
73

c⃝2020 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 72, No. 1 (2020) pp. 73–79
doi: 10.2969/jmsj/81068106

The strong slope conjecture and torus knots

By Efstratia Kalfagianni

(Received Aug. 12, 2018)
(Revised Aug. 26, 2018)

Abstract. We show that the strong slope conjecture implies that the
degree of the colored Jones polynomial detects all torus knots. As an ap-
plication we obtain that an adequate knot that has the same colored Jones

polynomial degrees as a torus knot must be a (2, q)-torus knot.

1. Introduction.

The colored Jones polynomial of a knot K is a collection of Laurent polynomials

{JK(n) := JK(n, t)}∞n=1 in a variable t such that we have JK(1, t) = 1 and JK(2, t) is

the classical Jones polynomial. We will use the normalization

Junknot(n) =
tn/2 − t−n/2

t1/2 − t−1/2
.

For a knot K ⊂ S3, let d+[JK(n)] and d−[JK(n)] denote the maximal and minimal

degrees of JK(n) in t, respectively. The strong slope conjecture [8], [13] asserts that the

degrees d+[JK(n)] and d−[JK(n)] contain information about essential surfaces in knot

exteriors. The purpose of this note is to show the following.

Theorem 1. Suppose that K is a knot that satisfies the strong slope conjecture

and let Tp,q denote the (p, q)-torus knot. If d+[JK(n)] = d+[JTp,q (n)] and d−[JK(n)] =

d−[JTp,q (n)], for all n, then, up to orientation change of the knot, K is isotopic to Tp,q.

The conjecture has been proved for several classes of knots and in particular for

adequate knots [5]. Using this we have the following.

Corollary 2. Suppose that K is an adequate knot such that d+[JK(n)] =

d+[JTp,q (n)] and d−[JK(n)] = d−[JTp,q (n)], for all n. Then we have |p| = 2.

2. Background.

It is known that the degrees d+[JK(n)] and d−[JK(n)] are quadratic quasi-

polynomials [7]. This means that, given a knot K, there is nK ∈ N such that for

all n > nK we have

d+[JK(n)] = a(n)n2 + b(n)n+ c(n) and d−[JK(n)] = a∗(n)n2 + b∗(n)n+ c∗(n),
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where the coefficients are periodic functions from N to Q with integral period. By taking

the least common multiple of the periods of these coefficient functions we get a common

period. This common period of the coefficient functions is called the Jones period of K.

For a sequence {xn}, let {xn}′ denote the set of its cluster points. The elements of

the sets

jsK :=
{
4n−2d+[JK(n)]

}′
and js∗K :=

{
4n−2d−[JK(n)]

}′

are called Jones slopes of K.

To continue, let ℓd+[JK(n)] and ℓd−[JK(n)] denote the linear terms of d+[JK(n)]

and d−[JK(n)], respectively. Also let

jxK :=
{
2n−1ℓd+[JK(n)]

}′
and jx∗

K :=
{
2n−1ℓd−[JK(n)]

}′
.

Given a knot K ⊂ S3, let n(K) denote a tubular neighborhood of K and let MK :=

S3 \ n(K) denote the exterior of K. Let ⟨µ, λ⟩ be the canonical meridian-longitude basis

of H1(∂n(K)). A properly embedded surface (S, ∂S) ⊂ (MK , ∂n(K)), is called essential

if it’s π1-injective and it is not a boundary parallel annulus. An element α/β ∈ Q∪{1/0},
where α and β are relatively prime integers, is called a boundary slope of K if there is

an essential surface (S, ∂S) ⊂ (MK , ∂n(K)), such that each component of ∂S represents

αµ + βλ ∈ H1(∂n(K)). The longitude λ of every knot bounds an essential orientable

surface in the exterior of K. Thus 0 = 0/1 is a boundary slope of every knot in S3.

Hatcher showed that every knot K ⊂ S3 has finitely many boundary slopes [11].

For a surface (S, ∂S) ⊂ (MK , ∂n(K)) we will use the notation |∂S| to denote the

number of boundary components of S.

Garoufalidis conjectured [8, Conjecture 1.2], that the Jones slopes of any knot K

are boundary slopes. The following statement, which is a refinement of the original

conjecture, was stated by the author and Tran in [13, Conjecture 1.6].

Conjecture 3 (Strong slope conjecture).

• Given a Jones slope α/β = 4a(n) ∈ jsK , with β > 0 and gcd(α, β) = 1, there is an

essential surface S in MK such that each component of ∂S has slope α/β and we

have χ(S)/|∂S|β = 2b(n) ∈ jxK .

• Given a Jones slope α∗/β∗ = 4a∗(n) ∈ js∗K , with β∗ > 0 and gcd(α∗, β∗) = 1,

there is an essential surface S∗ in MK such that each component of ∂S∗ has slope

α∗/β∗ and we have −χ(S∗)/|∂S∗|β∗ = 2b∗(n) ∈ jx∗
K .

Conjecture 3 has been proved for several classes of knots including Montesinos knots,

adequate knots, graph knots and cables. The reader is referred to [1], [2], [9], [13], [14],

[16] and references therein.

3. Proofs.

We now prove Theorem 1 and Corollary 2.
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Proof of Theorem 1. First suppose that Tp,q is the trivial knot; that is p = ±1,

or q = ±1. Then by the normalization of JK(n) fixed earlier, we have 4d+[JK(n)] =

2(n− 1). Since K satisfies Conjecture 3 we have a surface S that is essential in exterior

MK , ∂S has slope zero and we have χ(S)/|∂S| = 1. This implies that S is a collection

of discs and hence K is the unknot.

Assume now that Tp,q is not the unknot. By the classification of torus knots (see,

for example, [4, Theorem 3.29]) we can assume that |p| < |q| and q > 0.

For a knot K let K∗ denote the mirror image of K. It is known that d±[JK∗(n)] =

−d∓[JK(n)], and that the colored Jones polynomial is insensitive to orientation change of

knots. Let Kp,q denote the (p, q)-cable of K, where p and q are relatively prime integers.

We have (Kp,q)
∗ = K∗

−p,q and hence we have

d∓[JK∗
−p,q

(n)] = −d±[JKp,q (n)].

In particular, Tp,q is the (p, q)-cable of the unknot and T−p,q is the mirror image of Tp,q

while T−p,−q is Tp,q with the orientation reversed. Without loss of generality we will

assume that p < 0 < q.

The degrees d±[JTp,q (n)] were calculated in [8]: We have

4d−[JK(n)] = 4d−[JTp,q (n)] = pqn2 + d(n),

where d(n) = −pq −
(
1 + (−1)n

)
(p− 2)(q − 2)/2, and we have

4d+[JK(n)] = 4d+[JTp,q (n)] = 2(pq − p+ q)n− 2(pq − p+ q).

Note that the values of the quadratic and linear terms of the above formulae can

also be obtained by the argument in the proof of [13, Theorem 3.9] using the fact that

Tp,q is a cable of the unknot.

Since the quadratic and linear coefficients of d±[JK(n)] are independent of n, each

of the sets jsK , jxK , js∗K , jx∗
K consists of exactly one element (i.e. the corresponding

coefficient).

Since K is assumed to satisfy the strong slope conjecture, there are essential surfaces

S1 and S2 in the exterior of K such that

(1) the boundary slope of S1 is pq and χ(S1) = 0; and

(2) the boundary slope of S2 is zero and χ(S2)/|∂S2| = pq − p+ q.

Since χ(S1) = 0, by passing to the orientable double cover of S1 if necessary, we

conclude that the exterior of K contains an essential annulus of boundary slope pq. It

follows that K is a cable Jp1,q1 of a knot J , where p1q1 = pq < 0. This follows, for

example, by [3, Theorem 4.18]. Note that the cabling annulus of K = Jp1,q1 satisfies

Conjecture 3 for d−[JK(n)].

Next we need to gain a better understanding of the surface S2: First note that since

p and q are relatively prime integers we have χ(S2) ̸= 0; thus S2 is not an annulus or a

Möbius band.

Recall that the exterior of K is the union of a cable space Cp1,q1 and the exterior

of J , say MJ = S3 \ n(J). Moreover Cp1,q1 is a manifold with two torus boundary
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components, each of which is incompressible in Cp1,q1 , that is a Seifert fibered manifold

over an annulus with one singular fiber of order q1. See [13]. By classification of Seifert

fibered manifold results (see, for example, [10, Proposition 2.1 and Theorem 2.3]), we

can assume that |p1| < |q1| and q1 > 0. Also since replacing (p1, q1) by (−p1,−q1) only

results in knot orientation change that doesn’t affect the colored Jones polynomial, we

will assume that p1 < 0 < q1.

Claim. J is the trivial knot.

Proof of Claim. The exterior MK = S3 \ n(K) is obtained by glueing together

MJ and Cp1,q1 along a torus T . Note that if T compresses in MK then J is the trivial

knot and we are done.

Suppose that T is incompressible in MK . Recall that we have an essential surface

S2 in MK such that the boundary slope of S2 is zero and χ(S2)/|∂S2| = pq − p+ q. We

can isotope S2 so that S2 ∩ T is a collection of essential, parallel curves in T . As in the

proof of [13, Corollary 2.8] we have the following:

• The intersection MJ∩S2 is an essential surface SJ in MJ such that each component

of ∂(MJ ∩ S2) has zero slope.

• We have |∂S2| = |∂SJ |.

• We have

χ(S2)

|∂S2|
= q1

χ(SJ )

|∂SJ |
+ (q1 − 1)p1.

Thus we have

q1
χ(SJ)

|∂SJ |
+ (q1 − 1)p1 = pq − p+ q.

Since p1q1 = pq and p < 0 < q, we get

q1
χ(SJ )

|∂SJ |
− p1 = q − p > 0,

which implies χ(SJ)/|∂SJ | > p1/q1 > −1. The last inequality gives χ(SJ) = 2−2g(SJ)−
|∂SJ | > −|∂SJ |, where g(SJ ) is the genus of SJ . Thus we must have g(SJ) = 0 and

SJ is a collection of discs, contradicting our assumption that T is incompressible. This

finishes the proof of Claim.

Since J is the unknot, K is the torus knot Tp1,q1 or T−p1,−q1 . However, since

p1q1 = pq and pq − p + q = p1q1 − p1 + q1, we get p21 + q21 = p2 + q2 and hence

(p1 + q1)
2 = (p+ q)2. Now it follows easily that K is Tp,q or T−p,−q. □

Theorem 1, and its proof, immediately give the following.

Corollary 4. Suppose that K satisfies Conjecture 3. If d+[JK(n)] =

d+[Junknot(n)] or d−[JK(n)] = d−[Junknot(n)], for all n, then K is isotopic to the unknot.
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Figure 1. From left to right: A crossing, the A-resolution and the

B-resolution.

Next we discuss adequate knots: Let D be a link diagram, and x a crossing of

D. Associated to D and x are two link diagrams, called the A-resolution and the B-

resolution of the crossing. See Figure 1. Applying the A-resolution (resp. B-resolution)

to each crossing leads to a collection of disjointly embedded circles sA(D) (resp. sB(D)).

The diagram D is called A-adequate (resp. B-adequate) if for each crossing of D the two

arcs of sA(D) (resp. sB(D)) resulting from the resolution of the crossing lie on different

circles. A knot diagram D is adequate if it is both A- and B-adequate. Finally, a knot

that admits an adequate diagram is also called adequate.

Starting with sA(D) (resp. sB(D)) we construct a surface SA(D) (resp. SB(D))

as follows. Each circle of sA(D) (resp. sB(D)) bounds a disk on the projection sphere

S2 ⊂ S3. This collection of disks can be disjointly embedded in the ball below the

projection sphere. At each crossing of D, we connect the pair of neighboring disks by a

half-twisted band to construct a surface whose boundary is K. For details see [5], [6]. In

[17], it is shown that if D is an adequate diagram of a knot K, then SA(D) and SB(D)

are essential surfaces in the exterior of K. For a different proof of this fact see [6].

Proof of Corollary 2. Suppose that K is an adequate knot such that

d+[JK(n)] = d+[JTp,q (n)] and d−[JK(n)] = d−[JTp,q (n)], for all n. By Theorem 1 K

is a torus knot. Thus we have a torus knot that is also adequate. Since K is adequate,

there is an adequate diagram D.

It is known that the number of negative crossings c−(D) of an A-adequate knot

diagram is a knot invariant. Similarly, the number of positive crossings c+(D) of a B-

adequate knot diagram is a knot invariant. In fact, if K is adequate, then the crossing

number of K is realized by the adequate diagram; that is we have c(K) = c(D) =

c−(D) + c+(D) [15]. Let vA(D) and vB(D) be the numbers of circles in sA(D) and

sB(D), respectively. The boundary slope of SA is −2c−(D) and χ(SA) = vA(D)− c(D).

The boundary slope of SB is 2c+(D) and χ(SB) = vB(D) − c(D). By [5], the surfaces

SA = SA(D) and SB = SB(D) satisfy the strong slope conjecture for K.

That is we have

4 d−[JK(n)] = −2c−(D)n2 + 2(c(D)− vA(D))n+ 2vA(D)− 2c+(D),

and

4 d+[JK(n)] = 2c+(D)n2 + 2(vB(D)− c(D))n+ 2c−(D)− 2vB(D).
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On the other hand, K is a torus knot. Without loss of generality we may assume

K = Tp,q, for p < 0 < q. Thus −2c−(D) = pq and vA(D) − c(D) = 0. This means

that the surface SA(D) is a Möbius strip. A spine of this surface is the graph GA that

is obtained as follows: The vertices are the circles of vA(D) and the edges are in one

to one correspondence with the crossings of D in the way indicated by dashed lines in

Figure 1. The graph GA is connected and it must retract to a circle. Thus it consists

of circle C with a number of trees attached to it. Consider a tree portion T of GA such

that if T is removed the Euler characteristic of the remaining graph is unchanged. If T

contains edges, then the diagram D must contain nugatory crossings: For T would define

a connect summand of SA that is a disc; then each crossing corresponding to an edge of

T is a separating arc on the disc and thus the corresponding crossing of D is nugatory

(compare, proof of [6, Corollary 3.21]). However, since D is adequate, it cannot contain

any nugatory crossings. Thus T cannot contain any edges and GA consists of the circle

C. Now each vertex of the graph GA is connected to exactly two edges. It follows that

D is the standard diagram of a (−2, q)-torus knot. □

Remark 5. The proof of Corollary 2 also shows that the only adequate torus

knots are those represented as closed 2-braids. It may worth noting that this fact can

be deduced only using the quadratic terms of d±[JTp,q (n)]: The Jones slopes of Tp,q

are s∗ = pq and s = 0. If Tp,q is adequate, then |s− s∗| should be equal to twice

the crossing number of Tp,q (compare [12, Theorem 1.1]). Thus we must have |pq| =
min{|p(q − 1)|, |(p− 1)q|} which can happen only if |p| = 2 or |q| = 2.
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