

A(1,2) = {(a, b) ∈ Z× Z | a ≡ b (mod 2)}; (5.4)

A(2,4) = {(a, b) ∈ Z×A4 | a ≡ b (mod p2)}; (5.5)

A(2,6) = {(a, b) ∈ Z×A6 | a ≡ b (mod p3)}; (5.6)

A(3,6) ≃ {(a, b) ∈ A3 ×A3 | a ≡ b (mod q2)}, (5.7)

where A6 = Z[T ]/(T 2− T +1) is identified with A3 = Z[T ]/(T 2 + T +1) via a change of

variable T 7→ −T . Applying [27, Lemma 7.2] if necessary, we have

h(A(3,4)) = h(A(3,6)) = 1. (5.8)

Recall that the class number of O is given by

h(O) = p− 1

12
+

1

3

(
1−

(
−3
p

))
+

1

4

(
1−

(
−4
p

))
. (5.9)

By our assumptions, the order An is non-maximal at a prime ℓ ∈ N if and only if

one of the following mutually exclusive conditions holds:

(i) ℓ = p and n ̸= (1, 2);

(ii) ℓ | [OKn : An].

Proposition 5.1. Let n = (n1, n2) be a pair in (5.1), and p ∈ N a prime satisfying

the corresponding condition in Table 1. Then

|Lp(n)| = [Kn1 : Q][Kn2 : Q].

For every An-lattice Λ ⊂ V , the endomorphism ring OΛ = EndAn(Λ) is maximal at p.

Proof. By assumption (II), An,p = An1,p ×An2,p. Consequently, Λp decomposes

as Λn1,p ⊕ Λn2,p, where each Λni,p is an Ani,p-lattice in the simple Kni,p-module Vni,p.
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It is enough to show that the number of isomorphism classes of Ani,p-lattices in Vni,p is

[Kni : Q], and EndAni,p
(Λni,p) is maximal for each i = 1, 2.

If Kni
= Q, then Ani,p = Op. We have Λni,p ≃ Op, and EndAni,p

(Λni,p) = Op.
If [Kni : Q] = 2, then Ani,p ≃ Zp2 since p is inert in Kni by our assumption. It

follows that Ani,p = Zp2⊗ZpOp ≃
(
Zp2 Zp2
pZp2 Zp2

)
, and Λni,p is isomorphic to either

(
Zp2
pZp2

)
or

(
Zp2
Zp2

)
. In both cases, EndAni,p

(Λni,p) = Zp2 . □

Next, we consider the other class of primes at which An is non-maximal, namely

the prime divisors of [OKn : An]. According to Table 1, there exists a prime ℓ dividing

[OKn : An] only if

n ∈ {(1, 2), (2, 4), (2, 6), (3, 6)}, (5.10)

and each n above determines uniquely such a prime ℓ. Since ℓ ̸= p by our assumption, we

have Oℓ ≃ Mat2(Zℓ). By Remark 3.2(ii), the classification of isomorphism classes of An,ℓ-

lattices in Vℓ reduces to that of An,ℓ-lattices in the Kn,ℓ-module V ′
ℓ , where Vℓ = (V ′

ℓ )
2.

The value of ℓ and the structure of V ′
ℓ for each n is given by the following table.

Table 2.

n ℓ V ′
ℓ

(1, 2) 2 (Kn,ℓ)
2 = (Q2 ×Q2)

2

(2, 4) 2 (K2,ℓ)
2 ×K4,ℓ = Q2

2 ×K4,2

(2, 6) 3 (K2,ℓ)
2 ×K6,ℓ = Q2

3 ×K6,3

(3, 6) 2 Kn,ℓ = Q4 ×Q4

To classify the isomorphism classes of An,ℓ-lattices in V
′
ℓ in each of the above cases,

we apply the theory of Bass orders. Recall that a Bass order is a Gorenstein order

for which every order containing it in the ambient algebra is Gorenstein as well [6,

Section 37]. We provide a couple of equivalent characterizations in the commutative

case. Let R be a Dedekind domain with fractional field F , and B be an R-order in a

finite dimensional separable semisimple F -algebra E. Denote the maximal R-order in E

by OE . The following are equivalent:

(i) B is a Bass order, i.e. every R-order B′ with B ⊆ B′ ⊆ OE is Gorenstein;

(ii) every ideal I of B can be generated by two elements;

(iii) the quotient OE/B is a cyclic B-module.

Characterization (ii) above is due to Bass [3, Section 7], and (iii) is due to Borevich and

Faddeev (see [6, Section 37, p.789]). Thanks to (iii) and (5.3), An is a Bass order for any

arbitrary2 n ∈ N̆2. The Bass property is local in the sense that B is Bass if and only if

2However, the same does not hold for n ∈ N̆r with r ≥ 3, because A(1,2,4) = Z[T ]/(T 4 − 1) already
provides a counterexample.
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Bp is Bass for every nonzero prime p ⊆ R. In particular, An,ℓ is Bass for all n in (5.10)

and the corresponding prime ℓ determined by n.

Note that V ′
ℓ is a freeKn,ℓ-module when n = (1, 2) or (3, 6). Let B be a commutative

Bass order andM be a B-lattice in a free E-module of rank m. It follows from the result

of Borevich and Faddeev [6] that there exists an ascending chain of R-orders

B ⊆ B1 ⊆ · · · ⊆ Bm (5.11)

and an invertible Bm-ideal J such that

M ≃ B1 ⊕ · · · ⊕Bm−1 ⊕ J.

The chain of orders (5.11) and the isomorphism class of J in the Picard group Pic(Bm)

determine uniquely the B-isomorphism class of M , and vice versa. If R is local, then

Pic(Bm) is trivial, and we have

M ≃ B1 ⊕ · · · ⊕Bm. (5.12)

In this case, the chain (5.11) alone forms the isomorphic invariant of M . We will apply

this result in the proofs of Propositions 5.3 and 5.4.

For n = (2, 2ℓ) with ℓ ∈ {2, 3}, the Kn,ℓ-module V ′
ℓ is no longer free. Nevertheless,

we can use the Krull–Schmidt–Azumaya theorem [6, Theorem 6.12] to write any An,ℓ-

lattice Λ′
ℓ ⊂ V ′

ℓ into a direct sum of indecomposable sublattices. Every indecomposable

lattice over a commutative Bass order is isomorphic to an ideal by [3, Section 7] (see [6,

Theorem 37.16] for the general case). This allows us to classify up to isomorphism all

the indecomposable An,ℓ-lattices, and hence all An,ℓ-lattices in V
′
ℓ . We work out this in

detail in the proof of Proposition 5.5.

5.2. Case-by-case calculations of o(n).

We arrange the calculations of o(n) in the order essentially according to the complex-

ity of V ′
ℓ as a Kn,ℓ-module in Table 2. We first treat the cases n = (2, 3) and n = (3, 4) in

Proposition 5.2. The orders An are already maximal orders in Kn for these two n, so no

classification of local lattices is needed at any prime distinct from p. Next, we treat the

case n = (3, 6) in Proposition 5.3, where V ′
ℓ is a free Kn,ℓ-module of rank 1. After that,

we treat the case n = (1, 2) in Proposition 5.4, where V ′
ℓ is a free Kn,ℓ-module of rank

2. In both previous cases, we apply the result of Borevich and Faddeev on Bass orders.

Lastly, we treat the cases n = (2, 2ℓ) with ℓ ∈ {2, 3} in Proposition 5.5. The Kn,ℓ-module

V ′
ℓ is not free for these two n, so we take the Krull–Schmidt–Azumaya approach instead.

The calculation of class numbers of certain complicated orders (to be defined in (5.14)

and (5.17)) is postponed to Section 6.

Proposition 5.2. (1) We have o(2, 3) = (1 − (−3/p))h(O) for all p ̸= 3. See

(5.9) for the formula of h(O).
(2) We have o(3, 4) = (1− (−3/p))(1− (−4/p)) for all p ̸= 2, 3.

Proof. Suppose that n ∈ {(2, 3), (3, 4)}, and p satisfies the corresponding con-

dition in Table 1. We have An = OKn , so An is maximal at every prime ℓ ̸= p. The
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endomorphism rings of An-lattices in V are maximal orders in EndKn(V ), which share

the same class number. It follows that o(n) = |Lp(n)|h(OΛ) for any An-lattice Λ ⊂ V .

If n = (2, 3), then EndKn
(V ) = D ×K3, and h(OΛ) = h(O)h(A3) = h(O). By Propo-

sition 5.1, we get o(2, 3) = 2h(O). If n = (3, 4), then EndKn(V ) = K3 × K4, and

OΛ = A3 × A4 = A(3,4), which has class number 1 as remarked in (5.8). By Proposi-

tion 5.1, we get o(3, 4) = 4.

For the remaining primes p considered in the proposition, both sides of the formulas

are zero. The proposition is proved. □

Proposition 5.3. We have o(3, 6) = 2(1− (−3/p))2 for all p ̸= 2, 3.

Proof. Assume that p ̸= 2, 3. Only the case p ≡ 2 (mod 3) requires a proof. For

n = (3, 6), OKn,2
is the only order in Kn,2 properly containing An,2 by (5.7). So any

An,2-lattice Λ′
2 in V ′

2 ≃ Kn,2 is isomorphic to An,2 or OKn,2 by (5.12). Correspondingly,

EndAn,2(Λ
′
2) =

{
An,2 if Λ′

2 ≃ An,2,
OKn,2 if Λ′

2 ≃ OKn,2 ,
(5.13)

and the same holds for EndAn,2
(Λ2) by Remark 3.2(ii). It follows from Proposition 5.1

that

EndAn(Λ) =

{
An if Λ2 ≃ (An,2)

2,

OKn if Λ2 ≃ (OKn,2)
2,

for any An-lattice Λ ⊂ V . Recall that h(An) = h(OKn
) = 1 by (5.8). Therefore, when

n = (3, 6), p ≡ 2 (mod 3) and p ̸= 2, we have

o(n) = |L2(n)| · |Lp(n)| = 2 · 4 = 2

(
1−

(
−3
p

))2

. □

Now suppose that n = (1, 2). Then Kn = Q × Q, and An is the unique suborder

of index 2 in OKn = Z × Z. To write down the formula for o(1, 2), we define a few

auxiliary orders. Let O1(1, 2) := O × O, a maximal order in EndKn
(V ) = D ×D. Fix

an isomorphism O2 ≃ Mat2(Z2), and thereupon an isomorphism

O1(1, 2)2 = (O ×O)⊗ Z2 ≃ Mat2(Z2 × Z2) = Mat2(OKn,2).

Let O8(1, 2) and O16(1, 2) be the suborders of O1(1, 2) of index 8 and 16 respectively

such that

O8(1, 2)2 =

(
An,2 2OKn,2

OKn,2 OKn,2

)
, O16(1, 2)2 = Mat2(An,2);

Oi(1, 2)ℓ′ = O1(1, 2)ℓ′ ∀ prime ℓ′ ̸= 2 and i = 8, 16.

(5.14)

Proposition 5.4. If p = 3, then o(1, 2) = 3. For p ̸= 2, 3, we have
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o(1, 2) = h(O1(1, 2)) + h(O8(1, 2)) + h(O16(1, 2))

=
(p− 1)2

9
+
p+ 15

18

(
1−

(
−3
p

))
+
p+ 2

6

(
1−

(
−4
p

))
+

1

6

(
1−

(
−3
p

))(
1−

(
−4
p

))
.

(5.15)

Proof. Throughout this proof, we assume that p ̸= 2. By Table 2, V ′
2 is a free

Kn,2-module of rank 2. According to (5.12), any An,2-lattice Λ′
2 ⊆ V ′

2 is isomorphic to

Ajn,2⊕(OKn,2)
2−j with j = 0, 1, 2. Correspondingly, the endomorphism ring EndAn,2(Λ

′
2)

is isomorphic to

O1(1, 2)2, O8(1, 2)2, O16(1, 2)2.

Since |Lp(n)| = 1 by Proposition 5.1, there are three genera of An-lattices in V . Each is

represented by a lattice with endomorphism ring Oi(1, 2) for i ∈ {1, 8, 16}, respectively.
It follows that

o(1, 2) = h(O1(1, 2)) + h(O8(1, 2)) + h(O16(1, 2)). (5.16)

The class number h(O8(1, 2)) is given by Proposition 6.5, and h(O16(1, 2)) is given by

Proposition 6.7. Lastly, we have h(O1(1, 2)) = h(O)2 (see (5.9)). The explicit formula

for o(1, 2) follows from (5.16). □

Finally, we study the terms o(2, 2ℓ) for ℓ ∈ {2, 3}. We have [OKn : An] = ℓ, and

EndKn(V ) = D × K2ℓ, the product (not the tensor product) of D and K2ℓ, by (5.2).

Let O1(2, 2ℓ) be the maximal order O × A2ℓ ⊂ EndKn
(V ). Recall that p ̸= ℓ by our

assumption, so we fix an isomorphism Oℓ ≃ Mat2(Zℓ). By an abuse of notation, we still

write pℓ for the unique prime ideal of A2ℓ,ℓ above ℓ. Let Oℓ2(2, 2ℓ) be the suborder of

index ℓ2 in O1(2, 2ℓ) such that

Oℓ2(2, 2ℓ)ℓ =

{([
a11 a12
a21 a22

]
, b

)
∈ O1(2, 2ℓ)ℓ

∣∣∣∣∣ a21 ≡ 0 (mod ℓ)

a22 ≡ b (mod pℓ)

}
;

Oℓ2(2, 2ℓ)ℓ′ = O1(2, 2ℓ)ℓ′ ∀ prime ℓ′ ̸= ℓ.

(5.17)

Proposition 5.5. For ℓ ∈ {2, 3}, we have o(2, 2ℓ) = 2h(O1(2, 2ℓ))+2h(Oℓ2(2, 2ℓ)).
More explicitly,

o(2, 4) =

(
p+ 3

3
− 1

3

(
−3
p

))(
1−

(
−4
p

))
if p ̸= 2;

o(2, 6) =

(
5p+ 18

12
+

1

3

(
−3
p

)
− 1

4

(
−4
p

))(
1−

(
−3
p

))
if p ̸= 3.

(5.18)

Proof. As discussed before Section 5.1, o(2, 4) = 0 if p ≡ 1 (mod 4) and o(2, 6) =

0 if p ≡ 1 (mod 3). Thus, we shall assume p ≡ 3 (mod 4) and p ≡ 2 (mod 3) for ℓ = 2, 3,

respectively.
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Let V ′
ℓ = Q2

ℓ×K2ℓ,ℓ = Qℓ⊕Kn,ℓ be the module overKn,ℓ = Qℓ×K2ℓ,ℓ in Table 2. We

claim that any An,ℓ-lattice Λ
′
ℓ ⊂ V ′

ℓ is isomorphic to Σ0 := Zℓ⊕OKn,ℓ
or Σ := Zℓ⊕An,ℓ.

By the Krull–Schmidt–Azumaya theorem [6, Theorem 6.12], every An,ℓ-lattice is uniquely

expressible as a finite direct sum of indecomposable sublattices, up to isomorphism and

order of occurrence of the summands. Recall that any indecomposable lattice over a

Bass order is isomorphic to an ideal [3, Section 7]. Let Iℓ be an An,ℓ-ideal. Then

Iℓ ⊗Zℓ
Qℓ is isomorphic to Qℓ, K2ℓ,ℓ or Kn,ℓ. If Iℓ ⊗Zℓ

Qℓ ≃ Kn,ℓ, then the result of

Borevich and Faddeev [6, Section 37, p.789] implies that Iℓ is isomorphic to either An,ℓ
or OKn,ℓ

= Zℓ⊕A2ℓ,ℓ. Clearly, OKn,ℓ
is decomposable. Therefore, if Iℓ is indecomposable,

then we have

Iℓ ≃


Zℓ if Iℓ ⊗Zℓ

Qℓ ≃ Qℓ;
A2ℓ,ℓ if Iℓ ⊗Zℓ

Qℓ ≃ K2ℓ,ℓ;

An,ℓ if Iℓ ⊗Zℓ
Qℓ ≃ Kn,ℓ.

(5.19)

Write Λ′
ℓ = Zt1ℓ ⊕A

t2
2ℓ,ℓ⊕A

t3
n,ℓ. Since Λ

′
ℓ⊗Zℓ

Qℓ ≃ Q2
ℓ×K2ℓ,ℓ, we have (t1, t2, t3) = (2, 1, 0)

or (1, 0, 1). The claim is verified.

Direct calculation shows that

EndAn,ℓ
(Λ′

ℓ) =

{
O1(2, 2ℓ)ℓ if Λ′

ℓ ≃ Σ0;

Oℓ2(2, 2ℓ)ℓ if Λ′
ℓ ≃ Σ.

The classification at ℓ partitions the set of isomorphism classes of An-lattices Λ ⊂ V into

two subsets, according to the local isomorphism classes of Λℓ. Each subset consists of

two genera by Proposition 5.1. Taking into account of the maximality of EndAn,p(Λp)

for every Λ, we have

o(2, 2ℓ) = 2h(O1(2, 2ℓ)) + 2h(Oℓ2(2, 2ℓ)). (5.20)

As O1(2, 2ℓ) is a maximal order, one has h(O1(2, 2ℓ)) = h(O)h(A2ℓ) = h(O), whose

formula is given in (5.9). The class numbers of O4(2, 4) and O9(2, 6) are calculated in

Proposition 6.4. By the formulas for h(O), h(O4(2, 4)) and h(O9(2, 6)), we obtain for

p ̸= 2,

o(2, 4) =

2

(
p+ 3

3
− 1

3

(
−3
p

))
if p ≡ 3 (mod 4);

0 if p ≡ 1 (mod 4),

(5.21)

and for p ̸= 3,

o(2, 6) =

2

(
5p+ 14

12
− 1

4

(
−4
p

))
if p ≡ 2 (mod 3);

0 if p ≡ 1 (mod 3).

(5.22)

We rewrite (5.21) and (5.22) into (5.18), which will also hold for p = 2, 3 [29]. □

Remark 5.6. When n = (2, 6), An ≃ A(1,3) = Z[T ]/(T 3 − 1) coincides with the
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group ring Z[C3] for the cyclic group C3 of order 3. The classification of An,3-lattices is

equivalent to that of Z3-representations of C3. Similarly, A(2,4) is a quotient of Z[C4].

Therefore, one may also apply the result of Heller and Reiner [9] on indecomposable

integral representations over cyclic groups of order ℘2 (℘ ∈ N a prime) to obtain the

claim in Proposition 5.5.

6. Class numbers of certain orders.

In this section, we compute the class numbers of the orders O8(1, 2), O16(1, 2),

O4(2, 4), and O9(2, 6), defined in (5.14) and (5.17). Throughout this section, the prime

p is assumed to satisfy the corresponding condition in Table 1 for n = (1, 2), (2, 4), (2, 6)

respectively. We first work out h(O4(2, 4)) and h(O9(2, 6)) in Proposition 6.4, and then

h(O8(1, 2)) in Proposition 6.5, and lastly h(O16(1, 2)) in Proposition 6.7.

We recall some properties of ideal classes in more general settings. Let R ⊂ S be two

Z-orders in a finite dimensional semisimple Q-algebra B. There is a natural surjective

map between the sets of locally principal right ideal classes

π : Cl(R)→ Cl(S), [I] 7→ [IS].

The surjectivity is best seen using the adelic language, where π is given by

π : B×\B̂×/R̂× → B×\B̂×/Ŝ×, B×xR̂× 7→ B×xŜ×, ∀x ∈ B̂×. (6.1)

Let J ⊂ B be a locally principal right S-ideal. We study the fiber π−1([J ]). Write

Ĵ = xŜ for some x ∈ B̂×, and set SJ := Ol(J) = B ∩ xŜx−1, the associated left order of

J . By (6.1), we have

π−1([J ]) = π−1(B×xŜ×) = B×\(B×xŜ×)/R̂×. (6.2)

Multiplying B×xŜ× from the left by x−1 induces a bijection

B×\(B×xŜ×)/R̂× ≃ (x−1B×x)\(x−1B×xŜ×)/R̂×,

and the latter is in turn isomorphic to (x−1B×x ∩ Ŝ×)\Ŝ×/R̂×. Therefore, we obtain a

double coset description of the fiber

π−1([J ]) ≃ (x−1S×J x)\Ŝ
×/R̂×. (6.3)

Lemma 6.1. Suppose that Ŝ× ⊆ N (R̂), the normalizer of R̂ in B̂×. Then the

suborder RJ := xR̂x−1 ∩ B of SJ is independent of the choice of x ∈ B̂× for J , and

|π−1([J ])| = [Ŝ× : R̂×]

[S×J : R×
J ]
.

Proof. Suppose that Ĵ = x′Ŝ for x′ ∈ B̂× as well. Then there exists u ∈ Ŝ× such

that x′ = xu. Since Ŝ× ⊆ N (R̂), we have
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x′R̂x′−1 ∩ B = xuR̂u−1x−1 ∩ B = xR̂x−1 ∩ B = RJ ⊂ SJ ,

which proves the independence of RJ of the choice of x. If I is a locally principal right

R-ideal such that IS = J , then RJ = Ol(I), the associated left order of I. Conjugating

by x ∈ B̂× on the right hand side of (6.3), we obtain

π−1([J ]) ≃ S×J \(xŜ
×x−1)/(xR̂×x−1) = S×J \Ŝ

×
J /R̂

×
J . (6.4)

The assumption Ŝ× ⊆ N (R̂) also implies that R̂× ⊴ Ŝ×, and hence R̂×
J ⊴ Ŝ×J

and R×
J ⊴ S×J . The left action of S×

J on the quotient group Ŝ×J /R̂
×
J factors through

S×J /R
×
J ⊆ Ŝ

×
J /R̂

×
J , and its orbits are the right cosets of S×J /R

×
J in Ŝ×J /R̂

×
J . Thus

|π−1([J ])| = [Ŝ×J : R̂×
J ]/[S

×
J : R×

J ] = [Ŝ× : R̂×]/[S×J : R×
J ]. □

Remark 6.2. The condition Ŝ× ⊆ N (R̂) implies that R̂× ⊴ Ŝ×. However, the

converse does not hold in general. It is enough to provide a counterexample locally at

a prime ℓ, say, ℓ = 2. Let S2 = Mat2(Z2), and R2 =

(
Z2 2Z2

2Z2 Z2

)
, an Eichler order of

level 4 in S2. Then

R×
2 =

{
x ∈ Mat2(Z2)

∣∣∣∣x ≡ (
1 0

0 1

)
(mod 2S2)

}
⊴ S×2 = GL2(Z2).

On the other hand, let u =

(
1 1

0 1

)
∈ S×2 , and y =

(
1 0

0 0

)
∈ R2. Then

uyu−1 =

(
1 1

0 1

)(
1 0

0 0

)(
1 −1
0 1

)
=

(
1 −1
0 0

)
̸∈ R2.

Corollary 6.3. Keep the notation and assumption of Lemma 6.1. If the natural

homomorphism S×J → Ŝ
×
J /R̂

×
J is surjective for each ideal class [J ] ∈ Cl(S), then π is

bijective.

Proof. It is enough to show that π is injective. The surjectivity of S×J → Ŝ
×
J /R̂

×
J

implies that the monomorphism S×J /R
×
J ↪→ Ŝ×J /R̂

×
J is an isomorphism, and hence

|π−1([J ])| = [Ŝ×J /R̂
×
J : S×J /R

×
J ] = 1. □

Let D = Dp,∞ be the unique quaternion algebra over Q ramified exactly at p and

∞, and O ⊂ D a maximal order in D. Let ℓ ∈ {2, 3}, and assume that p ̸= ℓ. Fix an

isomorphism O ⊗Z Zℓ ≃ Mat2(Zℓ). We write O(ℓ) for the Eichler order of level ℓ in O
such that O(ℓ) ⊗ Zℓ′ = O ⊗ Zℓ′ for every prime ℓ′ ̸= ℓ, and

O(ℓ) ⊗ Zℓ =
[
Zℓ Zℓ
ℓZℓ Zℓ

]
.

The formula for h(O(ℓ)) is given in [15, Theorem 16]:
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h(O(ℓ)) =
(p− 1)(ℓ+ 1)

12
+

1

3

(
1−

(
−3
p

))(
1 +

(
−3
ℓ

))
+

1

4

(
1−

(
−4
p

))(
1 +

(
−4
ℓ

))
, for ℓ ∈ {2, 3} and p ̸= ℓ.

(6.5)

Proposition 6.4. Suppose that ℓ ∈ {2, 3} and p ̸= ℓ. Let Oℓ2(2, 2ℓ) be the order

defined in (5.17). Then

(a) h(O4(2, 4)) =
1

4

(
p−

(
−4
p

))
if p ̸= 2;

(b) h(O9(2, 6)) =
1

3

(
p−

(
−3
p

))
if p ̸= 3.

Proof. For simplicity, we set Oℓ2 = Oℓ2(2, 2ℓ), and define Oℓ := O(ℓ) × A2ℓ,

which contains Oℓ2 and is a suborder of index ℓ in O1(2, 2ℓ) = O × A2ℓ. Recall that pℓ
denotes the unique ramified prime in A2ℓ. We have A2ℓ/pℓ = Fℓ, and the canonical map

A×
2ℓ → (A2ℓ/pℓ)

× = F×
ℓ is surjective.

It is straightforward to check that Ô×
ℓ ⊆ N (Ôℓ2), and Ô×

ℓ /Ô
×
ℓ2
∼= F×

ℓ . Let Z(Oℓ) be
the center of Oℓ. Then Z(Oℓ) = Z×A2ℓ, and its unit group Z(Oℓ)× = {±1}×A×

2ℓ maps

surjectively onto Ô×
ℓ /Ô

×
ℓ2 . Since Z(Oℓ) = Z(Ol(J)) for every locally principal right ideal

J of Oℓ, the assumptions of Corollary 6.3 are satisfied. Therefore,

h(Oℓ2) = h(Oℓ) = h(O(ℓ))h(A2ℓ) = h(O(ℓ)), for ℓ = 2, 3.

Applying formula (6.5), we obtain

h(O4(2, 4)) = h(O(2)) =
1

4

(
p−

(
−4
p

))
if p ̸= 2;

h(O9(2, 6)) = h(O(3)) =
1

3

(
p−

(
−3
p

))
if p ̸= 3. □

Next, we assume that p ̸= 2 and calculate the class numbers of the orders O8(1, 2)

and O16(1, 2) defined in (5.14). For simplicity, let Oi = Oi(1, 2) for i ∈ {1, 8, 16}.

Proposition 6.5. Suppose that p ̸= 2. Then

h(O8(1, 2)) =
1

16

(
p−

(
−4
p

))2

.

Proof. By an abuse of notation, we still write O(2) for the Eichler order of O of

level 2 such that O(2) ⊗ Z2 =

[
Z2 2Z2

Z2 Z2

]
and O(2) ⊗ Zℓ′ = O ⊗ Zℓ′ for all primes ℓ′ ̸= 2.

Put O4 := O(2) ×O(2), which is a suborder of O1 of index 4 containing O8. One checks

that Ô×
4 ⊆ N (Ô8), and Ô×

8 = Ô×
4 , so the assumptions of Corollary 6.3 are automatically

satisfied. We have
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h(O8(1, 2)) = h(O(2) ×O(2)) = h(O(2))2 =
1

16

(
p−

(
−4
p

))2

. (6.6)

□

To calculate the class number of O16, we first note that 2O1 ⊂ O16, and the quotient

ring O16/2O1
∼= Mat2(F2) embeds diagonally into O1/2O1

∼= Mat2(F2)
2. In this case,

Ô×
16 is not normal in Ô×

1 , so Ô×
1 ̸⊆ N (Ô16). This prevents us from applying Lemma 6.1

or Corollary 6.3 to the current situation.

We consider the natural surjective map π : Cl(O16)→ Cl(O1) and work out explicitly

the cardinality of each fiber. If [J ] ∈ Cl(O1) is a right ideal class of O1 with Ĵ = xÔ1 for

an element x ∈ (D̂×)2, then by (6.3) one has a bijection

π−1([J ]) ≃ x−1O×
J x\Ô

×
1 /Ô

×
16, where OJ = Ol(J) = D2 ∩ xÔ1x

−1. (6.7)

If p ̸= 2, 3, then O×
J ≃ C2j1 × C2j2 for some 1 ≤ j1, j2 ≤ 3. Here Cn denotes a cyclic

group of order n. Given an arbitrary set X, we write ∆(X) for the diagonal of X2.

Lemma 6.6. (1) Let [J ] ∈ Cl(O1) be a right ideal class of O1. If O×
J ≃ C2j1×C2j2 ,

where 1 ≤ j1, j2 ≤ 3, then there is a bijection π−1([J ]) ≃ Cj1\S3/Cj2 , where Sn denotes

the symmetric group on n letters.

(2) Let cj1,j2 := |Cj1\S3/Cj2 | for 1 ≤ j1, j2 ≤ 3. Then the values of cj1,j2 are listed

in the following table :

cj1,j2 1 2 3

1 6 3 2

2 3 2 1

3 2 1 2

Proof. (1) We may regard C2j1 ×C2j2 = x−1O×
J x as a subgroup of Ô×

1 . As 1+

2Ô1 ⊂ Ô×
16, modulo this subgroup, one has Ô×

1 /Ô
×
16 ≃ (GL2(F2)×GL2(F2))/∆(GL2(F2)).

For any unit ζ ∈ O×, we have either ζ4 = 1 or ζ6 = 1, and Z[ζ] coincides with the ring

of integers of Q(ζ). By a lemma of Serre, if ζ is a root of unity which is congruent to 1

modulo 2, then ζ = ±1. Thus, for 1 ≤ j ≤ 3, the map C2j → GL2(F2) factors through an

embedding Cj ≃ (C2j/C2) ↪→ GL2(F2). Note that GL2(F2) ≃ S3. Since cyclic subgroups

of order j of S3 are conjugate, the double coset space (Cj1×Cj2)\(S3×S3)/∆(S3) does not

depend on how Cj embeds into S3. Every element of (S3 × S3)/∆(S3) is represented by

a unique (a, 1) with a ∈ S3. For (c1, c2) ∈ Cj1 ×Cj2 , one has (c1, c2) · (a, 1) = (c1s, c2) ∼
(c1ac

−1
2 , 1). The map (a, 1) 7→ a yields a bijection (Cj1 × Cj2)\(S3 × S3)/∆(S3) ≃

Cj1\S3/Cj2 . Therefore, there is a bijection

π−1([J ]) ≃ (Cj1 × Cj2)\GL2(F2)
2/∆(GL2(F2)) ≃ Cj1\S3/Cj2 .

(2) This is clear if one of the ji is 1 or 3 as C3 is a normal subgroup of S3. To see

c2,2 = 2, one may view C2 as a Borel subgroup of S3 = GL2(F2); then the result follows

from the Bruhat decomposition. □



329

Superspecial abelian surfaces 329

Proposition 6.7. We have

h(O16(1, 2)) =
(p− 1)2

24
+

1

4

(
1−

(
−4
p

))
+

2

3

(
1−

(
−3
p

))
if p ̸= 2, 3.

Moreover, if p = 3, then h(O16(1, 2)) = 1.

Proof. First suppose that p = 3. By [22, Proposition V.3.1], we have h(O) = 1,

and O×/{±1} ≃ S3. It follows that h(O1) = h(O)2 = 1, and hence Cl(O16) =

π−1([O1]) ≃ O×
1 \Ô

×
1 /Ô

×
16 by (6.3). The same line of argument as that of part (1) of

Lemma 6.6 shows that h(O16) = |(S3)
2\(S3)

2/∆(S3)| = 1.

Next, suppose that p ̸= 2, 3. For n = 1, 2, 3, put

Cln(O) := {[I] ∈ Cl(O) | Ol(I)× ≃ C2n}, and hn = hn(O) := |Cln(O)|. (6.8)

By [22, Proposition V.3.2], if p ̸= 2, 3, then

h2(O) =
1

2

(
1−

(
−4
p

))
, h3(O) =

1

2

(
1−

(
−3
p

))
, (6.9)

h1(O) = h(O)− h2(O)− h3(O)

=
p− 1

12
− 1

4

(
1−

(
−4
p

))
− 1

6

(
1−

(
−3
p

))
.

(6.10)

Since there are hj1hj2 classes [J ] ∈ Cl(O1) with O×
J ≃ C2j1 × C2j2 , it follows from

Lemma 6.6 that

h(O16) =
∑

1≤j1,j2≤3

hj1hj2cj1,j2 . (6.11)

Observe that

cj1,j2 =



6

j1j2
if (j1, j2) ̸= (2, 2) or (j1, j2) ̸= (3, 3);

6

j1j2
+

1

2
for (j1, j2) = (2, 2);

6

j1j2
+

4

3
for (j1, j2) = (3, 3).

We can express (6.11) as

h(O16(1, 2)) =
∑

1≤j1,j2≤3

hj1hj2
6

j1j2
+

1

2
h22 +

4

3
h23

= 6

(
h1 +

h2
2

+
h3
3

)2

+
1

8

(
1−

(
−4
p

))2

+
1

3

(
1−

(
−3
p

))2

=
(p− 1)2

24
+

1

4

(
1−

(
−4
p

))
+

2

3

(
1−

(
−3
p

))
. □
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