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By Yoichi Miyazaki

(Received Mar. 4, 2018)

Abstract. We consider a 2mth-order strongly elliptic operator A sub-
ject to Dirichlet boundary conditions in a domain Ω of Rn, and show the
Lp regularity theorem, assuming that the domain has less smooth boundary.

We derive the regularity theorem from the following isomorphism theorems
in Sobolev spaces. Let k be a nonnegative integer. When A is a divergence
form elliptic operator, A − λ has a bounded inverse from the Sobolev space

Wk−m
p (Ω) into Wk+m

p (Ω) for λ belonging to a suitable sectorial region of

the complex plane, if Ω is a uniformly Ck,1 domain. When A is a non-
divergence form elliptic operator, A − λ has a bounded inverse from Wk

p (Ω)

into Wk+2m
p (Ω), if Ω is a uniformly Ck+m,1 domain. Compared with the

known results, we weaken the smoothness assumption on the boundary of Ω

by m− 1.

1. Introduction.

Let us consider a 2mth-order strongly elliptic operator in divergence form

A =
∑

|α|≤m
|β|≤m

Dα(aαβD
β · ) (1.1)

subject to Dirichlet boundary conditions in a domain Ω of Rn with n ≥ 2. The well

known regularity theorem for the elliptic equation

Au = f (1.2)

can be stated in terms of the Lp-based Sobolev spaces with 1 < p < ∞ as follows: If we

assume, for some integer k with k ≥ 1, that the coefficients aαβ satisfy

aαβ ∈ C|α|+k−m(Ω̄), for |α|+ k −m > 0,

that Ω is a bounded domain with boundary of class Ck+m, and that f ∈ W k−m
p (Ω), then

a solution u to (1.2) in Wm
p,D(Ω) satisfies u ∈ W k+m

p (Ω) and

∥u∥Wk+m
p (Ω) ≤ C(∥f∥Wk−m

p (Ω) + ∥u∥Lp(Ω)).
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Here Wm
p,D(Ω) denotes the closure of C∞

0 (Ω) in Wm
p (Ω). Most literature deals with

the case p = 2. We refer to [1, Theorem 14.1], [6, Theorem 17.2] for k ≥ m, [9,

Theorem 2.5.1.1] for m = 1 and general k, and [23, Theorem 20.4] for general m and k.

The aim of this paper is to improve the regularity theorem by replacing the smooth-

ness assumption on the boundary ∂Ω of Ω by the condition that ∂Ω is of class Ck+1.

Since k +m > k + 1 implies m > 1, our result is new for higher-order elliptic equations.

We derive the regularity theorem from the isomorphism theorem, which states that the

operator A−λ has a bounded inverse from W k−m
p (Ω) onto W k+m

p (Ω)∩Wm
p,D(Ω) for λ be-

longing to a suitable sectorial region in the complex plane. Since the regularity theorem

is an immediate consequence of the isomorphism theorem, our main task in this paper is

to construct the inverse of A− λ. In [16] (see also [13], [14], [15]) we have already done

so for k = 0 on the basis of the Hardy-type inequality for the Sobolev spaces satisfying

Dirichlet boundary conditions.

We also consider a 2mth-order strongly elliptic operator in non-divergence form

A =
∑

|α|≤2m

aαD
α (1.3)

subject to Dirichlet boundary conditions in a domain Ω of Rn. For this operator we know

the isomorphism theorem, which states that the operator A − λ has a bounded inverse

from W k
p (Ω) onto W k+2m

p (Ω) ∩Wm
p,D(Ω) with 1 < p < ∞ for λ belonging to a suitable

region, if the coefficients aα satisfy

aα ∈ Ck(Ω̄), for |α| ≤ 2m,

and if Ω is a Ck+2m domain. For m = 1 we refer to [11, Chapter 9], and for general m

and k = 0 we refer to [3, Theorem 8.2], [22, Chapter 5]. We can also find the regularity

theorem for the operator (1.3); we refer to [8, Theorem 8.13] for m = 1 and p = 2,

[18, Theorem 3.14] for general m and p = 2, and [2, Theorem 15.2] for general m, k,

p. In this paper, we obtain these theorems for non-divergence form operators under the

assumption that the boundary of a domain is of class Ck+m+1.

2. Main results.

In order to state the main results we define some symbols. Let i =
√
−1. Let

x = (x1, . . . , xn) be a generic point in Rn and set

∂α = (∂/∂x1)
α1 · · · (∂/∂xn)

αn , Dα = i−|α|∂α

for a multi-index α = (α1, . . . , αn) of length |α| = α1 + · · · + αn. Let N be the set of

positive integers, and let N0 = N ∪ {0}.
For s ∈ N0 and 1 ≤ p ≤ ∞ the Sobolev space W s

p (Ω) is the set of functions f whose

weak derivatives of order up to s belong to Lp(Ω). We denote by Wm
p,D(Ω) the closure of

C∞
0 (Ω) in Wm

p (Ω), and set

W s
p,D(Ω) = W s

p (Ω) ∩Wm
p,D(Ω), for s ∈ N with s ≥ m.
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For our purpose it is convenient to introduce the λ-dependent norm

∥f∥W s
p,λ(Ω) :=

∑
|α|≤s

|λ|(s−|α|)/2m∥Dαf∥Lp(Ω)

for λ ∈ C \ {0}. This norm is equivalent to the usual norm, which corresponds to the

case λ = 1.

For s ∈ N the Sobolev space W−s
p (Ω) of negative order is the set of functions f

which can be written as

f =
∑
|α|≤s

Dαfα with fα ∈ Lp(Ω). (2.1)

We also define the λ-dependent norm in W−s
p (Ω) by

∥f∥W−s
p,λ(Ω) = inf

∑
|α|≤s

|λ|(|α|−s)/2m∥fα∥Lp(Ω),

where the infimum is taken over all the expressions of f in (2.1).

Let s ∈ N0. By definition we have the inequalities

∥Dαf∥Lp(Ω) ≤ |λ|(|α|−s)/2m∥f∥W s
p,λ(Ω), for f ∈ W s

p (Ω) and |α| ≤ s,

∥Dαf∥W−s
p,λ(Ω) ≤ |λ|(|α|−s)/2m∥f∥Lp(Ω), for f ∈ Lp(Ω) and |α| ≤ s, (2.2)

which will be frequently used.

We first consider an elliptic operator A in divergence form given by (1.1). Let a0(x, ξ)

be the principal symbol of A:

a0(x, ξ) =
∑

|α|=|β|=m

aαβ(x)ξ
α+β .

We fix a nonnegative integer k ∈ N0 and assume the following conditions:

(HD1) There exists δ > 0 such that

Re a0(x, ξ) ≥ δ|ξ|2m, for x ∈ Ω, ξ ∈ Rn.

(HD2)k All the coefficients aαβ belong to L∞(Ω). In addition, if k ≥ 1, then

aαβ ∈ W |α|+k−m
∞ (Ω), for |α|+ k −m > 0.

If k = 0, then the leading coefficients are uniformly continuous.

(HD3)k The domain Ω is a uniformly Ck,1 domain if k ≥ 1, and a uniformly C1 domain

if k = 0. Or Ω = Rn.

We will define a special Ck,1 domain in Definition 5.1 below. A uniformly Ck,1

domain is defined in terms of special Ck,1 domains, as a domain with minimally smooth
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boundary is defined in terms of special Lipschitz domains (see [21, Chapter VI]). We

note that a bounded domain with Ck,1 boundary is a uniformly Ck,1 domain.

By the extension theorem [21, Chapter VI, Theorem 5] and the characterization of

L∞-based Sobolev space (see [22, Theorem 3.12]) we know that the Sobolev spaceW s
∞(Ω)

with s ∈ N coincides with the set of Cs−1 functions whose derivatives are bounded and

Lipschitz continuous. So (HD2)k means that aαβ ∈ C|α|+k−m−1(Ω) and the derivatives

of aαβ of order up to |α|+ k −m− 1 are Lipschitz continuous. Thus (HD2)k is slightly

weaker than the condition aαβ ∈ C |α|+k−m(Ω̄) if k ≥ 1.

In order to state clearly the dependency of the constants which will appear in the

main results, we use the following symbols:

δA = max{δ > 0 : (HD1) is satisfied.},
θA = sup

x∈Ω
sup

ξ∈Rn\{0}
|arg a0(x, ξ)|,

MA =
∑

|α|≤m, |β|≤m

∥aαβ∥L∞(Ω),

Mk,A =
∑

|α|>m−k

∑
|β|≤m

∥aαβ∥W |α|+k−m
∞ (Ω)

+
∑

|α|≤m−k

∑
|β|≤m

∥aαβ∥L∞(Ω). (2.3)

Note that the strong ellipticity implies θA ∈ [0, π/2). We also use the function ωA on

(0,∞) which describes the modulus of continuity of the leading coefficients:

ωA(t) = max
|α|=|β|=m

sup
x,y∈Ω
|x−y|≤t

|aαβ(x)− aαβ(y)|, for t > 0. (2.4)

For R > 0 and θ ∈ (0, π] we set

Σ(R, θ) = {λ ∈ C : |λ| ≥ R, θ ≤ arg λ ≤ 2π − θ}.

Theorem 2.1. Let 1 < p < ∞, k ∈ N0, and assume (HD1), (HD2)k, (HD3)k.

Then for a given θ ∈ (θA, π] there exist constants

R = R(m,n, p, θ, δA, ωA,MA,Ω) ≥ 1, C = C(k,m, n, p, θ, δA, ωA,Mk,A,Ω) > 0

such that, for λ ∈ Σ(R, θ), the operator

A− λ : W k+m
p,D (Ω) → W k−m

p (Ω)

has a bounded inverse and satisfies

∥(A− λ)−1∥Wk−m
p,λ (Ω)→Wk+m

p,λ (Ω) ≤ C. (2.5)

Remark 2.2. When k = 0, we can rewrite (2.5) as

∥Dα(A− λ)−1Dβf∥Lp(Ω) ≤ C|λ|−1+(|α|+|β|)/2m∥f∥Lp(Ω), for f ∈ Lp(Ω)

with |α| ≤ m, |β| ≤ m. Since these estimates are equivalent to those obtained in [16,
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Theorem 2.1], we know that Theorem 2.1 has been already proved for k = 0 in [16].

We will prove Theorem 2.1 in Sections 3 through 5. Theorem 2.1 immediately yields

the following corollary.

Corollary 2.3. Let 1 < p < ∞, k ∈ N0, and assume (HD1), (HD2)k, (H3)k. If

u ∈ Wm
p,D(Ω) and Au ∈ W k−m

p (Ω), then u ∈ W k+m
p,D (Ω) and

∥u∥Wk+m
p (Ω) ≤ C(∥Au∥Wk−m

p (Ω) + ∥u∥Lp(Ω)) (2.6)

with C = C(k,m, n, p, δA, ωA,Mk,A,Ω).

Proof. We write Ak for A if A is considered as an operator from W k+m
p,D (Ω) to

W k−m
p (Ω). Let R be the constant in Theorem 2.1 for θ = π. We first observe that if v ∈

Wm
p,D(Ω) and g ∈ W k−m

p (Ω) satisfies (A+R)v = g, then v = (Ak +R)−1g ∈ W k+m
p,D (Ω).

Indeed, if we set w = (Ak+R)−1g, then w ∈ W k+m
p,D (Ω) and (A0+R)v = g = (A0+R)w;

hence the existence of (A0 +R)−1 gives v = w.

The corollary is proved by induction on k. The assertion for k = 0 is obvious.

Suppose that the assertion for k − 1 is true; we will show the assertion for k. Set

Au = f . By the assertion for k − 1 we know that u ∈ W
(k−1)+m
p,D (Ω) ⊂ W k−m

p (Ω).

Writing (A + R)u = f + Ru and applying the above observation, we find that u =

(Ak +R)−1(f +Ru) ∈ W k+m
p,D (Ω) and

∥u∥Wk+m
p

≤ C∥f +Ru∥Wk−m
p

≤ C∥f∥Wk−m
p

+ C∥u∥
W

(k−1)+m
p

.

The interpolation inequality gives (2.6). □

We next consider an elliptic operator A in non-divergence form given by (1.3). Let

a0(x, ξ) be the principal symbol of A:

a0(x, ξ) =
∑

|α|=2m

aα(x)ξ
α.

For a fixed k ∈ N0 we assume the following conditions:

(HN1) There exists δ > 0 such that

Re a0(x, ξ) ≥ δ|ξ|2m, for x ∈ Ω, ξ ∈ Rn.

(HN2)k All the coefficients aα satisfy

aα ∈ W k
∞(Ω), for |α| ≤ 2m.

In addition, the leading coefficients are uniformly continuous if k = 0.

(HN3)k The domain Ω is a uniformly Ck+m,1 domain or Rn.

We define the following symbols, which are similar to those in (2.3) and (2.4):
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δA = max{δ > 0 : (HN1) is satisfied.},
θA = sup

x∈Ω
sup

ξ∈Rn\{0}
|arg a0(x, ξ)|,

MA =
∑

|α|≤2m

∥aα∥L∞(Ω),

Mk,A =
∑

|α|≤2m

∥aα∥Wk
∞(Ω),

ωA(t) = max
|α|=2m

sup
x,y∈Ω
|x−y|≤t

|aα(x)− aα(y)|, for t > 0.

Theorem 2.4. Let 1 < p < ∞, k ∈ N0, and assume (HN1), (HN2)k, (HN3)k.

Then for a given θ ∈ (θA, π] there exist constants

R = R(m,n, p, θ, δA, ωA,MA,Ω) ≥ 1, C = C(k,m, n, p, θ, δA, ωA,Mk,A,Ω) > 0

such that, for λ ∈ Σ(R, θ), the operator

A− λ : W k+2m
p,D (Ω) → W k

p (Ω)

has a bounded inverse and satisfies

∥(A− λ)−1∥Wk
p,λ(Ω)→Wk+2m

p,λ (Ω) ≤ C. (2.7)

We will prove Theorem 2.4 in Sections 6 through 8.

Corollary 2.5. Let 1 < p < ∞, k ∈ N0, and assume (HN1), (HN2)k, (HN3)k.

If u ∈ W 2m
p,D(Ω) and Au ∈ W k

p (Ω), then u ∈ W k+2m
p,D (Ω) and

∥u∥Wk+2m
p (Ω) ≤ C(∥Au∥Wk

p (Ω) + ∥u∥Lp(Ω))

with C = C(k,m, n, p, δA, ωA,Mk,A,Ω).

Proof. The corollary can be proved in the same way as Corollary 2.3. □

We conclude this section with some remarks. In the proof of Theorem 2.1 we always

assume that Ω ̸= Rn, since the case Ω = Rn can be handled by a slight modification of

the proof for the case Ω = Rn
+. We will prove Theorem 2.1 for the half space by the

method of difference quotient and then for a special Ck,1 domain by a method similar to

that used in [14], [15], [16]. Once we establish the theorem for a special Ck,1 domain, we

can extend it to a uniformly Ck,1 domain by a partition of unity. The detailed argument

for carrying over the result to a uniformly Ck,1 domain is found in [15], where we derived

the result for a uniformly Cm domain under the assumptions (HD1) and (HD2)k with

k = 0. We can also make the same remarks for the proof of Theorem 2.4.

For the case k = 0 we do not try to fully investigate whether the smoothness con-

ditions on the coefficients can be relaxed or not, since this paper mainly targets the

case k ≥ 1. In some cases Theorems 2.1 and 2.4 also hold for k = 0, if the smoothness

assumption on the coefficients is weakened to VMO class. Heck and Hieber [10] showed
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this for non-divergence form operators in Rn. Dong and Kim also showed this under the

assumption that λ < 0 in [4], and extended the result to the case of variably partially

VMO coefficients for a Reifenberg flat domain in [5]. We also refer to Maz’ya et al. [12]

who considered an elliptic equation with VMO coefficients in a domain whose boundary

has exterior normal vectors belonging to VMO class.

Throughout this paper we use the abbreviation

λm = |λ|1/2m. (2.8)

We often write a(α) for the derivativeDαa, when a is the coefficient of an elliptic operator:

a(α) = Dαa = i−|α|∂αa. (2.9)

3. Some reductions for the proof of Theorem 2.1.

In this section we will make some reductions for the proof of Theorem 2.1.

Lemma 3.1. Let k ∈ N. Suppose that A − λ is injective as an operator from

Wm
p,D(Ω) to W−m

p (Ω). Then A − λ is also injective as an operator from W k+m
p,D (Ω) to

W k−m
p (Ω). Consequently, if A− λ has a right inverse as an operator from W k+m

p,D (Ω) to

W k−m
p (Ω), then the right inverse is exactly the inverse of A− λ.

Proof. The lemma is obvious by W k+m
p,D (Ω) ⊂ Wm

p,D(Ω). □

Lemma 3.2. It is sufficient to prove Theorem 2.1 with the constant R which may

depend on k for each k ∈ N0.

Proof. Given θ ∈ (θA, π], suppose that we have proved Theorem 2.1 with the

constant R = R(k,m, n, p, θ, δA, ωA,MA,Ω), which may depend on k. We simply write

R(k) for this constant. We will show by induction that for all k ∈ N we can take R(0)

as the constant R in Theorem 2.1.

Suppose that the assertion for k − 1 is true; we will prove the assertion for k. If

R(k) ≤ R(0), then there is nothing to prove. So we may assume R(k) > R(0). We must

show that A−λ : W k+m
p,D (Ω) → W k−m

p (Ω) has a bounded inverse for λ ∈ Σ(R(0), θ) with

|λ| < R(k). We know that this operator is injective, since the corresponding operator for

k = 0 is injective. So it remains to show the surjectivity and to evaluate the operator

norm of its inverse.

Let f ∈ W k−m
p (Ω). By the assertion for k − 1 we can find u ∈ W

(k−1)+m
p,D (Ω)

satisfying (A − λ)u = f and ∥u∥
W

(k−1)+m
p

≤ C∥f∥
W

(k−1)−m
p

≤ C∥f∥Wk−m
p

. Writing

(A+R(k))u = f + (R(k) + λ)u, noting W
(k−1)+m
p (Ω) ⊂ W k−m

p (Ω), and using the same

argument as in the proof of Corollary 2.3, we have u ∈ W k+m
p,D (Ω) and

∥u∥Wk+m
p

≤ C
(
∥f∥Wk−m

p
+ 2R(k)∥u∥

W
(k−1)+m
p

)
≤ C∥f∥Wk−m

p
.

Thus we conclude the assertion for k. □
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Lemma 3.3. Let s ∈ N0 and 1 < p < ∞. If u ∈ W s
∞(Ω) and v ∈ W s

p (Ω),

then uv ∈ W s
p (Ω) and

Dα(uv) =
∑
β≤α

(
α

β

)
(Dα−βu)(Dβv), for |α| ≤ s.

Proof. Since W s
p (Ω) ∩ C∞(Ω) is dense in W s

p (Ω) by the Meyers–Serrin theorem

[22, Theorem 3.11], the lemma follows by Leibniz’s rule for the product of a C∞ function

and a distribution. □

Lemma 3.4. For the proof of Theorem 2.1 we may assume that A has no lower-

order term.

Proof. Let A0 be the principal part of A, i.e.

A0 =
∑

|α|=|β|=m

Dα(aαβD
β · ).

Given θ ∈ (θA, π], suppose that there exist R0 ≥ 1 and C0 > 0 such that, for λ ∈ Σ(R0, θ),

the operator A0 − λ : W k+m
p,D (Ω) → W k−m

p (Ω) has an inverse and satisfies

∥(A0 − λ)−1∥Wk−m
p,λ →Wk+m

p,λ
≤ C0. (3.1)

Case 1. Let 0 ≤ k < m. We evaluate (A−A0)u for u ∈ W k+m
p,D (Ω) with the symbol

λm given in (2.8). For |α| ≤ m− k, we have, by (2.2),

∥Dα(aαβD
βu)∥Wk−m

p,λ
≤ λ|α|−(m−k)

m ∥aαβ∥L∞∥Dβu∥Lp

≤ Cλ|α|−(m−k)
m λ|β|−(k+m)

m ∥u∥Wk+m
p,λ

≤ Cλ|α|+|β|−2m
m ∥u∥Wk+m

p,λ
.

For |α| > m− k we take α0 so that α0 ≤ α and |α0| = m− k. We note that |α− α0| =
|α|+ k −m and aαβ ∈ W

|α|+k−m
∞ (Ω), and that

Dα(aαβD
βu) =

∑
γ≤α−α0

(
α− α0

γ

)
Dα0

(
a
(γ)
αβD

α−α0−γ+βu
)
,

which follows by Lemma 3.3. Here we used the symbol given in (2.9). Then we have

∥Dα(aαβD
βu)∥Wk−m

p,λ
≤ C

∑
γ≤α−α0

∥a(γ)αβ ∥L∞∥Dα−α0−γ+βu∥Lp

≤ C
∑

γ≤α−α0

λ|α−α0−γ+β|−(k+m)
m ∥u∥Wk+m

p

≤ Cλ|α|+|β|−2m
m ∥u∥Wk+m

p
.

These estimates imply
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∥(A−A0)u∥Wk−m
p,λ

≤ C1λ
−1
m ∥u∥Wk+m

p,λ
, for u ∈ W k+m

p,D (Ω) (3.2)

with C1 = C1(k,m, n, p,Mk,A,Ω), since A−A0 consists of the terms with |α|+ |β| < 2m.

We write

(A− λ)(A0 − λ)−1 = IWk−m
p (Ω) +Q, Q = (A−A0)(A0 − λ)−1.

By (3.1) and (3.2) the operator norm of Q is bounded by C0C1λ
−1
m . If C0C1λ

−1
m ≤ 2−1,

i.e. |λ| ≥ (2C0C1)
2m, then IWk−m

p (Ω) +Q has an inverse which is given by the Neumann

series
∑∞

N=0(−Q)N , and the operator norm of (IWk−m
p

+Q)−1 is bounded by 2. Therefore

A − λ has a right inverse whose operator norm is bounded by 2C0. By Lemma 3.1 this

right inverse is the inverse of A− λ. Summing up, if we set R1 = max{R0, (2C0C1)
2m},

then (A− λ)−1 exists and satisfies

∥(A− λ)−1∥Wk−m
p,λ →Wk+m

p,λ
≤ 2C0

for λ ∈ Σ(R1, θ).

Case 2. Let k ≥ m. Using (2.2), we have, for u ∈ W k+m
p,D (Ω),

∥Dα(aαβD
βu)∥Wk−m

p,λ
=

∑
|γ|≤k−m

λ(k−m)−|γ|
m ∥Dα+γ(aαβD

βu)∥Lp

≤
∑

|γ|≤k−m

∑
δ≤α+γ

(
α+ γ

δ

)
λk−m−|γ|
m ∥a(δ)αβD

α+γ−δ+βu∥Lp

≤ C
∑

|γ|≤k−m

∑
δ≤α+γ

λk−m−|γ|
m λ|α+β+γ−δ|−(k+m)

m ∥u∥Wk+m
p,λ

≤ Cλ|α+β|−2m
m ∥u∥Wk+m

p,λ
.

The rest of the proof runs as in Case 1. □

Lemma 3.5. The case k > m in Theorem 2.1 for divergence form elliptic operators

reduces to Theorem 2.4 for non-divergence form elliptic operators.

Proof. Let k > m. In view of Lemma 3.4 we may assume that A has no lower-

order term. Leibniz’s rule gives

A =
∑

|α|=|β|=m

Dα(aαβD
β · ) =

∑
|α|=|β|=m

∑
γ≤α

(
α

γ

)
a
(γ)
αβD

α−γ+β .

In particular, the leading term of A as a non-divergence form operator is written as∑
|α|=|β|=m

aαβD
α+β .

Observe that a
(γ)
αβ ∈ W

|α|+k−m−|γ|
∞ (Ω) ⊂ W k−m

∞ (Ω) for |α| = m and γ ≤ α. Also note

that Ω is a uniformly Ck,1 domain, i.e. a uniformly C(k−m)+m,1 domain. Thus A satisfies
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conditions (HN1), (HN2)k−m, (HN3)k−m as a non-divergence form operator. Therefore

we can apply Theorem 2.4 with k replaced by k −m. □

4. Proof of Theorem 2.1 for the half space.

In this section we will prove Theorem 2.1 when Ω is the half space

Rn
+ = {x = (x′, xn) ∈ Rn : x′ ∈ Rn−1, xn > 0}.

To this end we prepare two lemmas. For h ∈ R and 1 ≤ j < n we define the translation

τj,h and the difference operator ∆j,h by

(τj,hf)(x) = f(x+ hej), ∆j,hf = τj,hf − f,

where ej is the unit vector whose jth entry is 1. We note that

∆j,h(fg) = (∆j,hf) · (τj,hg) + f · (∆j,hg). (4.1)

Lemma 4.1. Let Ω = Rn
+, |λ| ≥ 1, h ∈ R \ {0} and 1 ≤ j < n.

(i) Let f ∈ Lp(Ω) and α ∈ Nn
0 . Then

h−1∆j,hD
αf = iDαDj

(∫ 1

0

f(x+ θhej) dθ

)
.

(ii) If f ∈ W k−m
p (Ω) with k ≥ 1, then∥∥h−1∆j,hf

∥∥
W

(k−1)−m
p,λ (Ω)

≤ ∥f∥Wk−m
p,λ (Ω), (4.2)

∥f∥
W

(k−1)−m
p,λ (Ω)

≤ λ−1
m ∥f∥Wk−m

p,λ (Ω). (4.3)

(iii) Let u ∈ W k−1
p (Ω) with 1 ≤ k ≤ m. If u satisfies

∥h−1∆j,hu∥Wk−1
p,λ (Ω) ≤ M

with some M > 0, then Dju ∈ W k−1
p (Ω) and ∥Dju∥Wk−1

p,λ (Ω) ≤ M .

Proof. It is easy to see (i) if f ∈ C∞
0 (Ω). The density of C∞

0 (Ω) in Lp(Ω) gives

(i) for the general case by taking the limit in distributional sense.

To show (ii) for 1 ≤ k ≤ m we write f =
∑

|γ|≤m−k D
γfγ with fγ ∈ Lp(Ω). Then

by (i) we have

h−1∆j,hf =
∑

|γ|≤m−l

DγDjgγ , gγ(x) = i

∫ 1

0

fγ(x+ θhej) dθ.

Hence
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∥h−1∆j,hf∥W (k−1)−m
p,λ

≤
∑

|γ|≤m−k

λ|γ|+1+(k−1)−m
m ∥gγ∥Lp ≤

∑
|γ|≤m−k

λ|γ|+k−m
m ∥fγ∥Lp .

Taking the infimum, we get (4.2). Inequality (4.3) follows by the definition of λ-norm.

The case k ≥ m+ 1 can be handled similarly.

We can obtain (iii) by adjusting the proof of [11, Theorem 9.1.1]. □

Lemma 4.2. Let Ω = Rn
+, |λ| ≥ 1, m, k ∈ N and 0 < k ≤ m. Suppose that

v ∈ Lp(Ω) satisfies Dk
j v ∈ Lp(Ω) for 1 ≤ j < n and Dm

n v ∈ W k−m
p (Ω). Then we have

Dk
nv ∈ Lp(Ω) and

∥Dk
nv∥Lp(Ω) ≤ C

n−1∑
j=1

∥Dk
j v∥Lp(Ω) + ∥Dm

n v∥Wk−m
p,λ (Ω) + λk

m∥v∥Lp(Ω)


with C = C(k,m, n, p).

Proof. This lemma corresponds to [1, Lemma 9.3] and [6, Lemma 17.2] which

deal with the case p = 2. We follow the method which is based on Muramatu’s integral

formula [19] and was suggested by Muramatu [20]. We need only modify the argument

given in the proof of [17, Lemma 10.7], paying attention to the λ-norm. Muramatu’s

integral formula is written as

v =

n−1∑
j=1

∫ R

0

tk(Kj)t ∗Dk
j v

dt

t
+

∫ R

0

tm(Kn)t ∗Dm
n v

dt

t
+ φR ∗ v (4.4)

for R > 0 with suitable functions Kj ∈ C∞
0 (Rn) with j = 1, . . . , n and φ ∈ C∞

0 (Rn),

where Kt is defined by Kt(x) = t−nK(x/t) for a function K and t > 0. Applying Dk
n to

(4.4) and substituting Dm
n v =

∑
|γ|≤m−k D

γfγ with fγ ∈ Lp, we have

Dk
nv =

n−1∑
j=1

∫ R

0

(
K

(ken)
j

)
t
∗Dk

j v
dt

t
+

∑
|γ|≤m−k

∫ R

0

tm−k−|γ|(K(ken+γ)
n

)
t
∗ fγ

dt

t

+R−k
(
φ(ken)

)
R
∗ v.

Setting R = λ−1
m and using the Lp bounded theorem for Muramatu’s formula, we get

Dk
nv ∈ Lp and

∥Dk
nv∥Lp ≤ C

n−1∑
j=1

∥Dk
j v∥Lp + C

∑
|γ|≤m−k

λ|γ|−(m−k)
m ∥fγ∥Lp + Cλk

m∥v∥Lp ,

which gives the desired inequality. □

Proof of Theorem 2.1 for the half space. We prove Theorem 2.1 by in-

duction on k. As stated in Remark 2.2, we know that Theorem 2.1 has been already

proved for k = 0. In view of Lemmas 3.4 and 3.5 we may assume that A has no lower-

order term, and that 1 ≤ k ≤ m.
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Let Ω = Rn
+, f ∈ W k−m

p (Ω) and |λ| ≥ 1. We write Ak for A if A is considered as an

operator from W k+m
p,D (Ω) to W k−m

p (Ω). In view of Lemma 3.1 we need only prove that if

the operator Ak−1 − λ is invertible and satisfies

∥(Ak−1 − λ)−1∥
W

(k−1)−m
p,λ (Ω)→W

(k−1)+m
p,λ (Ω)

≤ C, (4.5)

then the equation (A− λ)u = f has a solution u satisfying

u ∈ W k+m
p,D (Ω) and ∥u∥Wk+m

p,λ
≤ C∥f∥Wk−m

p,λ
. (4.6)

Setting u = (Ak−1 − λ)−1f , which belongs to W
(k−1)+m
p,D (Ω), we will show (4.6) in three

steps.

Step 1. We will show that

Dju ∈ W (k−1)+m
p (Ω) and ∥Dju∥W (k−1)+m

p,λ

≤ C∥f∥Wk−m
p,λ

, for 1 ≤ j < n. (4.7)

We simply write ∆h and τh for ∆j,h and τj,h, respectively. Applying ∆h to (A−λ)u = f

with the help of (4.1), we have

(A− λ)(∆hu) = ∆hf −
∑

|α|=|β|=m

Dα((∆haαβ)τhD
βu). (4.8)

For each α with |α| = m we choose γ so that

γ ≤ α, |γ| = k − 1,

and rewrite (4.8) as

(A− λ)(∆hu) = ∆hf −
∑

|α|=|β|=m

∑
γ′≤γ

(
γ

γ′

)
Dα−γ

(
(∆ha

(γ−γ′)
αβ )τhD

β+γ′
u
)
.

Since ∆hu ∈ Wm
p,D(Ω), (4.5) gives

∥h−1∆hu∥W (k−1)+m
p,λ

≤ C∥h−1∆hf∥W (k−1)−m
p,λ

+ C
∑

|α|=|β|=m

∑
γ′≤γ

∥a(γ−γ′+ej)
αβ ∥L∞∥Dβ+γ′

u∥Lp .

Since λ
(k−1)+m−|β+γ′|
m ∥Dβ+γ′

u∥Lp ≤ ∥u∥
W

(k−1)+m
p,λ

≤ C∥f∥
W

(k−1)−m
p,λ

by (4.5), we have by

Lemma 4.1 (ii)

∥h−1∆hu∥W (k−1)+m
p,λ

≤ C∥f∥Wk−m
p,λ

+ C
∑

|α|=|β|=m

∑
γ′≤γ

λ|β+γ′|−(k−1+m)
m ∥f∥

W
(k−1)−m
p,λ

≤ C∥f∥Wk−m
p,λ

.

Then Lemma 4.1 (iii) yields (4.7).
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Step 2. Set

b = amen,men , v = bDm
n u,

N = {(α, β) ∈ Nn
0 × Nn

0 : |α| = |β| = m} \ {(men,men)}.

We will show that

v ∈ W k
p (Ω) and ∥v∥Wk

p,λ
≤ C∥f∥Wk−m

p,λ
. (4.9)

By u ∈ W
(k−1)+m
p,D (Ω) and Lemma 4.1 (ii) we know that v ∈ Lp(Ω) and

∥v∥Lp ≤ C∥Dm
n u∥Lp ≤ Cλ−(k−1)

m ∥f∥
W

(k−1)−m
p,λ

≤ Cλ−k
m ∥f∥Wk−m

p,λ
. (4.10)

Let 1 ≤ j < n. We write

Dk
j v = b(kej)Dm

n u+
k∑

l=1

(
k

l

)
b((k−l)ej)Dm

n Dl−1
j (Dju).

Using (4.7) and Lemma 4.1 (ii), we find that Dk
j v ∈ Lp(Ω) and

∥Dk
j v∥Lp ≤ C∥Dm

n u∥Lp + C∥Dju∥W (k−1)+m
p,λ

≤ C∥f∥Wk−m
p,λ

. (4.11)

We now consider Dk
nv. For each pair of α and β with (α, β) ∈ N , we choose γ and

j with 1 ≤ j < n so that

γ ≤ α, |γ| = k, ej ≤ β + γ,

and rewrite (A− λ)u = f as

Dm
n v = f + λu−

∑
(α,β)∈N

∑
γ′≤γ

(
γ

γ′

)
Dα−γ

(
α
(γ−γ′)
αβ Dβ+γ′

u
)
. (4.12)

If γ′ = γ, then we get Dβ+γ′
u ∈ Lp by ej ≤ β + γ′ and (4.7). If γ′ < γ, then (4.5) gives

Dβ+γ′
u ∈ Lp since |β + γ′| ≤ (k − 1) +m. Therefore we have Dm

n v ∈ W k−m
p (Ω) and

∥Dm
n v∥Wk−m

p,λ
≤ ∥f∥Wk−m

p,λ
+ λ2m

m λk−m
m ∥u∥Lp + C

∑
(α,β)∈N

∑
γ′≤γ

∥Dβ+γ′
u∥Lp

≤ ∥f∥Wk−m
p,λ

+ λm∥f∥
W

(k−1)−m
p,λ

+ C
n−1∑
j=1

∥Dju∥W (k−1)+m
p,λ

+ C∥u∥
W

(k−1)+m
p,λ

≤ C∥f∥Wk−m
p,λ

. (4.13)

We can now apply Lemma 4.2 to v with (4.10), (4.11), (4.12) and (4.13). Then Dk
nv ∈

Lp(Ω) and
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∥Dk
nv∥Lp ≤ C∥f∥Wk−m

p,λ
+ Cλk

m∥Dm
n u∥Lp ≤ C∥f∥Wk−m

p,λ
+ Cλm∥f∥

W
(k−1)−m
p,λ

≤ C∥f∥Wk−m
p,λ

.

The interpolation inequality gives (4.9).

Step 3. It follows from (4.7) that

Dk+m
j u ∈ Lp(Ω) and ∥Dk+m

j u∥Lp ≤ C∥f∥Wk−m
p,λ

(4.14)

for 1 ≤ j < n. Since b ≥ δA by (HD1), we also get (4.14) for j = n by (4.9) and

Dm
n u = b−1v. By (4.5) and Lemma 4.1 (ii) we have

λk+m
m ∥u∥Lp

≤ Cλm∥f∥
W

(k−1)−m
p,λ

≤ C∥f∥Wk−m
p,λ

.

Therefore the interpolation inequality yields (4.6). □

5. Proof of Theorem 2.1 for a special Ck,1 domain.

Recall that we write a point x in Rn as x = (x′, xn) = (x1, . . . , xn).

Definition 5.1. Let k ∈ N. We say that Ω is a special Ck,1 domain if there exists

a function ϕ0 ∈ C1(Rn−1) such that

Ω = {x ∈ Rn : xn > ϕ0(x
′)}, (5.1)

and that ∂jϕ0 ∈ W k
∞(Rn−1) for 1 ≤ j ≤ n− 1.

Throughout this section we assume that Ω and ϕ0 are as in Definition 5.1, and that

Ω is written in the form of (5.1).

5.1. C∞ diffeomorphism on a special domain.

In order to reduce the problem to the half space Rn
+, we construct a suitable C∞

map Rn
+ → Ω. The arguments here are parallel to those in [16, Section 3], which treated

the case k = 0. The idea of constructing a C∞ map goes back to Gagliardo [7].

We take a function φ ∈ C∞
0 (Rn−1) satisfying

suppφ ⊂ {x′ ∈ Rn−1 : |x′| < 1},
∫
Rn−1

φ(x′) dx′ = 1,

and set φxn(x
′) = x1−n

n φ(x′/xn). We define ϕ(x) = ϕ(x′, xn) for x
′ ∈ Rn−1 and xn ≥ 0

by ϕ(x′, 0) = ϕ0(x
′) and

ϕ(x′, xn) = φxn ∗ ϕ0(x
′) = x1−n

n

∫
Rn−1

φ(x−1
n (x′ − z′))ϕ0(z

′) dz′, for xn > 0.

Clearly ϕ ∈ C∞(Rn
+).

Lemma 5.2. Let k ∈ N. There exists C = C(α, k,Ω) such that
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|∂αϕ(x)| ≤ C, for 1 ≤ |α| ≤ k + 1.

|∂αϕ(x)| ≤ Cx−|α|+k+1
n , for |α| > k + 1.

Proof. Simple calculations show that there exist functions Kαβ ∈ C∞
0 (Rn−1)

such that

∂αϕ(x) =
∑

|β|=|α|

(Kαβ)xn
∗ ∂βϕ0(x

′), for 1 ≤ |α| ≤ k + 1,

∂αϕ(x) = x−|α|+k+1
n

∑
|β|=k+1

(Kαβ)xn ∗ ∂βϕ0(x
′), for |α| > k + 1,

where β ∈ Nn−1
0 . The lemma follows from these formulas. □

We define a C∞ map Φ = (Φ1, . . . ,Φn) : Rn
+ → Ω by y = Φ(x) with

y′ = x′, yn = xn + ϕ(x′, κxn), (5.2)

where the constant κ will be specified shortly. We note that

∂iΦj(x) = δij (1 ≤ j < n, 1 ≤ i ≤ n),

∂iΦn(x) = ∂iϕ(x
′, κxn) (1 ≤ i < n), ∂nΦn(x) = 1 + κ∂nϕ(x

′, κxn), (5.3)

and that detΦ′(x) = ∂nΦn(x), where Φ′(x) denotes the Jacobi matrix of Φ. We take

κ > 0 so that κ∥∂nϕ∥L∞(Rn
+) ≤ 2−1. Then Φ : Rn

+ → Ω is a diffeomorphism. We denote

by Ψ = (Ψ1, . . . ,Ψn) the inverse function of Φ. Let Φ∗ and Ψ∗ be the pullbacks by Φ

and Ψ, respectively.

Lemma 5.3. Let k ∈ N. Let Φ be the C∞ map defined by (5.2) that corresponds to

a special Ck,1 domain Ω. Let x ∈ Rn
+ and y ∈ Ω with y = Φ(x), and let |α| ≥ 1. Then

there exist functions bαβ ∈ C∞(Rn
+) and cαβ ∈ C∞(Rn

+) such that Φ∗Dα
yΨ

∗ is written as

Φ∗Dα
yΨ

∗ =
∑

1≤|β|≤|α|

bαβD
β
x , Φ∗Dα

yΨ
∗ =

∑
|β|≤|α|

Dβ
x(cαβ · ), (5.4)

and that for every γ ∈ Nn
0 the derivatives b

(γ)
αβ = Dγbαβ and c

(γ)
αβ = Dγcαβ are written as

b
(γ)
αβ (x) =

∑
τ

x−τ
n bαβγτ (x), c

(γ)
αβ (x) =

∑
τ

x−τ
n cαβγτ (x)

with bαβγτ ∈ L∞(Rn
+), cαβγτ ∈ L∞(Rn

+) satisfying ∥bαβγτ∥L∞(Rn
+) ≤ C(γ, k,m, n,Ω) and

∥cαβγτ∥L∞(Rn
+) ≤ C(γ, k,m, n,Ω), where the sums are taken over integers τ satisfying

0 ≤ τ ≤ max{|α| − |β|+ |γ| − k, 0}.

Proof. We first consider the statement for bαβ . Let y = Φ(x). By repeated use

of the identity Φ∗DyjΨ
∗ =

∑n
l=1(∂Ψl/∂yj)Dxl

we find that the first identity of (5.4)

holds with the coefficients bαβ written in the form
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bαβ(x) =
∑

const×Ψ
(δ1)
j1

(y) · · ·Ψ(δl)
jl

(y),

where the sum is taken over j1, . . . , jl ∈ {1, . . . , n} and δ1, . . . , δl such that |δi| ≥ 1 with

1 ≤ i ≤ l and

(|δ1| − 1) + · · ·+ (|δl| − 1) = |α| − |β|. (5.5)

Differentiating Ψ′(y) = Φ′(x)−1 in y repeatedly, and using Cramer’s formula with

detΦ′(x) = ∂nΦn(x), we have

bαβ(x) =
∑

const×
Φ

(δ1)
j1

(x) · · ·Φ(δl)
jl

(x)

{∂nΦn(x)}h
, (5.6)

where the sum is taken over h ∈ N0, j1, . . . , jl ∈ {1, . . . , n}, and δ1, . . . , δl satisfying

|δi| ≥ 1 with 1 ≤ i ≤ l and (5.5). Using Lemma 5.2 and (5.3), and noting ∂nΦn(x) ≥ 2−1,

we know that the terms in (5.6) are written in the form x−τ
n B(x), where B ∈ L∞(Rn

+)

and τ ∈ N0 with

0 ≤ τ ≤
l∑

i=1

max{(|δi| − 1)− k, 0}.

Using the inequality

max{t− k, 0}+max{s− k, 0} ≤ max{t+ s− k, 0}, for t ≥ 0 and s ≥ 0,

which can be easily proved by considering four cases according to the signs of t− k and

s− k, we have

0 ≤ τ ≤ max

{
l∑

i=1

(|δi| − 1)− k, 0

}
= max{|α| − |β| − k, 0}.

We can also claim the statement for the derivative b
(γ)
αβ by observing that b

(γ)
αβ is written

in the form of the right-hand side of (5.6), and replacing |α| − |β| by |α| − |β| + |γ| in
(5.5).

The statement for cαβ can be shown by observing that a variant of Leibniz’s rule

gives

bαβD
β =

∑
γ≤β

(−1)|β−γ|
(
β

γ

)
Dγ

(
b
(β−γ)
αβ ·

)
,

and reducing the problem to the properties of bαβ . □

5.2. Isomorphisms between Sobolev spaces.

Lemma 5.4. Let k ∈ N and |λ| ≥ 1. Let Φ be the C∞ map defined by (5.2) that

corresponds to a special Ck,1 domain Ω. Then the map Φ∗ induces an isomorphism from

W k+m
p,D (Ω) to W k+m

p,D (Rn
+), and satisfies
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C−1∥v∥Wk+m
p,λ (Ω) ≤ ∥Φ∗v∥Wk+m

p,λ (Rn
+) ≤ C∥v∥Wk+m

p,λ (Ω), for v ∈ W k+m
p,D (Ω)

with C = C(k,m, n, p,Ω).

Proof. In [16, Lemma 4.3] we showed that Φ∗ : Wm
p,D(Ω) → Wm

p,D(Rn
+) is an

isomorphism, using the inequality

∥x−l
n f∥Lp(Rn

+) ≤ C(n, k, p)∥Dl
nf∥Lp(Rn

+), for f ∈ C∞
0 (Rn

+), l ∈ N0, 0 ≤ l ≤ m,

which follows by applying the Hardy-type inequality to the Taylor formula divided by

x−l
n :

x−l
n f(x′, xn) =

∫ xn

0

il(xn − t)l−1

(l − 1)!xl
n

Dl
nf(x

′, t) dt.

Therefore, we know that if u ∈ Wm
p,D(Rn

+) and τ + |β| ≤ m with τ ∈ N0, then x−τ
n Dβu ∈

Lp(Rn
+) and

∥x−τ
n Dβu∥Lp(Rn

+) ≤ C∥Dτ
nD

βu∥Lp(Rn
+). (5.7)

Let u ∈ W k+m
p,D (Rn

+) and set v(y) = u(x) with y = Φ(x). Then v ∈ Wm
p,D(Ω) since

Φ∗ is an isomorphism from Wm
p,D(Ω) onto Wm

p,D(Rn
+). To show that v ∈ W k+m

p (Ω) we

write, by Lemma 5.3,

Dα
y v =

∑
|β|≤|α|

∑
τ

x−τ
n bαβτD

β
xu

with bαβτ ∈ L∞(Rn
+) for |α| ≤ k +m, where τ ranges over

0 ≤ τ ≤ max{|α| − |β| − k, 0}. (5.8)

If |α| − |β| − k ≤ 0, then (5.8) implies τ = 0 and hence

∥x−τ
n bαβτD

βu∥Lp ≤ C∥Dβu∥Lp ≤ Cλ|β|−(k+m)
m ∥u∥Wk+m

p,λ
.

If |α| − |β| − k > 0, then (5.8) implies τ ≤ |α| − |β| − k and hence τ + |β| ≤ |α| − k ≤ m.

This combined with (5.7) gives

∥x−τ
n bαβτD

βu∥Lp ≤ C∥Dτ
nD

βu∥Lp ≤ Cλτ+|β|−(k+m)
m ∥u∥Wk+m

p,λ

≤ Cλ|α|−k−(k+m)
m ∥u∥Wk+m

p,λ
.

Therefore v ∈ W k+m
p (Ω) and

∥v∥Wk+m
p,λ

≤ C
∑

|α|≤k+m

∑
|β|≤|α|

λ(k+m)−|α|
m

(
λ|β|−(k+m)
m + λ|α|−2k−m

m

)
∥u∥Wk+m

p,λ

≤ C∥u∥Wk+m
p,λ

,
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which gives the first inequality of the lemma.

In the same way we can show that v ∈ W k+m
p,D (Ω) implies u ∈ W k+m

p,D (Rn
+) and that

∥u∥Wk+m
p,λ

≤ C∥v∥Wk+m
p,λ

, using the properties of Ψ∗Dα
xΦ

∗ which correspond to those of

Φ∗Dα
yΨ

∗ stated in Lemma 5.3. □

Lemma 5.5. Let k ∈ N, 1 ≤ k ≤ m and |λ| ≥ 1. Let Φ be the C∞ map defined

by (5.2) that corresponds to a special Ck,1 domain Ω. Then the map Φ∗ induces an

isomorphism from W k−m
p (Ω) to W k−m

p (Rn
+), and satisfies

C−1∥v∥Wk−m
p,λ (Ω) ≤ ∥Φ∗v∥Wk−m

p,λ (Rn
+) ≤ C∥v∥Wk−m

p,λ (Ω), for v ∈ W k−m
p (Ω)

with C = C(k,m, n, p,Ω).

Proof. The proof is based on [16, Lemma 4.4], which states that the operator

Tlf(x
′, xn) =

∫ ∞

xn

i−l(t− xn)
l−1

(l − 1)! tl
f(x′, t) dt, for f ∈ Lp(Rn

+), l ∈ N (5.9)

is a bounded operator in Lp(Rn
+) and satisfies Dl

n(Tlf) = x−l
n f .

Let y = Φ(x) with x ∈ Rn
+ and y ∈ Ω. Write v ∈ W k−m

p (Ω) as

v =
∑

|α|≤m−k

Dα
y vα, vα ∈ Lp(Ω),

and set uα = Φ∗vα ∈ Lp(Rn
+). By Lemma 5.3

Φ∗v =
∑

|α|≤m−k

∑
|β|≤|α|

∑
τ

Dβ
x(x

−τ
n cαβτuα)

with cαβτ ∈ L∞(Rn
+), where τ ranges over 0 ≤ τ ≤ max{|α| − |β| − k, 0}.

If |α| − |β| − k ≤ 0, then τ = 0 and

∥Dβ(x−τ
n cαβτuα)∥Wk−m

p,λ
≤ Cλ|β|+k−m

m ∥uα∥Lp ≤ Cλ|α|+k−m
m ∥vα∥Lp .

If |α| − |β| − k > 0, then τ ≤ |α| − |β| − k, which implies τ + |β| ≤ m− k. So (5.9) gives

Dβ(x−τ
n cαβτuα) = DβDτ

n(Tτ (cαβτuα))

and

∥Dβ(x−τ
n cαβτuα)∥Wk−m

p,λ
≤ λ|β|+τ+k−m

m ∥Tτ (cαβτuα)∥Lp ≤ λ|α|−m
m ∥vα∥Lp .

Hence

∥Φ∗v∥Wk−m
p,λ

≤
∑

|α|≤m−k

λ|α|+k−m
m ∥vα∥Lp .

Taking the infimum of the right-hand side, we get the second inequality of the lemma.
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The first inequality can be proved similarly. □

5.3. Elliptic operators in a special Ck,1 domain.

We will prove Theorem 2.1 for a special Ck,1 domain. Let Ω be as in Definition 5.1.

In view of Lemma 3.4 we may assume that A has no lower-order term. In addition,

by Remark 2.2 and Lemma 3.5 we need only consider the case 1 ≤ k ≤ m. We set

Ã = Φ∗AΨ∗ and ãαβ = aαβ ◦Φ. Then Ã is a differential operator on Rn
+ and it is written

as

Ã = A0 +A1

with

A0 =
∑

|α|=|β|=m

∑
|α′|=|β′|=m

Dα′
(cαα′ ãαβbββ′Dβ′

· ),

A1 =
∑

|α|=|β|=m

∑
|α′|≤m
|β′|≤m

|α′|+|β′|<2m

Dα′
(cαα′ ãαβbββ′Dβ′

· )

by Lemma 5.3. Since the principal symbol of A0 is a0(Φ(x),
tΦ′(x)−1ξ), we see that

A0 satisfies the ellipticity condition corresponding to (HD1). Since aαβ ∈ W k
∞(Ω) for

|α| = |β| = m, we have ãαβ ∈ W k
∞(Rn

+) by Lemma 5.2 and (5.2). We also see by

Lemma 5.3 that cαα′ and bββ′ belong toW k
∞(Rn

+)∩C∞(Rn
+) if |α| = |β| = |α′| = |β′| = m.

Hence A0 satisfies (HD2)k. Therefore we can apply Theorem 2.1 for Rn
+ to A0.

On the other hand, the next lemma shows that A1 is viewed as a perturbation.

Lemma 5.6. Let 1 < p < ∞, k ∈ N, 1 ≤ k ≤ m and |λ| ≥ 1. Then

∥A1u∥Wk−m
p,λ (Rn

+) ≤ Cλ−1
m ∥u∥Wk+m

p,λ (Rn
+), for u ∈ W k+m

p,D (Rn
+)

with C = C(k,m, n, p,Mk,A,Ω).

Proof. For u ∈ W k+m
p,D (Rn

+) we wish to evaluate A1u. To this end we set

v = bββ′Dβ′
u, w = ãαβv, f = Dα′

(cαα′w)

for α, β, α′, β′ with |α| = |β| = m, |α′| ≤ m, |β′| ≤ m, |α′| + |β′| < 2m, and evaluate

them respectively.

Step 1. For |γ| ≤ k we write

Dγv =
∑

γ0+γ1=γ

(
γ

γ0

)
b
(γ0)
ββ′ D

β′+γ1

u =
∑

γ0+γ1=γ

∑
τ

(
γ

γ0

)
bββ′γ0τx

−τ
n Dβ′+γ1

u

with bββ′γ0τ ∈ L∞ by Lemma 5.3, where τ ranges over

0 ≤ τ ≤ max{|β| − |β′|+ |γ0| − k, 0}.
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If |β| − |β′|+ |γ0| − k ≤ 0, then τ = 0 and hence

∥bββ′γ0τx
−τ
n Dβ′+γ1

u∥Lp ≤ ∥Dβ′+γ1

u∥Lp ≤ λ|β′|+|γ1|−(k+m)
m ∥u∥Wk+m

p,λ
.

If |β| − |β′|+ |γ0| − k > 0, then τ ≤ |β| − |β′|+ |γ0| − k and hence

τ + |β′|+ |γ1| ≤ (|β| − |β′|+ |γ0| − k) + |β′|+ |γ1| = |β|+ |γ| − k ≤ m.

So it follows by the Hardy-type inequality (5.7) that

∥bββ′γ0τx
−τ
n Dβ′+γ1

u∥Lp ≤ C∥Dτ
nD

β′+γ1

u∥Lp ≤ Cλτ+|β′|+|γ1|−(k+m)
m ∥u∥Wk+m

p,λ

≤ Cλ|β|+|γ|−k−(k+m)
m ∥u∥Wk+m

p,λ
= Cλ|γ|−2k

m ∥u∥Wk+m
p,λ

.

Therefore

∥v∥Wk
p,λ

≤ C
∑
|γ|≤k

∑
γ0+γ1=γ

λk−|γ|
m

(
λ|β′|+|γ1|−(k+m)
m + λ|γ|−2k

m

)
∥u∥Wk+m

p,λ

≤ C
(
λ|β′|−m
m + λ−k

m

)
∥u∥Wk+m

p,λ
.

Step 2. As stated prior to Lemma 5.6, the coefficients ãαβ belong to W k
∞(Rn

+). So

Lemma 3.3 gives w ∈ W k
p (Rn

+) and

∥w∥Wk
p,λ

≤ C
∑
|γ|≤k

∑
γ0+γ1=γ

λk−|γ|
m ∥ã(γ

0)
αβ ∥L∞∥Dγ1

v∥Lp ≤ C∥aαβ∥Wk
∞
∥v∥Wk

p,λ
.

Step 3. We will show that

∥f∥Wk−m
p,λ

≤ C
(
λ|α′|−m
m + λ−k

m

)
∥w∥Wk

p,λ
. (5.10)

Let |α′| ≥ m− k. We take α0 and γ so that

α′ = α0 + γ, |α0| = m− k,

and write

f =
∑

γ0+γ1=γ

(
γ

γ0

)
Dα0

(
c
(γ0)
αα′ D

γ1

w
)
.

Since |α| − |α′| + |γ0| − k ≤ m − (|α0| + |γ|) + |γ| − k = 0, we have c
(γ0)
αα′ ∈ L∞ by

Lemma 5.3. So

∥f∥Wk−m
p,λ

≤ C
∑

γ0+γ1=γ

∥Dγ1

w∥Lp ≤ C
∑

γ0+γ1=γ

λ|γ1|−k
m ∥w∥Wk

p,λ
.

Since |γ1| − k ≤ |γ| − k = |α′| −m, we get (5.10).

Let |α′| < m−k. Noting that |α|− |α′|−k = m−k−|α′| > 0, and using Lemma 5.3
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and (5.9), we write

f =
∑

0≤τ≤|α|−|α′|−k

Dα′ (
x−τ
n cαα′τw

)
=

∑
0≤τ≤|α|−|α′|−k

Dα′
Dτ

n (Tτ (cαα′τw))

with cαα′τ ∈ L∞. Since |α′|+ τ ≤ m− k, and since Tτ is a bounded operator in Lp(Rn
+),

we have

∥f∥Wk−m
p,λ

≤ C
∑
τ

λ|α′|+τ+k−m
m ∥Tτ (cαα′τw)∥Lp ≤ C

∑
τ

λ|α′|+τ+k−m
m ∥w∥Lp

≤ C
∑
τ

λ|α′|+τ−m
m ∥w∥Wk

p,λ
≤ Cλ−k

m ∥w∥Wk
p,λ

,

which gives (5.10).

Step 4. Combining the above estimates for v, w and f , we get

∥A1u∥Wk−m
p,λ

≤ C
∑

|α′|+|β′|<2m

(
λ|α′|−m
m + λ−k

m

)(
λ|β′|−m
m + λ−k

m

)
∥u∥Wk+m

p,λ

≤ C
∑

|α′|+|β′|<2m

(
λ|α′|+|β′|−2m
m + λ−k

m

)
∥u∥Wk+m

p,λ
.

Since |α′|+ |β′| < 2m and k ≥ 1, we get the lemma. □

Proof of Theorem 2.1 for a special Ck,1 domain. We continue to assume

that 1 ≤ k ≤ m. Let Ã, A0 and A1 be as above. As already stated, we can apply the

result for Rn
+ to A0. Therefore for a given θ ∈ (θA, π] there exist R0 ≥ 1 and C0 > 0

such that, for λ ∈ Σ(R0, θ), the inverse of A0 − λ exists and satisfies

∥(A0 − λ)−1∥Wk−m
p,λ →Wk+m

p,λ
≤ C0.

By Lemma 5.6 there exists C1 such that ∥A1∥Wk+m
p,λ →Wk−m

p,λ
≤ C1λ

−1
m , which corresponds

to (3.2). Then the same argument as in the proof of Lemma 3.4 shows that Ã− λ has a

right inverse, which we denote by Rλ, if |λ| ≥ max{R0, (2C0C1)
2m}.

It follows from Lemmas 5.4 and 5.5 that Ψ∗RλΦ
∗ is a right inverse of A−λ and that

∥Ψ∗RλΦ
∗∥Wk−m

p,λ →Wk+m
p,λ

is bounded by a constant. Therefore by invoking Lemmas 3.1,

3.2 and 3.4 we complete the proof of Theorem 2.1 for a special Ck,1 domain. □

6. Preliminaries for Theorem 2.4.

In the rest of this paper, we will prove Theorem 2.4 for a non-divergence elliptic

operator A, which is written in the form (1.3), and satisfies (HN1) and (HN2)k for a

fixed k ∈ N0.

6.1. Some reductions for non-divergence form elliptic operators.

Lemma 6.1. In the proof of Theorem 2.4
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(i) if we can show the existence of a right inverse of A−λ and obtain the norm estimate

corresponding to (2.7), then the right inverse is exactly the inverse ;

(ii) it is sufficient to show Theorem 2.4 with the constant R which may depend on k ;

(iii) we may assume that A has no lower-order term.

Proof. To show (i) we regard A− λ as an operator from W k+2m
p,D (Ω) to W k

p (Ω),

and suppose that A−λ has a right inverse Pλ which satisfies the estimate corresponding

to (2.7). Let B be the elliptic operator obtained by freezing the coefficients of A at x = 0:

B =
∑

|α|≤2m

aα(0)D
α.

We may also suppose that B − λ has a right inverse Qλ. It follows from δB ≥ δA,

Mk,B ≤ Mk,A and ωB = 0 that the operator norm of Qλ has the same bound as that of

Pλ.

Since B is also regarded as a divergence form elliptic operator from Wm
p,D(Ω) to

W−m
p (Ω), we find by Theorem 2.1 that B − λ is injective on Wm

p,D(Ω) and hence on

W k+2m
p,D (Ω). Therefore Qλ = (B − λ)−1. Considering a family of operators

Bt = tA+ (1− t)B

with parameter t ∈ [0, 1], and using the method of continuity, we can derive the injectivity

of A− λ from that of B − λ. Therefore Pλ = (A− λ)−1.

We can show (ii) in the same way as Lemma 3.2.

For (iii) set

A0 =
∑

|α|=2m

aαD
α.

Let u ∈ W k+2m
p,D (Ω). Since aα ∈ W k

∞(Ω), we have

∥(A−A0)u∥Wk
p,λ

≤
∑

|α|<2m

∑
|β|≤k

λk−|β|
m ∥Dβ(aαD

αu)∥Lp

≤
∑

|α|<2m

∑
|β|≤k

∑
γ≤β

(
β

γ

)
λk−|β|
m ∥a(β−γ)

α ∥L∞∥Dα+γu∥Lp

≤ C
∑

|α|<2m

∑
|β|≤k

∑
γ≤β

λk−|β|
m λ|α|+|γ|−(k+2m)

m ∥u∥Wk+2m
p,λ

≤ C
∑

|α|<2m

λ|α|−2m
m ∥u∥Wk+2m

p,λ

≤ Cλ−1
m ∥u∥Wk+2m

p,λ
.

Then the rest of the proof runs as in the proof of Lemma 3.4. □
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7. Proof of Theorem 2.4 for the half space.

In this section we will prove Theorem 2.4 for the half space by induction on k. The

case k = 0 is treated in [10, Theorem 5.7] under the assumption that lim|x|→∞ aα(x)

exist for all the coefficients aα. This extra assumption can be removed by the partition

of unity, which was used for divergence form elliptic operators in [14].

We consider the case k ≥ 1. In view of Lemma 6.1 we may assume that A has no

lower-order term:

A =
∑

|α|=2m

aαD
α.

Let Ω = Rn
+, f ∈ W k

p (Ω) and |λ| ≥ 1. We write Ak if A is considered as an operator

from W k+2m
p,D (Ω) to W k

p (Ω). In the same way as for the case of divergence form elliptic

operators in Section 4 we need only prove that if the operator Ak−1 −λ is invertible and

satisfies

∥(Ak−1 − λ)−1∥
Wk−1

p,λ (Ω)→W
(k−1)+2m
p,λ (Ω)

≤ C, (7.1)

then the equation (A− λ)u = f has a solution u satisfying

u ∈ W k+2m
p,D (Ω) and ∥u∥Wk+2m

p,λ (Ω) ≤ C∥f∥Wk
p,λ(Ω). (7.2)

Setting u = (Ak−1−λ)−1f , which belongs to W
(k−1)+2m
p,D (Ω), we will prove (7.2) in three

steps.

Step1. We will show that

Dju ∈ W (k−1)+2m
p (Ω) and ∥Dju∥W (k−1)+2m

p,λ

≤ C∥f∥Wk
p,λ

, for 1 ≤ j < n. (7.3)

We simply write ∆h and τh for the difference operator ∆j,h and the translation τj,h,

respectively, defined in Section 4. Applying ∆h to (A− λ)u = f , we have

(A− λ)(∆hu) = ∆hf −
∑

|α|=2m

(∆haα)τhD
αu.

By (7.1) and Lemma 4.1 (ii) we have

∥h−1∆hu∥W (k−1)+2m
p,λ

≤ C∥h−1∆hf∥Wk−1
p,λ

+ C
∑

|α|=2m

∑
|β|≤k−1

∑
γ≤β

λk−1−|β|
m

(
β

γ

)
∥h−1(∆ha

(β−γ)
α )τhD

α+γu∥Lp

≤ C∥f∥Wk
p,λ

+ C
∑

|α|=2m

∑
|β|≤k−1

∑
γ≤β

∥a(β−γ+ej)
α ∥L∞λk−1−|β|

m λ|α+γ|−(k−1)−2m
m ∥u∥

W
(k−1)+2m
p,λ
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≤ C∥f∥Wk
p,λ

+ C∥f∥Wk−1
p,λ

≤ C∥f∥Wk
p,λ

.

By Lemma 4.1 (iii) we get (7.3).

Step 2. Set

b = a2men , v = bD2m
n u, N = {α ∈ Nn

0 : |α| = 2m, αn < 2m}.

We will show that

v ∈ W k
p (Ω) and ∥v∥Wk

p,λ
≤ C∥f∥Wk

p,λ
. (7.4)

Rewrite (A− λ)u = f as

v = f + λu−
∑
α∈N

aαD
αu,

and note that for α ∈ N there exits 1 ≤ j < n such that ej ≤ α. By (7.1), (7.3) and

Lemma 4.1 (ii) we find that v ∈ W k
p (Ω) and

∥v∥Wk
p,λ

≤ ∥f∥Wk
p,λ

+ λ2m
m ∥u∥Wk

p,λ

+
∑
α∈N

∑
|β|≤k

∑
γ≤β

λk−|β|
m

(
β

γ

)
∥a(β−γ)

α ∥L∞∥D(α−ej)+γDju∥Lp

≤ ∥f∥Wk
p,λ

+ λm∥u∥
W

(k−1)+2m
p,λ

+ C
∑
α∈N

∑
|β|≤k

∑
γ≤β

λk−|β|
m λ|α−ej+γ|−(k−1)−2m

m ∥Dju∥W (k−1)+2m
p,λ

≤ C∥f∥Wk
p,λ

+ Cλm∥f∥Wk−1
p,λ

≤ C∥f∥Wk
p,λ

.

Thus we get (7.4).

Step 3. It follows from (7.3) that

Dk+2m
j u ∈ Lp(Ω) and ∥Dk+2m

j u∥Lp ≤ C∥f∥Wk
p,λ

(7.5)

for 1 ≤ j < n. Since b ≥ δA > 0 by (HN1), we also get (7.5) for j = n by (7.4) and

D2m
n u = b−1v. By (7.1) and Lemma 4.1 (ii) we have

λk+2m
m ∥u∥Lp ≤ λm∥u∥

W
(k−1)+2m
p,λ

≤ Cλm∥f∥
W

(k−1)
p,λ

≤ C∥f∥Wk
p,λ

.

Then the interpolation inequality yields (7.2). Thus we complete the proof of Theorem 2.4

for the half space.

8. Proof of Theorem 2.4 for a special Ck+m,1 domain.

In this section we will prove Theorem 2.4 for a special Ck+m,1 domain with k ∈ N0.

In view of Lemma 6.1 we may assume that A has no lower-order term.
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Let Ω be a special Ck+m,1 domain, which is written as

Ω = {x ∈ Rn : xn > ϕ0(x
′)},

where ϕ0 ∈ C1(Rn−1) satisfies ∂jϕ0 ∈ W k+m
∞ (Rn−1) for 1 ≤ j ≤ n − 1. Let Φ and Ψ

be as in Section 5, and set ãα = aα ◦ Φ. It follows from (HN)k that ãα ∈ W k
∞(Rn

+) for

k ∈ N0, and that ãα is uniformly continuous if k = 0. By Lemma 5.3 with k replaced by

k +m we can write Φ∗AΨ∗, which is an operator on Rn
+, as

Φ∗AΨ∗ = A0 +A1

with

A0 =
∑

|α|=2m

∑
|β|=2m

ãαbαβD
β ,

A1 =
∑

|α|=2m

∑
|β|<2m

ãαbαβD
β .

We note that bαβ ∈ C∞(Rn
+), and that the derivatives b

(γ)
αβ = Dγbαβ are written as

b
(γ)
αβ (x) =

∑
τ

x−τ
n bαβγτ (x) (8.1)

with bαβγτ ∈ L∞(Rn
+) and ∥bαβγτ∥L∞(Rn

+) ≤ C(γ, k,m, n,Ω), where τ ranges over

0 ≤ τ ≤ max{|α| − |β|+ |γ| − k −m, 0}. (8.2)

In particular, bαβ ∈ W k+m
∞ (Rn

+) for |α| = |β| = 2m.

Lemma 8.1. Let 1 < p < ∞, k ∈ N0, and |λ| ≥ 1. Then

∥A1u∥Wk
p,λ(R

n
+) ≤ Cλ−1

m ∥u∥Wk+2m
p,λ (Rn

+), for u ∈ W k+2m
p,D (Rn

+)

with C = C(k,m, n, p,Mk,A,Ω).

Proof. For u ∈ W k+2m
p,D (Rn

+) and |γ| ≤ k we write

Dγ(A1u) =
∑

|α|=2m

∑
|β|<2m

∑
γ0+γ1+γ2=γ

γ!

γ0!γ1!γ2!
ã(γ

0)
α b

(γ1)
αβ Dβ+γ2

u,

and set

g = ã(γ
0)

α b
(γ1)
αβ Dβ+γ2

u.

Let |α| − |β|+ |γ1| ≤ k +m. Then (8.1) and (8.2) give b
(γ1)
αβ ∈ L∞ and hence

λk−|γ|
m ∥g∥Lp ≤ Cλk−|γ|

m ∥Dβ+γ2

u∥Lp ≤ Cλk−|γ|
m λ|β|+|γ2|−(k+2m)

m ∥u∥Wk+2m
p
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≤ Cλ|β|−2m
m ∥u∥Wk+2m

p
≤ Cλ−1

m ∥u∥Wk+2m
p

.

Let |α| − |β|+ |γ1| > k +m. Then (8.1) and (8.2) give

g =
∑
τ

ã(γ
0)

α x−τ
n bαβγ1τD

β+γ2

u,

where τ ranges over 0 ≤ τ ≤ |α| − |β|+ |γ1| − k −m. Noting that

τ + |β|+ |γ2| ≤ |α|+ |γ1 + γ2| − k −m ≤ m,

and using the Hardy-type inequality (5.7), we have

λk−|γ|
m ∥g∥Lp ≤ C

∑
τ

λk−|γ|
m ∥Dτ

nD
β+γ2

u∥Lp

≤ C
∑
τ

λk−|γ|
m λτ+|β|+|γ2|−(k+2m)

m ∥u∥Wk+2m
p,λ

≤ C
∑
τ

λk−|γ|+|α|+|γ1+γ2|−k−m−(k+2m)
m ∥u∥Wk+2m

p,λ

≤ Cλ−k−m
m ∥u∥Wk+2m

p,λ
≤ Cλ−1

m ∥u∥Wk+2m
pλ

.

From the above estimates for g we get the lemma. □

Lemma 8.2. Let 1 < p < ∞, k ∈ N0 and |λ| ≥ 1. Let Φ be the C∞ map defined

by (5.2) that corresponds to a special Ck+m,1 domain Ω. Then the map Φ∗ induces an

isomorphism from W k+2m
p,D (Ω) to W k+2m

p,D (Rn
+), and satisfies

C−1∥v∥Wk+2m
p,λ (Ω) ≤ ∥Φ∗v∥Wk+2m

p,λ (Rn
+) ≤ C∥v∥Wk+2m

p,λ (Ω), for v ∈ W k+2m
p,D (Ω)

with C = C(k,m, n, p,Ω). Also, Φ∗ induces an isomorphism from W k
p (Ω) to W k

p (Rn
+)

and satisfies

C−1∥v∥Wk
p,λ(Ω) ≤ ∥Φ∗v∥Wk

p,λ(R
n
+) ≤ C∥v∥Wk

p,λ(Ω), for v ∈ W k
p (Ω)

with C = C(k,m, n, p,Ω).

Proof. If we replace k by k+m in Lemma 5.4, then we conclude the first assertion

of the lemma. The proof of the second assertion is not difficult, since Φ is sufficiently

smooth, namely ∂jΦl ∈ W k+m
∞ (Rn

+) for j, l ∈ {1, . . . , n}. □

Proof of Theorem 2.4 for a special Ck+m,1 domain. It is easy to see that

A0 satisfies the conditions corresponding to (HN1) and (HN2)k. So we can apply the

result for Rn
+ to A0. The rest of the proof runs in the same way as in the case of divergence

form elliptic operators, using Lemmas 6.1, 8.1 and 8.2. □
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