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Abstract. Kobayashi conjectured in the 36th Geometry Symposium in
Japan (1989) that a homogeneous space G/H of reductive type does not admit
a compact Clifford–Klein form if rankG − rankK < rankH − rankKH . We

solve this conjecture affirmatively. We apply a cohomological obstruction to
the existence of compact Clifford–Klein forms proved previously by the author,
and use the Sullivan model for a reductive pair due to Cartan–Chevalley–

Koszul–Weil.

1. Introduction.

A Clifford–Klein form of a homogeneous space G/H is a quotient space Γ\G/H,

where Γ is a discrete subgroup of G acting properly and freely on G/H. It is a typical

example of a manifold locally modelled on G/H, i.e. a manifold obtained by patching

open sets of G/H by left translations by elements of G. Since the initial work [8] by

Kobayashi, the existence problem of compact Clifford–Klein forms has been studied by

various methods (e.g. [1], [10], [11], [12], [19]).

In this paper, we solve a conjecture on the nonexistence of compact Clifford–Klein

forms, posed by Kobayashi [9] in 1989, affirmatively. Recall that a homogeneous space

G/H is called of reductive type if G is a linear reductive Lie group with Cartan involution

θ and H is a closed subgroup of G with finitely many connected components such that

θ(H) = H. We write K and KH for the corresponding maximal compact subgroups of

G and H, namely, K = Gθ and KH = Hθ, respectively (throughout this paper, we use

superscripts to signify the invariant part, e.g. Gθ = {g ∈ G : θ(g) = g}). In this paper,

the rank always means the complex rank as opposed to the real rank (for instance, the

rank of U(p, q) is not min{p, q}, but p + q), namely, we define the rank of a reductive

Lie algebra to be the dimension of its maximal semisimple abelian subspace, and the

rank of a linear reductive Lie group to be that of the corresponding Lie algebra. Then,

Kobayashi’s conjecture is stated as follows:

Conjecture 1.1 ([9, Conjecture 6.4]). A homogeneous space G/H of reductive

type does not admit a compact Clifford–Klein form if rankG − rankK < rankH −
rankKH .
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We prove Conjecture 1.1 using relative Lie algebra cohomology. Let us briefly recall

its definition from a geometric viewpoint (see Section 3.1 for a purely algebraic treat-

ment). We write g, h, k and kH for the Lie algebras of G, H, K and KH , respectively.

Let H0 denote the identity component of H. A G-invariant differential form on G/H0

is determined by the value at 1 · H0 ∈ G/H0, and the value must be invariant under

the action of the stabilizer H0, or equivalently, of h. Thus, the space Ω(G/H0)
G of

G-invariant differential forms on G/H0 is naturally identified with (Λ(g/h)∗)h, and the

exterior differential d on G/H0 can be seen as a differential on (Λ(g/h)∗)h. The relative

Lie algebra cohomology H•(g, h;R) is the cohomology of the differential graded algebra

((Λ(g/h)∗)h, d).

Remark 1.2. Suppose that G is a connected compact Lie group with Lie algebra

g and H is a connected closed subgroup of G with Lie algebra h. Then, the inclusion

(Λ(g/h)∗)h ≃ Ω(G/H)G ↪→ Ω(G/H) induces an isomorphism between the relative Lie

algebra cohomology H•(g, h;R) and the de Rham cohomology H•(G/H;R) (see e.g. [4,

Chapter I ]).

We use the following cohomological obstruction to the existence of compact Clifford–

Klein forms, which was proved in [13] and extended to the locally modelled case in [14].

Fact 1.3. Let G/H be a homogeneous space of reductive type. If the homo-

morphism i : H•(g, h;R) → H•(g, kH ;R) induced from the inclusion (Λ(g/h)∗)h ↪→
(Λ(g/kH)∗)kH is not injective, then there exist no compact manifolds locally modelled on

the homogeneous space G/H (and, in particular, there exist no compact Clifford–Klein

forms of G/H ).

Recall that, for a reductive Lie algebra g, the graded vector space Pg∗ defined by

Pg∗ = {α ∈ (Λ+g∗)g : α(x ∧ y) = 0 for all x, y ∈ (Λ+g)g}

is called the space of primitive elements in (Λg∗)g (see Section 3.4), where Λ+ denotes

the positive degree part of the exterior algebra. We prove the following result in this

paper, which leads to the affirmative solution of Conjecture 1.1.

Theorem 1.4 (Theorem 4.1 (i) ⇔ (vii)). Let G/H be a homogeneous space of

reductive type. Then, the homomorphism i : H•(g, h;R) → H•(g, kH ;R) is injective if

and only if the linear map rest : (Pg∗)−θ → (Ph∗)−θ induced from the restriction map

(Λg∗)g → (Λh∗)h is surjective, where ( · )−θ denotes the (−1)-eigenspace for θ.

Remark 1.5 (cf. Remark 4.2). In view of Remark 1.2, we can rephrase The-

orem 1.4 as follows: Let G be a connected compact Lie group with Lie algebra g

and H a connected closed subgroup of G with Lie algebra h. Let θ be an invo-

lution of G such that θ(H) = H. Put KH = Hθ. Then, the homomorphism

π∗ : H•(G/H;R) → H•(G/KH ;R) induced from the projection π : G/KH → G/H

is injective if and only if the linear map rest : (Pg∗)−θ → (Ph∗)−θ is surjective.

Theorem 1.4 enables us to check easily if the assumption of Fact 1.3 is satisfied or
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not. Conjecture 1.1 follows immediately from Fact 1.3, Theorem 1.4 and the fact that

dim(Pg∗)−θ = rankG− rankK (Fact 3.11 (1)), as we shall explain in Section 4.2.

The proof of Theorem 1.4 is based on the theory of Cartan, Chevalley, Koszul

and Weil ([3]) that gives an easy way to compute the relative Lie algebra cohomology

H•(g, h;R) of a reductive pair (g, h). In modern terminology of Sullivan’s rational ho-

motopy theory (initiated by [16]), what they actually did is the construction of a pure

Sullivan model for the differential graded algebra ((Λ(g/h)∗)h, d) from a transgression for

g. By this theory, the proof is reduced to computations of invariant polynomials and a

spectral sequence for pure Sullivan algebras.

Remark 1.6. For the proof of Conjecture 1.1, it is enough to show the “only if”

part of Theorem 1.4 (i.e. Theorem 4.1 (i) ⇒ (vii)). However, we believe that Theorem 1.4

itself is rather interesting in its own right, and thus we also give the proof of the “if”

part (i.e. Theorem 4.1 (vii) ⇒ (i)) in this paper.

Remark 1.7. Kobayashi and Ono proved Conjecture 1.1 in the case of rankG =

rankH, investigating the Euler class of the tangent bundle of a compact Clifford–Klein

form ([8, Proposition 4.10], [11, Corollary 5]). Fact 1.3 can be regarded as an extension

of their results to all the Chern–Weil characteristic classes (cf. Theorem 4.1 (i) ⇔ (ii)

and [13, Proposition 6.1]).

Remark 1.8. Tholozan ([17, Version 2], [18]) independently proved Conjecture 1.1.

The strategy of his proof and ours are similar; his proof is based on a new cohomological

obstruction to the existence of compact Clifford–Klein forms, which is a generalization

of Fact 1.3. It seems that his proof cannot be applied to the case of manifolds locally

modelled on G/H because his new obstruction is established only for compact Clifford–

Klein forms. However, we are not sure if it is an essential difference or not. Indeed, as

far as the author knows, a compact manifold locally modelled on a homogeneous space

of reductive type has not been found, other than compact Clifford–Klein forms.

The organization of this paper is as follows. In Section 2, we recall the definition of

pure Sullivan algebras and construct a spectral sequence arising from a homomorphism of

pure Sullivan algebras. In Section 3, we recall the theory of transgressions for a reductive

Lie algebra and the Sullivan model for a reductive pair, mostly without proof, and apply

the spectral sequence constructed in Section 2 to this setting. In Section 4, we give the

proofs of Theorem 1.4 and Conjecture 1.1 using results in Section 3.

2. Preliminaries on pure Sullivan algebras.

In this section, we first recall the general definition of pure Sullivan algebras. As we

shall see in Section 3, the relative Lie algebra cohomology of a reductive pair is computed

by a certain pure Sullivan algebra. We then construct a spectral sequence defined for

a homomorphism of pure Sullivan algebras of the form 1 ⊗ g : (ΛU ⊗ SṼ ,−δf ) →
(ΛU ⊗ SW̃ ,−δgf ), which will be used in the proof of Theorem 1.4 (cf. Theorem 4.1

(viii)). We refer to [16] and [5] for further results on Sullivan algebras.

Since Theorem 1.4 is a purely algebraic theorem, we work over an arbitrary field K



1156(130)

1156 Y. Morita

of characteristic 0, rather than over R, in the rest of this paper. There are two gradings

on the exterior algebra ΛV of a graded vector space V , namely, the one defined as in the

ungraded case and the one induced from the grading on V . We write ΛV =
⊕

p Λ
pV

for the former grading and ΛV =
⊕

p(ΛV )p for the latter. Unless otherwise specified,

we regard ΛV as a graded algebra by the latter grading. We use the notation Λ+V for

the positive degree part of ΛV with respect to the former grading. It is also the positive

degree part of the latter grading if V is positively graded, which is always the case in this

paper. We define (SV )p, SpV and S+V in the same way. Given a graded vector space

V , we define a new graded vector space Ṽ by Ṽ = V [−1], i.e. by putting Ṽ n = V n−1 for

each n ∈ Z. We write ṽ for the element of Ṽ corresponding to v ∈ V . Similarly, we write

Q̃ for the element of SṼ corresponding to Q ∈ SV . For v ∈ V , we denote by ε(v) and

µ(v) the left multiplications by v on ΛV and SV , respectively. For α ∈ V ∗, we denote by

ι(α) and ∂(α) the derivations of ΛV and SV uniquely determined by ι(α)v = α(v) and

∂(α)v = α(v) (v ∈ V ), respectively. We always use the Koszul sign convention, namely,

we multiply by (−1)pq when we interchange two objects of homogeneous degrees p and

q, respectively.

2.1. Pure Sullivan algebras.

Let U =
⊕

n≥1 U
2n−1 and V =

⊕
n≥1 V

2n−1 be finite-dimensional, oddly and pos-

itively graded vector spaces. Let f : SŨ → SṼ be a graded algebra homomorphism.

Define a differential δf on a graded algebra ΛU ⊗ SṼ by the formula

δf =
∑
i

ι(ei)⊗ µ(f(ẽi)),

where (ei)i is a basis of U and (ei)i the basis of U∗ dual to (ei)i. It is called the Koszul

differential associated with f . In other words, the Koszul differential δf is the unique

derivation satisfying

δf (u⊗ 1) = 1⊗ f(ũ), δf (1⊗ ṽ) = 0 (u ∈ U, v ∈ V ).

Thus, δf does not depend on the choice of a basis (ei)i, and we have δ2f = 0. A differential

graded algebra of the form (ΛU ⊗ SṼ ,−δf ) is called a pure Sullivan algebra.

Remark 2.1. The minus sign in our definition of a pure Sullivan algebra is in-

serted just for convenience and is not essential. Indeed, 1 ⊗ sgn : (ΛU ⊗ SṼ ,−δf )
∼−→

(ΛU ⊗ SṼ , δf ) is an isomorphism of differential graded algebras, where sgn denotes the

automorphism of SṼ defined by sgn |SpṼ = (−1)p.

The Koszul differential on ΛV ⊗SṼ associated with the identity map 1SṼ on SṼ is

denoted by δV instead of δ1SṼ
.

2.2. A spectral sequence for pure Sullivan algebras.

Let U , V and W be finite-dimensional, oddly and positively graded vector spaces.

Let f : SŨ → SṼ and g : SṼ → SW̃ be graded algebra homomorphisms. Then,

1⊗ g : (ΛU ⊗ SṼ ,−δf ) → (ΛU ⊗ SW̃ ,−δgf )
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is a differential graded algebra homomorphism.

The Koszul differential δf on ΛU ⊗SṼ can be extended to the differential δf ⊗1⊗1

on ΛU⊗SṼ ⊗ΛV ⊗SW̃ . By abuse of notation, we abbreviate δf ⊗1⊗1 to δf . Similarly,

the Koszul differentials δg on ΛV ⊗ SW̃ , δgf on ΛU ⊗ SW̃ and δV on ΛV ⊗ SṼ are

naturally extended to the differentials on ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ , which we shall denote

by the same symbols. We define a differential graded algebra homomorphism

m : (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV ) → (ΛU ⊗ SW̃ ,−δgf )

by

m(ϕ⊗ Q̃⊗ ψ ⊗ R̃) = 0 (ϕ ∈ ΛU, Q ∈ SV, ψ ∈ Λ+V, R ∈ SW ),

m(ϕ⊗ Q̃⊗ 1⊗ R̃) = ϕ⊗ g(Q̃)R̃ (ϕ ∈ ΛU, Q ∈ SV, R ∈ SW ).

Proposition 2.2. The homomorphism m is a Sullivan model for the homomor-

phism 1⊗ g : (ΛU ⊗ SṼ ,−δf ) → (ΛU ⊗ SW̃ ,−δgf ), i.e.

(i) The diagram

(ΛU ⊗ SṼ ,−δf )
1⊗g //

i

++VVVV
VVVV

VVVV
VVVV

VV
(ΛU ⊗ SW̃ ,−δgf )

(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )

m

OO

commutes, where i is the natural inclusion.

(ii) It induces an isomorphism in cohomology :

m : H•(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )
∼−→ H•(ΛU ⊗ SW̃ ,−δgf ).

Remark 2.3. The nilpotency condition on differential ([5, p. 181]) is always sat-

isfied in this situation.

Proposition 2.2 should be known to experts, but we give its proof in Section 2.3 for

the sake of completeness.

Let us define a filtration (F p)p∈N of the differential graded algebra (ΛU⊗SṼ ⊗ΛV ⊗
SW̃ ,−δf − δg + δV ) by

F p =
⊕
k≥p

(ΛU ⊗ SṼ )k ⊗ ΛV ⊗ SW̃ .

The next proposition is easily obtained from routine computations and the identification

m : H•(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )
∼−→ H•(ΛU ⊗ SW̃ ,−δgf ).

Proposition 2.4. The spectral sequence (Ep,q
r , dr) associated with the filtration

(F p)p∈N satisfies the following :
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(1) Ep,q
2 = Hp(ΛU ⊗ SṼ ,−δf )⊗Hq(ΛV ⊗ SW̃ ,−δg).

(2) The spectral sequence (Ep,q
r , dr) converges to Hp+q(ΛU ⊗ SW̃ ,−δgf ).

(3) The homomorphism 1⊗g : Hp(ΛU⊗SṼ ,−δf ) → Hp(ΛU⊗SW̃ ,−δgf ) is factorized
as

Hp(ΛU ⊗ SṼ ,−δf )
∼−→ Ep,0

2 ↠ Ep,0
∞ ↪→ Hp(ΛU ⊗ SW̃ ,−δgf ).

2.3. Proof of Proposition 2.2.

The condition (i) is trivial. Let us verify the condition (ii).

For (p, q) ∈ N2, let πp,q denote the projection of ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ given by

πp,q =

{
0 on ΛU ⊗ Sp′

Ṽ ⊗ Λq′V ⊗ SW̃ , (p′, q′) ̸= (p, q),

1 on ΛU ⊗ SpṼ ⊗ ΛqV ⊗ SW̃ .

We write π instead of π0,0 when we regard π0,0 as a map from ΛU ⊗ SṼ ⊗ΛV ⊗ SW̃ to

ΛU ⊗ SW̃ . Define a linear endomorphism κ of ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ by

κ =


1

p+ q

∑
j

1⊗ ∂(f̃ j)⊗ ε(fj)⊗ 1 on
ΛU ⊗ SpṼ ⊗ ΛqV ⊗ SW̃ ,

(p, q) ̸= (0, 0),

0 on ΛU ⊗K⊗K⊗ SW̃ ,

where (fj)j is a basis of V and (f j)j the basis of V ∗ dual to (fj)j . One can easily show

that δV κ+ κδV = 1− π0,0 (see e.g. [7, Section 3.1]). Since

(δgκ)(ΛU ⊗ SpṼ ⊗ ΛqV ⊗ SW̃ ) ⊂ ΛU ⊗ Sp−1Ṽ ⊗ ΛqV ⊗ SW̃ ,

the infinite sum
∑∞

p=0(δgκ)
p is well-defined as a linear automorphism of ΛU ⊗ SṼ ⊗

ΛV ⊗ SW̃ , whose inverse is 1 − δgκ. Define an endomorphism ϕ of the graded algebra

ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ by

ϕ(u⊗ 1⊗ 1⊗ 1) = u⊗ 1⊗ 1⊗ 1 + κ

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1) (u ∈ U),

ϕ(1⊗ ṽ ⊗ 1⊗ 1) = 1⊗ ṽ ⊗ 1⊗ 1− 1⊗ 1⊗ 1⊗ g(ṽ) (v ∈ V ),

ϕ(1⊗ 1⊗ v ⊗ 1) = 1⊗ 1⊗ v ⊗ 1 (v ∈ V ),

ϕ(1⊗ 1⊗ 1⊗ w̃) = 1⊗ 1⊗ 1⊗ w̃ (w ∈W ).

Then, ϕ has the following properties:

Lemma 2.5. (1) ϕ(−δgf + δV ) = (−δf − δg + δV )ϕ.

(2) For any x ∈ ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ , there exists n ∈ N such that (1− ϕ)nx = 0.

(3) mϕ = π.
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Proof. We identify U , Ṽ , V and W̃ as graded subspaces of ΛU ⊗SṼ ⊗ΛV ⊗SW̃
in a natural way.

(1). Since both sides are derivations of ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ , it suffices to verify

this equality on U , Ṽ , V and W̃ . The only nontrivial equality is

ϕ(−δgf + δV )(u⊗ 1⊗ 1⊗ 1) = (−δf − δg + δV )ϕ(u⊗ 1⊗ 1⊗ 1) (u ∈ U).

The left-hand side is equal to −1⊗ 1⊗ 1⊗ gf(ũ), while the right-hand side is computed

as

(−δf − δg + δV )ϕ(u⊗ 1⊗ 1⊗ 1)

=− 1⊗ f(ũ)⊗ 1⊗ 1 + (−δg + δV )κ
∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=(−1 + δV κ)

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=− (π0,0 + κδV )
∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=− π0,0

∞∑
p=0

(δgκ)
p(1⊗ f(ũ)⊗ 1⊗ 1)

=−
∞∑
p=0

(δgκ)
pπp,0(1⊗ f(ũ)⊗ 1⊗ 1).

Thus, it is enough to see that

(δgκ)
p(1⊗ Q̃⊗ 1⊗ R̃) = 1⊗ 1⊗ 1⊗ g(Q̃)R̃ (Q ∈ SpV, R ∈ SW ) (∗p)

holds for every p ∈ N. Obviously (∗0) is true. Let us assume that (∗p−1) is true for some

p ≥ 1. Then, for Q ∈ SpV and R ∈ SW ,

(δgκ)
p(1⊗ Q̃⊗ 1⊗ R̃) =

1

p
(δgκ)

p−1
∑
j

1⊗ ∂(f̃j)Q̃⊗ 1⊗ g(f̃ j)R̃

= 1⊗ 1⊗ 1⊗ g

1

p

∑
j

µ(f̃ j)∂(f̃j)Q̃

 R̃

by the induction hypothesis. Since
∑

j µ(f̃
j)∂(f̃j) = p on SpṼ , we have

1⊗ 1⊗ 1⊗ g

1

p

∑
j

µ(f̃ j)∂(f̃j)Q̃

 R̃ = 1⊗ 1⊗ 1⊗ g(Q̃)R̃.

Hence (∗p) is also true. This completes the proof of Lemma 2.5 (1).

(2). Put A = {x ∈ ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ : (1− ϕ)nx = 0 for some n ∈ N}. Notice
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that A is a subalgebra of ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ . Indeed, the equality (1 − ϕ)(xx′) =

(1 − ϕ)(x)x′ + ϕ(x)(1 − ϕ)(x′) implies that, if (1 − ϕ)nx = 0 and (1 − ϕ)n
′
x′ = 0, then

(1−ϕ)n+n′−1(xx′) = 0. Therefore, it suffices to show that U, Ṽ , V, W̃ ⊂ A. The inclusions

Ṽ , V, W̃ ⊂ A are obvious. This implies K ⊗ SṼ ⊗ ΛV ⊗ SW̃ ⊂ A. Now, U ⊂ A follows

from (1− ϕ)(U) ⊂ K⊗ SṼ ⊗ ΛV ⊗ SW̃ .

(3). Since both sides are graded algebra homomorphisms, it suffices to verify this

equality on U , Ṽ , V and W̃ . The only nontrivial equality is

mϕ(u⊗ 1⊗ 1⊗ 1) = π(u⊗ 1⊗ 1⊗ 1) (u ∈ U),

which follows from πκ = 0. □

Now, we resume the proof of Proposition 2.2. By Lemma 2.5,

ϕ : (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV )
∼−→ (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )

is a differential graded algebra isomorphism, whose inverse is
∑∞

k=0(1− ϕ)k, that makes

the diagram

(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV )

≀ϕ

�� π ++VVVV
VVVVV

VVVVV
VVVVV

(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δf − δg + δV )
m // (ΛU ⊗ SW̃ ,−δgf )

commute. Thus, it suffices to show that the projection

π : (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV ) → (ΛU ⊗ SW̃ ,−δgf )

induces an isomorphism in cohomology. Let

i : (ΛU ⊗ SW̃ ,−δgf ) → (ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV )

denote the natural inclusion. We have πi = 1 and

iπ = π0,0 = 1− δV κ− κδV = 1− (−δgf + δV )κ− κ(−δgf + δV ).

Therefore, π : H•(ΛU ⊗ SṼ ⊗ ΛV ⊗ SW̃ ,−δgf + δV ) → H•(ΛU ⊗ SW̃ ,−δgf ) is an

isomorphism with inverse i : H•(ΛU⊗SW̃ ,−δgf ) → H•(ΛU⊗SṼ ⊗ΛV ⊗SW̃ ,−δgf+δV ).
This completes the proof of Proposition 2.2. □

3. Preliminaries on the relative Lie algebra cohomology of reductive

pairs.

In this section, we recall the Cartan–Chevalley–Koszul–Weil theory (announced in

[3]) on transgressions for a reductive Lie algebra and the Sullivan model for a reductive

pair. We mostly omit the proofs. See [6] or [15] for details on this subject.
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We retain the notations of Section 2. We always regard the dual g∗ of a Lie algebra

g as a graded vector space concentrated in degree 1. Thus g̃∗ is concentrated in degree 2.

We write L for the g-action on the exterior algebra Λg∗. Given an automorphism θ

of a Lie algebra g, we denote by the same symbol θ the induced automorphisms of

(Λg∗)g, (Sg̃∗)g, etc. Note that our notations are not the same as any of [3], [6] and

[15]; for instance, ΛPg∗ ⊗ (Sh̃∗)h in our notation corresponds to IA(G)⊗ IS(g) in [3], to

(∨F∗)θ=0 ⊗ ∧PE in [6] and to C(g, h) = ∧PG ⊗ SH in [15].

3.1. Relative Lie algebra cohomology.

Let g be a Lie algebra and h a subalgebra of g. Let d be the differential on the

exterior algebra Λg∗ given by

(dα)(X1, . . . , Xp+1) =
∑

1≤i<j≤p+1

α([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)

(α ∈ Λpg∗, X1, . . . , Xp+1 ∈ g).

The graded subalgebra

(Λ(g/h)∗)h = {α ∈ Λg∗ : ι(X)α = 0, L(X)α = 0 for all X ∈ h}

of Λg∗ is closed under the differential d. The cohomology of the differential graded algebra

((Λ(g/h)∗)h, d) is denoted by H•(g, h;K) and called the relative Lie algebra cohomology

of a pair (g, h).

Remark 3.1. If K = R and a pair (g, h) comes from a homogeneous space G/H,

it is easy to see that the above definition coincides with the geometric definition given in

Introduction.

3.2. The Cartan model of equivariant cohomology and the Chern–Weil

homomorphism.

Cartan and Weil defined the notion of equivariant cohomology for a differential

graded algebra equipped with “interior products” and “Lie derivatives” by the elements

of a Lie algebra ([2], [3]). We here explain their basic results in the case of (Λg∗, d),

which admits interior products and Lie derivatives by the elements of h. See e.g. [6,

Chapter VIII ] or [7, Sections 2–5] for the general case.

Let g be a Lie algebra and h a subalgebra of g. Define a differential dg,h on a graded

algebra (Λg∗ ⊗ Sh̃∗)h by the formula

dg,h = d⊗ 1−
∑
j

ι(Fj)⊗ µ(F̃ j),

where (Fj)j is a basis of h and (F j)j the basis of h
∗ dual to (Fj)j . The cohomology of the

differential graded algebra ((Λg∗⊗Sh̃∗)h, dg,h) is called the Cartan model of h-equivariant

cohomology of Λg∗. The natural inclusion

w : ((Sh̃∗)h, 0) → ((Λg∗ ⊗ Sh̃∗)h, dg,h), Q̃ 7→ 1⊗ Q̃
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induces a homomorphism w : (Sh̃∗)h → H•((Λg∗ ⊗ Sh̃∗)h, dg,h), which is said to be the

Chern–Weil homomorphism.

One has a natural inclusion of differential graded algebras

ϵ : ((Λ(g/h)∗)h, d) → ((Λg∗ ⊗ Sh̃∗)h, dg,h), α 7→ α⊗ 1.

Fact 3.2 (cf. [6, Chapter VIII, Theorem IV], [7, Section 5.1]). When h has an h-

invariant complementary linear subspace V in g (e.g. when h = g or when h is reductive

in g), the inclusion ϵ induces an isomorphism ϵ : H•(g, h;K)
∼−→ H•((Λg∗ ⊗Sh̃∗)h, dg,h).

The inverse isomorphism is constructed as follows (cf. [6, Chapter VIII, Proposi-

tion IX], [7, Section 5.2]). Let πV denote the projection Λg∗ = Λh∗ ⊗ ΛV ∗ ↠ ΛV ∗. Let

χ : Sh̃∗ → ΛV be the graded algebra homomorphism induced from the graded linear

map

h̃∗ → Λ2V ∗, F̃ 7→ −F ([·, ·]),

where F ∈ h∗ is regarded as an element of g∗ by putting F |V = 0. Then, the graded

algebra homomorphism

ψV : Λg∗ ⊗ Sh̃∗ → ΛV ∗ (≃ Λ(g/h)∗), α⊗ Q̃ 7→ πV (α) ∧ χ(Q̃),

restricts to the differential graded algebra homomorphism

ψV : ((Λg∗ ⊗ Sh̃∗)h, dg,h) → ((Λ(g/h)∗)h, d).

This ψV induces the inverse of ϵ in cohomology. We simply write w for the composition

(ϵ−1 ◦ w =)ψV ◦ w : (Sh̃∗)h → H•((Λg∗ ⊗ Sh̃∗)h, dg,h)
∼−→ H•(g, h;K),

which is also said to be the Chern–Weil homomorphism.

Remark 3.3 (cf. [6, Chapter XI, Section 1]). Recall that we can identify

H•(g, h;R) with H•(G/H;R) if G is a connected compact Lie group with Lie alge-

bra g and H is a connected closed subgroup with Lie algebra h (Remark 1.2). Under

this identification, the Chern–Weil homomorphism w : (Sh̃∗)h → H•(g, h;R) defined

here corresponds to the Chern–Weil homomorphism w : (Sh̃∗)h → H•(G/H;R) for the

principal H-bundle G→ G/H.

3.3. The Cartan map.

Let g be a Lie algebra. By Fact 3.2, one has

Hp((Λg∗ ⊗ Sg̃∗)g, dg,g) ≃ Hp(g, g;K) =

{
K (p = 0),

0 (p ≥ 1).

Thus, for P̃ ∈ ((Sg̃∗)g)2k (= (Skg̃∗)g) (k ≥ 1), there exists a unique element ρg(P̃ ) of

(Λ2k−1g∗)g such that dg,g(ρg(P̃ ) ⊗ 1 + Ω) = −1 ⊗ P̃ for some Ω ∈ (Λg∗ ⊗ S+g̃∗)g (the

uniqueness follows from d|(Λg∗)g = 0). This defines a linear map ρg : (S+g̃∗)g → (Λ+g∗)g
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of degree −1, called the Cartan map for g. See [6, Chapter VI, Section 2] for details.

3.4. Primitive elements and transgressions.

Let g be a reductive Lie algebra. Let Pg∗ denote the space of primitive elements in

(Λg∗)g, namely,

Pg∗ = {α ∈ (Λ+g∗)g : α(x ∧ y) = 0 for all x, y ∈ (Λ+g)g}.

It is known that Pg∗ is oddly graded ([6, Chapter V, Lemma VII (1)]), the inclusion

Pg∗ ↪→ (Λg∗)g induces an isomorphism ΛPg∗ ≃ (Λg∗)g ([6, Chapter V, Theorem III])

and the dimension of Pg∗ is equal to the rank of g ([6, Chapter X, Theorem XII]).

Remark 3.4. If g be a reductive Lie algebra, (Λg∗)g is dual to the graded algebra

(Λg)g and therefore admits a graded coalgebra structure in a natural way. One can

easily see that (Λg)g together with the usual algebra structure and the above coalgebra

structure forms a graded Hopf algebra. The above definition of Pg∗ coincides with the

usual definition of the space of primitive elements in a graded Hopf algebra.

Fact 3.5 ([6, Chapter VI, Theorem II ]). The Cartan map ρg for a reductive Lie

algebra g satisfies ker ρg = (S+g̃∗)g · (S+g̃∗)g and image ρg = Pg∗ .

A linear map τg : Pg∗ → (S+g̃∗)g of degree 1 satisfying ρg ◦ τg = 1 is called a

transgression in the Weil algebra of g. We simply call it a transgression for g.

Fact 3.6 ([6, Chapter VI, Theorem I ]). A transgression τg for a reductive Lie

algebra g induces a graded algebra isomorphism τ̃g : SP̃g∗
∼−→ (Sg̃∗)∗.

The condition ρg ◦ τg = 1 is equivalent to the existence of a graded linear map

Ω : Pg∗ → (Λg∗ ⊗ S+g̃∗)g such that dg,g(α ⊗ 1 + Ω(α)) = −1 ⊗ τg(α) (α ∈ Pg∗).

There exists a unique transgression τg for g such that this graded linear map Ω can be

taken so that (ι(Z) ⊗ 1)(Ω(α)) = 0 for any Z ∈ (Λ+g)g and α ∈ Pg∗ ([6, Chapter VI,

Proposition VI ]). It is called the distinguished transgression for g.

3.5. Compatibility with automorphisms.

It is obvious from the definition of the Cartan map ρg for a Lie algebra g that the

following diagram commutes for any automorphism θ of g:

(S+g̃∗)g
ρg

//

θ

��

Λ+g∗

θ

��
(S+g̃∗)g

ρg

// Λ+g∗.

We say that a transgression τg for a reductive Lie algebra g is compatible with an auto-

morphism θ of g if the following diagram commutes:
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Pg∗
τg

//

θ

��

(S+g̃∗)g

θ

��
Pg∗

τg
// (S+g̃∗)g.

It readily follows from its uniqueness that the distinguished transgression is compatible

with any automorphism.

3.6. The Sullivan model for a reductive pair.

Now, let (g, h) be a reductive pair, i.e. g a reductive Lie algebra and h a subalgebra

of g such that h is reductive in g. Let τg : Pg∗ → (S+g̃∗)g be a transgression for g and

τ̃g : SP̃g∗
∼−→ (Sg̃∗)g the induced isomorphism (cf. Fact 3.6). Define a graded algebra

homomorphism τ̃g,h : SP̃g∗ → (Sh̃∗)h by τ̃g,h(Ω̃) = τ̃g(Ω̃)|h. Here, (·)|h : (Sg̃∗)g → (Sh̃∗)h

denotes the restriction map. We sometimes write rest instead of (·)|h. Let us consider

the pure Sullivan algebra (ΛPg∗ ⊗ (Sh∗)h,−δτ̃g,h
) associated with τ̃g,h:

δτ̃g,h
(α⊗ 1) = 1⊗ τg(α)|h, δτ̃g,h

(1⊗ Q̃) = 0 (α ∈ Pg∗ , Q ∈ (Sh∗)h).

By definition of τg, there exists a graded linear map Ω : Pg∗ → (Λg∗ ⊗ S+g̃∗)g such that

dg,g(α ⊗ 1 + Ω(α)) = −1 ⊗ τg(α) (α ∈ Pg∗). Let us take one of such Ω. The Chevalley

homomorphism

ϑΩ : (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
) → ((Λg∗ ⊗ Sh̃∗)h, dg,h)

is a differential graded algebra homomorphism defined by

ϑΩ(α⊗ 1) = α⊗ 1 + (1⊗ rest)(Ω(α)), ϑΩ(1⊗ Q̃) = 1⊗ Q̃ (α ∈ Pg∗ , Q ∈ (Sh∗)h),

where rest : Sg̃∗ → Sh̃∗ is the restriction map.

Fact 3.7 ([6, Chapter X, Proposition IV]). The Chevalley homomorphism ϑΩ
induces an isomorphism in cohomology :

ϑΩ : H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
)

∼−→ H•((Λg∗ ⊗ Sh̃∗)h, dg,h) (≃ H•(g, h;K)).

Remark 3.8. Fact 3.7 means that the Chevalley homomorphism ϑΩ (resp. ψV ◦ϑΩ,
where ψV is as in Section 3.2) is a Sullivan model for the differential graded algebra

((Λg∗ ⊗ Sh̃∗)h, dg,h) (resp. ((Λ(g/h)∗)h, d)). We thus call it the Sullivan model for the

reductive pair (g, h), abusing terminology.

3.7. The Chern–Weil homomorphism in the Sullivan model.

We retain the setting of Section 3.6. Let w′ : (Sh̃∗)h → H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
)

be the homomorphism induced from the inclusion

w′ : ((Sh̃∗)h, 0) → (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
), Q̃ 7→ 1⊗ Q̃.

Proposition 3.9 ([6, Chapter X, Proposition IV]). The homomorphism w′ is
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identified with the Chern–Weil homomorphism w : (Sh̃∗)h → H•((Λg∗ ⊗ Sh̃∗)h, dg,h)

(≃ H•(g, h;K)) via ϑΩ (or ϵ−1 ◦ ϑΩ ).

Indeed, w = ϑΩ ◦ w′ : ((Sh̃∗)h, 0) → ((Λg∗ ⊗ Sh̃∗)h, dg,h).

Proposition 3.10 ([6, Chapter X, Corollary III (1) to Theorem III ]). One has

(kerw =) kerw′ = (S+g̃∗)g|h · (Sh̃∗)h.

This follows easily from the definition of differential δτ̃g,h
and Fact 3.6.

3.8. The case of reductive symmetric pairs.

If (g, h) is a reductive symmetric pair, i.e. g is a reductive Lie algebra and h = gθ

for some involution θ of g, the following useful results follow:

Fact 3.11. Let (g, h) be a reductive symmetric pair. Then,

(1) ([6, Chapter X, Corollary to Proposition VI ]) dim(Pg∗)−θ = rank g− rank h.

(2) ([6, Chapter X, Proposition VII ]) If τg is a transgression for g that is compatible

with θ, the following is a graded algebra isomorphism :

Λ(Pg∗)−θ ⊗ imagew′ ∼−→ H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
), α⊗ [1⊗ Q̃] 7→ [α⊗ Q̃].

Remark 3.12. In [6, Chapter X, Proposition VII ], τg is assumed to be a distin-

guished transgression, but its proof is, in fact, valid for any transgression compatible

with θ.

3.9. Induced homomorphisms.

Let g be a Lie algebra, h a subalgebra of g and l a subalgebra of h. Then the inclusion

i : ((Λ(g/h)∗)h, d) → ((Λ(g/l)∗)l, d)

and the restriction

1⊗ rest : ((Λg∗ ⊗ Sh̃∗)h, dg,h) → ((Λg∗ ⊗ S l̃∗)l, dg,l)

are differential graded algebra homomorphisms. The following diagram commutes:

((Λ(g/h)∗)h, d)
ϵ //

i

��

((Λg∗ ⊗ Sh̃∗)h, dg,h)

1⊗rest

��
((Λ(g/l)∗)l, d)

ϵ // ((Λg∗ ⊗ S l̃∗)l, dg,l).

Suppose, in addition, that (g, h) and (g, l) are reductive pairs. Take a transgression τg
for g and a graded linear map Ω : Pg∗ → (Λg∗ ⊗ S+g̃∗)g such that dg,g(α⊗ 1 + Ω(α)) =

−1⊗ τg(α). Then,

1⊗ rest : (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
) → (ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l

)
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is a differential graded algebra homomorphism, and the diagram

(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
)

ϑΩ //

1⊗rest

��

((Λg∗ ⊗ Sh̃∗)h, dg,h)

1⊗rest

��
(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l

)
ϑΩ // ((Λg∗ ⊗ S l̃∗)l, dg,l)

commutes. In summary,

Proposition 3.13. The homomorphism

1⊗ rest : H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
) → H•(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l

)

is identified with the homomorphism i : H•(g, h;K) → H•(g, l;K) via ϵ−1 ◦ ϑΩ.

3.10. A spectral sequence for the Sullivan models of reductive pairs.

As in Section 3.9, let (g, h) be a reductive pair and l a subalgebra of h such that

(g, l) is a reductive pair. Let τg and τh be transgressions of g and h, respectively. We

identify (Sh̃∗)h with SP̃h∗ via τ̃h. We thus denote by δPh∗ the Koszul differential on

ΛPh∗ ⊗ (Sh̃∗)h defined by

δPh∗ (β ⊗ 1) = τh(β), δPh∗ (1⊗ Q̃) = 0 (β ∈ Ph∗ , Q ∈ (Sh∗)h).

Let us apply the spectral sequence constructed in Section 2 to the differential graded

algebra homomorphism

1⊗ rest : (ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
) → (ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l

).

By Proposition 2.2, the differential graded algebra homomorphism

m : (ΛPg∗ ⊗ (Sh̃∗)h ⊗ ΛPh∗ ⊗ (S l̃∗)l,−δτ̃g,h
− δτ̃h,l

+ δPh∗ ) → (ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l
)

defined by

m(α⊗ Q̃⊗ β ⊗ R̃) = 0 (α ∈ ΛPg∗ , Q ∈ (Sh∗)h, β ∈ Λ+Ph∗ , R ∈ (Sl∗)l),

m(α⊗ Q̃⊗ 1⊗ R̃) = α⊗ Q̃|l · R̃ (α ∈ ΛPg∗ , Q ∈ (Sh∗)h, R ∈ (Sl∗)l)

is a Sullivan model for the differential graded algebra homomorphism 1⊗ rest : (ΛPg∗ ⊗
(Sh̃∗)h,−δτ̃g,h

) → (ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l
). Let (F p)p∈N be a filtration of the differential

graded algebra (ΛPg∗ ⊗ (Sh̃∗)h ⊗ ΛPh∗ ⊗ (S l̃∗)l,−δτ̃g,h
− δτ̃h,l

+ δPh∗ ) defined by F p =⊕
k≥p(ΛPg∗ ⊗ (Sh̃∗)h)k ⊗ ΛPh∗ ⊗ (S l̃∗)l. Applying Proposition 2.4 to this setting, we

have the following:

Corollary 3.14. Let (Ep,q
r , dr) be the spectral sequence associated with the filtra-

tion (F p)p∈N. Then,

(1) Ep,q
2 = Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h

)⊗Hq(ΛPh∗ ⊗ (S l̃∗)l,−δτ̃h,l
).
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(2) The spectral sequence (Ep,q
r , dr) converges to Hp+q(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l

).

(3) The homomorphism

1⊗ rest : Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
) → Hp(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l

)

is factorized as

Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
)

∼−→ Ep,0
2 ↠ Ep,0

∞ ↪→ Hp(ΛPg∗ ⊗ (S l̃∗)l,−δτ̃g,l
).

Remark 3.15. Suppose that G is a connected compact Lie group with Lie algebra

g, H is a connected closed subgroup of G with Lie algebra h and L is a connected closed

subgroup of H with Lie algebra l. Then, our spectral sequence may be seen as a Sullivan

model version of the Leray–Serre spectral sequence for the fibre bundle G/L → G/H

(cf. Remark 1.2).

4. Main theorem.

We retain the notations of Section 3.

4.1. Main theorem.

Let us prove the following theorem, which gives some conditions equivalent to the

injectivity of the homomorphism i : H•(g, h;K) → H•(g, kh;K). Recall that, when K = R
and a pair (g, h) comes from a homogeneous space G/H of reductive type, the injectivity

of i is a necessary condition for the existence of a compact manifold locally modelled on

G/H (cf. Fact 1.3).

Theorem 4.1. Let (g, h) be a reductive pair over a field K of characteristic 0 and

θ an involution of g such that θ(h) = h. Put kh = hθ. Let τg : Pg∗ → (Sg̃∗)g be a

transgression for g. Let τh : Ph∗ → (Sh̃∗)h be a transgression for h that is compatible

with θ. Then, the following conditions are all equivalent :

(i) The homomorphism i : H•(g, h;K) → H•(g, kh;K) is injective.

(ii) The homomorphism i|imagew : imagew → H•(g, kh;K) is injective, where w :

(Sh̃∗)h → H•(g, h;K) is the Chern–Weil homomorphism.

(iii) The homomorphism

1⊗ rest : H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
) → H•(ΛPg∗ ⊗ (Sk̃∗h)

kh ,−δ ˜τg,kh
)

is injective.

(iv) The homomorphism

(1⊗ rest)|imagew′ : imagew′ → H•(ΛPg∗ ⊗ (Sk̃∗h)
kh ,−δ ˜τg,kh

)

is injective, where w′ : (Sh̃∗)h → H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
) is defined by w′(Q̃) =

[1⊗ Q̃].
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(v) ((S+h∗)h)−θ ⊂ (S+g∗)g|h · (Sh∗)h.

(vi) The linear map

rest : ((S+g∗)g/((S+g∗)g · (S+g∗)g))−θ → ((S+h∗)h/((S+h∗)h · (S+h∗)h))−θ

induced from the restriction map (Sg∗)g → (Sh∗)h is surjective.

(vii) The linear map rest : (Pg∗)−θ → (Ph∗)−θ induced from the restriction map

(Λg∗)g → (Λh∗)h is surjective.

(viii) The spectral sequence

Ep,q
2 = Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h

)⊗Hq(ΛPh∗ ⊗ (Sk̃∗h)
kh ,−δ ˜τh,kh

)

⇒ Hp+q(ΛPg∗ ⊗ (Sk̃∗h)
kh ,−δ ˜τg,kh

)

defined as in Corollary 3.14 collapses at the E2-term.

Remark 4.2 (cf. Remark 1.5). Suppose that G is a connected compact Lie group

with Lie algebra g andH is a connected closed subgroup of G with Lie algebra h. Suppose

that the involution θ of g lifts to an involution of G such that θ(H) = H. Put KH = Hθ

and let π : G/KH → G/H denote the projection. Then, the conditions (i), (ii) and (viii)

are respectively rephrased as follows:

(i′) The homomorphism π∗ : H•(G/H;R) → H•(G/KH ;R) is injective.

(ii′) The homomorphism π∗|imagew : imagew → H•(G/KH ;R) is injective, where w :

(Sh̃∗)h → H•(G/H;R) is the Chern–Weil homomorphism for the principal H-

bundle G→ G/H.

(viii′) The Leray–Serre spectral sequence

Ep,q
2 = Hp(G/H;R)⊗Hq(H/KH ;R) ⇒ Hp+q(G/KH ;R)

for the fibre bundle π : G/KH → G/H collapses at the E2-term

(cf. Remarks 1.2, 3.3 and 3.15). Theorem 4.1 says that these conditions are all equivalent,

and they are also equivalent to the algebraic conditions (v)–(vii).

Proof of Theorem 4.1. (i) ⇒ (ii). Trivial.

(iii) ⇒ (iv). Trivial.

(i) ⇔ (iii). This follows from Proposition 3.13.

(ii) ⇔ (iv). This follows from Propositions 3.9 and 3.13.

(iv) ⇒ (v). Take any Q ∈ ((Sh∗)h)−θ. Then we have Q|kh = 0. By (iv), [1⊗ Q̃] = 0

in H•(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
). This means Q ∈ (S+g∗)g|h · (Sh∗)h by Proposition 3.10.

(v) ⇒ (vi). Take any Q ∈ ((S+h∗)h/((S+h∗)h · (S+h∗)h))−θ. Let Q ∈ (S+h∗)h be a

representative of Q. By (v), we can write
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Q− θ(Q)

2
= P |h +

r∑
i=1

Pi|h ·Qi (P, Pi ∈ (S+g∗)g, Qi ∈ (S+h∗)h).

Put P ′ = (P − θ(P ))/2. Then P ′ ∈ ((S+g∗)g/((S+g∗)g · (S+g∗)g))−θ and P ′|h = Q.

(vi) ⇒ (v). We shall prove

((Snh∗)h)−θ ⊂ (S+g∗)g|h · (Sh∗)h (†n)

by induction on n. Assume that (†m) is true for m ≤ n − 1. Let us take any Q ∈
((Snh∗)h)−θ. By (vi), we can write

Q = P |h +
r∑

i=1

Qi ·Q′
i (P ∈ (Sng∗)g, Qi ∈ (Smih∗)h,

Q′
i ∈ (Sn−mih∗)h, 1 ≤ mi ≤ n− 1)

Then,

Q =
1

2
(Q− θ(Q)) =

1

2
(P − θ(P ))|h +

1

4

r∑
i=1

(
(Qi − θ(Qi))(Q

′
i + θ(Q′

i))

+ (Qi + θ(Qi))(Q
′
i − θ(Q′

i))
)
.

We have

Qi − θ(Qi), Q
′
i − θ(Q′

i) ∈ (S+g∗)g|h · (Sh∗)h

by the induction hypothesis, and therefore Q ∈ (S+g∗)g|h · (Sh∗)h. Thus (†n) is also

true.

(vi) ⇔ (vii). This follows from commutativity of the diagram

(
(S+g̃∗)g/((S+g̃∗)g · (S+g̃∗)g)

)−θ ∼
ρg

//

rest
��

(Pg∗)−θ

rest

��(
(S+h̃∗)h/((S+h̃∗)h · (S+h̃∗)h)

)−θ ∼
ρh

// (Ph∗)−θ,

where ρg and ρh are the linear isomorphisms induced from the Cartan maps.

(v) ⇒ (viii). We shall prove dr = 0 (r ≥ 2) by induction on r. Let us assume that

ds = 0 for 2 ≤ s ≤ r − 1. Then

Ep,q
r = Ep,q

2 = Hp(ΛPg∗ ⊗ (Sh̃∗)h,−δτ̃g,h
)⊗Hq(ΛPh∗ ⊗ (Sk̃∗h)

kh ,−δ ˜τh,kh
).

By Leibniz’s rule, to prove dr = 0, it suffices to see that dr|E0,q
r

= 0 for all q ≥ 0.

Moreover, by Fact 3.11 (2) and again by Leibniz’s rule, it is enough to prove that

• dr([1⊗ 1]⊗ [1⊗ R̃]) = 0 for any R ∈ (Sk∗h)
kh .
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• dr([1⊗ 1]⊗ [β ⊗ 1]) = 0 for any β ∈ (Ph∗)−θ.

By construction of the spectral sequence, we have dr([1⊗ 1]⊗ [1⊗ R̃]) = 0 and

dr([1⊗ 1]⊗ [β ⊗ 1]) =

{
[1⊗ τh(β)]⊗ [1⊗ 1] if β ∈ (P r−1

h∗ )−θ,

0 if β ∈ (P q
h∗)−θ, q ̸= r − 1.

Since τh is taken to be compatible with θ, it follows that τh(β) ∈ ((Sh̃∗)h)−θ. By (v),

we have τh(β) ∈ (S+g̃∗)g|h · (Sh̃∗)h. This implies that [1 ⊗ τh(β)] = 0 in H•(ΛPg∗ ⊗
(Sh̃∗)h,−δτ̃g,h

) by Proposition 3.10. We have thus proved dr = 0.

(viii) ⇒ (iii). This follows immediately from Corollary 3.14 (3). □

4.2. Proof of Conjecture 1.1.

Suppose that the inequality rankG − rankK < rankH − rankKH holds. Then,

the linear map rest : (Pg∗)−θ → (Ph∗)−θ cannot be surjective because dim (Pg∗)−θ =

rankG − rankK and dim (Ph∗)−θ = rankH − rankKH (Fact 3.11 (1)). Applying The-

orem 4.1 (i) ⇒ (vii) and Fact 1.3, we conclude the nonexistence of compact manifolds

locally modelled on G/H and, in particular, of compact Clifford–Klein forms of G/H. □
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