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Abstract. Quadrangular algebras arise in the theory of Tits quadran-
gles. They are anisotropic if and only if the corresponding Tits quadrangle

is, in fact, a Moufang quadrangle. Anisotropic quadrangular algebras were
classified in the course of classifying Moufang polygons. In this paper we ex-
tend the classification of anisotropic quadrangular algebras to a classification
of isotropic quadrangular algebras satisfying a natural non-degeneracy condi-

tion.

1. Introduction.

The notion of a quadrangular algebra arose in the classification of Moufang quadran-

gles in [12], where quadrangular algebras played a role analogous to the role played by

quadratic Jordan division algebras of degree 3 in the classification of Moufang hexagons.

A formal definition and a purely algebraic classification of quadrangular algebras were

given subsequently in [13].

The definition of a quadrangular algebra in [13] requires that a certain quadratic

form q be anisotropic and that a second quadratic map π be anisotropic in the sense

given in D2 of [13, Definition 1.17]. These two conditions are both satisfied by the

quadrangular algebras that arise in the study of Moufang quadrangles. At the time, we

saw no geometric interpretation of the notion of a quadrangular algebra without these

two conditions and so we simply included them both in the definition.

In [7], we introduced the notion of a Tits polygon. This notion generalizes the notion

of a Moufang polygon. In [8], we show that the root group data of a Tits quadrangle

coming from an exceptional group has a natural parametrization by an algebraic structure

satisfying all the properties of a quadrangular algebra except for the two anisotropic

conditions (and these two anisotropic conditions do hold if and only if the Tits quadrangle

is, in fact, a Moufang quadrangle). In light of this observation, we want to correct the

definition of a quadrangular algebra by omitting these two conditions. We give the new

definition in Definition 2.1 below.

We will say that a quadrangular algebra (in this new sense) is anisotropic if both of

the omitted conditions do, in fact, hold and we will say that a quadrangular algebra is

isotropic if either of these conditions fails to hold. The quadrangular algebras classified in

[13] are thus the anisotropic quadrangular algebras. Our main goal in this paper is give
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the classification of isotropic quadrangular algebras. More precisely, we give the classifi-

cation (in Theorem 5.10) of proper quadrangular algebras (as defined in Definition 5.4)

such that the map h in Definition 2.1 is non-degenerate (as defined in Observation 5.8).

In an appendix, we indicate the connection between quadrangular algebras, build-

ings, Tits indices and the exceptional groups. In particular, we observe in the appendix

that there is a natural correspondence (which can be described in terms of root group data

and Tits indices) between the quadrangular algebras that appear in Theorem 5.10(i)–(ii)

(up to isotopy) and the Tits quadrangles that arise from the exceptional groups (up to

isomorphism). This correspondence, which is summarized in Table 1, and a characteri-

zation of this class of Tits quadrangles are the subject of [8].

2. Quadrangular algebras.

Here is our new definition of a quadrangular algebra:

Definition 2.1. A quadrangular algebra is an ordered set

(K,L, q, f, ε,X, ·, h, θ),

where K is a field, L is a vector space over K, q is a non-degenerate quadratic form on

L (see Notation 2.2), f is the bilinear form associated with q, ε is an element of L such

that q(ε) = 1, X is a non-trivial vector space over K, (a, v) 7→ a · v is a map from X ×L

to X (which is denoted below, and, in general, simply by juxtaposition), h is a map from

X ×X to L and θ a map from X × L to L satisfying the following axioms:

(A1) The map · is bilinear (over K).

(A2) a · ε = a for all a ∈ X.

(A3) (av)vσ = q(v)a for all a ∈ X and all v ∈ L, where

vσ = f(v, ε)ε− v. (2.1)

(B1) h is bilinear (over K).

(B2) h(a, bv) = h(b, av) + f(h(a, b), ε)v for all a, b ∈ X and all v ∈ L.

(B3) f(h(av, b), ε) = f(h(a, b), v) for all a, b ∈ X and all v ∈ L.

(C1) For each a ∈ X, the map v 7→ θ(a, v) is linear (over K).

(C2) θ(ta, v) = t2θ(a, v) for all t ∈ K, all a ∈ X and all v ∈ L.

(C3) There exists a function g from X ×X to K such that

θ(a+ b, v) = θ(a, v) + θ(b, v) + h(a, bv)− g(a, b)v

for all a, b ∈ X and all v ∈ L.
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(C4) There exists a function ϕ from X × L to K such that

θ(av,w) = q(v)θ(a,wσ)σ − f(w, vσ)θ(a, v)σ

+ f(θ(a, v), wσ)vσ + ϕ(a, v)w

for all a ∈ X and v, w ∈ L.

(D1) Let π(a) = θ(a, ε) for all a ∈ X. Then

aθ(a, v) = (aπ(a))v

for all a ∈ X and all v ∈ L.

Notation 2.2. By the assumption in Definition 2.1 that q is non-degenerate, we

mean that the restriction of q to the radical of f is anisotropic (as in [11, 8.2.3]). If

char(K) ̸= 2 (in which case q(v) = f(v, v)/2 for all v ∈ L), it follows from this assumption

that, in fact, f is non-degenerate.

Definition 2.3. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a quadrangular algebra and

let π be the map from X to L that appears in D1 of Definition 2.1. We will say that π is

anisotropic if π(a) ∈ ⟨ε⟩ implies that a = 0. We will say that Ξ is anisotropic if both q

and π are anisotropic and we will say that Ξ is isotropic if q or π fails to be anisotropic.

Observation 2.4. In [13, (1.3)], v−1 is defined to be vσ/q(v) for all v ∈ L such

that q(v) ̸= 0. Thus A3 in Definition 2.1 and A3 in [13, Definition 1.17] coincide when q

is anisotropic. In Definition 2.1 we have eliminated D2 of [13, Definition 1.17]. All the

remaining axioms of Definition 2.1 and [13, Definition 1.17] are identical (except that

we write all the scalars on the left in Definition 2.1). Thus the quadrangular algebras

as defined in [13, Definition 1.17] are precisely the anisotropic quadrangular algebras as

defined in Definition 2.3.

Remark 2.5. We have made two small changes in the notation: In Definition 2.1,

we denote the basepoint of (K,L, q) by ε rather than 1, and we include the bilinear form

f in the list of spaces and maps comprising the quadrangular algebra.

Remark 2.6. From now on, we will refer to the axioms A1,A2, . . . ,D1 in Defini-

tion 2.1 without explicitly referencing Definition 2.1.

Observation 2.7. We mention that the algebraic parts of [12, Chapters 21–28]

inspired a different set of axioms in [2]. The algebraic structures studied in [2] serve as

parameter algebras for arbitrary Moufang quadrangles, not just the exceptional ones.

Observation 2.8. Let C(q, ε) denote the Clifford algebra with basepoint as de-

fined in [5] (or [12, Definition 12.47] or [13, Definition 2.21]). (By [12, (12.51)], C(q, ε)

is canonically isomorphic to the even Clifford algebra C0(q).) By A1–A3, the map · from
X × L to X extends uniquely to a map from X × C(q, ε) to X making X into a right

C(q, ε)-module, If we replace X by a non-zero submodule X0 for C(q, ε), then all the

conditions in Definition 2.1 continue to hold. We apply this observation in Notation 4.14
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and in the proofs of Propositions 7.3 and 11.15. In general, however, we cannot be certain

that the restrictions of θ to X0 × L0 and of h to X0 × X0 are not identically zero, so

the resulting quadrangular algebra might not be very interesting. We give an example

of this phenomenon in Observation 4.15 below.

3. Composition algebras.

In this section we assemble some elementary observations about composition algebras

that will be needed in the next section.

Notation 3.1. Let (C,K) be a composition algebra. Thus one of the following

holds:

(i) C/K is a field extension, char(K) = 2 and C2 ⊂ K.

(ii) C = K and char(K) ̸= 2.

(iii) C/K is a quadratic étale extension, i.e. C/K is either a separable field extension

or C = K ⊕K.

(iv) C is quaternion and K = Z(C).

(v) C is octonion and K = Z(C).

Let nC denote the norm of (C,K), tC its trace and σC its standard involution. Thus

nC(e) = eσe ∈ K and tC(e) = e + eσ ∈ K for all e ∈ C, where σ = σC . In cases (i)

and (ii), σC = 1 and in case (iii), (s, t)σ = (t, s) for all (s, t) ∈ C if C = K ⊕ K. The

norm nC is a quadratic form over K. In cases (i) and (ii), nC is anisotropic; in case (iii),

nC is anisotropic if C is a field and hyperbolic if C = K ⊕K. Also in the remaining two

cases, nC is either hyperbolic or anisotropic. The composition algebra (C,K) is called

division if nC is anisotropic and split if either dimK C = 1 or (C,K) is in one of the

cases (iii), (iv) or (v) and nC is hyperbolic. We refer to dimK C as the dimension of

(C,K). If (C,K) is split, it is uniquely determined by K and the dimension of (C,K).

Notation 3.2. Let sC(a, b) = tC(a
σb) for all a, b ∈ C. The form sC is the

bilinear form associated with nC . In particular, sC is identically zero if (C,K) is as in

Notation 3.1(i) and sC is non-degenerate otherwise

Remark 3.3. In case (i) of Notation 3.1, we make no restriction on dimK C; in

particular, this dimension is allowed to be infinite. In the remaining cases, dimK C

divides 8.

Remark 3.4. Note that in cases (i) and (iii) of Notation 3.1, K is not uniquely

determined by C. Nevertheless, we write, for example, nC rather than n(C,K). We will

always have at most one composition algebra in mind, so this commonly used convention

should not cause any confusion.

Since tC(e)e = etC(e), we have

nC(e) = eσe = tC(e)e− e2 = etC(e)− e2 = eeσ (3.1)
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for all e ∈ C. It follows that

nC(a
σ + b) = (aσ + b)(a+ bσ) = (a+ bσ)(aσ + b)

as well as

tC(ba) = (aσ + b)(a+ bσ)− nC(a)− nC(b)

and

tC(ab) = (a+ bσ)(aσ + b)− nC(a)− nC(b)

for all a, b ∈ C. Therefore

tC(ab) = tC(ba) (3.2)

for all a, b ∈ C.

The associator of (C,K) is the map (a, b, c) 7→ [a, b, c] from C × C × C to C given

by

[a, b, c] = ab · c− a · bc

for all a, b, c ∈ C. The Moufang identities [12, Definition 9.1(ii) and (iii)] hold in C and

the associator is trilinear and, by [12, (9.14)], alternating. (Note that he proof of [12,

(9.14)] does not require (C,K) to be division). It follows that

[aσ, b, c] = [a, bσ, c] = [a, b, cσ] = −[a, b, c] (3.3)

for all a, b, c ∈ C. Hence

[a, b, c]σ = cσ · bσaσ − cσbσ · aσ

= −[cσ, bσ, aσ] = [c, b, a] = −[a, b, c]

and thus

tC(ab · c− a · bc) = tC([a, b, c]) = 0

for all a, b, c ∈ C. Therefore

tC(ab · c) = tC(a · bc)

for all a, b, c ∈ C. We will thus, in general, write tC(abc) rather than tC(a · bc) or

tC(ab · c) to denote the trace of a product of three terms a, b and c. By (3.2), we have

tC(abc) = tC(cab) = tC(bca) for all a, b, c ∈ C.

Proposition 3.5. Let a, b, c, e ∈ C. Then the following hold :

(i) (a · cbσ)e = bσe · tC(ac)− tC(e
σba) · cσ + cσeσ · ba.

(ii) a(ec · bσ) = ae · tC(cbσ)− tC(aeb) · cσ + bσeσ · aσcσ.
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Proof. Replacing a by cσ, d by aσ, b by bσ and c by e in [12, (9.16)(ii)] (whose

proof does not require (C,K) to be division), we obtain the identity

[cσaσ, bσ, e]− cσ[aσ, bσ, e] = [cσ, aσbσ, e]− [cσ, aσ, bσe] + [cσ, aσ, bσ]e,

which we can rewrite as

−[ac, bσ, e]− cσ[eσ, b, a] = −[cσ, eσ, ba]− [cσ, aσ, bσe]− [a, c, bσ]e

using (3.3) and the fact that the associator is alternating. Expanding each associator in

this identity, we obtain (i). We obtain (ii) by applying σ to every term in (i) and then

replacing e by aσ, b by e, c by cσ and a by b. □

Lemma 3.6. Let f(a, b, c, e) = [ab, c, e] − b[a, c, e] − [b, c, e]a for all a, b, c, e ∈ C.

Then f is alternating.

Proof. This holds by [12, (9.20)]. □

Proposition 3.7. Suppose that char(K) = 2. Then

c[b, a, e] + b[c, a, e] + [c, e, ab] + [b, e, ac] = 0

for all a, b, c, e ∈ C.

Proof. Let f be as in Lemma 3.6. Since f and the associator are both alternating

and hence both symmetric since char(K) = 2, we have

c[b, a, e] + [b, e, ac] + [c, e, b]a = f(a, b, c, e)

and

b[c, a, e] + [c, e, ab] + [c, e, b]a = f(a, b, c, e)

for all a, b, c, e ∈ C. Adding these two identities, we obtain the desired conclusion. □

4. Examples.

Let (C,K), nC , tC and σC be as in Notation 3.1. We set N = nC , T = tC and

σ = σC .

Notation 4.1. Let LC = K ⊕K ⊕K ⊕K ⊕ C and let

qC(t1, t2, t3, t4, e) = t1t4 + t2t3 +N(e)

for all (t1, t2, t3, t4, e) ∈ LC . Thus qC is a quadratic form, the Witt index of qC is 2 if

(C,K) is division and qC is hyperbolic if (C,K) is not division.

Notation 4.2. Let X = C ⊕ C ⊕ C ⊕ C and let L = LC be as in Notation 4.1.

We set
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(a, b, c, d) · (t1, t2, t3, t4, e)

equal to the the element(
ae+ bσt2 + cσt1, eb− aσt3 − dσt1,

ec− aσt4 + dσt2, de+ bσt4 − cσt3
)

of X for all (a, b, c, d) ∈ X and all (t1, t2, t3, t4, e) ∈ L. Thus (u, v) 7→ u · v is a bilinear

map from X × L to X.

Observation 4.3. Let q = qC , let ε denote the element (0, 0, 0, 0, 1) of L and let

· be as in Notation 4.2. Then q(ε) = 1, u · ε = u for all u ∈ X and

(t1, t2, t3, t4, e)
σ = (−t1,−t2,−t3,−t4, eσ)

for all (t1, t2, t3, t4, e) ∈ L, where the σ on the left is as in A3 of Definition 2.1 and the

σ on the right is σC . It follows immediately from the formulas that uv · vσ = q(v)u for

all u ∈ X and all v ∈ L. Note also that

f
(
(t1, t2, t3, t4, e), ε

)
= T (e) (4.1)

for all (t1, t2, t3, t4, e) ∈ L.

Notation 4.4. Let h denote the bilinear map from X ×X to L given by

h
(
(a, b, c, d), (a′, b′,c′, d′)

)
=
(
− T (ab′ + a′b), T (ac′ + a′c),

T (bd′ + b′d), T (cd′ + c′d), aσd′ − dσa′ − c′bσ + b′cσ
)

for all (a, b, c, d), (a′, b′, c′, d′) ∈ X.

Proposition 4.5. Let h be as in Notation 4.4, let · be as in Notation 4.2, let ε be

as in Observation 4.3 and let f = fC be the bilinear form associated with qC . Then

(i) h(u, u0v) = h(u0, uv) + f(h(u, u0), ε)v and

(ii) f(h(uv, u0), ε) = f(h(u, u0), v)

for all u, u0 ∈ X and all v ∈ L.

Proof. Choose elements u = (a, b, c, d) and u0 = (a0, b0, c0, d0) in X and an

element v = (t1, t2, t3, t4, e) in L. Then

f(h(u, u0), ε) = T (aσd0 − dσa0 − c0b
σ + b0c

σ) (4.2)

by (4.1), the first coordinate of h(u, u0v) is

−T
(
a(eb0 − aσ0 t3 − dσ0 t1) + (a0e+ bσ0 t2 + cσ0 t1)b

)
and the first coordinate of h(u0, uv) is
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−T
(
a0(eb− aσt3 − dσt1) + (ae+ bσt2 + cσt1)b0

)
.

Hence the first coordinate of h(u, u0v)− h(u0, uv) is

t1T (ad
σ
0 − cσ0 b)− t1T (a0d

σ − b0c
σ)

and this expression equals t1f(h(u, u0), ε). Thus the first coordinates on both sides of

the identity (i) are equal. By similar calculations, also the second, third and fourth

coordinates are equal. The last coordinate of h(u, u0v) is

aσ(d0e+b
σ
0 t4 − cσ0 t3)− dσ(a0e+ bσ0 t2 + cσ0 t1)

− (ec0 − aσ0 t4 + dσ0 t2)b
σ + (eb0 − aσ0 t3 − dσ0 t1)c

σ

and the last coordinate of h(u0, uv) is

aσ0 (de+b
σt4 − cσt3)− dσ0 (ae+ bσt2 + cσt1)

− (ec− aσt4 + dσt2)b
σ
0 + (eb− aσt3 − dσt1)c

σ
0 .

It follows that the last coordinate of h(u, u0v)− h(u0, uv) is precisely

T (aσd0 − dσa0 − c0b
σ + b0c

σ)e.

By (4.2), we conclude that (i) holds.

The expression f(h(uv, u0), ε) equals

T
(
(ae+ bσt2 + cσt1)

σd0 − (de+ bσt4 − cσt3)
σa0

− c0(eb− aσt3 − dσt1)
σ + b0(ec− aσt4 + dσt2)

σ
)
.

The expression f(h(u, u0), v), on the other hand, equals

−T (ab0 + a0b)t4 + T (cd0 + c0d)t1 + T (ac0 + a0c)t3 + T (bd0 + b0d)t2

+ T
(
(aσd0 − dσa0 − c0b

σ + b0c
σ)eσ

)
.

These two expressions are equal and thus (ii) holds. □

Notation 4.6. Let θ denote the map from X × L to L given by

θ
(
(a, b, c, d), (t1, t2, t3, t4, e)

)
=(

− T (aeb) +N(a)t3 −N(b)t2 +
1

2
t1T (a

σd− bσc),

T (aec) +N(c)t1 −N(a)t4 +
1

2
t2T (a

σd+ bσc),

T (deb) +N(b)t4 −N(d)t1 − 1

2
t3T (a

σd+ bσc),

T (dec) +N(d)t2 −N(c)t3 − 1

2
t4T (a

σd− bσc),

t4a
σbσ − t3a

σcσ − t2d
σbσ − t1d

σcσ +
1

2

(
aσ · de− dσ · ae− ec · bσ + eb · cσ

))
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for all (a, b, c, d) ∈ X and all (t1, t2, t3, t4, e) ∈ L if char(K) ̸= 2 and by

θ
(
(a, b, c, d), (t1, t2, t3, t4, e)

)
=(

T (aeb) +N(a)t3 +N(b)t2 + t1T (a
σd+ bσc),

T (aec) +N(c)t1 +N(a)t4 + t2T (a
σd+ bσc),

T (deb) +N(b)t4 +N(d)t1 + t3T (a
σd+ bσc),

T (dec) +N(d)t2 +N(c)t3 + t4T (a
σd+ bσc),

t4a
σbσ + t3a

σcσ + t2d
σbσ + t1d

σcσ + aσ · de+ ec · bσ
)

for all (a, b, c, d) ∈ X and all (t1, t2, t3, t4, e) ∈ L if char(K) = 2.

Proposition 4.7. θ(u, v) = h(u, uv)/2 for all u ∈ X and all v ∈ L if char(K) ̸= 2.

Proof. Choose elements u = (a, b, c, d) in X and v = (t1, t2, t3, t4, e) in L. Then

h(u, uv) equals(
− T

(
a(eb− aσt3 − dσt1) + (ae+ bσt2 + cσt1)b

)
,

T
(
a(ec− aσt4 + dσt2) + (ae+ bσt2 + cσt1)c

)
,

T
(
b(de+ bσt4 − cσt3) + (eb− aσt3 − dσt1)d

)
,

T
(
c(de+ bσt4 − cσt3) + (ec− aσt4 + dσt2)d

)
,

aσ(de+ bσt4 − cσt3)− dσ(ae+ bσt2 + cσt1)

− (ec− aσt4 + dσt2)b
σ + (eb− aσt3 − dσt1)c

σ
)

It is straightforward to check that this expression equals 2θ(u, v). □

Notation 4.8. Let π(u) = θ(u, ε) for all u ∈ X, where ε is as in Notation 4.3.

Then

π
(
a, b, c, d) =

(
−T (ab), T (ac), T (bd), T (cd), 1

2

(
aσd− dσa− cbσ + bcσ

))
for all (a, b, c, d) ∈ X if char(K) ̸= 2 and

π
(
a, b, c, d) =

(
T (ab), T (ac), T (bd), T (cd), aσd+ cbσ

)
for all (a, b, c, d) ∈ X if char(K) = 2.

Lemma 4.9. Let u = (a, b, c, d) ∈ X. Then uπ(u) equals(
aE + bσT (ac)− cσT (ab),

Eb− aσT (bd) + dσT (ab),

Ec− aσT (cd) + dσT (ac),

dE + bσT (cd)− cσT (bd)
)
,
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where

E =
1

2
(aσd− dσa− cbσ + bcσ) (4.3)

if char(K) ̸= 2 and

E = aσd+ cbσ (4.4)

if char(K) = 2.

Proof. This holds by Notations 4.2 and 4.8. □

Proposition 4.10. uπ(u)v = uθ(u, v) for all u ∈ X and all v ∈ L, where π is as

in Notation 4.8.

Proof. Choose u = (a, b, c, d) in X, let v = (1, 0, 0, 0, 0) in L and let E be as in

Lemma 4.9. We assume first that char(K) ̸= 2. Then uπ(u)v equals(
cσEσ − aT (cd) + dT (ac), −Eσdσ − bT (cd) + cT (bd), 0, 0

)
and θ(u, v) equals (

1

2
T (aσd− bσc), N(c), −N(d), 0, −dσcσ

)
.

Thus uθ(u, v) equals(
− a · dσcσ+bσN(c) +

1

2
T (aσd− bσc)cσ,

− dσcσ · b+ aσN(d)− 1

2
T (aσd− bσc)dσ, 0, 0

)
.

In the first coordinate of uπ(u)v, we expand aT (cd) as a · cd + a · dσcσ and dT (ac)

as ac · d + cσaσ · d. In the first coordinate of uθ(u, v), we expand cσT (aσd − bσc) as

cσ · aσd+ cσ · dσa− bσc · cσ − cσb · cσ. After collecting terms, we find that the difference

between these two first coordinates is [a, c, d ]+ [cσ, aσ, d ] = 0. Thus the first coordinates

of uπ(u)v and of uθ(u, v) are equal. Expanding bT (cd) as dσcσ · b + cd · b, cT (bd) as

c · db+ c · bσdσ, dσT (aσd) as dσ · daσ + dσ · adσ and dσT (bσc) as cbσ · dσ + bcσ · dσ in the

second coordinates of uπ(u)v and uθ(u, v) and collecting terms, we see that they, too,

are equal. Thus

uπ(u)v = uθ(u, v) (4.5)

holds for v = (1, 0, 0, 0, 0). Once these calculations are carried out, it is straightforward

(and, in fact, a trifle easier) to verify that (4.5) also holds for v = (1, 0, 0, 0, 0) when

char(K) = 2.

By similar calculations, it can be verified that (4.5) holds also for the elements v =

(0, 1, 0, 0, 0), (0, 0, 1, 0, 0) and (0, 0, 0, 1, 0), both when char(K) ̸= 2 and when char(K) =

2. Since both sides of (4.5) are linear in the variable v, it remains only to show that (4.5)
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holds for v = (0, 0, 0, 0, e), where e is an arbitrary element of C. The first coordinate of

uπ(u)v is then

x := aE · e+ bσeT (ac)− cσeT (ab),

where E is as in (4.3) or (4.4).

Suppose that char(K) ̸= 2. Then the first coordinate of uθ(u, v) equals

y :=
1

2
a(aσ · de− dσ · ae− ec · bσ + eb · cσ) + bσT (aec)− cσT (aeb).

Let δ = 2(y − x). Then δ equals

a(eb · cσ)− a(ec · bσ)− (a · bcσ)e+ (a · cbσ)e
+ 2bσT (aec)− 2bσeT (ac)− 2cσT (aeb) + 2cσeT (ab) (4.6)

since a(dσ ·ae) = (a·dσa)e (by [12, Definition 9.1(ii)]) and a(aσ ·de) = N(a)de = (a·aσd)e.
Applying Proposition 3.5(i) twice, we have

(a · cbσ)e− bσeT (ac) + T (eσba)cσ = cσeσ · ba

and

(a · bcσ)e− cσeT (ab) + T (eσca)bσ = bσeσ · ca.

Applying Proposition 3.5(ii) twice, we have

a(eb · cσ)− aeT (cbσ) + bσT (aec) = cσeσ · aσbσ

and

a(ec · bσ)− aeT (bcσ) + cσT (aeb) = bσeσ · aσcσ.

We then observe that

cσeσ · ba+ cσeσ · aσbσ = cσeσT (ab)

and

bσeσ · ca+ bσeσ · aσcσ = bσeσT (ac).

By (4.6), we conclude that

δ = bσT (eca) + bσT (eσca) + cσeT (ab) + cσeσT (ab)

− cσT (eba)− cσT (eσba)− bσeT (ac)− bσeσT (ac).

Since T (eca)+T (eσca) = T (e)T (ac) and T (eba)+T (eσba) = T (e)T (ab), we conclude that

δ = 0. Thus uπ(u)v and uθ(u, v) agree in the first coordinate. By similar calculations,

we find that uπ(u)v and uθ(u, v) agree in the other three coordinates as well and hence
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(4.5) holds for v = (0, 0, 0, 0, e).

Suppose, finally, that char(K) = 2. This time the first coordinate of uθ(u, v) is

a(aσ · de+ ec · bσ) + bσT (aec) + cσT (aeb).

and hence the difference δ between the first coordinates of uπ(u)v and of uθ(u, v) is

a(ec · bσ) + (a · cbσ)e+ bσT (aec) + cσT (aeb) + bσeT (ac) + cσeT (ab).

By applying Proposition 3.5(i) and (ii), we turn δ into

cσT (eσba) + bσT (aec) + aeT (cbσ) + cσeT (ab) + cσeσ · ba+ bσeσ · aσcσ.

Next we expand cσT (eσba) as cσ(eσ · ba) + cσ(aσbσ · e), we expand aeT (cbσ) as bσc ·
ae + cσb · ae, we expand bσT (aec) as bσ(eσ · aσcσ) + bσ(ca · e) and we expand cσeT (ab)

as cσe · ba + cσe · aσbσ. Then we replace bσ(eσ · aσcσ) + bσeσ · aσcσ by [bσ, eσ, aσcσ] =

[b, e, ca], we replace bσc · ae + bσ(ca · e) by bσ[c, a, e] + [bσ, c, ae] = bσ[c, a, e] + [b, c, ae],

we replace cσe · ba + cσeσ · ba by cσ · baT (e) = cσ(eσ · ba) + cσ(e · ba), we then replace

cσ(e · ba) by [cσ, e, ba] + cσe · ba = [c, e, ba] + cσe · ba, we then replace cσe · ba+ cσe · aσbσ
by cσeT (ab) = cσ(aσbσ · e) + cσ(ba · e) and lastly, we replace cσ(ba · e) + cσb · ae by

cσ[b, a, e] + [cσ, b, ae] = cσ[b, a, e] + [c, b, ae]. At this point, we have

δ = bσ[c, a, e] + cσ[b, a, e] + [b, e, ca] + [c, e, ba].

Hence δ = 0 by Proposition 3.7. Thus uπ(u)v and uθ(u, v) agree in the first coor-

dinate. By similar calculations, we find that uπ(u)v and uθ(u, v) agree in the other

three coordinates as well and hence (4.5) holds for v = (0, 0, 0, 0, e) also in the case that

char(K) = 2. □

Theorem 4.11. Let

Ξ = (K,LC , qC , fC , ε,X, ·, h, θ),

where LC , qC , fC , etc., are as in Notation and Observations 4.1–4.4 and 4.6 and Propo-

sition 4.5. Then Ξ is a quadrangular algebra.

Proof. By Notation 4.3 and Propositions 4.5 and 4.10, A1–B3 and D1 hold (see

Remark 2.6). Thus by Proposition 4.7 and [13, Remark 4.8], Ξ is a quadrangular algebra

if char(K) ̸= 2. It thus suffices to assume that char(K) = 2. By Notation 4.6, C1 and

C2 hold, and by lengthy but straightforward calculations, it can be checked that C3 and

C4 hold in this case too. □

Notation 4.12. We denote the quadrangular algebra Ξ in Theorem 4.11 by

Q4(C,K).

The subscript refers to the fact that X is the direct sum of four copies of C.

Remark 4.13. If Ξ = Q4(C,K) with C = K, then q(π(u)) = 0 for all u ∈ X if
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and only if char(K) ≠ 2, where π is as in Notation 4.8.

Notation 4.14. Let Ξ = (K,LC , qC , fC , ε,X, ·, h, θ) be as in Theorem 4.11. Let

L0 = {(t1, t2, t3, t4, u) ∈ LC | t1 = t2 = t3 = t4 = 0},

let

X0 = {(a, b, c, d) ∈ X | b = c = 0},

let q0 denote the restriction of qC to L0 and let f0 denote the bilinear form associated

with q0. (We can, of course, identify X0 with C⊕C and L0 with C so that q0 is simply nC
and f0 is the form sC defined in Notation 3.2.) Note that X0 ·L0 ⊂ X0, h(X0, X0) ⊂ L0

and θ(X0, L0) ⊂ L0. Thus

Ξ0 := (K,L0, q0, f0, ε,X0, ·0, h0, θ0)

is a quadrangular algebra, where ·0, h0 and θ0 denote the restrictions of ·, h and θ to

X0×L0, to X0×X0 and to X0×L0. We denote this quadrangular algebra by Q2(C,K).

The subscript refers to the fact that X0 is the direct sum of two copies of C.

Observation 4.15. Let X0, L0, h0 and θ0 be as in Notation 4.14 and let X1

denote the subspace {(a, b, c, d) | b = c = d = 0} of X0. Then X1L0 ⊂ X1, but the

restriction of θ to X1 ×L0 and the restriction of h to X1 ×X1 are both identically zero.

See Observation 2.8.

Notation 4.16. Let (C,K) be a composition algebra with standard involution

σ = σC . Suppose that (C,K) is not octonion, i.e. that C is associative, and let X be a

right vector space over C. If σ = 1, we assume that char(K) ̸= 2 (in which case C = K),

that h is a symplectic form on X and that π is the map from X to K that is identically

zero. If σ ̸= 1, we assume (in all characteristics) that h is a form on X that is skew-

hermitian with respect to (C, σ) and that (C, σ,X, h, π) is a standard pseudo-quadratic

space defined in [13, Definition 1.16]. (Note that this definition makes sense even though

we are now neither requiring that π be anisotropic nor that (C,K) be division.) In both

cases, we set θ(u, v) = π(u)v for all u ∈ X and all v ∈ C, denote the scalar multiplication

from X × C to X by · and let sC be as in Notation 3.2. Then

Ξ = (K,C, nC , sC , 1, X, ·, h, θ)

is a quadrangular algebra. This claim is clear if σ = 1 and holds by the proof

of [13, Proposition 1.18] (which remains valid verbatim without the hypotheses that

π is anisotropic and (C,K) is division). We denote this quadrangular algebra by

Qs(C,K,X, h, π). The subscript stands for “special”; see Definition 5.6 below.

The following pseudo-quadratic space will appear in Theorem 10.16.

Example 4.17. Suppose that char(K) ̸= 2. Let C =M2(K) (i.e. the split quater-

nion algebra over K), let q be its determinant map, let ε be the identity matrix of C, let
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σ be the classical adjoint of C, let X = K ⊕K viewed as a right C-module in the usual

way, let

h
(
(a, b), (c, d)

)
=

(
−bc −bd

ac ad

)

for all (a, b), (c, d) ∈ X and let

π(a, b) =

(
−ab −b2

a2 ab

)

for all (a, b) ∈ X. Then (C, σ,X, h, π) is a standard pseudo-quadratic space. Note, too,

that q(π(u)) = 0 for all u ∈ X.

5. Statement of the main theorem.

In order to formulate our main result in Theorem 5.10 below, we first need to

introduce (or adopt from [13]) some additional notation.

Definition 5.1. We apply the notion of equivalent quadrangular algebras in [13,

Definition 1.22] and the notion of an isomorphism of quadrangular algebras in [13, Def-

inition 1.25] verbatim and observe that [13, Remark 1.26] remains valid in the present

context.

Remark 5.2. The results [13, Propositions 1.23 and 1.24] remain valid in the

present context, but we need to modify the proof of [13, Proposition 1.23] where A3 is

used to conclude that au ̸= 0. We choose a ∈ X and first note that we can assume that

r(a, 0) = r(a, ε). We then observe that by C1, r(a, tu) = r(a, u) and r(a, u+ v)(u+ v) =

r(a, u)u+r(a, v)v for all t ∈ K and all u, v ∈ L. It follows that the r(a, u) is independent

of u.

Remark 5.3. The notion of an isotope of a quadrangular algebra defined in

[13, Definition 8.7] and all the results about isotopic quadrangular algebras in [13,

Chapter 8] remain valid in the present context. In particular, we note that if Ξ =

(K,L, q, f, ε,X, ·, h, θ) is an arbitrary quadrangular algebra, then for each u ∈ L such

that q(u) ̸= 0, Ξ has a unique isotope in which K and L remain the same but ε is

replaced by u and q by q/q(u).

Definition 5.4. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a quadrangular algebra. As in

[13, Definition 1.27], we say that Ξ proper if the map σ defined in (2.1) is non-trivial.

Thus Ξ is proper if and only if ε does not lie in the radical of f . By [13, Proposition 9.1],

Ξ is isotopic to a proper quadrangular algebra if and only if f is not identically zero.

Remark 5.5. Let Qs(C,K,X, h, π) and σ be as in Notation 4.16. This quad-

rangular algebra is proper if and only if char(K) ̸= 2 or σ ̸= 1, i.e. if (C,K) is as in

Notation 3.1(ii)–(iv).
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Definition 5.6. Let Ξ be a quadrangular algebra. We will say that Ξ is special if Ξ

is isotopic to Qs(C,K,X, h, π) for some (C,K,X, h, π) as described in Notation 4.16 and

we will say that Ξ is exceptional if either Ξ is isotopic to Q4(C,K) for some composition

algebra (C,K) as defined in Notation 4.12 or Ξ is isotopic to Q2(C,K) for some octonion

algebra (C,K) as defined in Notation 4.14 (but see Corollary 5.11(ii) below) or Ξ is

anisotropic and Ξ is as in [13, Theorem 6.42 or Theorem 7.57] up to isotopy. Note that

by Corollary 5.11(i) below, Q2(C,K) is special if C is associative.

Observation 5.7. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a quadrangular algebra. If

Ξ is special, then dimK L ≤ 4 or f is identically zero and if Ξ is exceptional, then

dimK L ≥ 5 and f is not identically zero. It follows, in particular, that there are no

quadrangular algebras that are both special and exceptional.

Observation 5.8. If Ξ = (K,L, q, f, ε,X, ·, h, θ) is an exceptional quadrangular

algebra, then the bilinear map h defined in Notations 4.4 and 4.14 is non-degenerate,

i.e. for each a ∈ X, there exists b ∈ X such that h(a, b) ̸= 0.

Example 5.9. There exist special quadrangular algebras

Ξ = (K,L, q, f, ε,X, ·, h, θ)

with h non-degenerate and others where h is not non-degenerate. Let L and X, for

example, each be a copy of M2(K), let q be the determinant map on L, let ε be the

identity matrix in L, let · be matrix multiplication, let γ be an arbitrary element of

L, let θ(a, v) = aσγav for all a ∈ X and all v in L and let h(a, b) = aσγb for all

a, b ∈ X. Then Ξ = (K,L, q, f, ε,X, ·, h, θ) is a special quadrangular algebra and h is

non-degenerate if and only if γ is invertible.

We can now state the main result of this paper:

Theorem 5.10. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a proper isotropic quadrangular

algebra as defined in Definition 5.4. Suppose that h is non-degenerate as defined in

Observation 5.8 and that |K| > 5. Then Ξ is isotopic to one of the following :

(i) Q4(C,K) for some composition algebra (C,K) or

(ii) Q2(C,K) for some octonion division algebra (C,K) or

(iii) Qs(C,K,X, h, π) for some composition algebra (C,K) as in Notation 3.1(ii)–(iv).

In particular, Ξ is special if dimK L ≤ 4 and exceptional if dimK L > 4.

This theorem is the conjunction of Theorems 8.16, 9.8, 10.16 and 11.16. The remainder

of this paper is devoted to the proof of these results. In the appendix, we describe

a correspondence between the exceptional quadrangular algebras (up to isotopy) and

certain forms of exceptional groups.

Note that we make no assumptions on either dimK L or dimK X in Theorem 5.10,

nor do we make any restrictions on the characteristic of K. See Remark 5.13.
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Corollary 5.11. Let (C,K) be a composition algebra, let

Q2(C,K) = (K,L, q, f, ε,X, ·, h, θ)

be as in Notation 4.14 and let π be as in D1. Then the following hold :

(i) If (C,K) is associative, then X is a free right C-module of rank 2 and Q2(C,K) is

isotopic to Qs(C,K,X, h, π).

(ii) If (C,K) is split octonion, then Q2(C,K) is isotopic to Q4(C0,K), where (C0,K)

is the split quaternion algebra over K.

Proof. This holds by Theorem 5.10. □

Remark 5.12. Let Ξ = (K,L, q, ε,X, ·, h, θ) be an anisotropic quadrangular al-

gebra such that h is not non-degenerate. By [13, Theorems 5.9, 6.42 and 7.57 and

Proposition 9.1], either Ξ is special or the bilinear form f associated with q is identi-

cally zero (in which case Ξ is not proper). If f is identically zero, then Ξ is as in [13,

Theorem 9.26 or Theorem 9.33].

Remark 5.13. The dimensions of L and X in the three cases of Theorem 5.10 are

as follows. If Ξ = Q4(C,K), then dimK L = 4 + dimK C and dimK X = 4 · dimK C. If

(C,K) is as in Notation 3.1(ii)–(v), these two dimensions are finite, but if (C,K) is as

in Notation 3.1(i), dimK C and thus also dimK L and dimK X could well be infinite. If

Ξ = Q2(C,K) for some octonion algebra (C,K), then dimK L = 8 and dimK X = 16. If

Ξ is special, then dimK L = 1, 2 or 4, but there is no bound on dimK X. In particular,

dimK X could be infinite also in this case.

Remark 5.14. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a proper quadrangular algebra

and suppose that dimK L = 1. By [13, Proposition 1.24 and Definition 1.25], we can

assume that π and θ are both identically zero. By Definition 5.4, char(K) ̸= 2 and by

B2 with v = ε, h is a symplectic form on X. Hence Ξ is isomorphic to Qs(C,K,X, h, π)

with C = K. We can therefore assume in the proof of Theorem 5.10 that dimK L ≥ 2.

6. Norm splitting maps.

In this section we assemble a few elementary observations about quadratic forms

that we will need. For the most part, they are simple modifications of results in [13,

Chapter 2].

Lemma 6.1. Let (K,L, q) be a quadratic space and let f be the bilinear form asso-

ciated with q. Suppose that dimK L = 2, and let {u, v} be a basis for L over K such that

q(u) ̸= 0. Suppose, too, that f(u, v) = 0 but q(v) ̸= 0 if char(K) ̸= 2 and f(u, v) ̸= 0 if

char(K) = 2. Let p(x) denote the polynomial

p(x) = q(u)x2 − f(u, v)x+ q(v),

let E be the splitting field of p over K if p is irreducible over K and let E be the split
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étale quadratic extension K ⊕K of K if it is not. Then (K,L, q) is isomorphic to the

quadratic space (K,E, q(u)N), where N denotes the norm of the extension E/K.

Proof. Replacing q by q/q(u)−1, we may assume that q(u) = 1. Suppose that

p(x) is irreducible overK. Let w and z be the two roots of p(x) in E. Then w+z = f(u, v)

and wz = q(v). Hence

N(t+ sw) = (t+ sw)(t+ sz)

= t2 + f(u, v)t+ s2q(v) = q(tu+ sv)

for all s, t ∈ K. Thus the unique K-linear map from L to E that sends u to 1 and v to w

is an isomorphism from (K,L, q) to (K,E,N). Suppose now that p(x) is reducible over

K. Then there exists α, β ∈ K such that p(α) = p(β) = 0 and α + β = f(u, v). We set

r = 4q(v) if char(K) ̸= 2 and r = f(u, v)2 if char(K) = 2. We then let w = αu− v and

z = r−1(βu − v) and observe that q(w) = q(z) = 0 and f(w, z) = 1. It follows that the

map sw + tz 7→ (s, t) is an isomorphism from (K,L, q) to (K,E,N). □

Definition 6.2. Let (K,L, q) be a quadratic space and let f be the bilinear map

associated with q. A norm splitting map of (K,L, q), or of q, is a linear automorphism

ψ of L such that for some monic quadratic polynomial p(x) = x2 − αx+ β ∈ K[x] with

α = 0 and β ̸= 0 if char(K) ̸= 2 and α ̸= 0 if char(K) = 2, the following hold:

(i) q(ψ(u)) = βq(u),

(ii) f(u, ψ(u)) = αq(u) and

(iii) p(ψ)(u) = 0

for all u ∈ L.

Proposition 6.3. Let (K,L, q), ψ and p(x) be as in Definition 6.2. Let E be

the splitting field of p over K if p(x) is irreducible over K and let E be the split étale

extension K⊕K of K if it is not. Let N denote the norm of the extension E/K. For each

u ∈ L, let Lu denote the subspace ⟨u, ψ(u)⟩ and let qu denote the restriction of q to Lu.

(i) Lu is ψ-invariant for each u ∈ L.

(ii) dimK Lu = 2 for all u ∈ L such that q(u) ̸= 0.

(iii) Lu = Lv for all u ∈ L and for all v ∈ Lu such that q(v) ̸= 0.

(iv) If q(u) ̸= 0 for some u ∈ L, then qu is isomorphic to q(u)N .

Proof. By Definition 6.2(iii), (i) holds. By Definition 6.2(i) and (ii) and the

conditions on α and β, (ii) holds. By (i) and (ii), (iii) holds. Let u ∈ L and let v = ψ(u).

Then

q(u)p(x) = q(u)x2 − f(u, v)x+ q(v).

By Lemma 6.1, therefore, (iv) holds. □
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1338 B. Mühlherr and R. M. Weiss

Notation 6.4. Let ψ be a norm splitting map of a quadratic space (K,L, q). Let

Lu for each u ∈ L be as in Proposition 6.3. A subset {v1, . . . , vm} of L is ψ-orthogonal if

q(v1), . . . , q(vm) are all non-zero and the subspaces Lv1 , . . . , Lvm are pairwise orthogonal

with respect to the bilinear form associated with q.

Notation 6.5. Let ψ and E be as in Proposition 6.3. We call the étale extension

E/K the splitting extension of ψ.

Definition 6.6. Let (K,L, q) be a quadratic space and let ψ be a norm splitting

map of q. We will say that ψ is reducible if its splitting extension is the split étale

extension of K and we will say that ψ is irreducible if its splitting extension is a field

extension.

Proposition 6.7. Let Ω = (K,L, q) be a finite-dimensional non-degenerate qua-

dratic space. Then the following hold :

(i) If Ω has a norm splitting map ψ, then Ω is isomorphic to

(K,Ed, α1N + · · ·+ αdN)

for some d ≥ 1, where α1, . . . , αd are non-zero elements of K, N is the norm of the

splitting extension of ψ and + denotes the orthogonal sum.

(ii) Suppose that Ω is isomorphic to (K,Ed, α1N + · · ·+αdN), where E/K is an étale

quadratic extension, N is its norm and α1, . . . , αd are non-zero elements of K,

and let T be the trace of the extension E/K. Let a be an element of E such that

N(a) ̸= 0 and T (a) = 0 if char(K) ̸= 2 and T (a) ̸= 0 if char(K) = 2. Then left

multiplication by a is a norm splitting map of Ω whose splitting extension is E/K.

(iii) Ω is hyperbolic if and only if it has a reducible norm splitting map.

Proof. The assertion (i) holds by [13, Proposition 2.20] and assertion (ii) by

[13, Proposition 2.17] with only minor changes in the proofs. (In particular, we need to

observe in the proof of [13, Proposition 2.20] that ifW⊥ ̸= 0, it contains elements u such

that q(u) ̸= 0.) If Ω is hyperbolic, then it has a decomposition into the orthogonal sum

of subspaces isomorphic to (K,E,N), where E/K is the split étale quadratic extension

of K and hence by (ii), Ω has a reducible norm splitting map. If, conversely, Ω has a

reducible norm splitting map ψ, then by (i), Ω is hyperbolic. Thus (iii) holds. □

Corollary 6.8. Let Ω = (K,L, q) be a finite dimensional quadratic space and

let f be the bilinear form associated with q. If Ω has a norm splitting map, then f is

non-degenerate.

Proof. This holds by Proposition 6.7(i). □

Comment 6.9. Let Ω = (K,L, q) be a hyperbolic quadratic space. By Proposi-

tion 6.7(iii), it has a reducible norm splitting map, but it could have irreducible norm

splitting maps as well. Suppose, for example, that E/K is an arbitrary separable qua-

dratic field extension with normN and let Ω = (K,E2, α1N+α2N) with α1 = −α2 ∈ K∗.
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Then Ω is hyperbolic, but by Proposition 6.7(ii), it has an irreducible norm splitting map

with splitting extension E/K.

Notation 6.10. Let E/K be a separable quadratic field extension with norm N

and standard involution σ and let

Ω = (K,Ed, α1N + · · ·+ αdN)

for some d ≥ 1 and some α1, . . . , αd ∈ K∗. Let H denote the map from Ed × Ed to E

given by

H
(
(x1, . . . , xd), (y1, . . . , yd)

)
=

d∑
i=1

xσi αiyi

for all x1, . . . , yd ∈ E. Then H is a non-degenerate hermitian form with respect to (E, σ)

and Ω is isomorphic to the quadratic space (K,Ed, qH), where qH(x) = H(x, x) for all

x ∈ Ed.

Remark 6.11. Let E/K, N , H and qH be as in Notation 6.10 and suppose that

d = 2. Suppose, too, that H is hyperbolic, by which we mean that there exists a basis

{e1, e2} of E2 such that H(ei, ej) = 0 if i = j and H(ei, ej) = 1 if i ̸= j. We have

qH(aei) = H(aei, aei) = N(a)H(ei, ei) = 0

for i = 1 and 2 and for all a ∈ E. Thus the 1-dimensional E-spaces spanned by e1 and

by e2 are both totally isotropic with respect to qH . Let fH denote the bilinear form

associated with qH . Then

fH(ae1, be2) = H(ae1, be2) +H(be2, ae1) = aσb+ bσa

for all a, b ∈ E. Let T be the trace of the extension E/K. If char(K) ̸= 2, let W1 be

the K-subspace ⟨e1, e2⟩ of E2 and let W2 be the K-subspace ⟨γe1, γe2⟩, where γ is an

element of E∗ such that T (γ) = 0. If char(K) = 2, let W1 be the K-subspace ⟨e1, γe2⟩
and let W2 be the K-subspace ⟨γe1, e2⟩, where γ is an element of E∗ such that T (γ) ̸= 0.

Then W1 and W2 are orthogonal to each other with respect to fH and the restrictions

of qH to both W1 and W2 are hyperbolic. Thus qH is hyperbolic.

In the proof of the next result, we use a strategy suggested by Holger Petersson.

Proposition 6.12. Let Ω = (K,L, q) be a quadratic space with a norm splitting

map. Suppose that dimK L is 6, 8 or 12 and if dimK L = 12, suppose as well that the

Clifford invariant of q is trivial. Then one of the following holds :

(i) q is of type E6, E7 or E8 as defined in [13, Definition 2.13].

(ii) q is similar to the norm of an octonion division algebra.

(iii) There exists a composition division algebra (C,K) as in Notation 3.1(iii)–(v) such

that q is similar to the quadratic space (K,L, qC) described in Notation 4.1.
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In the first two cases, q is anisotropic. In the third case, q has Witt index 2 if (C,K) is

division and q is hyperbolic if (C,K) is split.

Proof. We can assume that q is not hyperbolic. By Proposition 6.7(i) and (iii),

therefore, we can identify Ω with the quadratic space

(K,Ed, α1N + · · ·+ αdN)

for some α1, . . . , αd ∈ K∗ and some separable quadratic field extension E/K with norm

N , where d = 3, 4 or 6. If d = 6, then the Clifford invariant of q is trivial and hence

−α1α2 · · ·α6 ∈ N(E) (by [12, (12.28)]). Suppose that q is anisotropic. If d = 3 or 6,

then q is of type E6 or E8 (by [13, Definition 2.13]). If d = 4, then q is of type E7

if α1α2α3α4 ̸∈ N(E) (again by [13, Definition 2.13]), and q is similar to the norm of

an octonion division algebra if α1α2α3α4 ∈ N(E) (by, for example, the description of

octonion algebras in [12, (9.8)]). Thus from now on, we can assume that q is isotropic.

Let H and qH be as in Notation 6.10. Since q is isotropic, so is qH . Thus H is

isotropic. Since H is non-degenerate, it follows that there is a decomposition of Ed into

the direct sum of E-subspaces V1 and V2 such that dimE V1 = 2, the restriction ofH to V1
is hyperbolic and H(V1, V2) = 0. Let Qi denote the restriction of qH to Vi for i = 1 and 2.

By Remark 6.11, Q1 is hyperbolic. Since V2 is a subspace over E, Q2 has splitting map

with splitting extension E/K. Thus (K,V2, Q2) is isomorphic to (K,Ee, β1N+· · ·+βeN)

for some β1, . . . , βe ∈ K∗, where e = d − 2. If d = 6, then the Clifford invariant of this

restriction is trivial (by [1, Lemma 3.8]) and hence β1β2β3β4 = 1. We conclude that

Q2 is similar to the norm of a composition algebra (C,K) as in Notation 3.1(iii)–(v). It

follows that qH is similar to qC . Hence also q is similar to qC . □

In the next result, K2 denotes {t2 | t ∈ K} (and not K ⊕K) and F 1/2 denotes the

unique field C containing F such that C2 = F .

Proposition 6.13. Suppose that char(K) = 2. Let E/K be an étale quadratic

extension, let F be a subfield of K such that K2 ⊂ F , let (C,K) be the composition

algebra of type Notation 3.1(i) with C = F 1/2, let (K,F, qF ) be as in [13, Notation 2.14],

let V = E ⊕ E ⊕ F and let

Q(a, b, s) = N(a) + αN(b) + βqF (s)

for all (a, b, s) ∈ V , where α is an element of F ∗, β is an element of K∗ and N is

the norm of the extension E/K. Suppose that the quadratic space (K,V,Q) is isotropic.

Then (K,V,Q) is similar to the quadratic space

(K,LC , qC)

defined in Notation 4.1.

Proof. Let T denote the trace of E/K and let γ be an element of E such that

T (γ) = 1. Thus E is the splitting field of the polynomial x2 + x +N(γ) over K. Let ξ

denote the bilinear form associated with Q, let R0 denote the radical of ξ, let Q0 denote
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the restriction of Q0 to R0 and let Q1 denote the restriction of Q to {(a, b, 0) | a, b ∈ E}.
Thus R0 = {(0, 0, t) | t ∈ F}, Q0 is similar to qF and qF is isomorphic to the norm nC of

(C,K). The quadratic form Q1 is isomorphic to the norm of a quaternion algebra over

K. Thus if Q1 is isotropic, this quaternion algebra is split, hence Q1 is hyperbolic and

thus Q is similar to qC . We can assume, therefore, that Q1 is anisotropic. Hence, in

particular, α ̸∈ K2.

Let (a, b, r) be a non-zero element of V such that Q(a, b, r) = 0. We have a = s1+t1γ

and b = s2+ t2γ for some s1, t1, s2, t2 ∈ K. Suppose first that t1 and t2 are not both zero

and let κ = t21+αt
2
2. Since α ̸∈ K2, we have κ ̸= 0 and sinceK2 and α are contained in F ,

we have κ ∈ F . Hence κ−1r ∈ F . Let u1 = (1, 0, 0), let v1 = (γ, 0, κ−1r), let u2 = (0, 1, 0),

let v2 = (0, γ, ακ−1r), let Wi = ⟨ui, vi⟩ for i = 1 and 2, let QW denote the restriction of

Q to W :=W1 +W2 and let p(x) denote the polynomial x2 + x+N(γ) + βκ−1r over K.

Thus Q(u1) = 1, ξ(u1, v1) = 1, Q(v1) = N(γ) + βκ−1r, Q(u2) = α, ξ(u2, v2) = α and

Q(v2) = α(N(γ)+βκ−1r). It follows by Lemma 6.1 that the restrictions of Q to W1 and

to W2 are both hyperbolic if p(x) is reducible over K and they are both similar to the

norm of the extension Ê/K if p(x) is irreducible over K, where Ê is the splitting field of

p(x) over K. Since ξ(W1,W2) = 0, we conclude that QW is isomorphic to the norm of a

quaternion algebra over K (whether or not p(x) is irreducible). Furthermore,

Q(s1u1 + t1v1 + s2u2 + t2v2) = Q(a, b, r) = 0,

so QW is isotropic, and V = W ⊕ R0. It follows that QW is hyperbolic and hence Q is

similar to qC .

It remains to consider the case that t1 = t2 = 0. In this case, we set κ = s21 + αs22,

v1 = (1, 0, κ−1r), u1 = (γ, 0, 0), v2 = (0, 1, ακ−1r) and u2 = (0, γ, 0), so that Q(v1) =

1 + βκ−1r, ξ(u1, u1) = 1, Q(u1) = N(γ), Q(v2) = α(1 + βκ−1r), ξ(u2, v2) = α and

Q(u2) = αN(γ). We again let W = ⟨u1, v1, u2, v2⟩ and let QW denote the restriction of

Q to W . Then ξ(W1,W2) = 0 and since Q(u1) ̸= 0, we can deduce from Lemma 6.1

exactly as in the previous paragraph that QW is isomorphic to the norm of a quaternion

algebra over K. Furthermore,

Q(s1v1 + s2v2) = Q(a, b, r) = 0,

so QW is isotropic, and V = W ⊕ R0. It follows as before that QW is hyperbolic and

hence Q is similar to qC □

In the next result, we give the structure of C(q, ε) for the quadratic forms that

appear in Theorem 5.10. In the proof, we assume that the reader is familiar with the

basic structure theory for even Clifford algebras. A good source in arbitrary characteristic

is [4, Chapter 11, Sections A and B]; see, in particular, [4, Theorems 11.1, 11.2 and 11.3]

as well as [1, Section 5] and [12, (12.28)].

Proposition 6.14. Let (K,L, q) be a quadratic space and let ε be an element of

L such that q(ε) = 1. Then the following hold :

(i) If q is similar to qC for some composition algebra (C,K), then C(q, ε) is isomorphic

to
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(a) M(4,K) if C = K,

(b) M(4,K)⊕M(4,K) if C/K is a split étale quadratic extension,

(c) M(4, C) if C/K is a separable quadratic extension,

(d) M(8,K)⊕M(8,K) if (C,K) is a split quaternion algebra,

(e) M(4, C)⊕M(4, C) if (C,K) is a quaternion division algebra and

(f) M(32,K)⊕M(32,K) if (C,K) is octonion, whether or not it is split.

(ii) If q is similar to the norm of an octonion division algebra, then C(q, ε) is isomorphic

to M(8,K)⊕M(8,K).

(iii) If q is of type Eℓ, then C(q, ε) is isomorphic to

(I) M(4, E), where E/K is the discriminant extension of q, if ℓ = 6,

(II) M(4, D)⊕M(4, D), where D is the Clifford invariant of q, if ℓ = 7 and

(III) M(32,K)⊕M(32,K) if ℓ = 8.

In subcases (I) and (II), neither the étale extension E/K nor the quaternion algebra D

is split.

Proof. As already mentioned in Observation 2.8, C(q, ε) is canonically isomor-

phic to the even Clifford algebra C0(q) of q. Let E/K be the discriminant extension of

q if q is as in (c) or (I) and let E = K in every other case. Let n = dimK L. Then

dimK C(q, ε) = 2n−1 and there exists a division algebra D with center E and an integer

m such that C(q, ε) ∼=Mm(D) if either n is odd or E/K is quadratic and n ≡ 2 (mod 4)

and

C(q, ε) ∼=Mm(D)⊕Mm(D)

if either n ≡ 0 (mod 4) or E = K and n ≡ 2 (mod 4). (All the isomorphisms in this

proof are isomorphisms of K-algebras.)

Let (C,K) be a composition algebra with norm nC . Then C0(nC) ∼= C if C = K

or (C,K) is quadratic, C0(nC) ∼= C ⊕C if (C,K) is quaternion and C0(nC) ∼=M8(K)⊕
M8(K) if (C,K) is octonion. Thus, in particular, (ii) holds.

Suppose that q is similar to qC for some composition algebra (C,K). Then

C0(nC) ∼= Mm−2(D) if C(q, ε) ∼= Mm(D) and C0(nC) ∼= Mm−2(D) ⊕ Mm−2(D) if

C(q, ε) ∼= Mm(D) ⊕ Mm(D). By the observations in the previous paragraph, it fol-

lows that D = K except when (C,K) is division and either quadratic or quaternion, in

which case D = C. Thus (i) and (ii) hold. By [12, (12.43)], (iii) holds. □

We close this section with three more small observations.

Proposition 6.15. Suppose char(K) ̸= 2. Let (K,L, q) be a non-degenerate qua-

dratic space of dimension 5 and let ε be an element of L such that q(ε) = 1. Then

C(q, ε) ∼=M(2, D) for some quaternion division algebra D over K if the Witt index of q

is 1 and C(q, ε) ∼=M(4,K) if the Witt index of q is 2.
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Proof. Suppose that the Witt index of q is 1 and let qa be the anisotropic part

of q. Then qa is the restriction of nD to a suitable 3-dimensional subspace of D for some

quaternion algebra (D,K). Hence C0(qa) = D and thus C0(q) = M2(D). The other

claim holds by Proposition 6.14(a). □

Proposition 6.16. Suppose that (K,L, q) is a non-degenerate quadratic space of

dimension 4 and let ε be an element of L such that q(ε) = 1. Then the following hold :

(i) If q is similar to the norm of a quaternion algebra (C,K), then C(q, ε) ∼= C ⊕ C.

(ii) If C(q, ε) has a non-trivial right module of dimension 2 over K, then q is isomorphic

to the norm of the split quaternion algebra (C,K), i.e. q is hyperbolic.

Proof. If q is similar to the norm of a quaternion algebra (C,K), then C0(q) ∼=
C⊕C. Thus (i) holds. Suppose that C(q, ε) has a non-trivial right module of dimension 2

over K and let E/K be the discriminant extension of q. If E/K is quadratic, then

C(q, ε) is isomorphic to a quaternion algebra over E. Since C(q, ε) has a right module

of dimension 2 over K, we must have E = K. It follows that q is similar to the norm of

a quaternion algebra (C,K) and hence C(q, ε) ∼= C ⊕ C by (i). Furthermore, (C,K) is

split since C⊕C does not have a 2-dimensional right module if (C,K) is division. Hence

q is, in fact, isomorphic to the norm of (C,K). Thus (ii) holds. □

Proposition 6.17. Let (K,L, q) be a non-degenerate quadratic space, let ε be an

element of L such that q(ε) = 1 and X is a non-trivial right module for C(q, ε). If

dimK X = 1, then either dimK L = 1 or dimK L = 2 and q is hyperbolic.

Proof. Let n = dimK L. Then dimK C(q, ε) = 2n−1 and C(q, ε) is either central

simple over an extension of K or the direct sum of two copies of a central simple algebra

over an extension of K. It follows that n ≤ 2. If dimK L = 2 and q is not hyperbolic,

then C(q, ε) is a field of degree 2 over K and thus has no 1-dimensional non-trivial right

modules. □

7. Basic identities.

Most of the results and identities in [13, Chapters 3 and 4] hold for quadrangular

algebras as defined in Definition 2.1, but some minor modifications are required which

we now describe.

We turn first to [13, Chapter 3]. The results [13, Propositions 3.4 and 3.5] are not

valid in the present context and we must pay attention to avoid or repair any results

that use them. We discard the result [13, Proposition 3.11] (which is not used in [13,

Chapters 3 or 4]) and replace the proof of [13, Proposition 3.13] by Remark 5.14. All the

remaining results from [13, Proposition 3.6] to [13, Proposition 3.22] and their proofs

remain valid verbatim. (At various places in [13], an asterisk, as in L∗ or X∗, is used to

denote the set of non-zero elements of a given set. We use this notation here only in the

case that the set is a field.)

We now turn to [13, Chapter 4]. The following definition generalizes [13, Defini-

tion 4.1].
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1344 B. Mühlherr and R. M. Weiss

Definition 7.1. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a quadrangular algebra, let

π be the map that appears in D1 and let δ ∈ L. Then Ξ is δ-standard whenever the

following hold:

(i) δ = ε/2 if char(K) ̸= 2,

(ii) f(ε, δ) = 1 if char(K) = 2 and

(iii) f(π(a), δ) = 0 for all a ∈ X in all characteristics.

(iv) q(δ) ̸= 0.

Thus, in particular,

f(π(a), ε) = 0 if char(K) ̸= 2. (7.1)

The following result is an adjustment of the first statement in [13, Proposition 4.2]

to the generalization of [13, Definition 4.1] given in Definition 7.1 (and we ignore the

second claim in [13, Proposition 4.2], that θ̂ is unique).

Proposition 7.2. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a quadrangular algebra. Sup-

pose that Ξ is proper as defined in Definition 5.4 and that |K| > 2. Then Ξ is isomorphic

to a quadrangular algebra that is δ-standard for some δ ∈ L as defined in Definition 7.1.

Proof. Suppose that char(K) = 2 and choose t ∈ K such that t is not a root

of x2 + x. Since Ξ is proper, we can choose an element δ ∈ L such that f(ε, δ) = 1.

Then f(ε, tε + δ) = 1 and q(tε + δ) = t2 + t + q(δ) ̸= q(δ). Replacing δ by tε + δ if

necessary, we can thus assume that f(ε, δ) = 1 and q(δ) ̸= 0. By the first claim in [13,

Proposition 4.2], whose proof holds verbatim, Ξ is isomorphic to a quadrangular algebra

that is δ-standard in all characteristics. □

In all the subsequent sections, we assume that |K| > 2 and that the quadrangular

algebra we are considering is δ-standard for some δ ∈ L. As a consequence of this assump-

tion, the results and the proofs of all the results in [13, Chapter 4] up to and including

[13, Proposition 4.18] remain valid unchanged. The result [13, Propositions 4.19–4.22]

remain valid, but the proofs, which depend on [13, Proposition 3.4], need to be modified.

We describe these modifications now.

Proposition 7.3. Suppose that aL ⊂ ⟨a⟩ for some a ∈ X. Then θ(a, v) = 0 for

all v ∈ L.

Proof. We can assume that a ̸= 0. Let X0 = ⟨a⟩ and let

Ξ0 = (K,L, q, f, ε,X0, ∗, h0, θ0)

be the quadrangular algebra we obtain by replacing X0 with ⟨a⟩, where ∗, h0 and θ0 are

the suitable restrictions of ·, h and θ (see Observation 2.8), and let π0 be the restriction

of π to ⟨a⟩. By Proposition 6.17, either dimK L = 1 or dimK L = 2 and q is hyperbolic.
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Suppose first that dimK L = 1. We can identify both X0 and L with K so that

r ∗ s = rs and q(s) = s2 for all r ∈ X0 and s ∈ L and ε = 1. Since Ξ is proper as defined

in Definition 5.4, we have char(K) ̸= 2. By (7.1), therefore, π0 is identically zero. By A2

and D1, therefore, θ0 is also identically zero. Hence θ(a, v) = 0 for all v ∈ L.

Now suppose that dimK L = 2. We can identify X0 with K and L with K ⊕K so

that r ∗ (s, t) = rs and q(s, t) = st for all r ∈ X0 and (s, t) ∈ L and ε = (1, 1). Suppose

char(K) = 2. By [13, Proposition 3.15], h0(r, r ∗ (s, t)) = f(π0(r), ε)(s, t) for all r ∈ X0

and all (s, t) ∈ L. Since r ∗ (s, t) is independent of t, we must have

f(π0(r), ε) = 0 (7.2)

for all r ∈ X0. Since Ξ is δ-standard and L is spanned by ε and δ, it follows that π0 is

identically zero.

Now suppose that char(K) ̸= 2. By [13, Proposition 4.5(i)], θ0(r, (s, t)) is indepen-

dent of t and by [13, Proposition 4.9(iii)] and (7.1), we have

f(θ0(r, (s, t)), ε) = −f(π0(r), (s, t))

for all r ∈ X0 and all (s, t) ∈ L. Hence the expression f(π0(r), (s, t)) is also independent

of t. Therefore the first coordinate of π0(r) is 0 for all r ∈ X0. By another application

of (7.1), it follows that π0 is identically zero also in this case.

Finally, we suppose that char(K) is arbitrary. Since π0 is identically zero, it follows

by D1 that the first coordinate of θ0(r, (s, t)) is 0 for all r ∈ X0 and all (s, t) ∈ L. By

[13, Proposition 3.19(iii)], (7.1) and (7.2), we have

f(θ0(r, (0, 1)), (1, 0)) = f(θ0(r, (1, 0)), (0, 1)) = 0

and hence θ0(r, (0, 1)) = 0 for all r ∈ X0. Since L is spanned by (0, 1) and ε, it follows

that θ0 is identically zero. Thus θ(a, v) = 0 for all v ∈ L. □

Corollary 7.4. Suppose that aL ⊂ ⟨a⟩ for some a ∈ X. Then all the identities

in [13, Propositions 4.19–4.22] hold for this choice of a.

Proof. This holds by Proposition 7.3. □

Now let a ∈ X and v ∈ L be arbitrary. We set

ξ(a, v) = f(θ(a, v), π(a))− q(π(a))f(ε, v). (7.3)

By the proof of [13, Proposition 4.20] starting in its fourth line (and thus avoiding the

application of [13, Proposition 4.19]), we have

aθ(a, v)π(a)− f(θ(a, v), ε)aπ(a) + q(π(a))f(v, ε)a = q(π(a))av. (7.4)

Thus

aπ(a)σθ(a, v) = −aθ(a, v)σπ(a) + f(θ(a, v), π(a))a by [13, Proposition 3.8]

= aθ(a, v)π(a)− f(θ(a, v), ε)aπ(a)
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+ q(π(a))f(v, ε)a+ ξ(a, v)a by (2.1) and (7.3)

= q(π(a))av + ξ(a, v)a by (7.4). (7.5)

Therefore

aπ(a)θ(a, v) = −q(π(a))av + f(π(a), ε)aπ(a)v − ξ(a, v)a (7.6)

by (2.1) and D1. Hence

q(θ(a, v))a = aθ(a, v)θ(a, v)σ by A3

= aπ(a)vθ(a, v)σ by D1

= −aπ(a)θ(a, v)vσ + f(θ(a, v), v)aπ(a) by [13, Proposition 3.8]

= −aπ(a)θ(a, v)vσ + f(π(a), ε)q(v)aπ(a) by [13, Proposition 4.9(i)]

= q(π(a))avvσ − f(π(a), ε)aπ(a)vvσ

+ ξ(a, v)avσ + f(π(a), ε)q(v)aπ(a) by (7.6)

= q(π(a))q(v)a+ ξ(a, v)avσ by A3.

We conclude that

ζ(a, v)a = ξ(a, v)avσ (7.7)

for all a ∈ X and all v ∈ L, where ζ(a, v) = q(θ(a, v)) − q(π(a))q(v) and ξ(a, v) is as in

(7.3).

Now choose a ∈ X and let L0 = {w ∈ L | awσ ̸∈ ⟨a⟩}. By Corollary 7.4, we can

assume that L0 ̸= ∅. Choose w ∈ L0. For each v ∈ L, either v ∈ L0 or v + w ∈ L0.

Hence L0 spans L. By (7.7), ξ(a, v) = 0 for all v ∈ L0. Since the map v 7→ ξ(a, v) is

linear, it follows that ξ(a, v) = 0 for all v ∈ L. Thus [13, Proposition 4.19] holds (since

a is arbitrary) and [13, Proposition 4.20] holds by (7.5). Another application of (7.7)

yields ζ(a, v) = 0 for all a ∈ X and all v ∈ L. Therefore also [13, Proposition 4.22] holds

as well and hence

f(θ(a, u), θ(a, v)) = q(π(a))f(u, v) (7.8)

for all u, v ∈ L.

Again choose a ∈ X and v ∈ L and let

w = θ(a, θ(a, v))− f(π(a), ε)θ(a, v) + q(π(a))v.

Now that we know that [13, Proposition 4.20] holds, the proof of [13, Proposition 4.21]

yields aw = 0. Thus if we assume that a ̸= 0, it follows that q(w) = 0 (by A3). By [13,

Proposition 4.9(iii)] and (7.8), we have

f(w, u) = f(θ(a, θ(a, v)), u)− f(π(a), ε)f(θ(a, v), u) + q(π(a))f(u, v)

= −f(θ(a, u), θ(a, v)) + q(π(a))f(u, v) = 0 (7.9)

for all u ∈ L. Since q is non-degenerate and q(w) = 0, it follows that w = 0. Thus [13,
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Proposition 4.21] holds. Finally, we observe that the proof of [13, Proposition 4.23] is

easily modified to show that

ϕ(av, vσ) = q(v)ϕ(a, v) (7.10)

for all a ∈ X and all v ∈ L, where ϕ is the function defined in C4 of Definition 2.1.

Conclusion 7.5. Subject to the observations we have made in this section and

the assumptions that Ξ is δ-standard and |K| > 2, we will feel free from now to cite

[13, Propositions, Corollaries and Remarks 3.6–3.10, 3.12–3.22 and 4.3–4.23] with the

understanding that [13, Definition 4.1 and Proposition 4.2] are replaced by Definition 7.1

and Proposition 7.2.

Note that we have already applied Conclusion 7.5 several times in this section. Here

are two more applications of Conclusion 7.5 (and there will be many more in the next

sections):

Proposition 7.6. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a δ-standard quadrangular

algebra for some δ ∈ L as defined in Definition 7.1 and let

X♭ := {a ∈ X | q(π(a)) ̸= 0},

where π is as in D1. Suppose that |K| > 4 and that the set X♭ is not empty. Then X is

spanned by X♭.

Proof. Choose a ∈ X♭ and let b ∈ X. By [13, Corollary 4.4], the map g in

C3 is bilinear. By C2 and C3, it follows that q(π(ta + b)) is a polynomial in K[t] of

degree 4 with highest coefficient q(π(a)) ̸= 0. Since |K| > 4, there exists t ∈ K such that

q(π(ta+ b)) ̸= 0. Since b is arbitrary, we conclude that X is spanned by X♭. □

Proposition 7.7. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a δ-standard quadrangular

algebra for some δ ∈ L as defined in Definition 7.1 and let ϕ be as in C4. Then

q
(
π(au) + tq(u) + ϕ(a, u)ε

)
= q
(
π(a) + tε

)
q(u)2

for all a ∈ X and all u ∈ L.

Proof. The proof of [14, Proposition 21.10(ii)] (which uses [13, Proposi-

tions 4.5(iii), 4.9(iii) and 4.19]) holds verbatim in the present context. □

We close this section with two more observations.

Lemma 7.8. If h(X,X) does not lie in the radical of f , then h(X,X) spans L.

Proof. Let L0 = ⟨h(X,X)⟩. Suppose that there exist e, b ∈ X and w ∈ L such

that f(h(e, b), w) ̸= 0. By B3, it follows that f(h(a, b), ε) ̸= 0 for a = ew. Let v be an

arbitrary element of L. By B2, we have

f(h(a, b), ε)v = h(a, bv)− h(b, av) ∈ L0
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and thus v ∈ L0. □

Remark 7.9. Suppose that π is identically zero, where π is as in D1. By C3, it

follows that h(a, b) ∈ ⟨ε⟩ for all a, b ∈ X. Since Ξ is δ-standard, ε is not in the radical of

f and dimK L ≥ 2 if char(K) = 2. By Lemma 7.8, therefore, either h is identically zero

or dimK L = 1, char(K) ̸= 2 and after identifying L with K via the map tε 7→ t, h is a

symplectic form on X and Ξ = Qs(C,K,X, h, π) with C = K as defined in Notation 4.16.

8. The generic case.

In this section, we make the following assumptions:

Hypothesis 8.1. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a δ-standard quadrangular

algebra for some δ ∈ L as defined in Definition 7.1. Let ϕ be the map that appears in

C4 and let

Q(a) = f(π(a), ε) (8.1)

for all a ∈ X. We suppose the following:

(i) q(π(a)) ̸= 0 for some a ∈ X if char(K) ̸= 2 and Q(a) ̸= 0 for some a ∈ X if

char(K) = 2,

(ii) |K| > 4 and

(iii) h is non-degenerate as defined in Observation 5.8.

The main result of this section is Theorem 8.16.

Proposition 8.2. Suppose that a is as in Hypothesis 8.1(i) and that av = 0 for

some v ∈ L. Then v = 0.

Proof. Suppose first that char(K) ̸= 2. Then θ(a, v) = h(a, av)/2 = 0 by [13,

Proposition 4.5(i)]. By [13, Proposition 4.21], therefore, v = −θ(a, θ(a, v))/q(π(a)) = 0.

If char(K) = 2, then Q(a)v = h(a, av) = 0 by [13, Propositions 3.15 and 3.16], so v = 0

also in this case. □

Proposition 8.3. Suppose that a is as in Hypothesis 8.1(i) and that u ∈
⟨ε, π(a)⟩⊥. Then q(π(au)) = q(π(a))q(u)2.

Proof. If char(K) ̸= 2, the claim holds by [13, Proposition 4.5(iii)] and Proposi-

tion 7.7 with t = 0. Suppose that char(K) = 2. By [13, Proposition 4.10], we have

ϕ(a, u) = f(θ(a, u), u) + f(u, δ)f(θ(a, u), ε).

By [13, Proposition 4.9(i)], f(θ(a, u), u) = Q(a)q(u) and by [13, Proposition 4.9(iii)],

f(θ(a, u), ε) = f(π(a), u) +Q(a)f(u, ε) = 0.

Hence ϕ(a, u) = Q(a)q(u). Thus by Proposition 7.7 with t = Q(a), we have
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q(π(au)) = q(π(a) +Q(a)ε)q(u)2 = q(π(a))q(u)2

also in this case. □

Proposition 8.4. If char(K) = 2, then there exists e ∈ X such that both Q(e) ̸= 0

and q(π(e)) ̸= 0.

Proof. Suppose that char(K) = 2 and let δ be as in Hypothesis 8.1. Thus

f(ε, δ) = 1 (so, in particular, dimK L ≥ 2), q(δ) ̸= 0 and π(b) ∈ ⟨δ⟩⊥ for all b ∈ X.

Suppose that dimK L = 2. Then ⟨δ⟩⊥ = ⟨δ⟩. By Hypothesis 8.1(i), π is not identically

zero. Since q(δ) ̸= 0, it follows that there exists e ∈ X such that π(e) = tδ for some

t ∈ K∗. Hence Q(e) ̸= 0 and q(π(e)) ̸= 0. We can thus assume from now on that

dimK L > 2.

Suppose now that q(π(e)) = 0 for all e ∈ X such that Q(e) ̸= 0. Let a be as in

Hypothesis 8.1(i). Thus Q(a) ̸= 0. By [13, Proposition 3.21], we have

Q(av) = Q(a)q(v) (8.2)

for all a ∈ X and all v ∈ L. Hence

q(π(av)) = 0 (8.3)

for all a ∈ X and all v ∈ V such that q(v) ̸= 0. We have

q
(
π(av) + ϕ(a, v)ε

)
= q(π(a))q(v)2 = 0 (8.4)

for all v ∈ L by Proposition 7.7 with t = 0 and

q
(
π(av) + ϕ(a, v)ε

)
= q(π(av)) +Q(av)ϕ(a, v) + ϕ(a, v)2

= q(π(av)) + ϕ(a, v)
(
Q(a)q(v) + ϕ(a, v)

)
for all v ∈ L by (8.2). Therefore

ϕ(a, v)
(
Q(a)q(v) + ϕ(a, v)

)
= 0 (8.5)

for all v ∈ L such that q(v) ̸= 0 by (8.3) and (8.4).

Now let W = ⟨δ, θ(a, δ)⟩. We have

f(θ(a, δ), δ) = Q(a)q(δ) ̸= 0 (8.6)

by [13, Proposition 4.9(i)] and Definition 7.1(iv). Thus the restriction of q to W is non-

degenerate. Since dimK L > 2 and q is non-degenerate, it follows that we can choose

u ∈ W⊥ such that q(u) ̸= 0. By Hypothesis 8.1(ii), we can choose t ∈ K such that

t2q(u) + q(δ), t2q(u) + tq(δ)f(u, ε) and tf(u, ε)− 1 are all non-zero. Replacing u by tu,

it follows that q(u) ̸= q(δ), q(u) ̸= q(δ)f(u, ε) and f(u, ε) ̸= 1. Let v = δ + u. Thus

q(v) = q(δ) + q(u) ̸= 0. By [13, Propositions 4.9(i) and (iii) and 4.10], we have

ϕ(a, v) = Q(a)q(v) + f(π(a), v)f(v, δ) + f(θ(a, δ), v)f(v, ε).
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By the choice of u and v, we have f(v, δ) = 0 and f(θ(a, δ), v) = f(θ(a, δ), δ) and thus

ϕ(a, v) = Q(a)q(v) +Q(a)q(δ)(1 + f(u, ε)) = Q(a)
(
q(u) + q(δ)f(u, ε)

)
̸= 0

by (8.6) and

Q(a)q(v) + ϕ(a, v) = Q(a)q(δ)
(
1 + f(u, ε)

)
̸= 0.

By (8.5), however, one of these two terms must be 0. With this contradiction, we conclude

that there exists e ∈ X such that both Q(e) ̸= 0 and q(π(e)) ̸= 0. □

Proposition 8.5. The bilinear form f associated with q is non-degenerate.

Proof. By Definition 2.1, q is non-degenerate. By Notation 2.2, therefore, we

can assume that char(K) = 2. Suppose that ⟨v⟩⊥ = L for v ∈ L. If a is as in Hy-

pothesis 8.1(i), then by [13, Proposition 4.9(i)], we have f(θ(a, v), v) = Q(a)q(v). Since

⟨v⟩⊥ = L and Q(a) ̸= 0, it follows that q(v) = 0. Hence v = 0 by the non-degeneracy of

q. □

We now assume, as at the beginning of [13, Chapter 6], that

dimK L > 4. (8.7)

By Hypothesis 8.1(i) and Proposition 8.4, we can choose the element e in [13, Nota-

tion 6.4] so that q(π(e)) ̸= 0 and, if char(K) = 2, also Q(e) ̸= 0. With Proposition 8.5

and (8.7), we can apply the subsequent results of [13, Chapter 6] with only small modi-

fications. We now describe these modifications.

We first observe that by the proof of [13, Proposition 6.5], u 7→ u# := θ(e, v) is

a norm splitting map in the sense of Definition 6.2 (but we do not know whether it is

irreducible as defined in Definition 6.6 and we ignore the claim about the minimal poly-

nomial). In place of [13, Definition 6.6], we say that a finite subset of L is e-orthogonal

if it is ψ-orthogonal as defined in Notation 6.4 with ψ(e) the norm splitting map in [13,

Proposition 6.5]. In the assertion [13, Proposition 6.7(ii)], we require q(w) ̸= 0 in addi-

tion to w ∈ W⊥. Note that by Hypothesis 8.1(ii), we can apply [13, Proposition 3.22].

We observe, too, that [13, Proposition 6.8] continues to hold; we only need to observe

toward the end of the proof that q(u), q(v) and q(π(e)σ − π(e)) are all non-zero.

We now observe that the results [13, Propositions 6.12, 6.13, 6.15, 6.16, 6.21, 6.23

and 6.24] all hold more or less verbatim with only a few small alterations and additions:

(a) In [13, Proposition 6.12], we must assume that q(u) ̸= 0 if char(K) ̸= 2 and re-

place the application of [13, Proposition 3.11] in the proof by an application of [13,

Proposition 4.22].

(b) In the last line of the proof of [13, Proposition 6.13], we apply Proposition 8.2 rather

than A3 to conclude that h(e, euv) = 0 and make a similar modification at the end

of the proofs of [13, Propositions 6.15, 6.16 and 6.21].
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(c) At the start of the proof of [13, Proposition 6.21], we add the hypothesis that q is

non-degenerate to the justification that the e-orthogonal set 1, u, v, w, x, y, z exists.

A similar remark applies to the beginning of [13, Notation 6.24].

(d) Replace the application of [13, Proposition 2.18(ii)] at the beginning of the proof of

[13, Proposition 6.16] by a reference to [13, Proposition 4.21].

(e) Let y be as in [13, (6.18) or (6.19)] in the proof of [13, Proposition 6.16]. We have

f(h(e, evwxũ), π(e)σ) = f(h(e, evwxũπ(e)), ε) by [13, Proposition 3.7]

= f(h(e, eπ(e)vwxũ), ε) by [13, Proposition 3.8]

= f(h(e, ev#wxũ), ε) by D1

= −f(h(e, ev#wx), ũ) by [13, Proposition 3.7]

= 0 by [13, Proposition 6.15],

and

f(h(e, evwxũ), ε) = −f(h(e, evwx), ũ) = 0

by [13, Propositions 3.7 and 6.15]. Hence y ∈ ⟨ε, π(e)⟩⊥. We need to observe that

q(y) ̸= 0. This follows from Proposition 8.3 since we are assuming that q(u), q(v),

q(w) and q(x) are all non-zero. Since we do not know whether q(ỹ) ̸= 0, we cannot

say that the set 1, u, v, w, x, ỹ is e-orthogonal in the middle of the next page, so we

need another argument to prove that

h(e, eỹu) = h(e, eỹv) = · · · = h(e, eỹx) = 0. (8.8)

Let Y be the subspace of L spanned by 1, u, v, w, x and let W = Y + θ(e, Y ). Then

ỹ ∈W⊥ andW⊥ is spanned by the set of all ŷ such that 1, u, v, w, x, ŷ is e-orthogonal.

By [13, Proposition 6.13],

h(e, eŷu) = h(e, eŷv) = · · · = h(e, eŷx) = 0

for all such elements ŷ. It follows that (8.8) does, in fact, hold.

This concludes our list of modifications.

Now let v1, . . . , vd and α1, . . . , αd be as in [13, Notation 6.24]. Thus (K,L, q) is

isomorphic to

(K,Ed, α1N + α2N + · · ·+ αdN),

where E/K is the splitting extension of the norm splitting map v 7→ v#, N is the

norm of E/K, v1 = ε and αi = q(vi) for all i = 2, . . . , d (and hence α1 = 1). The

result [13, Proposition 6.30] and its proof hold verbatim, but we need to replace [13,

Propositions 6.27 and 6.31] by the following.

Proposition 8.6. One of the following holds :
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(i) q is of type E6, E7 or E8 or

(ii) q is similar to the norm of an octonion division algebra.

(iii) q is similar to qC for some composition algebra (C,K) as in Notation 3.1(iii)–(v),

where qC as as defined in Notation 4.1.

If q is as in (i), then Ξ is anisotropic. If q is as in (ii) or (iii), then Ξ is isotropic.

Proof. By Proposition 6.12, q is as in (i), (ii) or (iii). Suppose that q is the

norm of an octonion division algebra. It follows from [13, Theorem 6.42] (i.e. by the

classification of anisotropic quadrangular algebras) that Ξ is isotropic. To reach the

same conclusion more directly, we can follow the proof of [13, Proposition 6.27], where

it is observed at the start that if α2α3α4 ∈ N(E), then it can be assumed that, in fact,

α2α3α4 = 1. It is then shown that π(a) ∈ ⟨ε⟩ for a = e + ev2v3v4. Jumping ahead, we

see that e and ev2v3v4 are two elements of the basis of X given in [13, Proposition 6.34]

(see below), so a ̸= 0 and thus Ξ is, indeed, isotropic.

Suppose, conversely, that q is anisotropic but that Ξ isotropic. By Definition 2.3,

there exists a non-zero element a in X such that π(a) ∈ ⟨ε⟩. By Definition 7.1(iii),

we have, in fact, π(a) = 0. By D1, it follows that aθ(a, v) = 0 for all v ∈ L. By

A3 and the assumption that q is anisotropic, it follows that θ(a, v) = 0 for all v ∈ L.

By Hypothesis 8.1(iii), we can choose b ∈ X such that h(a, b) ̸= 0. By A3 again, the

subspaces aL and ah(a, b)L both have dimension dimK L. By Hypothesis 8.1(ii) and [13,

Proposition 3.22], we have

ah(a, bu)v = ah(a, buv) (8.9)

for all u, v ∈ L. Setting u = ε in (8.9), we obtain ah(a, b)L = ah(a, bL) ⊂ aL and hence

ah(a, bL) = aL. By (8.9) with arbitrary u and v, it follows that aLL = aL. We conclude

that X = aC(q, ε) = aL. By Proposition 6.14, however, C(q, ε) does not have a right

module of dimension equal to dimK L if q is of type E6, E7 or E8. Hence q is as in (ii).

If q is as in (iii), then q is isotropic, Ξ is also isotropic. □

The result [13, Proposition 6.34] holds verbatim as does its proof up to the last line,

where the justification given for the inequality

dimK X ≥ |B| (8.10)

is no longer valid. Here B is as in [13, Notation 6.32] and

|B| =


8 if d = 3,

16 if d = 4,

32 if d = 6.

(8.11)

We now prove (8.10). By Proposition 8.2, the map v 7→ ev from L to X is injective.

Thus eL is a subspace of X of dimension dimK L. Thus, in particular,

dimK X > 4 if dimK L = 6 (8.12)
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and dimK X ≥ 8 if dimK L = 8. Suppose that dimK L = 8 and that ev2v3v4 = eu

for some u ∈ L. By Proposition 8.3, q(π(ev2v3v4)) ̸= 0 and if char(K) = 2, then

Q(ev2v3v4) ̸= 0 by (8.2). In particular, u ̸= 0. Hence uσ ̸= 0. By Proposition 8.2, it

follows that ev2v3v4u
σ ̸= 0. By A3, we deduce that q(u) ̸= 0. By [13, Proposition 6.12],

therefore, h(e, eu) ̸= 0. By [13, Proposition 6.15], however, h(e, ev2v3v4) = 0. With this

contradiction we conclude that

dimK X > 8 if dimK L = 8. (8.13)

Let k be the dimension of an arbitrary irreducible C(q, ε)-module. By Propositions 6.14

and 8.6, either k = |B| or k = |B|/2 and in the latter case, dimK L = 6 or 8. Since X

is a direct sum of irreducible C(q, ε)-modules, it follows now by (8.12) and (8.13) that

(8.10) does, in fact, hold. Thus [13, Proposition 6.34] holds.

Corollary 8.7. Suppose that X is not irreducible as a C(q, ε)-module. Then X

is the sum of two irreducible C(q, ε)-modules and one of the following holds :

(i) dimK L = 6, dimK X = 8 and q is hyperbolic.

(ii) dimK L = 8, dimK X = 16 and q the norm of an octonion algebra (C,K) which is

either division or split.

Proof. By [13, Proposition 6.34], dimK X = |B|, where |B| is as in (8.11). The

claim holds, therefore, by Propositions 6.14 and 8.6. □

Notation 8.8. Let E be the splitting extension of the norm splitting map e 7→ e#

and let τ be the unique non-trivial K-algebra automorphism of E. We identify E with

K[x]/J , where J is the ideal generated by the polynomial x2 − Q(e)x + q(π(e)), we

identify K with its natural image in E and we set γ = x+ J . Thus γ is an element of E

such that

γτ ̸= γ. (8.14)

We define a map from E × {v1, . . . , vd} to L by setting

(s+ tγ)vi = svi + tθ(e, vi) (8.15)

for all i = 1, 2, . . . , d and all s, t ∈ K. Thus, in particular, π(e) = γv1 = γε and

π(e)σ = γτε. Now suppose that d = 3 or 4 and let Ip as well as ex and e◦x for all x ∈ Ip
be as in [13, Notation 6.32] (so p = d− 1). Let M = {ex | x ∈ Ip}, let

N = {tex | x ∈ Ip, t ∈ K∗}

and let ℓ be the map from N to the natural numbers that sends tex to the cardinality of

x. The set N is closed under right multiplication by vi (by [13, Proposition 3.8]) and

ℓ(exvi)− ℓ(ex) = 1 or − 1

for each x ∈ Ip and each i = 1, 2, . . . , d. We define a map from E ×M to X by setting
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(s+ tγ)ex = sex + te◦x (8.16)

for all x ∈ Ip and all s, t ∈ K. By A1–A3, D1 and [13, Proposition 3.8], we have

Aex ·Bvi =

AB
τℓ(x)

x if i = 1,

ABxvi if i > 1 and ℓ(exvi) > ℓ(ex),

ABτxvi if i > 1 and ℓ(exvi) < ℓ(ex)

(8.17)

for all A,B ∈ E, where Bvi is as defined in (8.15) and Aex is as defined in (8.16).

Notation 8.9. Let κ be the unique linear automorphism L such that κ(Av1) =

Aτv1 and κ(Avi) = Avi for all A ∈ E and i = 2, 3, . . . , d. Thus, in particular, κ(π(e)) =

κ(γε) = γτε. The map κ is a reflection of (K,L, q) fixing ε.

Proposition 8.10. Let κ be as in Notation 8.9 and suppose that q is hyperbolic if

d = 3. Then the unique extension of κ to an automorphism of C(q, ε) interchanges the

two direct summands of C(q, ε).

Proof. By Proposition 6.14, C(q, ε) is a sum of two simple subalgebras and the

center of C(q, ε) is a split quadratic étale quadratic extension. The claim follows, there-

fore, from the observation that the unique extension of κ to an automorphism of C(q, ε)

interchanges the two central elements z and z′ in [12, (12.41)]. □

The next result and Proposition 8.14(ii) below will not be needed until the proof of

Theorem 10.16.

Proposition 8.11. Let ρ be an arbitrary reflection of q and suppose that q is

hyperbolic if d = 3. Then the unique extension of ρ to an automorphism of C(q, ε)

interchanges the two direct summands of C(q, ε).

Proof. Let K̄ be the algebraic closure of K, let qK̄ be the scalar extension of q

to L⊗K K̄ and let κK̄ and ρK̄ denote the unique extensions of κ and ρ to reflections of

qK̄ . Then C(qK̄ , ε) is the sum of two matrix rings over K̄ and, by Proposition 8.10, the

unique extension of κK̄ to an automorphism of C(qK̄ , ε) acts non-trivially on the center

of C(qK̄ , ε). By [3, Theorem 8.3] (Witt’s Extension Theorem), κK̄ and ρK̄ are conjugate

under the isometry group of qK̄ . Thus the unique extension of ρK̄ to an automorphism

also acts non-trivially on the center of C(qK̄ , ε). It follows that the unique extension of

ρ to an automorphism of C(q, ε) acts non-trivially on the center of C(q, ε) and hence

interchanges the two direct summands of C(q, ε). □

Proposition 8.12. Let d = 3, let κ be as in Notation 8.9 and let ψ be the unique

automorphism of X such that for all A ∈ E, ψ(Aevi) = Aτev2v3vi for i = 1, 2, 3 and

ψ(Aev2v3) = Aτev2v3v2v3 = α2α3A
τe, where α2 = q(v2) and α3 = q(v3) as in [13,

Notation 6.24]. Then ψ(av) = ψ(a)κ(v) for all a ∈ X and all v ∈ L.

Proof. By (8.17) and a bit of calculation, the claim holds for a of the form Aex
and v of the form Bvi. Since the map (a, v) 7→ a · v is bilinear, the claim holds for

arbitrary a ∈ X and v ∈ L. □
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Proposition 8.13. Let d = 4 or 6 and let κ be as in Notation 8.9. Then there

exists no K-linear automorphism ψ of X such that ψ(av) = ψ(a)κ(v) for all a ∈ X and

all v ∈ L.

Proof. Suppose that d = 6. Then dimK X = 32. By Proposition 6.14, it follows

that X is an irreducible module for one of the two direct summands of C(q, ε) and the

other direct summand acts trivially on X. By Proposition 8.10, there is no K-linear

automorphism ψ of X such that ψ(aw) = ψ(a)κ̂(w) for all a ∈ X and all w ∈ C(q, ε),

where κ̂ denotes the unique extension of κ to an automorphism of C(q, ε). Hence there

is no K-linear automorphism ψ of X such that ψ(av) = ψ(a)κ(v) for all a ∈ X and all

v ∈ L.

Now suppose that d = 4 and that ψ is an automorphism of X such that ψ(av) =

ψ(a)κ(v) for all a ∈ X and all v ∈ L. Let e1 = ψ(e). Applying ψ to the identity

eθ(e, v) = eπ(e)v, we have

e1κ(θ(e, v)) = e1κ(π(e))κ(v) (8.18)

for all v ∈ L. By (8.15), we have θ(e, vi) = γvi for all i. Thus, in particular,

e1θ(e, vi) = e1 · γτε · vi (8.19)

for all i = 2, 3, 4. Right multiplication by an element of the form Bvi with B ∈ E non-

zero permutes the subspaces {Aex | A ∈ E} of X. Since e1 ̸= 0, it follows from (8.19)

that there exists x ∈ Ip and A ∈ E such that A ̸= 0 and

Aexθ(e, vi) = Aex · γτε · vi (8.20)

for all i = 2, 3, 4. If ℓ(ex) is odd, choose i such that ℓ(exvi) < ℓ(ex). If ℓ(ex) is even,

choose i such that ℓ(exvi) > ℓ(ex). Applying (8.17), we find that if ℓ(ex) is odd, then

Aexθ(e, vi) = Aex · γvi = Aγτexvi but Aex · γτε · vi = Aγexvi and if ℓ(ex) is even, then

Aexθ(e, vi) = Aex ·γvi = Aγexvi but Aex ·γτε ·vi = Aγτexvi. Hence in both cases, (8.20)

implies that Aγexvi = Aγτexvi and hence A = 0 by (8.14). With this contradiction, we

conclude that there is no non-zero element e1 such that (8.18) holds for all v ∈ L. □

Proposition 8.14. Let d = 4 or 6. Then the following hold :

(i) X is either irreducible as a C(q, ε)-module or the sum of two copies of the same

irreducible C(q, ε)-module.

(ii) If ρ is an arbitrary reflection of q, then there exists no K-linear automorphism ψ

of X such that ψ(av) = ψ(a)ρ(v) for all a ∈ X and all v ∈ L.

Proof. By Proposition 6.14,X is either irreducible as a C(q, ε)-module or the sum

of two irreducible C(q, ε)-modules. By Propositions 8.10 and 8.13, the two irreducible

C(q, ε)-modules are two copies of the same irreducible C(q, ε)-modules in the second

case. Thus (i) holds. Whether or not X is irreducible, one of the two direct summands

of C(q, ε) acts trivially on X and the other does not. By Proposition 8.11, therefore, (ii)

holds. □
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Proposition 8.15. Suppose that dimK L ≥ 5, let κ be as in Notation 8.9 and let

Ξ̂ = (K̂, L̂, q̂, f̂ , ε̂, X̂, ∗, ĥ, θ̂)

be a second quadrangular algebra satisfying the hypotheses of in Hypothesis 8.1. Suppose

that ξ is an isomorphism from (K,L, q) to (K̂, L̂, q̂) mapping ε to ε̂. Then either there

exists an isomorphism (λ, ψ) from Ξ to Ξ̂, where either λ = ξ or d = 4 or 6 and λ = κξ.

Proof. If C(q, ε) is the direct sum of two central simple summands, then by

Proposition 8.12, X is the direct sum of the two distinct irreducible C(q, ε)-modules if

d = 3 and by Proposition 8.14(i), X is either irreducible as a C(q, ε)-module or the direct

sum of two copies of one of the two irreducible C(q, ε)-modules if d = 4 or 6. It follows

that there exists a pair (λ, ψ), where ψ is an additive bijection from X to X̂ and either

λ = ξ or λ = κξ (and d = 4 or 6 in the second case) such that ψ(a · v) = ψ(a) ∗ λ(v) for
all a ∈ X and all v ∈ L. We now identify (K,L, q, f, ε,X, ·) with (K̂, L̂, q̂, f̂ , ε̂, X̂, ∗) via
λ and ψ and follow the proof of [13, Proposition 6.38]. Where [13, Definition 1.17(D2)

and Proposition 3.4] are applied, however, we can now only deduce from (8.17) that there

exist ω, β ∈ K such that π̂(e) = ωπ(e) + βε. Since Ξ̂ is δ-standard, we have β = 0. If

ω ̸= 0, then the rest of the proof of [13, Proposition 6.38] remains valid verbatim.

We can suppose, therefore, that ω = 0 and hence π̂(e) = 0. By D1 and Proposi-

tion 8.2, it follows that θ̂(e, v) = 0 for all v ∈ L. Hence ĥ(e, ev) = 0 for all v ∈ L by [13,

Proposition 4.5(i)] if char(K) ̸= 2 and by [13, Propositions 3.15 and 3.16] if char(K) = 2.

By [13, Proposition 3.22], we have eĥ(e, b)u = eĥ(e, bu) ∈ eL for all b ∈ X and all u ∈ L.

Setting b = ev, we conclude using Proposition 8.2 that h(e, euv) = 0 for all u, v ∈ L.

Repeating this argument, this time with e = buv, we conclude that h(e, euvw) = 0 for

all u, v, w ∈ L. Thus h(e, b) = 0 for every element in the set B defined in [13, No-

tation 6.32]. Since B spans X (by [13, Proposition 6.34]), we have a contradiction to

Hypothesis 8.1(iii). With this contradiction, we conclude that, in fact, ω ̸= 0. □

Here now is the main result of this section:

Theorem 8.16. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a proper quadrangular algebra as

defined in as defined in Definition 5.4 and let Q be as in (8.1). Suppose that q(π(a)) ̸= 0

for some a ∈ X if char(K) ̸= 2 and that Q(a) ̸= 0 for some a ∈ X if char(K) = 2.

Suppose, too, that dimK L ≥ 5, that |K| > 4 and that h is non-degenerate as defined in

Observation 5.8. Then one of the following holds :

(i) q is of type E6, E7 or E8 and Ξ is uniquely determined up to isotopy by the similarity

class of q.

(ii) q is similar to the norm of an octonion division algebra (C,K) and Ξ is isotopic to

Q2(C,K).

(iii) q is similar to qC for some composition algebra (C,K) as in Notation 3.1(iii)–(v)

and Ξ is isotopic to Q4(C,K).

In case (i), Ξ is anisotropic and in cases (ii) and (iii), Ξ is isotropic.
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Proof. This holds by Propositions 7.2, 8.6 and 8.15. □

9. The inseparable F4-case.

In this section, we make the following assumptions:

Hypothesis 9.1. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a δ-standard quadrangular

algebra for some δ ∈ L as defined in Definition 7.1. We assume that char(K) = 2, that

|K| > 4 and that Q(a) = 0 for all a ∈ X, where Q is as in (8.1).

The main result of this section is Theorem 9.8.

Proposition 9.2. Let R denote the radical of f and let g be as in C3. Then

h(X,X) ⊂ R and g(X,X) = 0.

Proof. By [13, Proposition 3.16] and Hypothesis 9.1, g(a, a) = Q(a) = 0 for

all a ∈ X. By [13, Proposition 4.3], g is bilinear and hence symmetric. By another

application of [13, Proposition 4.3], it follows that

g(a, b) = f(h(a, b), δ) = f(h(b, a), δ) (9.1)

for all a, b ∈ X, where δ is as in Hypothesis 9.1. By [13, Proposition 3.6], we have

h(b, a) = h(a, b)σ, so

f(h(b, a), δ) = f(h(a, b)σ, δ) = f(h(a, b), δσ) = f(h(a, b), δ + ε)

for all a, b ∈ X by [13, (1.4)] and Definition 7.1(ii). Hence f(h(a, b), ε) = 0 for all

a, b ∈ X. By B3, therefore,

f(h(a, b), v) = f(h(av, b), ε) = 0

for all a, b ∈ X and all v ∈ L. Hence h(X,X) ⊂ R. By (9.1), it follows that g is

identically zero. □

Proposition 9.3. Let X♭ be as in Proposition 7.6. Then the following hold :

(i) θ(a,R) ⊂ R for all a ∈ X.

(ii) If θ(a, u) ∈ R for some a ∈ X♭ and some u ∈ L, then u ∈ R.

Proof. Let ρ ∈ R. By [13, Proposition 3.19(iii)], we have

f(θ(a, ρ), v) = f(θ(a, v), ρ) = 0

for all v ∈ L. Thus (i) holds. By [13, Proposition 7.4(iii)], u = q(π(a))−1θ(a, θ(a, u)) for

all a ∈ X♭ and all u ∈ L. Hence (ii) is a consequence of (i). □

Hypothesis 9.4. We now add the hypothesis that h is non-degenerate as defined

in Observation 5.8. Thus, in particular, h(X,X) ̸= 0, so R ̸= 0 by Proposition 9.2.
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1358 B. Mühlherr and R. M. Weiss

Proposition 9.5. X is spanned by the set X♭ defined in Proposition 7.6.

Proof. By Hypothesis 9.4, we can choose a non-zero element ρ in R. By Propo-

sition 9.2 and C3, we have

θ(a+ b, ρ) = θ(a, ρ) + θ(b, ρ) + h(a, bρ) (9.2)

for all a, b ∈ X. By [13, Proposition 4.22], q(θ(a, ρ)) = q(π(a))q(ρ) for all a ∈ X. Since

q is non-degenerate and ρ ̸= 0, we have q(ρ) ̸= 0. It follows that q(θ(a, ρ)) = 0 if and

only if q(π(a)) = 0. By Proposition 9.3(i) and the non-degeneracy of q, it follows that

q(π(a)) = 0 if and only if θ(a, ρ) = 0. By Hypothesis 9.4, there exist a, c ∈ X such that

h(a, c) ̸= 0. By A3, it follows that h(a, bρ) = h(a, c)q(ρ) ̸= 0 for b = cρ. By (9.2), we

conclude that X♭ ̸= ∅. By Hypothesis 9.4, we also have |K| > 4. By Proposition 7.6,

therefore, X is spanned by X♭. □

By Hypothesis 9.4, R ̸= 0. Thus from now on we can follow the proof of [13, The-

orem 7.57] (in which Theorem 9.8 is proved under the hypothesis that Ξ is anisotropic)

with a few modifications and comments. We start now to describe these modifications.

The result [13, Proposition 7.1] holds by Proposition 9.2. The results [13, Proposi-

tions 7.2–7.6] hold verbatim. In [13, Proposition 7.9], where

Wa = ⟨ε, δ, π(a), θ(a, δ)⟩,

it is necessary only to add the assumption that a ∈ X♭. We replace [13, Proposition 7.10]

(which is needed only for the application of [13, Proposition 3.22]) by the assumption

|K| > 4 in Hypothesis 9.1.

It requires more effort to prove [13, Proposition 7.11] in the present context and, in

fact, it is easier now to combine [13, Proposition 7.11] and [13, Proposition 7.12] into

one result:

Proposition 9.6. W⊥
a = R and θ(a, u) = h(a, aδu) for all a ∈ X♭ and all u ∈ R.

Proof. Let a ∈ X♭ and let u ∈ W⊥
a . The proof of [13, Proposition 7.11] yields

the conclusion that aw = 0 for

w = θ(a, u) + h(a, aδu) (9.3)

(but we can no longer appeal to [13, Proposition 3.4] at this point). By A3, we have

q(w) = 0. By Proposition 9.2, we have h(a, aδu) ∈ R. Suppose that u ∈ R. Then w ∈ R

by Proposition 9.3(i). Hence w = 0 since q is non-degenerate. It thus suffices to show

that W⊥
a = R.

Suppose thatW⊥
a ̸= R. We can thus assume that u ∈W⊥

a was chosen so that u ̸∈ R.

By [13, Proposition 7.9], we have θ(a, u) ∈ W⊥
a and by Proposition 9.3(ii), we have

θ(a, u) ̸∈ R. Hence w ∈ W⊥
a \R. By [13, Proposition 7.9] and Proposition 9.3(ii) again,

we have θ(a,w) ∈ W⊥
a \R. Hence we can choose v ∈ W⊥

a such that f(θ(a,w), v) = 1.

Since aw = 0, also θ(aw, v) = 0 (by [13, Proposition 3.12]). Let α = f(v, w). The map

σ acts trivially on ⟨ε⟩⊥ and hence on W⊥
a . By [13, Proposition 7.5] and C4 with w in
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place of v and v in place of w, therefore, we have

w = αθ(a,w). (9.4)

Hence α ̸= 0 and

θ(a,w) = αθ(a, θ(a,w)) = αq(π(a))w = α2q(π(a))θ(a,w)

by [13, Proposition 4.21], so, in fact, q(π(a))α2 = 1. By C1, (9.3), (9.4) and another

application of [13, Proposition 4.21], we also have

α−1
(
θ(a, u) + h(a, aδu)

)
= α−1w = θ(a,w)

= θ
(
a,
(
θ(a, u) + h(a, aδu)

))
= q(π(a))u+ θ

(
a, h(a, aδu)

)
.

By Propositions 9.2 and 9.3(i), we conclude that

θ(a, u) + q(π(a))1/2u ∈ R (9.5)

for all a ∈ X♭ and all u ∈W⊥
a (whether or not u ∈ R).

We continue with our choice of a ∈ X♭ and u ∈ W⊥
a \R and now choose y ∈ W⊥

a

such that f(y, u) ̸= 0. We then choose t ∈ K∗ such that q(z) ̸= 0 for z = tε+ y. By [13,

Proposition 7.5] and Proposition 7.7, we have

q(π(az)) = q(π(a))q(z)2, (9.6)

so az ∈ X♭. We have f(u, zσ) = f(uσ, z) = f(u, z). Hence by [13, Proposition 7.5] and

C4 with z in place of v and u in place of w, we have

θ(az, u) = θ(a, u)q(z) + f(u, z)θ(a, z)σ + f(θ(a, z), u)zσ.

From az = ta+ ay, it follows that

π(az) + π(ta) + π(ay) ∈ R (9.7)

and

θ(az, δ) + θ(ta, δ) + θ(ay, δ) ∈ R (9.8)

by C3 and Proposition 9.2. By [13, Proposition 7.9], we have θ(a, y) ∈W⊥
a . Thus by [13,

Proposition 7.5] and C4 with y in place of v and once with ε in place of w and a second

time with δ in place of w, we have π(ay) = π(a)q(y) ∈Wa and θ(ay, δ) = θ(a, δσ)σq(y) ∈
Wa. Hence f(π(ay), u) = f(θ(ay, δ), u) = 0. By (9.7) and (9.8), we conclude that

u ∈W⊥
az. Thus by (9.5), both θ(a, u)+q(π(a))1/2u and θ(az, u)+q(π(az))1/2u lie in R. By

(9.6), therefore, θ(az, u)+θ(a, u)q(z) ∈ R. By [13, Proposition 7.5] and C4, this time with

z in place of v and u in place of w, it follows that f(u, zσ)θ(a, z)σ + f(θ(a, z), u)zσ ∈ R.

We have f(u, zσ) = f(u, y) ̸= 0. By [13, Proposition 7.9], we have
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θ(a, z) + tπ(a) = θ(a, y) ∈W⊥
a

and thus θ(a, z)σ + tπ(a) ∈ W⊥
a . Therefore π(a) ∈ ⟨zσ,W⊥

a ⟩ = ⟨ε,W⊥
a ⟩. By [13,

Propositions 7.4(ii) and 7.6], we have f(ε, θ(a, δ)) = 0 and hence ⟨ε,W⊥
a ⟩ ⊂ ⟨θ(a, δ)⟩⊥.

By [13, Proposition 7.6], however, f(π(a), θ(a, δ)) ̸= 0. With this contradiction, we

conclude that W⊥
a = R. □

Thus also [13, Corollary 7.13] holds with the assumption that a ∈ X♭ as does [13,

Proposition 7.17]. The results [13, Propositions 7.14–7.16] hold without any modification

in their proofs.

The proof of [13, Proposition 7.18] remains valid with the additional assumption

that a ∈ X♭. It is only necessary to recall that if u is a non-zero element of R, then

q(u) ̸= 0. The result [13, Proposition 7.26] remains valid. It is only necessary to choose

a ∈ X♭ at the beginning of the proof and to cite Proposition 9.5 in the last sentence (since

at this point, we know that w depends only on u, v and ρ and thus that auρ−1v = aw

for all a ∈ X♭).

Nothing needs to be modified in [13, Propositions and Notation 7.29–7.35]. In [13,

Proposition 7.36], X∗ and F ∗ are to be replaced by X and F (and the last sentence

of the proof deleted) and in [13, Notation 7.37], X∗ is to be replaced by X♭. In [13,

Proposition 7.40], we need to define E to be the étale quadratic extension K[γ]/K, where

γ is a root of p(x) not in K since we no longer know that p(x) is irreducible over K. The

proof of [13, Proposition 7.40] remains valid with this modification. Next we replace [13,

Proposition 7.41] by the following observation:

Proposition 9.7. The quadratic form q is either anisotropic, in which case it is

of type F4 as defined in [13, Definition 2.15], or (K,L, q) is similar to (K,LC , qC).

Proof. This holds by [13, Proposition 7.40] and Proposition 6.13. □

In [13, Proposition 7.42] we insert the hypothesis that the polynomial p(x) is ir-

reducible over K. The result [13, Proposition 7.42] is needed only in the proof of [13,

Proposition 7.56]. In the next paragraph, we give a proof of [13, Proposition 7.56] in

the case that p(x) is reducible over K that does not depend on [13, Proposition 7.42].

(Observe that if p(x) has a root γ in K, then γ2 is a root of p0(x) contained in F since

K2 ⊂ F by [13, (7.32)], i.e. if p(x) is reducible over K, then p0(x) is reducible over F .)

In [13, Proposition 7.43], we insert the hypothesis that q is anisotropic. The results

[13, Propositions 7.44, 7.49 and 7.50] remain valid verbatim (but the Q introduced in

[13, Proposition 7.44] must not be confused with the Q in Hypothesis 9.1). In [13,

Proposition 7.55] we need to set D equal to the étale quadratic extension F [γ2], where

γ is a root of the polynomial p(x) in [13, Proposition 7.40], to allow for the case that

p(x) is reducible over K. The proof of [13, Proposition 7.55] remains valid with this

modification. Thus, in particular, Q is similar to the norm of the split quaternion algebra

over F if p(x) is reducible over K. The proof of [13, Proposition 7.56] remains valid in

the case that p(x) is irreducible over K. If p(x) is reducible over K, then q(⟨ε, δ⟩⊥) = K

and Q is hyperbolic, so its image is all of F and the assertion of [13, Proposition 7.56]

holds also in this case. Finally, we modify [13, Theorem 7.57] to allow the possibility
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that q is similar to (K,LC , qC) as defined in Notation 4.1 for some composition algebra

(C,K) as in Notation 3.1(i). The proof of [13, Theorem 7.57] remains valid verbatim.

We can now formulate the main theorem of this section:

Theorem 9.8. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a proper quadrangular algebra

as defined in Definition 5.4. Suppose that char(K) = 2, that |K| > 4 and that Q(a) =

0 for all a ∈ X, where Q is as in (8.1). Then either q is of type F4 as defined in

[13, Definition 2.15] and Ξ is uniquely determined by q up to isotopy or q is similar

to (K,LC , qC) as defined in Notation 4.1 for some composition algebra (C,K) as in

Notation 3.1(i) and Ξ is isotopic to Q4(C,K). In the first case, Ξ is anisotropic and in

the second, it is isotropic.

Proof. This holds by Propositions 7.2 and 9.7 and the uniqueness assertion in

[13, Theorem 7.57] (as modified above). □

10. The split F4-case.

In the previous section, we treated the case that char(K) = 2 and Hypothesis 8.1(i)

fails to hold. In this section, we turn to the case that char(K) ̸= 2 and Hypothesis 8.1(i)

fails to hold. Our assumptions are as follows:

Hypothesis 10.1. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a δ-standard quadrangular

algebra for some δ ∈ L as defined in Definition 7.1, let π be as in D1 and let σ be as in

[13, (1.2)]. Suppose that

(i) q(π(a)) = 0 for all a ∈ X,

(ii) h is non-degenerate as defined in Observation 5.8,

(iii) |K| > 3 and

(iv) char(K) ̸= 2.

The main result of this section is Theorem 10.16. (By Propositions 8.4 and 9.5, Hypoth-

esis 10.1(iv) is superfluous if |K| > 4, but this observation is irrelevant for our proof of

Theorem 5.10.)

Notation 10.2. By Hypothesis 10.1(iv), we can set

hε(a, b) =
1

2
f(h(a, b), ε)ε

and

h⊥(a, b) = h(a, b)− hε(a, b)

for all a, b ∈ X. Thus h⊥(X,X) ⊂ ⟨ε⟩⊥, where

⟨ε⟩⊥ = {v ∈ L | f(v, ε) = 0}, (10.1)
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and hε(X,X) ⊂ ⟨ε⟩. By [13, Proposition 3.6], h⊥ is symmetric and hε is skew-symmetric

and by Definition 7.1(i), Hypothesis 10.1(iv) and [13, Proposition 4.3], we have

g(a, b) =
1

2
f(h(a, b), ε) (10.2)

and thus

hε(a, b) = g(a, b)ε (10.3)

for all a, b ∈ X, where g is as in C3.

Lemma 10.3. The form g is non-degenerate.

Proof. Let b be a non-zero element of X. By Hypothesis 10.1(ii), there exists

a ∈ X such that h(a, b) ̸= 0. Hence there exists v ∈ L such that f(h(a, b), v) ̸= 0. By

B3, it follows that hε(av, b) ̸= 0. By (10.3), therefore, g(av, b) ̸= 0. □

Proposition 10.4. h(aπ(a), b) = 0 for all a, b ∈ X.

Proof. By Hypothesis 10.1(i), (10.3) and C3, we have

0 = q(π(a+ tb)) = q
(
π(a) + t2π(b) + th⊥(a, b)

)
= t3f(π(b), h⊥(a, b)) + t2

(
q(h⊥(a, b)) + f(π(a), π(b))

)
+ tf(π(a), h⊥(a, b))

for all a, b ∈ X and all t ∈ K. By Hypothesis 10.1(iii) and [12, (2.26)], it follows that

f(π(a), h⊥(a, b)) = 0

for all a, b ∈ X. Hence f(π(a), h(a, b)) = 0 for all a, b ∈ X since f(π(a), ϵ) = 0. By B3,

therefore, we have

f(h(aπ(a), b), ε) = 0

for all a, b ∈ X. Thus by [13, Proposition 3.7],

f(h(aπ(a), b), v) = f(h(aπ(a), bvσ), ε) = 0

for all a, b ∈ X and all v ∈ L. The claim follows since by Notation 2.2, f is non-

degenerate. □

Corollary 10.5. aπ(a) = 0 for all a ∈ X.

Proof. This holds by Hypothesis 10.1(ii) and Proposition 10.4. □

Example 10.6. The assertion in Corollary 10.5 need not hold without Hypothe-

sis 10.1(ii). Let Ξ = (K,L, q, f, ε,X, ·, h, θ) and γ be as in 5.9, for example. If γ is not

invertible, then q(π(a)) = 0 for all a ∈ X and h is degenerate. If, in addition, γ ̸= 0,
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then aπ(a) ̸= 0 if and only if a is invertible in L.

Proposition 10.7. bπ(a) = −ah⊥(a, b) for all a, b ∈ X.

Proof. By C3 and Corollary 10.5, we have

0 = (a+ tb)π(a+ tb) = (a+ tb)
(
π(a) + t2π(b) + th⊥(a, b)

)
= aπ(a) + t

(
bπ(a) + ah⊥(a, b)

)
+ t2

(
aπ(b) + bh⊥(a, b)

)
+ t3bπ(b)

for all a, b ∈ X. The claim holds, therefore, by Hypothesis 10.1(iii) and [12, (2.26)]. □

Notation 10.8. Let X0 = X⊕X, let L0 denote the K-vector space ⟨ε⟩⊥⊕K⊕K,

where ⟨ε⟩⊥ is as in (10.1) (and thus dimK L0 = 1 + dimK L), let ε0 = (0, 1, 1) ∈ L0, let

q0 be the quadratic form on L0 given by

q0(v, s, t) = q(v) + st (10.4)

for all (v, s, t) ∈ L0, let f0 be the bilinear form associated with q0, let

(v, s, t)τ = (−v, t, s)

for all (v, s, t) ∈ L0 and let

(a, b) ∗ (v, s, t) = (bv + sa, av + tb)

for all (a, b) ∈ X0 and all (v, s, t) ∈ L0. Then f is non-degenerate (and hence q is

non-degenerate). Furthermore,

vτ0 = f0(v0, ε0)ε0 − v0,

a0 ∗ ε0 = a0 and (since vσ = −v for all v ∈ ⟨ε⟩⊥)(
a0 ∗ v0

)
∗ vτ0 = q0(v0)a0

for all v0 ∈ L0 and all a0 ∈ X0. Let

h0
(
(a, b), (a′, b′)

)
=
(

1

2

(
h⊥(a, a′) + h⊥(b, b′)

)
, g(b, a′), g(a, b′)

)
for all (a, b), (a′, b′) ∈ X0 and let θ0(a0, v0) = h0(a0, a0 ∗ v0)/2 for all a0 ∈ X0 and all

v0 ∈ L0.

Proposition 10.9. Let

Ξ0 := (K,L0, q0, f0, ε0, X0, ∗, h0, θ0)

be as in Notation 10.8. Then Ξ0 is a quadrangular algebra.

Proof. We begin by observing that
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f(h(a, bv), ε) = f(h(a, b), vσ)

= f(h(a, b)σ, v)

= −f(h(b, a), v) = f(h(b, a), vσ) = f(h(b, av), ε)

(by [13, Propositions 3.6 and 3.7]) and hence

hε(a, bv) = hε(b, av) (10.5)

for all a, b ∈ X and all v ∈ ⟨ε⟩⊥. Note, too, that

f0

(
h0
(
(a, b), (a′, b′)

)
, ε0

)
= g(b, a′) + g(a, b′)

for all a, a′, b, b′ ∈ X and recall that h⊥ is symmetric and hε is skew-symmetric. With

these observations (and a bit of calculation), verification that Ξ0 satisfies B2 reduces to

showing that

h⊥(a, b′v) + h⊥(b, a′v) = h⊥(a′, bv) + h⊥(b′, av) + 2
(
g(b, a′) + g(a, b′)

)
v (10.6)

for all a, a′, b, b′ ∈ X and all v ∈ ⟨ε⟩⊥. By (10.2), (10.5) and B2, we have

h⊥(a, b′v) + h⊥(b, a′v)− h⊥(a′, bv)− h⊥(b′, av)

= h(a, b′v) + h(b, a′v)− h(a′, bv)− h(b′, av)

=
(
f(h(a, b′), ε) + f(h(b, a′), ε)

)
v

= 2
(
g(a, b′) + g(b, a′)

)
v

for all a, a′, b, b′ ∈ X and all v ∈ ⟨ε⟩⊥. Thus (10.6) does, in fact, hold and thus Ξ0

satisfies B2. To verify that Ξ0 satisfies B3, the reader has only to bear in mind that if

(v, s, t) ∈ L0, then v ∈ ⟨ε⟩⊥ and hence f(h⊥(c, c′), v) = f(h(c, c′), v) for all c, c′ ∈ X.

We turn now to D1. Choose a0 := (a, b) ∈ X0 and v0 := (v, s, t) ∈ L0. We need to

show that

a0 ∗ π0(a0) ∗ v0 = a0 ∗ θ0(a0, v0), (10.7)

where π0(a0) = θ0(a0, ε0) = h0(a0, a0)/2. Since Ξ is δ-standard, we have f(π(c), ε) = 0

and thus

h⊥(c, c) = h(c, c) = 2π(c) (10.8)

for all c ∈ X by [13, Proposition 4.5(i)]. Hence

π0(a, b) =
1

2
h0
(
(a, b), (a, b)

)
=

1

2

(
π(a) + π(b), g(b, a), g(a, b)

)
.

(10.9)

By Corollary 10.5, therefore,
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2(a, b) ∗ π0(a, b) =
(
bπ(a) + g(b, a)a, aπ(b) + g(a, b)b

)
.

We also have

2θ0
(
((a, b), v0

)
= h0

(
(a, b), (a, b)v0

)
=
(

1

2

(
h⊥(a, bv + sa) + h⊥(b, av + tb)

)
,

g(b, bv + sa), g(a, av + tb)
)
.

If v = 0, then by Corollary 10.5, (10.8) and a bit of calculation, (10.7) holds. Suppose,

instead, that s = t = 0. In this case,

2a0 ∗ π0(a0) ∗ v0 =
(
(aπ(b) + g(a, b)b)v, (bπ(a) + g(b, a)a)v

)
and

2a0 ∗ θ0(a0, v0) =
(

1

2
b
(
h⊥(a, bv) + h⊥(b,av)

)
+ g(b, bv)a,

1

2
a
(
h⊥(a, bv) + h⊥(b, av)

)
+ g(a, av)b

)
.

Let x denote the first coordinate of 2a0 ∗ θ0(a0, v0). By Notation 10.2, we can substitute

h(a, bv)−hε(a, bv) for h⊥(a, bv) and h(b, av)−hε(b, av) for h⊥(b, av) in x. By (10.5), we

can then replace hε(a, bv) by hε(b, av) and by B2 and (10.2), we can substitute

h(b, av) + 2g(a, b)v

for h(a, bv). By [13, Propositions 4.5(i) and 4.9(iii)] and (10.2), we have

g(b, bv) = f(θ(b, v), ε) = −f(π(b), v).

By Proposition 10.7 and [13, Proposition 3.8], therefore, x− g(a, b)bv equals

bh(b, av)− g(b, av)b+ g(b, bv)a = bh⊥(b, av) + g(b, bv)a

= −avπ(b)− f(π(b), v)a

= aπ(b)σvσ.

Since π(b)σ = −π(b) and vσ = −v, we conclude that the first coordinates of the elements

a0 ∗ θ0(a0, v0) and a0 ∗ π(a0) ∗ v0 are the same. By a similar calculation, the second

coordinates are also the same. Thus (10.7) holds when s = t = 0. Since θ0 is linear in its

second variable, we conclude that Ξ0 satisfies D1. By [13, Remark 4.8], we do not need

to verify that Ξ0 satisfies C1–C4. □

Proposition 10.10. Let Ξ0 := (K,L0, q0, f0, ε0, X0, ∗, h0, θ0) be as in Proposi-

tion 10.9 and let π0 be as in D1 applied to Ξ0. Then the following hold :

(i) h0 is non-degenerate.

(ii) q0(π0(a, b)) =
(
f(π(a), π(b))− g(a, b)2

)
/4 for all (a, b) ∈ X0.
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Proof. Assertion (i) follows from Lemma 10.3 and assertion (ii) from (10.4) and

(10.9). □

Lemma 10.11. Suppose dimK L ≥ 6 and let W = ⟨ε, w, z⟩ for some w, z ∈ L.

Then there exist u ∈W⊥ such that q(u) ̸= 0.

Proof. The restriction of q to ⟨ε⟩⊥ is non-degenerate. We can thus replace w

and z by their projections to ⟨ε⟩⊥. If q(w) ̸= 0, then the restriction of q to ⟨ε, w⟩ is non-
degenerate. If w ̸= 0 but q(w) = 0, then there exists w1 ∈ ⟨ε, w⟩⊥ such that q(w1) = 0

but f(w,w1) ̸= 0 and the restriction of f to ⟨ε, w,w1⟩ is non-degenerate. Thus whether or
not q(w) = 0 (or if w = 0), there exists a subspace V1 of dimension at most 3 containing

⟨ε, w⟩ such that the restriction of f to V1 is non-degenerate. We can now replace z by

its projection to V ⊥
1 . By a similar argument, there exists a subspace V2 of dimension at

most 5 containing V1 and z such that the restriction of f to V2 is non-degenerate. Since f

is non-degenerate and dimK L ≥ 6, the restriction of q to V ⊥
2 is not identically zero. □

Proposition 10.12. Suppose that dimK L ≥ 5. Then there exists a0 ∈ X0 such

that q0(π0(a0)) ̸= 0.

Proof. Suppose first that dimK L ≥ 6. By Lemma 10.3, we can choose a, b ∈ X

such that g(a, b) ̸= 0. By Proposition 10.10(ii), we can assume that f(π(a), π(b)) ̸= 0

and by Lemma 10.11, we can choose u ∈ ⟨ε, π(b), h(a, b)⟩⊥ such that q(u) ̸= 0. Then

f(uσ, ε) = 0, so by C4 and [13, Proposition 4.5(iii)], we have

π(au) = −π(a)q(u) + f(θ(a, u), ε)uσ.

Since f(uσ, π(b)) = f(u, π(b)σ) = 0, it follows that

f(π(au), π(b)) = −q(u)f(π(a), π(b)) ̸= 0.

By B3 and the choice of u, we have f(h(au, b), ε) = f(h(a, b), u) = 0 and thus g(au, b) = 0.

By Proposition 10.10(ii), it follows that q0(π0(au, b)) ̸= 0 in the case that dimK L ≥ 6.

Next we suppose that dimK L = 5 and q0(π0(a0)) = 0 for all a0 ∈ X0. In this case,

Ξ0 satisfies all the conditions in Hypothesis 10.1 and hence we can apply our construction

described in Notation 10.8 to Ξ0 to obtain a quadrangular algebra

Ξ1 = (K,L1, q1, f1, ε1, X1, ◦, h1, θ1)

with dimK L1 = 1+ dimK L0 = 7. By Proposition 10.10(i), h1 is non-degenerate and by

the conclusion of the previous paragraph, there exists a1 ∈ X1 such that q1(π1(a1)) ̸= 0.

By Theorem 8.16, however, there is no such quadrangular algebra. With this con-

tradiction, we conclude that q0(π0(a0)) ̸= 0 for some a0 ∈ X0 also in the case that

dimK L = 5. □

Notation 10.13. Let Ξ1 = (K1, L1, q1, f1, ε1, X1, ◦, h1, θ1) be an arbitrary quad-

rangular algebra. Suppose that (ψ1, ψ2) is a linear automorphism of Ξ1 (i.e. that

(idK , ψ1, ψ2) is an isomorphism from Ξ to itself as defined in [13, Definition 1.25]).
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Let L̂1 be the set of fixed points of ψ1 in L1 (so ε1 ∈ L̂1) and let X̂1 be the set of fixed

points of ψ2 in X1. Suppose that the following hold:

(i) dimK X̂1 > 0.

(ii) The restriction of f1 to L̂1 is non-degenerate

(iii) The parameter ω̂ in [13, Definition 1.25] is 1, i.e. ψ1(h(a, b)) = h(ψ2(a), ψ2(b)) for

all a, b ∈ X1.

By (iii), h(X̂1, X̂1) ⊂ L̂1. By [13, Proposition 4.5(i)], therefore,

Ξ
(ψ1,ψ2)
1 := (K1, L̂1, q̂1, f̂1, ε1, X̂1, ◦̂, ĥ1, θ̂1)

is a quadrangular algebra, where q̂1, f̂1, . . . , θ̂1 denote the appropriate restrictions of

q1, f1, . . . , θ1. We call Ξ
(ψ1,ψ2)
1 the fixed point algebra of (ψ1, ψ2).

Remark 10.14. Let Ξ1 = (K1, L1, q1, f1, ε1, X1, ◦, h1, θ1) be an arbitrary quad-

rangular algebra, let (α, β) be a linear automorphism of Ξ1 satisfying the conditions in

Notation 10.13(i)–(iii), let u ∈ L be a fixed point of α such that q1(u) = 1 and let Ξ̂1

denote the isotope of Ξ with respect to u as defined in [13, Proposition 8.1]. Then (α, β)

is also an isomorphism of Ξ̂1 satisfying the conditions in Notation 10.13(i)–(iii) and the

fixed point algebra Ξ̂(α,β) is an isotope of the fixed point algebra Ξ(α,β).

Proposition 10.15. Let α be the automorphism of L0 given by (v, s, t)α = (v, t, s)

for all (v, s, t) ∈ L0, let β be the automorphism of X0 given by (a, b)β = (b, a) for

all (a, b) ∈ X0 and let ξ be the automorphism of X0 given by (a, b)ξ = (−b,−a) for

all (a, b) ∈ X0. Then (α, β) and (α, ξ) are both linear automorphisms of Ξ0 satisfying

Notation 10.13(i)–(iii) and Ξ is isomorphic to both Ξ
(α,β)
0 and Ξ

(α,ξ)
0 .

Proof. By Notation 10.8, we have (a0∗v0)β = aβ0 ∗vα0 and h0(a
β
0 , b

β
0 ) = h0(a0, b0)

α

as well as (a0 ∗ v0)ξ = aξ0 ∗ vα0 and h0(a
ξ
0, b

ξ
0) = h0(a0, b0)

α for all a0, b0 ∈ X0 and all

v0 ∈ L0. The restriction of q0 to the set of fixed points of α is isomorphic to q, (a, a)

is a fixed point of β for all a ∈ X and (a,−a) is a fixed point of ξ for all a ∈ X.

Hence (α, β) and (α, ξ) are both linear automorphisms of Ξ0 satisfying the conditions

Notation 10.13(i)–(iii).

Let

Ξ
(α,β)
0 := (K, L̂0, q̂0, f̂0, ε0, X̂0, ∗̂, ĥ0, θ̂0)

and let

Ξ
(α,ξ)
0 := (K, L̂0, q̂0, f̂0, ε0, X̃0, ∗̃, h̃0, θ̃0).

Let β0 be the map a 7→ (a, a) from X to X̂0 and let α0 be the map

v + sε 7→ (v, s, s)
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from L to L̂0. Then (α0, β0) is an isomorphism from Ξ to Ξ
(α,β)
0 as defined in [13,

Definition 1.25] with ω̂ = 1. Let β1 be the map a 7→
(
a,−a) from X to X̃0 and let α1 be

the map

v + sε 7→ (−v, s, s)

from L to L̂0. Then (α1, β1) is an isomorphism from Ξ to X
(α,ξ)
0 as defined in [13,

Definition 1.25] with ω̂ = −1. □

We come now to the main result of this section.

Theorem 10.16. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a proper quadrangular algebra

and let π be as in D1. Suppose that |K| > 3, that char(K) ̸= 2, that q(π(a)) = 0 for all

a ∈ X, that h is non-degenerate and that dimK L ≥ 4. Then either

(i) dimK L = 4, dimK X = 2 and there is a unique multiplication on L giving (L,K)

the structure of a split quaternion algebra with norm q and identity ε such that

X is a right module over L with respect to the map ·, (L,K,X, h, π) is a standard

pseudo-quadratic space isomorphic to the standard pseudo-quadratic space described

in Example 4.17 and Ξ is isotopic to Qs(L,K,X, h, π) or

(ii) dimK L = 5 and Ξ is isomorphic to Q4(C,K) for C = K.

Proof. By Proposition 7.2, we can assume that Ξ is δ-standard for some δ ∈ L.

Let Ξ0, L0 and q0 be as in Notation 10.8 and let (α, β) be the automorphism of Ξ0 defined

in Proposition 10.15. By Proposition 10.10(i), h0 is non-degenerate. By Remark 7.9, π

is not identically zero. Since q(π(a)) = 0 for all a ∈ X, it follows that q is isotropic.

Suppose first that

dimK L ≥ 5. (10.10)

By Theorem 8.16 and Proposition 10.12, Ξ0 is isotopic to Q4(C1,K) for some composition

algebra (C1,K) as in Notation 3.1(ii)–(v). Since dimK L0 ≥ 6, (C1,K) is not as in

Notation 3.1(ii). We provide the various terms in Q4(C1,K) with the subscript 1, so that

Q4(C1,K) = (K,L1, q1, f1, ε1, X1, ·1, h1, θ1),

where q1 = qC1 . The automorphism α of L defined in Proposition 10.15 is a reflection

of q0. By Proposition 8.14(ii), therefore, (C1,K) cannot be as in Notation 3.1(iv) or (v).

We conclude that (C1,K) is as in Notation 3.1(iii). Thus dimK L = 5 and dimK X = 4.

Hence the Witt index of q is either 1 or 2. By Proposition 6.15, the Witt index of q must,

in fact, be 2 and C(q, ε) ∼= M(4,K) since otherwise C(q, ε) would have no module of

dimension 4 over K. Thus the restriction of q to ⟨ε⟩⊥ is hyperbolic, so by (10.4), also q0
is hyperbolic. Therefore (C1,K) is split, so we can identify C1 with K ⊕K and choose a

linear isomorphism ξ from (K,L0, q0) to (K,L1, q1) mapping (0, 1, 0) to (0, 0, 0, 0, (1, 0))

and (0, 0, 1) to (0, 0, 0, 0, (0, 1)) (and thus also ε0 to ε1). By Proposition 8.15, there

exists ψ such that (ξ, ψ) is an isomorphism from Ξ0 to Q4(C1,K). We identify Ξ0
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with Q4(C1,K) via (ξ, ψ). As a consequence, the automorphism α of L0 defined in

Proposition 10.15 is the map

(t1, t2, t3, t4, e) 7→ (t1, t2, t3, t4, e
σ), (10.11)

where now σ is the standard involution of (C1,K), and the automorphism β defined in

Proposition 10.15 is a linear automorphism of X0 of order 2 such that (a0v0)
β = aβ0v

α
0

for all a0 ∈ X0 and all v0 ∈ L0.

Now let γ be an arbitrary linear involutory automorphism of X0 such that (a0v0)
γ =

aγ0v
α
0 for all a0 ∈ X0 and all v0 ∈ L0. Since C(q, ε) acts irreducibly on X0, it follows

that for some w ∈ K∗, aβ0 = (wa0)
γ for all a0 ∈ X0. Since both β and γ are linear

involutions, we have w = 1 or −1. By Proposition 10.15, therefore, Ξ is isomorphic to

the fixed point algebra Ξ
(α,γ)
0 . It follows that Ξ is uniquely determined by Q4(C1,K) and

the automorphism (10.11) of (K,LC1 , qC1) and hence by K. Since Q4(K,K) as well as

every isotope of Ξ satisfy all the conditions in Hypothesis 10.1 and (10.10), we conclude

that, in fact,

Ξ and all its isotopes are isomorphic to Q4(K,K). (10.12)

Thus, in particular, (10.10) implies that (ii) holds.

Let Ξ2 = Q4(K,K). We provide the various terms in Ξ2 with the subscript 2, so

that

Ξ2 = (K,L2, q2, f2, ε2, X2, ·2, h2, θ2)

and choose a reflection α2 of (K,L2, q2) fixing ε2. By (10.12), the structure group of

Str(Ξ2) as defined in [13, Notation 12.4 and Theorem 12.9] acts transitively on

{⟨v⟩ | v ∈ L2, q2(v) ̸= 0}.

Hence

Str(Ξ2) acts transitively on the set of reflections of (K,L, q2). (10.13)

Now suppose that

dimK L = 4, (10.14)

so dimK L0 = 5. By Theorem 8.16, it follows that q0(π0(a0)) = 0 for all a0 ∈ X0. By

(10.12), therefore, Ξ0 is isomorphic to Ξ2. Thus, in particular, we have dimK X = 2, so

q is isomorphic to the norm of a split quaternion algebra (C,K) by Proposition 6.16(ii).

By (10.13), we can choose a linear isomorphism (φ,ψ) from Ξ0 to an isotope of Ξ̂2 of Ξ2

with basepoint ε̂2 such that α2 = φ−1αφ. Let β2 = φ−1βφ. Then α2 fixes both ε2 and

ε̂2, (α2, β2) is a linear automorphism of Ξ̂2 of order 2 and Ξ̂
(α2,β2)
2 is isomorphic to Ξ.

Now suppose that δ2 is an arbitrary linear automorphism of X2 such that (α2, δ2) is an

automorphism of Ξ̂2 of order 2. By Remark 10.14 and [13, Proposition 8.9(ii)], (α2, δ2) is

an automorphism of Ξ2 and Ξ
(α2,δ2)
2 is an isotope of Ξ̂

(α2,δ2)
2 . By Proposition 6.14(a), X2
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is irreducible as a C(q2, ε̂2)-module. It follows as in the previous case that either δ2 = β2
or δ2 is the composition of β2 with the automorphism a2 7→ −a2 of X2. By Proposi-

tion 10.15, therefore, Ξ is isomorphic to Ξ̂
(α2,δ2)
2 . Hence Ξ is isotopic to Ξ

(α2,δ2)
2 . Thus Ξ

is uniquely determined up to isotopy by Ξ2 = Q4(K,K) and the choice of α2. Since α2 is

an arbitrary reflection of (K,L2, q2) fixing ε2, we conclude that Ξ is uniquely determined

up to isotopy by K and (10.14). Since the quadrangular algebra Qs(C,K,X, h, π) with

(C,K,X, h, π) as in Example 4.17 also satisfies all the conditions in Hypothesis 10.1 and

(10.14), we conclude that that Ξ is isotopic to Qs(C,K,X, π, h). □

11. The special case.

In this section, we make the following assumptions:

Hypothesis 11.1. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a δ-standard quadrangular

algebra for some δ ∈ L as defined in Definition 7.1 and let π be as in D1. Suppose that

(i) 2 ≤ dimK L ≤ 4,

(ii) h is non-degenerate as defined in Observation 5.8 and

(iii) |K| > 5.

The main result of this section is Theorem 11.16.

Proposition 11.2. If char(K) = 2, then q(π(a)) ̸= 0 for some a ∈ X.

Proof. This holds by Proposition 8.4 if Q is not identically zero and Proposi-

tion 9.5 if Q is identically zero, where Q is as in (8.1). □

Lemma 11.3. π is not identically zero.

Proof. This holds by Remark 7.9 and Hypothesis 11.1(i)–(ii). □

Proposition 11.4. dimK L ̸= 3.

Proof. Suppose that dimK L ≥ 3. Assume first that there exists a ∈ X such that

q(π(a)) ̸= 0. Assume, too, that if char(K) = 2, alsoQ(a) ̸= 0. Thus the restriction of f to

⟨ε, π(a)⟩ is non-degenerate in all characteristics. Hence we can choose w ∈ ⟨ε, π(a)⟩⊥ such

that q(w) ̸= 0. By [13, Proposition 4.9(i)], f(θ(a,w), w) = 0 if and only if char(K) ̸= 2,

and by [13, Proposition 4.22], q(θ(a,w)) ̸= 0. Thus ⟨w, θ(a,w)⟩ is 2-dimensional. We

have

f(θ(a,w), ε) = −f(π(a), w) + f(π(a), ε)f(w, ε) = 0

and

f(θ(a,w), π(a)) = q(π(a))f(ε, w) = 0

by [13, Propositions 4.9.(iii) and 4.19], so
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⟨w, θ(a,w)⟩ ⊂ ⟨ε, π(a)⟩⊥

and hence dimK L > 3. In the case that q(π(a)) ̸= 0 and Q(a) = 0 for some a ∈ X and

char(K) = 2, we argue exactly as in the second half of the proof of [13, Proposition 5.2] to

conclude again that dimK L > 3. It thus suffices to assume from now on that dimK L = 3

and that q(π(a)) = 0 for all a ∈ X.

By Proposition 11.2, we have char(K) ̸= 2. Hence f is non-degenerate. By

Lemma 11.3, we can choose a0 ∈ X such that π(a0) ̸= 0. Let u = π(a0). Since

f(π(a0), ε) = 0, the restriction of q to ⟨ε⟩⊥ is isotropic. Since f is non-degenerate, we

can thus choose v ∈ ⟨ε⟩⊥ such that f(u, v) = 1 and q(v) = 0. Let

Xu = {a ∈ X | π(a) ∈ ⟨u⟩} and Xv = {a ∈ X | π(a) ∈ ⟨v⟩}.

Since q(π(a)) = 0 and π(a) ∈ ⟨ϵ⟩⊥ for all a ∈ X, it follows that X = Xu∪Xv. By C3, we

have h(a, b) ∈ ⟨ε, u⟩ for all a, b ∈ X if X = Xu. By Lemma 7.8, it follows that Xu ̸= X.

Similarly, Xv ̸= X.

Suppose that Xu is not closed under addition. Choose a, b ∈ Xu such that π(a+b) ̸∈
⟨u⟩. In particular, π(a+ b) ̸= 0. By C3 again, we have

h⊥(a, b) = π(a+ b)− π(a)− π(b)

and

π(a+ tb) = π(a) + t2π(b) + th⊥(a, b)

= π(a) + t2π(b)− t(π(a) + π(b)) + tπ(a+ b)

for all t ∈ K. By Hypothesis 11.1(iii), there exists t such that

t2π(b)− t(π(a) + π(b)) + π(a)

is a non-zero element of ⟨u⟩ and tπ(a+ b) is a non-zero element of ⟨v⟩. This contradicts
the fact that π(a+ tb) must lie in Xu or Xv. It follows that Xu is closed under addition.

By a similar argument, Xv is closed under addition. A group is, however, never the union

of two proper subgroups. With this contradiction, we conclude that dimK L ̸= 3. □

Proposition 11.5. Suppose that dimK L = 4 and let ◦ and ∗ be two K-bilinear

multiplications on L such that both (L, ◦) and (L, ∗) are quaternion algebras over K with

norm q and identity ε. Then ◦ and ∗ are either the same or opposites.

Proof. Choose v ∈ L such that the restriction of f to B := ⟨ε, v⟩ is non-

degenerate, let qB denote the restriction of q to B, let E be the étale quadratic algebra

K[γ], where γ ∈ E\K is a root of p(x) := x2 − f(ε, v)x + q(v), let σ denote the unique

non-trivial K-algebra automorphism of E, let N denote the norm of E/K, let κ denote

the map sε+ tv 7→ s+ tγ from B to E and let λ denote the map sε+ tv 7→ s+ tγσ from

B to E. Then κ and λ are the only two K-linear maps from B to E mapping ε to 1 and

qB to N .

Since (L, ◦) and (L, ∗) are quaternion algebras with norm q and identity ε, we have
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v ◦ (f(ε, v)ε− v) = q(v) and v ∗ (f(ε, v)ε− v) = q(v). It follows that B is a subalgebra of

both (L, ◦) and (L, ∗), that v is a root of the polynomial p(x) in both subalgebras and

that κ and λ are isomorphisms from (B, ◦) and from (B, ∗) to E.

Next we note that [12, (20.17)] holds also when q is isotropic. It is only necessary to

add the assumption that e ∈ B⊥ is chosen so that q(e) ̸= 0, to delete the first sentence of

the proof and to insert at the end the observation that eB ⊂ B⊥ implies that B∩eB = 0.

As a consequence of this result, there are exactly two multiplications on L endowing L

with the K-algebra structure of a quaternion algebra with identity ε and norm q, one

obtained by identifying B with E via κ and one obtained by identifying B with E via λ,

and the two multiplications are opposites. □

Proposition 11.6. Suppose that (C,K) is a quaternion algebra with norm nC .

Then there exist a, b ∈ C such that nC(ab− ba) ̸= 0.

Proof. We can assume that (C,K) is split and hence that C ∼= M(2,K). We

leave it to the reader to verify the claim in this case. □

Proposition 11.7. Let X♭ = {a ∈ X | q(π(a)) ̸= 0}. Then either X♭ is empty or

X is spanned by X♭.

Proof. This holds by Proposition 7.6 and Hypothesis 11.1(iii). □

Proposition 11.8. Suppose that X♭ = ∅. Then char(K) ̸= 2 and dimK L = 4.

Proof. By Proposition 11.2, we have char(K) ̸= 2. Suppose that dimK L = 2.

Since q is non-degenerate, ⟨ε⟩⊥ is spanned by an element v such that q(v) ̸= 0. Since

π(a) ∈ ⟨ε⟩⊥, it follows that π(a) = 0 for all a ∈ X. By Lemma 11.3, however, this is

impossible. Thus dimK L ̸= 2. The claim holds, therefore, by Hypothesis 11.1(i) and

Proposition 11.4. □

Next we replace [13, Proposition 5.3 and Lemma 5.4] by the following two results:

Proposition 11.9. Suppose that dimK L = 2. Then there exists a unique bilinear

multiplication × on L making (L,K) into an étale quadratic extension with norm q and

identity ε. Furthermore, the following hold :

(i) auv = a(u× v) for all a ∈ X and all u, v ∈ L and

(ii) θ(a, v) = π(a)× v for all a ∈ X♭ and all v ∈ L.

Proof. By Proposition 11.8, X♭ ̸= ∅. Choose a ∈ X♭. We have L = ⟨ε, π(a)⟩. As

in the proof of [13, Proposition 5.3], we endow L with the unique bilinear multiplication

× on L with identity ε such that

π(a)× π(a) = f(π(a), ε)π(a)− q(π(a))ε. (11.1)

Then π(a) × π(a)σ = q(π(a))ε. Thus × is the unique bilinear multiplication on L with

identity ε that makes L/K into an étale quadratic extension with norm q and by [13,

Proposition 3.10], (i) holds for u = v = π(a). Hence (i) holds for our choice of a and
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for all u, v ∈ L. By [13, Proposition 4.21] and (11.1), we have θ(a, π(a)) = π(a)× π(a).

Therefore (ii) holds for all v ∈ L. By Proposition 11.7, X is spanned by X♭, so (i) holds

for arbitrary a ∈ X. □

Lemma 11.10. Suppose that dimK L = 4 and let ◦ and ∗ be as in Proposition 11.5.

Let a ∈ X♭ and let

Xa = {b ∈ X | bθ(a, v) = bπ(a)v for all v ∈ L}.

Then for × = ◦ or ∗, the following hold :

(i) buv = b(u× v) for all b ∈ Xa and all u, v ∈ L,

(ii) bu ∈ Xa for all b ∈ Xa and all u ∈ L and

(iii) θ(a, v) = π(a)× v

for all b ∈ Xa and all u, v ∈ L.

Proof. The proof of [13, Lemma 5.4] consists of two parts, the first under the

hypothesis that the map Q defined in (8.1) is not identically zero if char(K) = 2 and

the second under the hypothesis that char(K) = 2 and Q is identically zero. In both

parts a multiplication on L is produced satisfying the hypotheses of Proposition 11.5. In

the proof of [13, Lemma 5.4] this multiplication is denoted by · or by juxtaposition; we

denote it now by ×. In both cases, it is shown that (i) holds and it can be verified using

[13, Proposition 4.21] that (iii) holds. It follows that

buπ(a)v = b(u× π(a)× v) = b(u× θ(a, v)) = buθ(a, v)

for all b ∈ Xa and all u, v ∈ L. Thus (ii) holds. □

We now replace [13, Proposition 5.8] by the following:

Proposition 11.11. Suppose that dimK L = 4 and X♭ ̸= ∅ and let ◦ and ∗ be as

in Proposition 11.5. Then for × = ◦ or ∗, the following hold :

(i) auv = a(u× v) for all a ∈ X and all u, v ∈ L and

(ii) θ(a, v) = π(a)× v for all a ∈ X♭ and all u, v ∈ L.

Proof. Let Xa and ×a = × be as in Lemma 11.10 for each a ∈ X♭. Now let

a, b ∈ X♭. We set cv = bθ(a, v) − bπ(a)v and let dv = ah(a, b)v − ah(a, bv) for all

v ∈ L. By Lemma 11.10(ii), cv ∈ Xb and dv ∈ Xa and by [13, Proposition 3.22] and

Hypothesis 11.1(iii), cv = dv and thus cv ∈ Xa ∩ Xb for all v. If cv = 0 for all v, then

b ∈ Xa. In this case, we set e = b. If cv0 ̸= 0 for some v0 ∈ L, we set e = cv0 . Thus e is a

non-zero element of Xa ∩Xb in both cases. By Proposition 11.6, we can choose w, z ∈ L

such that q(w ×a z − z ×a w) ̸= 0. By Proposition 11.5, ×a and ×b are either the same

or opposites. Since e ∈ Xa ∩Xb, we have

ewz = e(w ×a z) and ezw = e(z ×a w) = e(z ×b w) (11.2)
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by Lemma 11.10(i). Thus ewz−ezw = e(w×a z−z×aw) and q(w×a z−z×aw) ̸= 0, so

ewz ̸= ezw by A3. By (11.2), it follows that w×a z ̸= z×b w. Hence the multiplications

×a and ×b are not opposites. By Proposition 11.5, therefore, they are equal. We conclude

that ×a is independent of the choice of a ∈ X♭, so we can set × = ×a for some a ∈ X♭

and observe that (i) holds for all a ∈ X♭. By Proposition 11.7, it follows that (i) holds

for all a ∈ X and by Lemma 11.10(iii), (ii) holds. □

Proposition 11.12. Suppose that either dimK L = 2 or dimK L = 4 and X♭ ̸= ∅
and let × be as in Proposition 11.9 or 11.11. Then θ(a, v) = π(a)× v for all a ∈ X and

all v ∈ L.

Proof. Let v ∈ L. By Propositions 11.9(ii) and 11.11(ii), we have θ(a, v) =

π(a) × v for all a ∈ X♭ and by Propositions 11.7 and 11.8, X is spanned by X♭. Let

a, b ∈ X♭. Then q(π(ta + b)) is a polynomial of degree 4 in t (as was observed in the

proof of Proposition 7.6). By Hypothesis 11.1(iii), therefore, there exists t ∈ K∗ such

that ta+ b ∈ X♭. Thus θ(ta+ b, v) = π(ta+ b)× v. Therefore

t2θ(a, v) + θ(b, v) + th(a, bv) = t2π(a)× v + π(b)× v + th(a, b)× v

by C3 and [13, Proposition 7.2]. Hence h(a, bv) = h(a, b) × v. Since h is bilinear, it

follows that h(a, bv) = h(a, b)× v for all a, b ∈ X.

Now let X♯ = {a ∈ X | θ(a, v) = π(a) × v}. Then X♯ is closed under scalar

multiplication. If a, b ∈ X♯, then

θ(a+ b, v)− π(a+ b)× v = h(a, bv)− h(a, b)× v = 0

by C3, [13, Proposition 7.2] and the conclusion of the previous paragraph. Hence X♯ is

closed under addition. Thus X♯ = X since X♭ ⊂ X♯ and X♭ spans X. □

Proposition 11.13. Suppose that X♭ ̸= ∅ and dimK L = 2 or 4 and let L

be endowed with the multiplication × in Proposition 11.12. Then (L, σ,X, h, π) is a

standard pseudo-quadratic space defined in [13, Definition 1.16] and Ξ is isotopic to

Qs(L,K,X, h, π) as defined in Notation 4.16.

Proof. The claims hold by [13, Theorem 5.9]. The only change required in the

proof is to cite Proposition 11.12 rather than [13, Proposition 3.4] at the start of the

second paragraph. □

We pause now in our proof of Theorem 11.16 to make some related observations in

Propositions 11.14 and 11.15.

Proposition 11.14. Suppose that one of the following holds :

(a) dimK L = 2 and C is L endowed with the multiplication × in Proposition 11.9 or

(b) dimK L = 4, X♭ = ∅ and C is L endowed with the multiplication on L in Theo-

rem 10.16(i) or
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(c) dimK L = 4, X♭ ̸= ∅ and C is L endowed with the multiplication × in Proposi-

tion 11.11.

Then L = C = C(q, ε) in case (a) and C(q, ε) is the direct sum of two copies of C and

one of them acts trivially on X in cases (b) and (c).

Proof. If dimK L = 2, then dimK C(q, ε) = 2 and hence L = C = C(q, ε).

Suppose that dimL = 4. In this case, C(q, ε) ∼= C ⊕ C by Proposition 6.16(i). Choose

u, v ∈ L = C such that {ε, u, v, u× v} is a basis of L over K, where × is multiplication

in C. By [12, (12.51)], u⊗ v − u× v is a non-zero element of C(q, ε) that acts trivially

on X. □

Proposition 11.15. Suppose that dimK L = 2 or 4 and dimK X <∞ and let C be

as in Proposition 11.14. Then either X is a free C-module or dimK L = 4, char(K) ̸= 2,

C is split and X has a decomposition X0 ⊕ X1 into sub-C-modules X0 and X1, where

dimK X0 = 2 and X1 is free.

Proof. Suppose that if char(K) ̸= 2 and dimK L = 4, then dimK X ̸= 2. Then

by Proposition 11.8 if char(K) ̸= 2 and dimK L = 2 and by Theorem 10.16 if char(K) ̸= 2

and dimK L = 4, we can choose e ∈ X such that q(π(e)) ̸= 0. Since h is non-zero and

f is non-degenerate, it follows from Proposition 9.2 that we can choose e ∈ X such that

Q(e) ̸= 0 if char(K) = 2. By Proposition 8.2 and the choice of e, the map v 7→ ev from

L to X is injective in all characteristics.

Let F (a, b) = f(h(a, b), ε) for all a, b ∈ X. By [13, Proposition 3.6], F is a symplectic

form on X. By [13, Proposition 3.15], therefore,

F (a, a) = 0 (11.3)

for all a ∈ X in all characteristics. Since f is non-degenerate, it follows from B3 and

Hypothesis 11.1(ii) that F is also non-degenerate. By B3 and [13, Propositions 3.15,

3.16 and 4.5(i)], we have

F (eu, ev) = f(h(e, ev), u) = 2f(θ(e, v), u)

if char(K) ̸= 2 and

F (eu, ev) = f(h(e, ev), u) = Q(e)f(u, v)

if char(K) = 2 for all u, v ∈ L. If char(K) ̸= 2 and w ∈ L, then w = θ(e, v) for

v = −θ(e, w)/q(π(e)) by [13, Proposition 4.21]. Since f is non-degenerate, it follows

that the restriction of F to eL is non-degenerate in all characteristics.

We call a subset B of X an F -set if q(π(a)) ̸= 0 for all a ∈ B in the case that

char(K) ̸= 2, Q(a) ̸= 0 for all a ∈ B in the case that char(K) = 2 and F (aL, a′L) = 0

for all distinct a, a′ ∈ B in all characteristics. Let B be a maximal F -set, let X1 be the

submodule of X spanned by B and let

X0 = {a ∈ X | F (a,X1) = 0}.



1376(350)

1376 B. Mühlherr and R. M. Weiss

If a ∈ X0 and u ∈ L, then by B3 and [13, Proposition 3.7],

F (au,X1) = f(h(au,X1), ε) ⊂ f(h(a,X1), ε) = 0

and hence au ∈ X0. Thus X0 is a submodule of X. By the last sentence in the first

paragraph above and the conclusion of the previous paragraph, X1 is a free C-module

with basis B, the restriction of F to X1 is non-degenerate and q(π(a)) = 0 for all a ∈ X0

if char(K) ̸= 2 and Q(a) = 0 for all a ∈ X0 if char(K) = 2 (by the choice of B). Suppose

that X0 ̸= 0. Since F is non-degenerate, the restriction of h to X0 is non-degenerate.

Replacing X by X0, we obtain a new quadrangular algebra Ξ0 (see Observation 2.8). By

the observations in the first paragraph applied to Ξ0, we have char(K) ̸= 2, dimK L = 4

and dimK X0 = 2. By Proposition 6.16(ii), C is split. Since the restriction of F to X1

is non-degenerate, we can apply (11.3) to deduce the existence of a symplectic basis for

X1 that extends to a symplectic basis of X. Hence X = X0 ⊕X1. □

Here now is the main result of this section.

Theorem 11.16. Let Ξ = (K,L, q, f, ε,X, ·, h, θ) be a proper quadrangular algebra,

let π be as in D1 and let X♭ be as in Proposition 11.7. Suppose that 2 ≤ dimK L ≤ 4,

that h is non-degenerate as defined in Observation 5.8 and that |K| > 5. Then one of

the following holds :

(i) X♭ ̸= ∅, dimK L = 2 or 4 and Ξ is as in Proposition 11.13.

(ii) X♭ = ∅, char(K) ̸= 2, dimK L = 4 and Ξ is isotopic to the special quadrangular

algebra Q2(C,K, h, π), where (C,K, h, π) is as in Example 4.17.

Proof. By Proposition 7.2, we can assume that Ξ is δ-standard for some δ ∈ L.

All the claims hold, therefore, by Theorem 10.16 and Propositions 11.4, 11.8 and 11.13.

□

With Remark 5.14 and Theorems 8.16, 9.8, 10.16(ii) and 11.16, we have now com-

pleted the proof of Theorem 5.10.

12. Appendix.

In this appendix, we indicate the connection between quadrangular algebras, build-

ings, Tits indices and the exceptional groups.

In [7], we introduced the notion of a Tits polygon, a generalization of the notion of

a Moufang polygon. A Tits n-gon is a bipartite graph Γ endowed with a distinguished

class of 2n-circuits called apartments and an opposition relation on Γv for each vertex

v, where Γv denotes the set of vertices adjacent to v, satisfying certain axioms. A Tits

polygon is a Moufang polygon exactly when these opposition relations are all trivial,

i.e. when in each Γv, all distinct pairs are opposite.

We indicate now one way in which Tits polygons arise “in nature.”

Definition 12.1. A Tits index, as defined in [6, Definition 20.1], is a triple
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(Π,Θ, A),

where Π is a Coxeter diagram with vertex set S, Θ is a subgroup of Aut(Π) and A is a

Θ-invariant subset of S such that for each Θ-orbit Z disjoint from A, the subdiagram of

Π spanned by the subset A∪Z of S is spherical and A is invariant under the opposite map

of this subdiagram (i.e. the map called σ in [6, Notation 19.25]). The Coxeter diagram

Π is called the absolute type of a Tits index T := (Π,Θ, A) and |S| is called the absolute

rank of T . A Tits index T = (Π,Θ, A) is called spherical if its absolute type is spherical

and split if Θ is trivial and A is empty. All the Tits indices considered in this appendix

are spherical.

Definition 12.2. Let T = (Π,Θ, A) be a Tits index. For each subset J of the

vertex set S of Π, let wJ denote the longest element in the Coxeter system (WJ , J). LetM

be the set of all Θ-orbits that are disjoint from A. For each Z ∈M , let wZ = wA ·wZ∪A.

Finally, we set S̃ = {wZ | Z ∈ M} and W̃ = ⟨S̃⟩. By [6, Theorem 20.32], (W̃ , S̃) is

a Coxeter system. We refer to (W̃ , S̃) (or the corresponding Coxeter diagram) as the

relative type of T and to |S̃| as the relative rank of T .

Notation 12.3. Let T = (Π,Θ, A) be a Tits index of relative rank 2, let Z1 and

Z2 be the two Θ-orbits disjoint from A, let Ji = Zi ∪ A for i = 1 and 2 and let ∆ be

a Moufang building of type Π. Let Γ∆,T denote the bipartite graph with vertex set the

union of the set of all J1-residues of ∆ and the set of all J2-residues of ∆, where two of

these residues are adjacent in Γ∆,T whenever their intersection is an A-residue of ∆.

In [7], we show that the graph Γ∆,T for every pair as described in Notation 12.3 has,

canonically, the structure of a Tits n-gon, where • •n
............................................................. is the relative type of T .

Now let ∆ be one of the buildings in third column of Table 1. Here we are using

the notation described in [14, Notation 30.15] with the following modifications (to make

everything fit better into the table):

Notation 12.4. For each anisotropic quadrangular algebra

Ξ = (K,L, q, f, ε,X, ·, h, θ),

we set C2(Ξ) = CE
2 (K,L, q) if (K,L, q) is of type Eℓ for ℓ = 6, 7 or 8 and we set

C2(Ξ) = CF (K,L, q) if (K,L, q) is of type F4. We also set C3(C,K) = CI
2 (C,K, σ) for

each octonion division algebra (C,K), where σ is the standard involution of (C,K).

Next we let T be the corresponding Tits index in the second column of Table 1

which we have drawn using [6, Conventions 34.2]. Notice that in each case, the absolute

type of T is the same as the type of ∆.

In every row of Table 1 except the last, ∆ is the spherical building associated with

the group G of K-points of an exceptional group. As described in [10], there is a Tits

index corresponding to each of these groups. This Tits index is given in the first column

of Table 1; its relative type coincides with the absolute type of the Tits index in the

second column. Alternatively, ∆ is the fixed point building (in the sense defined in [6,

Definition 22.22]) of a descent group (as defined in [6, Definition 22.19]) of the spherical
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Table 1. The exceptional Tits quadrangles.
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...........................................................
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......
.......
.....
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...........................................................
..... .......

...........................................................

..... • • .......
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• • • • • •
•

.......
...........................................................
..... .......

...........................................................

..... .......
...........................................................
............

...........................................................

.........................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
....

• • • •...............................
.......
........
......................... .......

...........................................................

.................................................................. ..................................................................................................................
............................................................. F4(C,K) Q4(C,K), (C,K) quaternion div.

• • • •
•

• •....................................................................................................................................................................................................................................................................................................................
.......
.......
.......
.......
......
.......
.....

.......
...........................................................
..... ...............................

.......

........
......................... • • .......

...........................................................

............
...........................................................
.....

.............................................................

............................................................. C2(Ξ) Ξ anisotropic, q of type E7

• • • • •
•

.......
...........................................................
..... .......

...........................................................

............
...........................................................
..... .......

...........................................................

..... .......
...........................................................
.....

.......
...........................................................
.....

........................................................................................................................................................................................................................................................
.......
.......
.......
.......
.......
....

• • •
•

•
•...............................

.......

........
.........................

.............................................................................
.......
.......
.......
.......
.......
.......
.......
........

.............................................................
.............................................................

.............................................................
.........
.................

................................
.......................................................... E6(K) Q4(C,K), (C,K) étale quadr. split

• • •
•

•
•...............................

.......

........
......................... .......

...........................................................

.....

.............................................................................
.......
.......
.......
.......
.......
.......
.......
.....................................................................................

.......
.......
.......
.......
.......
.......
.......
........

.............................................................
.............................................................

.............................................................
.........
.................

................................
.......................................................... • • • •...............................

.......

........
......................... .......

...........................................................

.................................................................. ..................................................................................................................
............................................................. F4(C,K) Q4(C,K), (C,K) étale quadr. div.

• • • • • •
•

.......
...........................................................
............

...........................................................

..... .......
...........................................................
.........................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

....

• • •.......
...........................................................
..... .......

...........................................................

............................................................................................................................................................................................ C3(C,K) Q2(C,K), (C,K) octonion div.

• • •
•

•
•...............................

.......

........
.........................

.............................................................................
.......
.......
.......
.......
.......
.......
.......
........

.............................................................
.............................................................

.............................................................
.........
.................

................................
.......................................................... • • .......

...........................................................

............
...........................................................
.....

.............................................................

............................................................. C2(Ξ) Ξ anisotropic, q of type E6

• • • •.......
...........................................................
..... .......

...........................................................

............
...........................................................
..... .......

...........................................................

.................................................................. ..................................................................................................................
............................................................. • • • •...............................

.......

........
......................... .......

...........................................................

.................................................................. ..................................................................................................................
............................................................. F4(C,K) Q4(C,K), C = K, char(K) ̸= 2

• • • •.......
...........................................................
..... .......

...........................................................

............
...........................................................
..... .......

...........................................................

.................................................................. ..................................................................................................................
............................................................. • • • •...............................

.......

........
......................... .......

...........................................................

.................................................................. ..................................................................................................................
............................................................. F4(C,K) Q4(C,K), C2 ⊂ K, char(K) = 2

• • • •...............................
.......
........
......................... .......

...........................................................

.................................................................. ..................................................................................................................
............................................................. • • .......

...........................................................

............
...........................................................
.....

.............................................................

............................................................. C2(Ξ) Ξ anisotropic, q of type F4

building corresponding to an exceptional group that is either split or mixed of type F4

(as described in [11, 10.3.2]) and T is the Tits index attached to this descent group (as

described in [6, Theorem 22.25]). This second description includes also the last row of

Table 1.

The graphs Γ∆,T for (∆, T ) in Table 1 all have the structure of a Tits quadrangle

(i.e. a Tits polygon with n = 4), and Γ∆,T is a Moufang quadrangle if and only if

the absolute rank of T is 2. We will say that a Tits quadrangle is exceptional if it is

isomorphic to one of these quadrangles.

Note that the Tits indices in the first column of Table 1 arise in [6, Theorem 22.25]

through the choice of a Galois involution, whereas the Tits indices in the second column

are being applied in Notation 12.3 to give rise to the corresponding exceptional Tits

quadrangle, a much simpler process.

Every Tits polygon has an associated “root group sequence” defined exactly as in

[12, Definition 8.10]. For an exceptional Tits quadrangle, this root group sequence can

be obtained, up to isomorphism, by applying the recipe in [12, Example 16.6] to the

exceptional quadrangular algebra Ξ given in the fourth column of Table 1. (In [12], this

recipe is meant to be applied only to anisotropic quadrangular algebras, but there is no

reason for this restriction.) This quadrangular algebra is an invariant of the quadrangle

up to isotopy. Note that all the exceptional quadrangular algebras occur in the last col-
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umn of Table 1. This reflects the fact that there is a one-to-one correspondence between

isomorphism classes of exceptional Tits quadrangles and isotopy classes of exceptional

quadrangular algebras with respect to which the exceptional Moufang quadrangles cor-

respond to the anisotropic quadrangular algebras.

We conjecture that under suitable hypotheses, every Tits polygon is isomorphic to

some Γ∆,T as described in Notation 12.3. This conjecture is supported by a characteriza-

tion in [7] of the hexagons whose root group sequence is parametrized by a non-degenerate

cubic norm structure (as defined in [9]) and by a characterization in [8] of the Tits quad-

rangles whose root group sequence is parametrized by a quadrangular algebra satisfying

Hypothesis 8.1(iii), where Theorem 5.10 plays an essential role.

In [7] we also showed that there is a correspondence via the recipe in [12, Exam-

ple 16.8] between isotopy classes of non-degenerate cubic norm structures and isomor-

phism classes of exceptional Tits hexagons with respect to which the Moufang hexagons

correspond to the anisotropic cubic norm structures.

We mention, too, that it was shown in [7] that under a certain natural hypothesis

(which is satisfied by all the Tits quadrangles and hexagon we have been discussing),

Tits n-gons exist only for n = 3, 4, 6 and 8.
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