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Abstract. We consider a 2mth-order strongly elliptic operator A sub-
ject to Dirichlet boundary conditions in a domain © of R", and show the
L, regularity theorem, assuming that the domain has less smooth boundary.
We derive the regularity theorem from the following isomorphism theorems
in Sobolev spaces. Let k be a nonnegative integer. When A is a divergence
form elliptic operator, A — X has a bounded inverse from the Sobolev space
Wfﬁm(ﬂ) into W§+7”(Q) for A belonging to a suitable sectorial region of
the complex plane, if © is a uniformly C*! domain. When A is a non-
divergence form elliptic operator, A — A has a bounded inverse from Wg(Q)

into W1’,€+2m(ﬂ), if Q is a uniformly C*+™1 domain. Compared with the
known results, we weaken the smoothness assumption on the boundary of Q2
by m — 1.

1. Introduction.

Let us consider a 2mth-order strongly elliptic operator in divergence form

A=Y DaasD”-) (1.1)
jal<m

|BI<m

subject to Dirichlet boundary conditions in a domain 2 of R™ with n > 2. The well
known regularity theorem for the elliptic equation

Au=f (1.2)

can be stated in terms of the L,-based Sobolev spaces with 1 < p < oo as follows: If we
assume, for some integer k with k& > 1, that the coefficients a,p satisfy

op € ClOFF=™(Q) for |a| + k —m > 0,

that Q is a bounded domain with boundary of class C*+™  and that f € WI’f’m(Q), then
a solution u to (1.2) in W), () satisfies u € Wy+™(Q) and

lallys oy < CUL Ty + Tl @):
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Here W}, (€2) denotes the closure of C§°(2) in W'(Q2). Most literature deals with
the case p = 2. We refer to [1, Theorem 14.1], [6, Theorem 17.2] for k > m, [9,
Theorem 2.5.1.1] for m = 1 and general k, and [23, Theorem 20.4] for general m and k.

The aim of this paper is to improve the regularity theorem by replacing the smooth-
ness assumption on the boundary 99 of © by the condition that 9 is of class C**1.
Since k + m > k + 1 implies m > 1, our result is new for higher-order elliptic equations.
We derive the regularity theorem from the isomorphism theorem, which states that the
operator A— \ has a bounded inverse from W}~ (2) onto W;f“‘m(Q)ﬂW;lD(Q) for A be-
longing to a suitable sectorial region in the complex plane. Since the regularity theorem
is an immediate consequence of the isomorphism theorem, our main task in this paper is
to construct the inverse of A — A. In [16] (see also [13], [14], [15]) we have already done
so for k = 0 on the basis of the Hardy-type inequality for the Sobolev spaces satisfying
Dirichlet boundary conditions.

We also consider a 2mth-order strongly elliptic operator in non-divergence form

A= > a.D" (1.3)

la|<2m

subject to Dirichlet boundary conditions in a domain 2 of R™. For this operator we know
the isomorphism theorem, which states that the operator A — A has a bounded inverse
from W} (Q) onto W}2m(Q) N W (€2) with 1 < p < oo for A belonging to a suitable
region, if the coefficients a,, satisfy

ae € CF(Q), for |a| < 2m,

and if  is a C¥*2™ domain. For m = 1 we refer to [11, Chapter 9], and for general m
and k = 0 we refer to [3, Theorem 8.2], [22, Chapter 5]. We can also find the regularity
theorem for the operator (1.3); we refer to [8, Theorem 8.13] for m = 1 and p = 2,
[18, Theorem 3.14] for general m and p = 2, and [2, Theorem 15.2] for general m, k,
p. In this paper, we obtain these theorems for non-divergence form operators under the
assumption that the boundary of a domain is of class C*+™m+1,

2. Main results.

In order to state the main results we define some symbols. Let i = +/—1. Let
x = (z1,...,2,) be a generic point in R™ and set

0% = (8)0x1)* -+ (0)0xn)", D™ =ilolg™

for a multi-index o = (ay,...,a,) of length |a] = a3 + -+ + a,,. Let N be the set of
positive integers, and let Ny = NU {0}.

For s € Ng and 1 < p < oo the Sobolev space W (Q2) is the set of functions f whose
weak derivatives of order up to s belong to L,(2). We denote by W, (€2) the closure of
Cge(82) in W(9), and set

L () =Wi(Q)NW 5 (), for s € Nwith s >m.
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For our purpose it is convenient to introduce the A-dependent norm

I llws @) = Z (A=l D g o)

|| <s

for A € C\ {0}. This norm is equivalent to the usual norm, which corresponds to the
case A = 1.

For s € N the Sobolev space WP’S(Q) of negative order is the set of functions f
which can be written as

f= D, with fo € Ly(Q). (2.1)

lof<s

We also define the \-dependent norm in W,;*(2) by

11w (@) = inf D N2 foll ),

lo<s

where the infimum is taken over all the expressions of f in (2.1).
Let s € Ny. By definition we have the inequalities

1D fllz, ) < NI fllws (@), for f € Wy (Q) and |of < s,
1D Fllw—s ) < T2 fllLy ), for f e Ly(Q) and o] <5, (2.2)

which will be frequently used.
We first consider an elliptic operator A in divergence form given by (1.1). Let ag(z, &)
be the principal symbol of A:

ao(z,§) = Z aa,@(m>fa+ﬂ~

lo|=[B]=m
We fix a nonnegative integer k € Ny and assume the following conditions:

(HD1) There exists § > 0 such that

Reag(z, &) > 6|¢)*™, forz € Q, £ € R™

(HD2); All the coefficients aqpg belong to L (£2). In addition, if k£ > 1, then
op € WIAHE=T(Q) " for |a| + k —m > 0.
If kK = 0, then the leading coefficients are uniformly continuous.

(HD3); The domain Q is a uniformly C*! domain if £ > 1, and a uniformly C' domain
if k=0. Or Q =R".

We will define a special C*! domain in Definition 5.1 below. A uniformly C*:!
domain is defined in terms of special C*! domains, as a domain with minimally smooth
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boundary is defined in terms of special Lipschitz domains (see [21, Chapter VI]). We
note that a bounded domain with C*! boundary is a uniformly C*' domain.

By the extension theorem [21, Chapter VI, Theorem 5] and the characterization of
L -based Sobolev space (see [22, Theorem 3.12]) we know that the Sobolev space W3, (€2)
with s € N coincides with the set of C*~! functions whose derivatives are bounded and
Lipschitz continuous. So (HD2); means that a.s € Cl*1TF=m=1(Q) and the derivatives
of aqp of order up to |a| +k —m — 1 are Lipschitz continuous. Thus (HD2); is slightly
weaker than the condition a,g € Cl*IH*F=(Q) if k > 1.

In order to state clearly the dependency of the constants which will appear in the
main results, we use the following symbols:

04 = max{d > 0: (HD1) is satisfied.},

04 =sup sup |argao(z,§)l,
z€Q gcR™\{0}

Ma= > laaslle. ()

lo|<m, [B]<m

Mya= > > laapllyyiai+r—m gy + > Y laasliee):- (2.3)

la|>m—k |B|<m la|<m—k |B|<m

Note that the strong ellipticity implies 64 € [0,7/2). We also use the function w4 on
(0, 00) which describes the modulus of continuity of the leading coefficients:

wa(t)= max  sup l|aas(r) —aes(y)|, fort>0. (2.4)
la|=|Bl=m z,ye)
lz—y|<t

For R > 0 and 0 € (0, 7] we set
ER,0)={A€C: |\|>R,0<arg) <2m—0}.

THEOREM 2.1. Let 1 < p < oo, k € Ny, and assume (HD1), (HD2);, (HD3).
Then for a given 8 € (04,7 there exist constants

R = R(m7n7pa 9, 6AawA7MA’ Q) >1, C= C(k7m7nap7976147w147 Mk:,A7 Q) >0

such that, for A € X(R,0), the operator
A= X: WIT™MQ) — Wy~ ™(Q)
has a bounded inverse and satisfies
-1
1A = 2" sy ey < C- (2.5)
REMARK 2.2.  When k = 0, we can rewrite (2.5) as
ID(A = N DA fll 5, ) < CIAITHHISHIED/2m o0 for [ € Ly(9)

with |a] < m, |B| < m. Since these estimates are equivalent to those obtained in [16,
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Theorem 2.1], we know that Theorem 2.1 has been already proved for £ = 0 in [16].

We will prove Theorem 2.1 in Sections 3 through 5. Theorem 2.1 immediately yields
the following corollary.

COROLLARY 2.3. Letl <p < oo, k € Ny, and assume (HD1), (HD2);, (H3)x. If
u € WH () and Au € WI’f’m(Q), then u € W;Em(ﬁ) and
[ullwpem ) < CUIAU]yp-m () + llullL,@) (2.6)
with C = C(k,m,n,p,04,wa, My 4,8).

Proor. We write Ay for A if A is considered as an operator from W;Bm(Q) to
W]f’m(ﬂ). Let R be the constant in Theorem 2.1 for § = 7. We first observe that if v €
W'n(Q2) and g € WE=m(Q) satisfies (A + R)v = g, then v = (Ax + R)"'g € W;'E"‘(Q).

P
Indeed, if we set w = (A + R)"'g, then w € W]fjgm(ﬁ) and (Ag+R)v =g = (Ao + R)w;
hence the existence of (4g + R)~! gives v = w.

The corollary is proved by induction on k. The assertion for & = 0 is obvious.
Suppose that the assertion for k£ — 1 is true; we will show the assertion for k. Set
Au = f. By the assertion for £ — 1 we know that u € ng’lgl)+m(9) c WE=m(Q).
Writing (A + R)u = f + Ru and applying the above observation, we find that v =
(Ax + R)~'(f + Ru) € W) 5™ (Q) and

lllyen < CIF + Rullyir < Cllfllymm + Clull s

The interpolation inequality gives (2.6). O

We next consider an elliptic operator A in non-divergence form given by (1.3). Let
ap(z, &) be the principal symbol of A:

ap(z, &) = Z a ()€,

|a]=2m
For a fixed k € Ny we assume the following conditions:

(HN1) There exists 6 > 0 such that

Reag(z, &) > 6|¢)*™, forz € Q, £ € R™

(HN2), All the coefficients a,, satisfy
ae € WE(Q), for |a| < 2m.
In addition, the leading coefficients are uniformly continuous if & = 0.
(HN3); The domain € is a uniformly C**™! domain or R™.

We define the following symbols, which are similar to those in (2.3) and (2.4):
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d4 = max{d > 0: (HN1) is satisfied.},

04 =sup sup Jargao(z,§)],
z€Q gcR™\{0}

Ma= Y laalr. @

ol <2m
Mya= Y laalwe @,

la|<2m
wA(t) = max sup |aq(z) —an(y)], fort>0.

la|=2m g ye
lz—y|<t

THEOREM 2.4. Letl < p < oo, k € Ny, and assume (HN1), (HN2);, (HN3).
Then for a given 8 € (04,7 there exist constants

R =R(m,n,p,0,04,wa, M, Q) >1, C=C(k,m,n,p,0,64,wa, My 4,Q2) >0
such that, for A € X(R,0), the operator
A= X WEE™(Q) — Wr(Q)
has a bounded inverse and satisfies
[[(A- >‘)_1”W;YA(Q)—>W:)§2""(Q) <C. (2.7)
We will prove Theorem 2.4 in Sections 6 through 8.

COROLLARY 2.5. Let1 < p < oo, k € Ny, and assume (HN1), (HN2),, (HN3)j.
Ifue W25 (Q) and Au € WE(Q), then u € W;Ezm(Q) and

ull sy < CUMAlw @y + 2, e)
with C = C(k,m,n,p,d4,wa, My 4,8).
PRrROOF. The corollary can be proved in the same way as Corollary 2.3. g

We conclude this section with some remarks. In the proof of Theorem 2.1 we always
assume that Q # R", since the case {2 = R™ can be handled by a slight modification of
the proof for the case 2 = R}. We will prove Theorem 2.1 for the half space by the
method of difference quotient and then for a special C*'! domain by a method similar to
that used in [14], [15], [16]. Once we establish the theorem for a special C*! domain, we
can extend it to a uniformly C*! domain by a partition of unity. The detailed argument
for carrying over the result to a uniformly C*! domain is found in [15], where we derived
the result for a uniformly C™ domain under the assumptions (HD1) and (HD2); with
k = 0. We can also make the same remarks for the proof of Theorem 2.4.

For the case K = 0 we do not try to fully investigate whether the smoothness con-
ditions on the coefficients can be relaxed or not, since this paper mainly targets the
case k > 1. In some cases Theorems 2.1 and 2.4 also hold for k = 0, if the smoothness
assumption on the coefficients is weakened to VMO class. Heck and Hieber [10] showed
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this for non-divergence form operators in R”. Dong and Kim also showed this under the
assumption that A < 0 in [4], and extended the result to the case of variably partially
VMO coefficients for a Reifenberg flat domain in [5]. We also refer to Maz’ya et al. [12]
who considered an elliptic equation with VMO coefficients in a domain whose boundary
has exterior normal vectors belonging to VMO class.

Throughout this paper we use the abbreviation

Am = |A[Y/2, (2.8)
We often write a(® for the derivative D®a, when a is the coefficient of an elliptic operator:

a' = D% = i~l*lgg, (2.9)

3. Some reductions for the proof of Theorem 2.1.

In this section we will make some reductions for the proof of Theorem 2.1.

LEMMA 3.1. Let k € N. Suppose that A — X is injective as an operator from

op() to W, (). Then A — X is also injective as an operator from W;Em(ﬁ) to

W;f’m(ﬂ). Consequently, if A — X\ has a right inverse as an operator from W;Em(ﬁ) to
WI’f’m(Q), then the right inverse is exactly the inverse of A — \.

PrROOF. The lemma is obvious by W;“,‘Bm(Q) CWh (). O

LEMMA 3.2. It is sufficient to prove Theorem 2.1 with the constant R which may
depend on k for each k € Ny.

PROOF. Given 6 € (04, 7], suppose that we have proved Theorem 2.1 with the
constant R = R(k,m,n,p,0,04,wa, M4, ), which may depend on k. We simply write
R(k) for this constant. We will show by induction that for all £ € N we can take R(0)
as the constant R in Theorem 2.1.

Suppose that the assertion for k — 1 is true; we will prove the assertion for k. If
R(k) < R(0), then there is nothing to prove. So we may assume R(k) > R(0). We must
show that A— A : ijgm(Q) — W™ (€) has a bounded inverse for A € $(R(0), #) with
|A| < R(k). We know that this operator is injective, since the corresponding operator for
k = 0 is injective. So it remains to show the surjectivity and to evaluate the operator
norm of its inverse.

Let f € WF™™(Q). By the assertion for k — 1 we can find u € WIEFD_DJ””(Q)
satisfying (A — M)u = f and ||u||W15k71)+m < C”fHWIEk—l)—nL < C|fllyyp-m- Writing

(A+ R(k))u = f + (R(k) + Mu, noting Wzgk_lH'm(Q) C W;f’m(ﬂ), and using the same
argument as in the proof of Corollary 2.3, we have u € W;Em(Q) and

lullygene < C (Il + 2RE) g1 ) < Cll S g

Thus we conclude the assertion for k. O
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LEMMA 3.3.  Let s € Ng and 1 <p <oo. Ifu e W5 (Q) andv € W;(Q),
then uwv € W;(Q) and

D% (uw) = “ (D> Pu)(DPv), for|a| < s.
% 6)

ProOOF.  Since W (€2) N C*°(Q) is dense in W (2) by the Meyers—Serrin theorem
[22, Theorem 3.11], the lemma follows by Leibniz’s rule for the product of a C*° function
and a distribution. O

LEMMA 3.4.  For the proof of Theorem 2.1 we may assume that A has no lower-
order term.

PrROOF. Let Ap be the principal part of A, i.e.
Ag= Y DaasD?-).
le|=|Bl=m

Given 6 € (04, ], suppose that there exist Ry > 1 and C > 0 such that, for A € X(Ry,0),
the operator Ag — A : W;Em(Q) — Wf‘m(Q) has an inverse and satisfies

(Ao — Mil”W,’;;’HWj;m < Co. (3.1)

Case 1. Let 0 < k < m. We evaluate (A — Ap)u for u € W;Em(ﬁ) with the symbol
Am given in (2.8). For || < m — k, we have, by (2.2),
1D (aas D u)llyyr-m < A= Flaag o |1 DPullr,
A
< A==k \IBI=(tm) | || kg
A

< ORI | e

For |a| > m — k we take a° so that a® < a and |a®| = m — k. We note that |a — a°| =

la| +k —m and anp € WCLng_m(Q), and that

N
D (aasDPu) = 3 (a “)m" (a§) D=2
0

y<a—a®

which follows by Lemma 3.3. Here we used the symbol given in (2.9). Then we have

—a%—
HDa(aagDﬂu)HW:’;mSC S N DO,

y<a—al

<C 3 Namel By
P
y<a—al

< C/\|T3|+m|*2m”uHW$+m

These estimates imply
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1A = Ao)ullyisre < COXlullyig,  for we WEE(@) (3.2)

-

with C1 = Ci(k,m,n,p, My a,), since A— Ay consists of the terms with |a|+|8] < 2m.
We write

(A= XA~ N =Ipromg + Q. Q= (A~ Ag)(dg— )",

By (3.1) and (3.2) the operator norm of @ is bounded by CoC1 ;L. If CoOi N, <271
i.e. |\ > (2CoC1)?™, then Iyi—m gy + @ has an inverse which is given by the Neumann
series Y3 _o(—Q)", and the operator norm of (Iy,x-m +@Q) ™" is bounded by 2. Therefore
A — X has a right inverse whose operator norm is bounded by 2Cy. By Lemma 3.1 this
right inverse is the inverse of A — \. Summing up, if we set R; = max{Ry, (2CoC1)*™},
then (A — \)~! exists and satisfies

-1
1A= X) " s < 2Co

for A € ¥(Ry,0).
Case 2. Let k > m. Using (2.2), we have, for u € W;“fDm(QL

a 8 _ (k=m)—|v]|| pat B
1D% (@ap D u) [k om = > oAl MDY (aap D u)||,
[v|<k—m

Z Z (Oé+7>)\k: m— |'y|||a Da-‘r’y 5+,8u||Lp

W Shem 6%aty
<C Z Z )\?lzl—m—|’)’|)\lr;¥+5+’y—6\—(k+m)||u||Wk+

y|<k—m §<aty
+Bl-2
< CAlatAl "y gom
The rest of the proof runs as in Case 1. O

LEMMA 3.5.  The case k > m in Theorem 2.1 for divergence form elliptic operators
reduces to Theorem 2.4 for non-divergence form elliptic operators.

PrROOF. Let k£ > m. In view of Lemma 3.4 we may assume that A has no lower-
order term. Leibniz’s rule gives

A= Z D%(ansDP ) = Z Z( ) D‘X T8
la|=|B|=m la|=|8|=m ~y<a

In particular, the leading term of A as a non-divergence form operator is written as

Z aaﬂDa+B.

la]=[B]=m

Observe that a(ﬁ) e Whalth=m= M(Q) C WEm(Q) for |a] = m and v < a. Also note
that € is a uniformly C*! domain, i.e. a uniformly C*~™)+71 domain. Thus A satisfies
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conditions (HN1), (HN2)j_,,, (HN3),_,, as a non-divergence form operator. Therefore
we can apply Theorem 2.4 with k replaced by k — m. (|

4. Proof of Theorem 2.1 for the half space.
In this section we will prove Theorem 2.1 when € is the half space
R? ={z = (2/,2,) €R": 2’ e R*" ! 2, > 0}

To this end we prepare two lemmas. For h € R and 1 < j < n we define the translation
7;» and the difference operator A; j; by

(rj.nf)(x) = f(z + hej), Ajnf=T1inf—

where e; is the unit vector whose jth entry is 1. We note that

Ajn(fg) = (Bjnf) - (Ting) + [ - (A ng)- (4.1)
LEMMA 4.1. Let Q=R%, [N\ >1, he R\ {0} and 1 < j < n.
(i) Let f € L,(Q) and a € Nj. Then

1
h~'A;,D*f =iD*D; (/ f(x + 6he;) d9) :
0

(ii) If f € WE=™(Q) with k > 1, then

17 8 s gy < Wl (4.2)

£y < At 1 s - (4.3)

(il)) Let u € WF=(Q) with 1 <k < m. If u satisfies
||h_1Aj’hu||W:.7;1(Q) S M

with some M > 0, then Dju € WF~(Q) and ||DjuHWk,;1 <M.

(@)

PROOF. It is easy to see (i) if f € C§°(£2). The density of C§°(2) in L,(2) gives
(i) for the general case by taking the limit in distributional sense.

To show (i) for 1 < k < m we write f =3_ ., D7fy with f, € L,(Q2). Then
by (i) we have

1
hflAjyhfz Z D"Djg,, gw(x):i/ fy(x + Ohey) db.
0

[y|<m—I

Hence
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Hh‘lAMfHW;k;l)fmg Do AEEEEI g < > AR £ L,

[v|<m—k ly|<m—k

Taking the infimum, we get (4.2). Inequality (4.3) follows by the definition of A-norm.
The case k > m + 1 can be handled similarly.
We can obtain (iii) by adjusting the proof of [11, Theorem 9.1.1]. O

LEMMA 4.2, Let Q = R%, A > 1, m,k € N and 0 < k < m. Suppose that
v € Ly(Q) satisfies Div € Ly(Q) for 1 < j < n and DJ'v € WF=™(Q). Then we have
DFv e L,(Q) and

n—1

HDZUHL,,(Q) <C Z HDfUHLP(Q) + HD?UHW:;"L(Q) + /\ﬁmHU”LP(Q)
j=1 ’

with C' = C(k,m,n,p).

PrOOF. This lemma corresponds to [1, Lemma 9.3] and [6, Lemma 17.2] which
deal with the case p = 2. We follow the method which is based on Muramatu’s integral
formula [19] and was suggested by Muramatu [20]. We need only modify the argument
given in the proof of [17, Lemma 10.7], paying attention to the A-norm. Muramatu’s
integral formula is written as

— (R dt (" dt
v:Z/ tk(Kj)t*va?—i—/ tm(Kn)t*D:l”v?—i—@R*v (4.4)
= Jo 0

for R > 0 with suitable functions K; € C°(R") with j = 1,...,n and ¢ € C§°(R"),
where K; is defined by K;(x) =t " K(z/t) for a function K and ¢ > 0. Applying D¥ to
(4.4) and substituting Dj'v = 3°, ., D7 fy with f, € L, we have

k = (R (ken) g, dt R k k dt
Ry

ly|<m—k 0

+R7F ((p(ke"))R * .

Setting R = A,,! and using the L, bounded theorem for Muramatu’s formula, we get
DEvy € L, and

n—1
IDEvlL, <CY DML, +C > AR p L, + O o]l
j=1 lv|<m—k
which gives the desired inequality. O

PROOF OF THEOREM 2.1 FOR THE HALF SPACE. We prove Theorem 2.1 by in-
duction on k. As stated in Remark 2.2, we know that Theorem 2.1 has been already
proved for & = 0. In view of Lemmas 3.4 and 3.5 we may assume that A has no lower-
order term, and that 1 < k < m.
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Let Q =R%, f € Wi=™(Q) and |A| > 1. We write Ay, for A if A is considered as an
operator from W;E’"(Q) to WE=™(Q). In view of Lemma 3.1 we need only prove that if
the operator A;_1 — A is invertible and satisfies

||(Ak_1 — )\)—1HW:g\,l)fm(Q)%Wﬁglprm(ﬂ) <, (45)
then the equation (A — A)u = f has a solution u satisfying
wEWEE @) and [ullyrgn < Ol (4.6)

Setting u = (Ag_1 — A) "1 f, which belongs to WﬁD_le(Q), we will show (4.6) in three
steps.
Step 1. We will show that

Dju e WHDTm(Q)  and HDju||W1§kX_1)+m < C’\|f||W:Y;m, for1<j<n. (4.7)

We simply write Ay, and 7, for A; ;, and 75 p,, respectively. Applying Ay, to (A—Nu = f
with the help of (4.1), we have

(A=N(Apu) =Anf = > D*((Anaap)TaD’u). (4.8)

|la|=|B]=m
For each o with |a| = m we choose v so that
Y S «, |’7| = k - 17

and rewrite (4.8) as

(A=N(Apu) =Anf— > > (7) DY ((Ahaggvﬁ)m Dﬁwu) :

jal=IBl=m <y N
Since Apu € W)'5(1), (4.5) gives
—1
||h AhuHWIEfc;lwm

< —1A o (v=7"+e;) DB+ )
<Clh hfllwgg Dem +C Y > lag 2ol ullr,

la|=|8l=m ' <~

Since AT DAY < Jlull v < CLfllyoon—m by (4.5), we have by
Py P
Lemma 4.1 (ii)

A7 Anullyionem < Clflwisn +C 3 D A EE f

la|=|Bl=m "<y
< C”f”W:‘;m'

Then Lemma 4.1 (iii) yields (4.7).
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Step 2. Set

— _ m
b - anben,men) U= bDn U,

N ={(a,8) € Ng x Ng : |a| =B8] = m} \ {(men, me,)}.
We will show that
veWH® and [ollwg, < Clfllyse (49)
By ue W;FBIHm(Q) and Lemma 4.1 (ii) we know that v € L,(£2) and
o], < CIDMulr, < C)%(k—l)|‘f||wék;1)7m < C)\'r_nka”W:;m' (4.10)

Let 1 <5 < n. We write

k
€4 m k —Ll)Ee; m -
Dhv =) Ditu+ ) j(l)b«k Des) DD (Dju).
=1

Using (4.7) and Lemma 4.1 (ii), we find that va € L,(Q) and
IDkollz, < CIDZuls, + CIDjullyem < Cllfllyrzn (410

We now consider D¥v. For each pair of a and 38 with («, 3) € N, we choose v and
j with 1 < 7 < n so that

'YSOZ, "V|:ka €j§5+%

and rewrite (A — Nu = f as

Drv=f+x—- Y N ( )Da 7( ”*7')Dﬁ+7’u). (4.12)

(a,B)EN 7' <y

If v/ = ~, then we get D™ u € L, by e; <B++" and (4.7). If v/ <+, then (4.5) gives
DFt7'y e L, since | ++'| < (k — 1) + m. Therefore we have D™v € W}E=m(Q) and

||D,Tv||W:;m < Hf”W}f';m 4 )‘%rb/\ﬁ@_mHUHLP L C Z Z | DA+ ullr,

(a,B)eN /<~y
< Hf”Wl’j;m + )‘MHfHWIEk;l)*m
n—1
+ CZ HD UHW(k D4m + C”UHW(k 1)4+m
Jj=1

We can now apply Lemma 4.2 to v with (4.10), (4.11), (4.12) and (4.13). Then D¥v €
L,(92) and
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1DS0l, < Cllf s + NPTz, < Clf iz + Chunll g

< C)f s

The interpolation inequality gives (4.9).
Step 3. It follows from (4.7) that

D;»H'mu c LP(Q) and ||Df+”LU||Lp < OHf”W;;m (4.14)

for 1 < j < mn. Since b > 04 by (HD1), we also get (4.14) for j = n by (4.9) and
D™y = b=y, By (4.5) and Lemma 4.1 (ii) we have

At ™M, < Cxallfllyi-n-m < ClLfllyrm-
DA Py
Therefore the interpolation inequality yields (4.6). O

5. Proof of Theorem 2.1 for a special C*! domain.
Recall that we write a point  in R” as z = (¢/,z,,) = (21,...,Zy).

DEFINITION 5.1.  Let k € N. We say that (2 is a special C*'! domain if there exists
a function ¢g € C1(R"~!) such that

Q={z eR": x, > ¢o(z')}, (5.1)
and that 0;¢9 € WE (R 1) for 1 <j<n-—1.

Throughout this section we assume that €2 and ¢ are as in Definition 5.1, and that
) is written in the form of (5.1).

5.1. C°° diffeomorphism on a special domain.

In order to reduce the problem to the half space R’, we construct a suitable C'*°
map R — Q. The arguments here are parallel to those in [16, Section 3], which treated
the case k = 0. The idea of constructing a C'*° map goes back to Gagliardo [7].

We take a function ¢ € C§°(R"™!) satisfying

suppy C {2/ e R" 7! |2/ < 1}, / o(z")dx' =1,
Rn—1

and set o, (¥') = xL7"p(2' /). We define ¢(z) = ¢(a’,x,,) for 2/ € R*~! and z,, > 0
by ¢(z',0) = ¢o(z’) and

H(2', ) = pu, * do(x) = x}f”/ oz (2" = 2))po(2)de,  for z,, > 0.
Rn—l

Clearly ¢ € C>(RY).

LEMMA 5.2.  Let k € N. There exists C = C(w, k,Q) such that
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|0%p(x)] < C, forl<|a|<k+1.
|0%¢(x)] < Cx,j'o‘HkH, for |a] > k+ 1.

PROOF. Simple calculations show that there exist functions K, € C§°(R"™1)
such that

0°¢(x) = > (Kap)a, *0o(a’), for 1 <ol <k+1,

Bl=le|
DYP(x) = alolHk+ Z (Kap)a, ¥ 0P po(x), for |a| >k +1,
|8]=k+1
where 3 € Ny~'. The lemma follows from these formulas. O

We define a C*° map ® = (®1,...,®,) : R} — Q by y = ®(x) with

/

v =2, yp =z, + 6 kTy), (5.2)
where the constant k will be specified shortly. We note that

0;®;(x)=0d;; (1<j<n,1<i<n),
0;®p(x) = 0;0(2 kwy) (1 <i < m), 0 () = 1+ kO d(2, Kn), (5.3)

and that det ®'(z) = 9, P, (z), where ®'(z) denotes the Jacobi matrix of ®. We take
K> 0 so that ([0 L, ry) < 271 Then @ : R} — Q is a diffeomorphism. We denote
by ¥ = (¥q,...,¥,,) the inverse function of ®. Let ®* and ¥U* be the pullbacks by ®
and W, respectively.

LEMMA 5.3.  Let k € N. Let ® be the C™ map defined by (5.2) that corresponds to
a special C*' domain Q. Let x € R" and y € Q with y = ®(x), and let |a| > 1. Then
there exist functions bag € C*(RY) and cap € C*(RY) such that ®* Dy ¥* is written as

DYV = Y begDf, DYV = Y Di(cap-), (5.4)
1<[BI<]af 18I<]a]
and that for every v € N§ the derivatives bg’) D7bop and c( = DVcqp are written as

b(v) Zx Dapyr (2 (7) Zm Capyr (@

with bagyr € Loo(RY), Capyr € Loo(RY) satisfying [|bapyr || L. wy) < C(y, k,m,n, ) and
HCQBA,THLOO(RE < C(v, k,m,n, ), where the sums are taken over integers T satisfying

0 <7 < max{la] —[5] + || -k, 0}.

PrROOF. We first consider the statement for b,s. Let y = ®(x). By repeated use
of the identity ®*D, U* = """  (0¥;/0y;)D,, we find that the first identity of (5.4)
holds with the coefficients b, written in the form
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bos(x Zconst X \11(6 )( ) - ~-\If§-fl)(y),

where the sum is taken over ji,...,5 € {1,...,n} and 6%,...,6" such that |6?| > 1 with
1<i<land

(18" = 1)+ + (8" = 1) = |a = |B]. (5.5)

leferentlatlng U'(y) = ®'(x)~! in y repeatedly, and using Cramer’s formula with
det ®'(z) = 0,,®,,(z), we have

(@) (@)
Zconst X RN ES U (5.6)

where the sum is taken over h € Ny, ji,...,5 € {1,...,n}, and §',...,8" satisfying
|6¢] > 1 with 1 <i <l and (5.5). Using Lemma 5.2 and (5.3), and noting 8,,®,,(z) > 271,
we know that the terms in (5.6) are written in the form 2,7 B(z), where B € L (R')
and 7 € Ny with

l

0<r Z max{(]6’| — 1) — k, 0}.

Using the inequality
max{t — k,0} + max{s — k,0} < max{t+s—k,0}, fort>0ands >0,

which can be easily proved by considering four cases according to the signs of ¢ — k and
s — k, we have

l

0<7< max{2(|5i| -1) - k,O} = max{|a| — |5 — k,0}.
i=1
We can also claim the statement for the derivative b(7 by observing that b is written
in the form of the right-hand side of (5.6), and replacmg la] —|B] by |a| — |ﬁ| + |y| in
(5.5).

The statement for c,g can be shown by observing that a variant of Leibniz’s rule
gives

basD? =Y " (~1)lF! <B>D7 (b(ﬁ K )

af Z:( ) y B
Y<B

and reducing the problem to the properties of b,g. O

5.2. Isomorphisms between Sobolev spaces.

LEMMA 54. Letk € N and |A\| > 1. Let ® be the C™ map defined by (5.2) that
corresponds to a special C*' domain Q. Then the map ®* induces an isomorphism from
W;B’”(Q) to Wzﬁ‘gn(R:ﬁ), and satisfies
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-1 k+
c HUHWPI"K"L(Q) < ||<I)*U||W:Km(R1) < CHUHW:K”L(Q)’ for v e W™ (€)
with C' = C(k,m,n,p,Q).

Proor. In [16, Lemma 4.3] we showed that ®* : W' (2) — W5 (R%) is an
isomorphism, using the inequality

' Fllz, @) < sk, p)ID5 fll, @y, for f e CEo(RY), 1 € No, 0 <1< m,

which follows by applying the Hardy-type inequality to the Taylor formula divided by
-l

Ln,

Ty sl -1
-1 / - " iz, — 1) l ’

Therefore, we know that if u € W/, (R") and 7+ || < m with 7 € Ny, then z,,"D’u €
L,(R%) and

7" DPul| 1,y < C|IDED ull, (- (5.7)

Let u € Wp’f}',m(]R’}r) and set v(y) = u(z) with y = ®(z). Then v € W5 (1) since
®* is an isomorphism from W'5(22) onto W'5(R%}). To show that v € WE™(Q) we
write, by Lemma 5.3,

Dyjv = Z Zx;TbaBTDgu

1BI<lal T
with bogr € Loo(RY) for |a| < k + m, where 7 ranges over
0 <7 < max{|a| — |8] — k,0}. (5.8)
If |a| — |B] — k <0, then (5.8) implies 7 = 0 and hence
257 D2l < CD%ull, < O+ fu i

If || — |B] — k > 0, then (5.8) implies 7 < |a| — |8] — k and hence 7+ |8| < |a| — k < m.
This combined with (5.7) gives

|7, "bapr D ullz, < CID;D%ulr, < CAZHPI=EF™ |
P,

n

|a|—k—(k+m)
S C/\m ||uHW:§m
Therefore v € WFT™(Q) and

k — —(k —ok—
ol S 30 30 Ml (AR AR
’ la|<k+m |B]<|a| ’

< Cllullyrgm,
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which gives the first inequality of the lemma.

In the same way we can show that v € Wk+m(Q) implies u € W;Em(R”) and that
Hu||Wk+m < C||U||Wk+m, using the properties of U*D¥®* which correspond to those of
P DO‘\II* stated in Lemma 5.3. O

LEMMA 5.5. Letk € N, 1 <k <m and |\ > 1. Let ® be the C* map defined
by (5.2) that corresponds to a special C*' domain Q. Then the map ®* induces an
isomorphism from WE="(Q) to W}=™(R"), and satisfies

C M ollywemeay < 10lwpm gy < Clolwsimay  Jorv e Wy™™(@)
with C = C(k,m,n,p,Q).
PROOF. The proof is based on [16, Lemma 4.4], which states that the operator

00 -—l(t _ xn)l 1

Tif (2 zn) :/x =T

is a bounded operator in L,(R") and satisfies D, (T} f) = ;' f.
Let y = ®(x) with z € R} and y € Q. Write v € W)™™(1) as

f(a' t)dt, for feL,(RY),leN (5.9)

Z Dyjva, va € Ly(Q),

|| <m—k

and set uo, = ®*v, € L,(R"}). By Lemma 5.3

Z Z ZDf(xrzTcaB‘rua)

lo|<m—Fk |B|<|a| T

with copr € Loo(R"), where 7 ranges over 0 < 7 < max{|a| — |B| — k,0}.
If || — |B] — k <0, then 7 = 0 and

1D (7 eaprtia) yrzm < CAH " lual|z, < ORI JvaL,-
If |a| — |B] — k > 0, then 7 < |a| — | 8| — k, which implies 7+ |8] < m — k. So (5.9) gives
Dﬁ(x;TcaﬁTua) = DBD:;(TT(CaﬂTUa»
and
||Dﬁ(x;‘rcaﬁ'rua)”W;:\'" < ALEHT—HC_"Z”T'r(caﬁ'rua)”Lp < Aln?‘_m”UaHLp'
Hence

1970y < > A,

la|<m—k

Taking the infimum of the right-hand side, we get the second inequality of the lemma.
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The first inequality can be proved similarly. (|

5.3. Elliptic operators in a special C**! domain.

We will prove Theorem 2.1 for a special C*! domain. Let © be as in Definition 5.1.
In view of Lemma 3.4 we may assume that A has no lower-order term. In addition,
by Remark 2.2 and Lemma 3.5 we need only consider the case 1 < k < m. We set
A = &*AV* and Gap = a0 ®. Then A is a differential operator on R? and it is written
as

A=Ay + Ay
with

A= )] Y DY(Caaiapbsa D7 ),

lal=I6l=m_|a’|=|p'|=m
A= > Y. DY(Caasiapbpy D -)
lal=[Bl=m  |a’|<m
18| <m
o/ [+167|<2m

by Lemma 5.3. Since the principal symbol of Ay is ag(®(z),?®’(x)71E), we see that
Ay satisfies the ellipticity condition corresponding to (HD1). Since ans € WE (Q) for
la| = |B] = m, we have d,3 € WE(R?) by Lemma 5.2 and (5.2). We also see by
Lemma 5.3 that caas and bgg: belong to WE (R7)NC>=(R%) if |af = 8] = |o/| = |8| = m.
Hence Ag satisfies (HD2). Therefore we can apply Theorem 2.1 for R to Aj.

On the other hand, the next lemma shows that A; is viewed as a perturbation.

LEMMA 5.6. Letl<p<oo, k€N, 1<k<mand |\ >1. Then
- k+m
‘|A1u||W;;m(R1) < CAml\IUIIW;;m(Ri)’ foru e Wp,+D (R%)
with C = C(k,m,n,p, My 4,).
PrOOF. For u € W;i“}f)m (R?}) we wish to evaluate Aju. To this end we set
v = bgg/Dﬁ,’u,, w = &agv, f = Da’ (Caa/’w)

for o, B, &, B’ with || = |B] = m, |&/| < m, |8] < m, |&/| + || < 2m, and evaluate
them respectively.
Step 1. For |y| < k we write

Y 0 ’ 1 vy _ ’ 1
Dy = g ( 0>b(ﬁﬂyﬁ,)D5 = E E ( 0) bagror, DT u
0 1— A’/ 0 1— ’y
Yoyt =y YHyri=y T

with bggryor € Lo by Lemma 5.3, where 7 ranges over

0 <7 < max{|g| - [8'| + [+’ - k,0}.
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If |8] = 18| + |7°| — k <0, then 7 = 0 and hence
||b5ﬂwofa;;TD5/+71u||Lp < ||D5'+"/1u||Lp < )\ITfj'Hlvll—(ker)Huuwﬁm.
If |B] — |8/ + |7°| — k > 0, then 7 < |B| — |8'| + |7°] — k and hence
T+ B+ I < (1B = 181+ WL = k) + 18|+ ' = 1Bl + |y = k < m.
So it follows by the Hardy-type inequality (5.7) that

_ ! ! ’ 1
Ibsporan” DP 4 s, < CIDEDA 7wl < CAHF I GEm

< ONEH P s = O
Therefore

_ ’ 1) _
||UHW:A <C Z Z AR=1] ()\Imﬁ 17 = (kkm) 4yl 2k) ||UHW:J;*W
ISk v0+yt=y '
- —k
<C (Alg =m A ) ey

Step 2. As stated prior to Lemma 5.6, the coefficients dng belong to WX (R%). So
Lemma 3.3 gives w € WF(R") and

— ~ 0 1
lwllwe, <€ > 3 A Mals e 1D wlle, < Cllaasllwe llollws -
[¥I<k AO+yt=y

Step 3. We will show that
1l < © (N7 4 005 v (5.10)

Let |a/| > m — k. We take o and v so that

o =a+7, & =m—k,

and write
1= 3 () ete),
YO+yl=y

Since |a| — /| + [¥°] =k < m — (|a°] + |v]) + |y| — k = 0, we have c((l'y:,) € Lo by
Lemma 5.3. So

1 -
lwer <C 30 1D wll, < 30 AT Fullye
’ YO+yt=y VO+t=y

Since [y!| — k < |y| — k = |o/| — m, we get (5.10).
Let |o'| < m—k. Noting that |a| — |&/| —k =m —k —]|a’| > 0, and using Lemma 5.3
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and (5.9), we write

f= > DY (2,7 Canrrw) = > D® DI (T, (Caarrw))

0<r<|al—|a’|—k 0<r<|al—|a’|—k

with cqar € Loo. Since |o'| +7 < m — k, and since T is a bounded operator in L, (R? ),
we have

! !
||f||W:;7" S C E A‘n% |+T+k7m||TT(Caa"rw)”Lp S C E A‘n% |+T+kim”wHLP
T T

47— —k
<O Nl < ONH ol
.

which gives (5.10).
Step 4. Combining the above estimates for v, w and f, we get

lArullyem <€ 7 (A= 4 agE) (g k) ([

4157 |<2m
’ T —k
<c X (A',;f +18"1-2m 4\~ ) el
lo/|+]B’|<2m
Since |&/| + |8'| < 2m and k > 1, we get the lemma. O

PROOF OF THEOREM 2.1 FOR A SPECIAL C*! DOMAIN. We continue to assume
that 1 < k < m. Let A, Ay and A; be as above. As already stated, we can apply the
result for R} to Ag. Therefore for a given 6 € (64, 7] there exist Ry > 1 and Cy > 0
such that, for A € X(Ryg, 0), the inverse of Ay — A exists and satisfies

—1
(Ao = N Ml < Coo

By Lemma 5.6 there exists Cy such that [[Ay][jyrsm _ yr-m < CiA, which corresponds
P, P

to (3.2). Then the same argument as in the proof of Lemma 3.4 shows that A — \ has a
right inverse, which we denote by Ry, if |A| > max{Ry, (2C,C;)*™}.

It follows from Lemmas 5.4 and 5.5 that U*R,®* is a right inverse of A— X and that
H\IJ*RA¢*HWSKTNHW§§7” is bounded by a constant. Therefore by invoking Lemmas 3.1,

3.2 and 3.4 we complete the proof of Theorem 2.1 for a special C*! domain. O

6. Preliminaries for Theorem 2.4.

In the rest of this paper, we will prove Theorem 2.4 for a non-divergence elliptic
operator A, which is written in the form (1.3), and satisfies (HN1) and (HN2), for a
fixed k € N.

6.1. Some reductions for non-divergence form elliptic operators.
LEMMA 6.1. In the proof of Theorem 2.4
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(i) if we can show the existence of a right inverse of A—\ and obtain the norm estimate
corresponding to (2.7), then the right inverse is exactly the inverse;

(ii) it is sufficient to show Theorem 2.4 with the constant R which may depend on k;
(iii) we may assume that A has no lower-order term.

PrROOF. To show (i) we regard A — A as an operator from W:'EQm(Q) to Wy (Q),
and suppose that A — X has a right inverse Py which satisfies the estimate corresponding
to (2.7). Let B be the elliptic operator obtained by freezing the coefficients of A at = 0:

B= Y aa(0)D".

la|<2m

We may also suppose that B — X\ has a right inverse @,. It follows from dp > d4,
My, p < My, 4 and wp = 0 that the operator norm of 5 has the same bound as that of
Py.

Since B is also regarded as a divergence form elliptic operator from WZ’TD(Q) to

W, ™ (§2), we find by Theorem 2.1 that B — A is injective on W', (€2) and hence on

W;BQW(Q). Therefore Q) = (B — X\)~!. Considering a family of operators
B, =tA+(1-1t)B

with parameter ¢ € [0, 1], and using the method of continuity, we can derive the injectivity
of A — X from that of B — \. Therefore Py = (A — \)~L.

We can show (ii) in the same way as Lemma 3.2.

For (iii) set

Ag = Z aaD”.

|| =2m

Let u € WrT?™(Q). Since aq € WE (), we have

1A= Ao)ullwe < > D A PID (@a D),

laf<2m |B|<k

BY =181 (- o
=SS 3 (4 AU [P T

lal<2m |B|<k v<B

SO S ARy,

la|<2m [B|<k v<B

<C Z )\L?{‘_Qm”UHWkt%n
P,

|a|<2m
S C)\;ll ||'LLHW:)4;2m .

Then the rest of the proof runs as in the proof of Lemma 3.4. g
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7. Proof of Theorem 2.4 for the half space.

In this section we will prove Theorem 2.4 for the half space by induction on k. The
case k = 0 is treated in [10, Theorem 5.7] under the assumption that lim,_, o aa(z)
exist for all the coefficients a,. This extra assumption can be removed by the partition
of unity, which was used for divergence form elliptic operators in [14].

We consider the case £ > 1. In view of Lemma 6.1 we may assume that 4 has no
lower-order term:

A= Z aaD”.

|a|=2m

Let @ = R}, f € WF(Q) and |A| > 1. We write Ay if A is considered as an operator
from W;Ezm(Q) to W}(). In the same way as for the case of divergence form elliptic
operators in Section 4 we need only prove that if the operator A;_; — A is invertible and
satisfies

l(Ak—1 = A) <C, (7.1)

-1
HW}i;l(Q)%Wﬁ;lem(Q)
then the equation (A — A)u = f has a solution u satisfying

w e WER™ (@) and [ullyrssn oy < Clf s @ (72)

Setting u = (Ax_1 — A)~1f, which belongs to W;ch—1)+2m(Q), we will prove (7.2) in three
steps.
Stepl. We will show that

Dju e W}Ekfl)ﬂm(Q) and ||DjU/HWPEk>\—1)+2m < C”fHWZf}A’ for1<j<n. (7.3)

We simply write Ay and 75, for the difference operator A;j; and the translation 7; 4,
respectively, defined in Section 4. Applying Aj to (A — A)u = f, we have

(A= N(Apu) = Apf = > (Apaa)maDu.
|a|=2m

By (7.1) and Lemma 4.1 (ii) we have
—1
Hh AhuHW:fc;nJrzm
< Oh Anf s

+C > > <§>||hI(Aha((f”)ThDaHUHLp

lal=2m |B|<k—1 7<B
< Clfllws,

+C >y Z||a§f’“’+ej)||Lm)\’ﬁn’1’|’8‘/\‘Tz‘*”"(’“’l)’zm||u||W1<7{cA—1>+zm
lal=2m [|<k—1 7<B
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< Clfllws, +CllF e
<Ol flws, -

By Lemma 4.1 (iii) we get (7.3).
Step 2. Set

b= agme,, v=0D"u, N ={aecN}:|a|=2m,a,<2m}.
We will show that
v e WEQ) and ol < Cllflws . (7.4)
Rewrite (A — Nu = f as

v=f+u— Z aaD%u,
aeN
and note that for & € N there exits 1 < j < n such that e; < a. By (7.1), (7.3) and
Lemma 4.1 (i) we find that v € W}F(Q) and

2
lellws, < I Fllwe, + A2l

_ I53 _ e
PO T 'B(7 [l 1D+ Dy,

a€N [BI<k v<B

< ”fHW}’jX + )\mHU”W;k;l)Hm

+C Z Z Z )\fn_"Bl)\Lg_ej+7‘_(k_l)_QmHDj’U,HW(k71)+2m
a€N |B|<k 7<P "

< Cllf s, + ComllF s < Cllfllw,

Thus we get (7.4).
Step 3. It follows from (7.3) that

D;_ﬂ+2mu c LP(Q) and ||D§€+2mu||LP < C”fHW;fA (75)

for 1 < j < mn. Since b > §4 > 0 by (HN1), we also get (7.5) for j = n by (7.4) and
D?mq, = b1y, By (7.1) and Lemma 4.1 (ii) we have

Al < Amllullyyoonean < Chmllf oo < Cllflwe -

Then the interpolation inequality yields (7.2). Thus we complete the proof of Theorem 2.4
for the half space.
8. Proof of Theorem 2.4 for a special C¥t™! domain.

In this section we will prove Theorem 2.4 for a special C**t™! domain with k € Ny.
In view of Lemma 6.1 we may assume that .4 has no lower-order term.
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Let  be a special C**"1 domain, which is written as

Q={zeR": z, > ¢o(z)},

where ¢g € C1(R"™1) satisfies 9j¢9 € WEF™(R" 1) for 1 < j < n—1. Let ® and ¥
be as in Section 5, and set d, = aq o ®. It follows from (HN), that a, € WE(R?) for
k € Ny, and that a, is uniformly continuous if £k = 0. By Lemma 5.3 with k replaced by
k +m we can write ®* A¥*, which is an operator on R, as

A" = Ag + Ay

with

Z Z dabaﬁDﬁv

|a]=2m |B|=2m

> Y dabasD”.

|la]=2m |B|<2m

We note that b,g € C*°(R"}), and that the derivatives bgﬁ) = D7b,p are written as
b} (x Zx Doy (2 (8.1)

with bagyr € Loo(RY) and [|bagyr || L. (ry) < C(y, k,m, n, ), where 7 ranges over
0 <7 <max{|la| —|B] + |7| — kK —m,0}. (8.2)
In particular, bog € WEF™(R?) for |af = || = 2m.
LEMMA 8.1. Letl<p< oo, k €Ny, and |\| > 1. Then
vl gy < O allggsn s for w € WEE™ (1)
with C = C(k, m,n,p, Mi_4,9).

PrOOF. Foru e WZﬁEQm(Ri) and |y| < k we write

a= Y G prety,

01~11~2]
lal=2m |B]<2m 'YO""‘/I""YZ*’YV Y
and set
g =al" b, D7
1
Let |a| — 8] + [y'| < k + m. Then (8.1) and (8.2) give b\’ € Lo, and hence

_ _ 2 _ 2
phan MHQHLP < CXE=Il| DAY ullp, < CNE; N8I+ (l~v+2m)||UHW;;,+2m
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Let |a] — |8] + |¥!| > k + m. Then (8.1) and (8.2) give

~(~0 _ 2
g= Za((] )2 Tbapi - DP T u,
T

where 7 ranges over 0 < 7 < |a| — |8| + |y!| — kK — m. Noting that
THBl P < lal+ 4Pk -m<m,
and using the Hardy-type inequality (5.7), we have
_ _ 2
M Mgllz, <O N PIDEDH ),
T
k— 21— (k
< OZ’\W INTHBIF I =( +2m)Hu||W:;2m
-

1 2
< CE :/\lzl—lv\ﬂalﬂ'v +v \—k—m—(k+2m)|‘u||wk+2m
P,A

T

< ONE g < O fullygrsan.
From the above estimates for g we get the lemma. O

LEMMA 82. Letl <p< oo, k€ Ny and |\ > 1. Let & be the C* map defined
by (5.2) that corresponds to a special C*¥T™1 domain Q. Then the map ®* induces an
isomorphism from W;‘E%”(Q) to W;f;'gzm(Rﬁ_), and satisfies

— k
C 1||U||W117€74):27n(£2) S ”(I)*’U”W;J;?m(]l&i) S CH’UHW;sz(Q), forv < ijj?m(ﬂ)

with C = C(k,m,n,p,Q). Also, ®* induces an isomorphism from WIf(Q) to W;(R’_f_)
and satisfies

Cil”””wﬁx(ﬂ) < |12%0llwx @r) < Cllvllws (@), forve WH(Q)
with C = C(k,m,n,p,Q).

Proor. If we replace k by k+m in Lemma 5.4, then we conclude the first assertion
of the lemma. The proof of the second assertion is not difficult, since @ is sufficiently
smooth, namely 9;®, € WEF™(R?) for 4,1 € {1,...,n}. O

PROOF OF THEOREM 2.4 FOR A SPECIAL CK*™1 poMmAIN. It is easy to see that
Ay satisfies the conditions corresponding to (HN1) and (HN2),. So we can apply the
result for R’} to Ag. The rest of the proof runs in the same way as in the case of divergence
form elliptic operators, using Lemmas 6.1, 8.1 and 8.2. O
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