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Abstract. The derivatives of Nash functions are Nash functions which

are derived algebraically from their minimal polynomial equations. In this
paper we show that, for any non-Nash analytic function, it is impossible to
derive its derivatives algebraically, i.e., by using linearity and Leibniz rule finite
times. In fact we prove the impossibility of such kind of algebraic computa-

tions, algebraically by using Kähler differentials. Then the notion of Leibniz
complexity of a Nash function is introduced in this paper, as a computational
complexity on its derivative, by the minimal number of usages of Leibniz rules
to compute the total differential algebraically. We provide general observations

and upper estimates on Leibniz complexity of Nash functions, related to the
binary expansions, the addition chain complexity, the non-scalar complexity
and the complexity of Nash functions in the sense of Ramanakoraisina.

1. Introduction.

Let f = f(x1, . . . , xn) be a C∞ function on an open subset U ⊂ Rn. Then f is

called a Nash function on U if f is analytic-algebraic on U , i.e. if f is analytic on U

and there exists a non-zero polynomial P (x, y) ∈ R[x, y], x = (x1, . . . , xn), such that

P (x, f(x)) = 0 for any x ∈ U ([15], [19], [3]). If U is semi-algebraic, then, f is a Nash

function if and only if f is analytic and the graph of f in U × R ⊂ Rn+1 is a semi-

algebraic set ([3]). For further significant progress on global study of Nash functions, see

[8].

An analytic function f on U is called transcendental if it is not a Nash function.

Then in this paper we show that, for any transcendental function, it is impossible to

algebraically derive its derivatives by using linearity and Leibniz rule (product rule)

finite times, even by using any C∞ function. In fact an analytic function f is a Nash

function if and only if its derivatives ∂f/∂x1, . . . , ∂f/∂xn are computable algebraically

(Theorem 2.1). For example, for the transcendental function f(x) = ex, the formula

d

dx
ex = ex

is never proved algebraically but is proved only by a “transcendental” method. The

statement above is formulated in terms of Kähler differential exactly.

We begin with the simple example of a Nash function f(x) =
√
x2 + 1 of one variable.

Then f2−(x2+1) = 0. By differentiating both sides of the relation, we have 2f ′f−2x = 0
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where f ′ = df/dx. Here we have used Leibniz rule three times to get (f2)′ = 2f ′f ,

(x2)′ = 2x and 1′ = 0 by setting dx/dx = 1. Then we have f ′(x) = x/f(x) = x/
√
x2 + 1.

If we suppose c′ = 0 for a constant function c, then the usage of Leibniz rule is counted

to be twice.

In general, let f be a Nash function on U ⊂ Rn. Then there is a non-zero polynomial

P (x, y) ∈ R[x, y], x = (x1, . . . , xn) such that P (x, f(x)) = 0 for any x ∈ U . We

impose the condition that (∂P/∂y)(x, f(x)) is not identically zero on U . The condition

is achieved by choosing P which has the minimal total degree or the minimal degree on

y, among polynomials P satisfying P (x, f(x)) = 0 on U . Then, by using Leibniz rule

several times, we have

∂P

∂xi
(x, f(x)) +

∂P

∂y
(x, f(x))

∂f

∂xi
(x) = 0 (1 ≤ i ≤ n).

Therefore we have the formula

∂f

∂xi
(x) = − ∂P

∂xi
(x, f(x))

/
∂P

∂y
(x, f(x)) (1 ≤ i ≤ n).

By our assumption that f is a Nash function and the assumption on P , (∂P/∂y)(x, f(x))

is a Nash function which is not identically zero. Note that the above formula needs

not give the value of (∂f/∂xi)(x) for any x ∈ U , but almost all x ∈ U , because

(∂P/∂y)(x, f(x)) may have a zero point in U .

The problem on differentiations reminds us of the problem on integrations. Note

that the partial derivatives of Nash functions are Nash functions, while the integrals of

Nash functions need not be Nash functions. This fact was one of the reasons to introduce

the class of elementary functions in classical calculus. For related results, say, Liouville’s

theorem on integrals of elementary functions, etc., refer to [18] for instance. There the

theory of differential fields plays a significant role likewise in the present paper (Proofs

of Lemma 2.3 and Theorem 2.1).

Then Leibniz complexity LC(f) of f is defined as the minimal number of usages of

Leibniz rules to compute the total differential df algebraically. The Leibniz complexity

LC(f) of a Nash function f is a kind of computational complexity. Assume any algorithm

to compute the differentials of Nash functions using C∞ functions possibly. Then LC(f)

gives a lower bound of usage count of Leibniz rule in any such algorithm. Actually we will

define three variants of Leibniz complexities L̃C,LC and lc in Section 3. In particular,

Nash functions are characterized by the finiteness of Leibniz complexity LC (Theorem

2.1).

We remark that our complexity is closely related to the addition chain complexity

[11] and to other several known computational complexities [1], [12]. We also remark

that our complexity of Nash functions is of different kind from the complexity for the

description or encoding of a Nash function defined in [7].

In general it is a difficult problem to determine the exact value of the Leibniz com-

plexity for a given Nash function. In Section 3, we provide general observations and

estimates on Leibniz complexity of Nash functions using the binary expansions (Proposi-

tion 3.13) and discuss their relations with known notions of complexity of Nash functions
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([16]).

In Section 4, we generalize Theorem 2.1 to Nash functions on an affine Nash manifold

(Theorem 4.1), by using the global results on Nash functions ([6], [9], [8]).

The authors thank anonymous referees for their valuable comments and suggestions.

In particular the relations of Leibniz complexity with the addition chain complexity ([11])

and the non-scalar complexity ([1], [12]), and moreover, the results, Lemma 3.5, Remark

3.6, Lemma 3.10 and Remark 3.11 are suggestions to the authors by one of the referees.

The authors dedicate this paper to the memory of Professor Masahiro Shiota, who

passed away in January 2018.

2. Algebraic computability of differentials.

Let C∞(U) (resp. Cω(U), Nω(U)) denote the set of all C∞ functions (resp. analytic

functions, Nash functions) on an open subset U ⊂ Rn. The notation Nω(U) is used in

[19].

Regarding A = C∞(U) (resp. Cω(U), Nω(U)) as an R-algebra, we take the space

ΩA of Kähler differentials of A and the universal derivation d : A→ ΩA.

In fact, for any R-algebra A, ΩA can be constructed as follows: First consider the

free A-module FA generated by elements df , for any f ∈ A, regarded as just symbols.

Second consider the sub-A-module RA ⊂ FA generated by the set R of all relations

of algebraic derivations:

d(h+ k)− dh− dk, d(λℓ)− λdℓ, d(1), d(pq)− pdq − qdp,

h, k, ℓ, p, q ∈ A, λ ∈ R. Note that an element of RA is a finite sum
∑
hiri where

hi ∈ A, ri ∈ R. Each hiri is called a term of the element. The first two kinds of

generators of RA in R correspond to the linearity, d(1) corresponds to the annihilation

of R ⊂ A, and the last kind of generators correspond to the Leibniz rule. We will count

just the number of terms involving the last kind of generators. Here we add d(1), which

is generated from d(1 · 1)− 1d(1)− 1d(1), as a generator of RA because we want to use

the annihilation of R ⊂ A freely.

Third we set ΩA = FA/RA and define d : A → ΩA by mapping each f ∈ A to the

class of df in FA/RA. Thus, if an element α ∈ FA reduces to zero in ΩA, then there

exists an element
∑
hiri ∈ RA, which is called an expression of α, such that α =

∑
hiri

in FA.

If B is any A-module and D : A → B is any derivation, i.e. D is an R-linear

map satisfying D(gh) = gD(h) + hD(g) for any g, h ∈ A, then there exists a unique

A-homomorphism ρ : ΩA → B such that D = ρ ◦ d.

Suppose U is connected.

Consider the set S ⊂ Nω(U) of non-zero Nash functions i.e. Nash functions which

are not identically zero on U . Then S is closed under the multiplication. For A = C∞(U)

(resp. Cω(U), Nω(U)), let Ã = C̃∞(U) (resp. C̃ω(U), Ñω(U)) denote the localization AS

of A by S. Note that any element k ∈ Ã is expressed as k = (1/g)h for a g ∈ Nω(U),

g ̸= 0, and h ∈ A and, in general, k needs not belong to A if g has a zero point in U . In

particular Ñω(U) = Nω(U)S is the quotient field Q(Nω(U)).
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Then we consider the space ΩÃ of Kähler differentials of the R-algebra Ã for A =

C∞(U), Cω(U),Nω(U),

Then we have:

Theorem 2.1. Let U be a semi-algebraic connected open subset of Rn. Let A =

C∞(U) (resp. Cω(U), Nω(U)). Then the following 10 conditions on an analytic function

f ∈ Cω(U) are equivalent to each other :

(1) f is a Nash function on U .

(2)A There exists a non-zero Nash function g ∈ Nω(U) such that

g

(
df −

n∑
i=1

∂f

∂xi
dxi

)
= 0,

in the space ΩA of Kähler differentials of A.

(3)A df =
∑n

i=1(∂f/∂xi)dxi, in the space ΩÃ of Kähler differentials of Ã.

(4)A There exist f1, . . . , fn ∈ Ã such that df =
∑n

i=1 fidxi, in the space ΩÃ of

Kähler differentials of Ã.

We will show the implications

(1)⇒ (2)Nω(U) ⇒ (2)Cω(U) ⇒ (2)C∞(U)

⇓ ⇓ ⇓
(3)Nω(U) ⇒ (3)Cω(U) ⇒ (3)C∞(U)

⇓ ⇓ ⇓
(4)Nω(U) ⇒ (4)Cω(U) ⇒ (4)C∞(U) ⇒ (1)

to have the equivalence of the 10 conditions.

To show Theorem 2.1, we first recall the following known basic result on Nash

functions, which is formulated in more general setting than we are going to use.

Lemma 2.2. Let U ⊂ Rn be a semi-algebraic open subset and f ∈ Cω(U) be an

analytic function on U . Then the following conditions are equivalent to each other :

(i) f is a Nash function on U , i.e. there exists a non-zero polynomial P (x, y) such

that P (x, f(x)) = 0 for any x ∈ U .

(ii) The graph of f in U ×R ⊂ Rn+1 is a semi-algebraic set.

(iii) For any a ∈ U , the Taylor series j∞f(a) of f at a is algebraic in the formal

power series algebra R[[x − a]] over the polynomial algebra R[x − a] = R[x], in other

words, there exists a non-zero polynomial P (x, y) such that j∞P (x, f)(a) = 0.

(iv) For any connected component U ′ of U , there exists a point a ∈ U ′ such that the

Taylor series j∞f(a) of f at a is algebraic in the formal power series algebra R[[x− a]]

over the polynomial algebra R[x− a].

Proof. The equivalence between (i) and (ii) is well-known (see for instance [3]).

The implications (i) ⇒ (iii) ⇒ (iv) are clear. To show the implication (iv) ⇒ (i), suppose
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(iv). Note that the number of connected components of U is finite. Let U1, . . . , Ur be

the connected components of U . Let 1 ≤ i ≤ r. Then there exists ai ∈ Ui such that f is

expressed by the Taylor series at ai in a neighborhood W ⊂ Ui of ai and there exists a

non-zero polynomial Pi(x, y) such that Pi(x, f(x)) = 0 for any x ∈W . Since the function

Pi(x, f(x)) is analytic on Ui and Ui is connected, Pi(x, f(x)) = 0 for any x ∈ Ui. Then

it suffices to take P =
∏r

i=1 Pi to get (i). □

Also we need the general algebraic lemma to show the implication (4)C∞(U) ⇒ (1)

of Theorem 2.1.

Lemma 2.3. Let K ⊂ L be a field extension. Assume that R ⊂ K. Let f ∈ L be

a transcendental element over K. Then, for any derivation D0 : K → K and for any

u ∈ L, there exists a unique derivation Du : K(f) → L satisfying

Du|K = D0, Du(f) = u.

Moreover if L is finitely generated over K, then the derivation Du extends to a derivation

D : L→ L.

Proof. Since f is transcendental over K, we can define a derivation Du : K(f) →
L on the extension field K(f) over K by f , by Du|K = D0 and Du(f) = u. Suppose L is

finitely generated over K and L = K(f, h1, . . . , hm) for some h1, . . . , hm ∈ L. Then we

define a derivation Du1 : K(f, h1) → L, Du1|K(f) = Du as follows: If h1 is transcendental

over K(f), then we set Du1(h1) = 0. If h1 is algebraic over K(f), then we set Du1(h1)

as the element in K(f, h1) which is determined by the algebraic relation of h1 over K(f)

and Du. In fact, if
∑m

k=0 akh
m−k
1 = 0, ak ∈ K(f), is a minimal algebraic relation of h1

over K(f), then we would have

m∑
k=0

Du(ak)h
m−k
1 +

(
m−1∑
k=0

(m− k)akh
m−k−1
1

)
D1(h1) = 0.

Since
∑m−1

k=0 (m − k)akh
m−k−1
1 ̸= 0 by the minimality assumption, Du1(h1) is uniquely

determined by

Du1(h1) = −

(
m∑

k=0

Du(ak)h
m−k
1

)/(
m−1∑
k=0

(m− k)akh
m−k−1
1

)
.

Thus we extend Du into a derivation D = Dum : L→ L by a finite number of steps. Note

that we need not to use Zorn’s lemma to show the existence of extension of derivation. □

Proof of Theorem 2.1. (1) ⇒ (2)Nω(U) : Let f ∈ Cω(U) be a Nash function

and P (x, y) be a non-zero polynomial satisfying P (x, f) = 0 and (∂P/∂y)(x, f) ̸= 0.

Then, by taking Kähler differential on both sides of the polynomial equality P (x, f) = 0,

we have in ΩNω(U),
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0 = d(P (x, f)) =
n∑

i=1

∂P

∂xi
(x, f)dxi +

∂P

∂y
(x, f)df

=
n∑

i=1

(
−∂P
∂y

(x, f)
∂f

∂xi

)
dxi +

∂P

∂y
(x, f)df

=
∂P

∂y
(x, f)

(
df −

n∑
i=1

∂f

∂xi
dxi

)
,

and that (∂P/∂y)(x, f) is a non-zero Nash function on U .

Since Nω(U) ⊂ Cω(U) ⊂ C∞(U), the implications (j)Nω(U) ⇒ (j)Cω(U) ⇒ (j)C∞(U)

are clear, for j = 2, 3, 4.

(2)A ⇒ (3)A, A = C∞(U), Cω(U),Nω(U): Since 1/g belongs to the localization Ã, we

have that, if g (df −
∑n

i=1(∂f/∂xi)dxi) = 0 in ΩA, then df −
∑n

i=1(∂f/∂xi)dxi = 0

in ΩÃ.

The implications (3)A ⇒ (4)A, A = C∞(U), Cω(U),Nω(U), are clear.

(4)C∞(U) ⇒ (1) : Suppose f is not a Nash function on U and df−
∑n

i=1 fidxi = 0 in

ΩC̃∞(U). Since f is not a Nash function, by Lemma 2.2, there exists a point a ∈ U such

that f ∈ R[[x−a]] ⊂ Q(R[[x−a]]) is not algebraic. Here R[[x−a]] = C∞
Rn,a/m

∞
Rn,a is the

R-algebra of formal series, M = Q(R[[x−a]]) is its quotient field and the Taylor series of

f at a is written also by the same symbol f . Moreover, we have df −
∑n

i=1 fidxi = 0 in

the Kähler differentials ΩM ofM , via the homomorphism C̃∞(U) →M defined by taking

the Taylor series. Then, in the free M -module FM generated by elements {dh | h ∈M},
df −

∑n
i=1 fidxi is a finite sum of elements of types

a(d(h+ k)− dh− dk), b(d(λℓ)− λdℓ), c(d(pq)− pdq − qdp).

Here a, h, k, b, ℓ, c, p, q ∈ M,λ ∈ R. Now we take the subfield L ⊂ M generated over

the rational function field K = R(x) by f, fi(1 ≤ i ≤ n) and those a, h, k, b, ℓ, c, p, q

which appear in the above expression of df −
∑n

i=1 fidxi: L = K(f, h1, . . . , hm), which

is a finitely generated field over K by f and for some h1, . . . , hm ∈ M . Then we have

df −
∑n

i=1 fidxi = 0 also in ΩL.

Take any non-zero element u ∈ L and fix it. Set D0 = 0. Then, by Lemma 2.3, we

have a derivation D : L → L with D(f) = u. Then by the universality of the Kähler

differentials, there exists an L-linear map ρ : ΩL → L such that ρ ◦d = D : L→ L. Here

d : L→ ΩL is the universal derivation. Then we have

0 = ρ

(
df −

n∑
i=1

fidxi

)
= D(f) = u.

This leads to a contradiction with the assumption u ̸= 0. Thus we have that f is a Nash

function. □

Remark 2.4. If Zorn’s lemma is used, then the fact that a transcendental basis of

M = Q(R[[x−a]]) forms a basis of ΩM as anM -vector space (Theorem 26.5 of [13]) will

give a shorter proof of the part (4)C∞(U) ⇒ (1) of proof of Theorem 2.1. In fact if f ∈M
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is transcendental, then there exists a transcendental basis containing f, x1, . . . , xn and

therefore we have that df,dx1, . . . ,dxn are linearly independent over M , which leads to

a contradiction. (The remark is based on an anonymous reviewer’s comment informed

to the authors.) The same remark is applied also to the proof of our Theorem 4.1.

Remark 2.5. If U is not connected, then Theorem 2.1 does not hold. In fact, let

U = R \ {0} and set f(x) = ex if x > 0 and f(x) = 1 if x < 0. Then f ∈ Cω(U) and

f ̸∈ Nω(U). However the condition (2) is satisfied if we take as g the non-zero Nash

function on U defined by g(x) = 0(x > 0), g(x) = 1(x < 0).

3. Estimates on Leibniz complexity.

Let U ⊂ Rn be a semi-algebraic connected open subset. Let f ∈ Nω(U) be a Nash

function on U .

Then by the equivalence of (1) and (2)Nω(U) in Theorem 2.1, there exists a non-zero

Nash function g ∈ Nω(U) such that g(df −
∑n

i=1(∂f/∂xi)dxi) ∈ RNω(U)(⊂ FNω(U)).

Then define LCg(f) as the minimal number of terms corresponding to Leibniz rule among

all expressions of g(df−
∑n

i=1(∂f/∂xi)dxi) ∈ RNω(U). We define the Leibniz complexity

LC(f) of f by the minimum of LCg(f) for all such non-zero g ∈ Nω(U).

Note that we do not care about the number of terms corresponding to linearity of

the differential. Moreover we do not count the term generated by the relation d(1 · 1)−
1d(1)− 1d(1). Therefore we use the relation d(c) = 0 for c ∈ R freely.

Similarly we define L̃C(f), related to Theorem 2.1 (3)Nω(U), as the minimal number

of terms corresponding to Leibniz rule among all expressions of df−
∑n

i=1(∂f/∂xi)dxi ∈
RÑω(U).

Moreover, if df −
∑n

i=1(∂f/∂xi)dxi ∈ RNω(U), then we define lc(f) = LC1(f),

simply as the minimal number of terms corresponding to Leibniz rule among all its

expressions inRNω(U). Note that, if f is a polynomial function, then lc(f) <∞. However

in general df −
∑n

i=1(∂f/∂xi)dxi may not belong to RNω(U). Then we set lc(f) = ∞.

Hereafter, for f ∈ Nω(U), we set

ζ(f) := df −
n∑

i=1

∂f

∂xi
dxi,

regarded as an element in FA for A = Nω(U) or for its localization A = Ñω(U) =

Nω(U)S where S = Nω(U) \ {0}.
First we show general basic inequalities:

Lemma 3.1. For any f ∈ Nω(U), we have L̃C(f) ≤ LC(f) ≤ lc(f).

Proof. Suppose lc(f) <∞ and there exists an expression of ζ(f) in RNω(U) such

that the number of terms involving Leibniz rule is equal to lc(f). Then setting g = 1,

gζ(f) has the same expression in RNω(U), and therefore we have LC(f) ≤ lc(f). Next,

by the definition of LC(f), there exist a g ∈ Nω(U) \ {0} and an expression of gζ(f) in

RNω(U) such that the number of terms involving Leibniz rule is equal to LC(f). Then,
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dividing by g, we have an expression of ζ(f) in RÑω(U) such that the number of terms

involving Leibniz rule is equal to LC(f). Therefore, by the definition of L̃C(f), we have

L̃C(f) ≤ LC(f). □

Lemma 3.2. For f, g ∈ Nω(U), we have

(1) LC(f + g) ≤ LC(f) + LC(g). (2) LC(fg) ≤ LC(f) + LC(g) + 1.

The same inequalities hold for L̃C and lc.

Proof. Let hζ(f) ∈ RNω(U) (resp. kζ(g) ∈ RNω(U)) be expressed using the terms

of Leibniz rule minimally i.e. LC(f)-times (resp. LC(g)-times), for a non-zero h ∈ Nω(U)

(resp. a non-zero k ∈ Nω(U)). Then hkζ(f + g) = k(hζ(f)) + h(kζ(g)) ∈ RNω(U) is

expressed using Leibniz rule at most LC(f) + LC(g) times. Therefore we have (1).

Moreover, by using Leibniz rule once, we have

hkd(fg) = hk(gdf + fdg) = kg(hdf) + hf(kdg)

in ΩNω(U). Then, using Leibniz rule LC(f) + LC(g) times, we compute hdf and kdg,

and thus hkd(fg). Therefore we have (2).

For L̃C and lc, the inequalities are proved similarly or more easily. □

By the definition of Leibniz complexity, we have the affine invariance:

Lemma 3.3. Let f ∈ Nω(U) and φ : Rn → Rn be an affine isomorphism. Then

f ◦ φ ∈ Nω(φ−1(U)) satisfies LC(f ◦ φ) = LC(f), L̃C(f ◦ φ) = L̃C(f) and lc(f ◦ φ) =
lc(f).

Proof. By the definition of Leibniz complexity h(df −
∑n

i=1(∂f/∂xi)d(xi)) is

zero in ΩNω(U) by using Leibniz rule LC(f)-times, for a non-zero h ∈ Nω(U). Let

x′ = (x′1, . . . , x
′
n) be new affine coordinate system on Rn defined by x′ = φ−1(x). Then

(h◦φ)(d(f ◦φ)−
∑n

i=1(∂f/∂xi)◦φd(φi)) is zero in ΩNω(U) by using Leibniz rule LC(f)-

times. Since we do not count the usage of Leibniz rule for d(c) = 0, c ∈ R, we have

that (h ◦ φ)(d(f ◦ φ) −
∑n

i=1(∂(f ◦ φ)/∂x′i)d(x′i)) is zero in ΩNω(U) by using Leibniz

rule the same LC(f)-times. Note that h ◦ φ ∈ Nω(U) is non-zero. Therefore we have

LC(f ◦φ) ≤ LC(f). Similarly, we have LC(f) = LC((f ◦φ)◦φ−1) ≤ LC(f ◦φ). Thus we
have the required equality. The equality for L̃C (resp. lc(f)) is proved similarly or more

easily. □

In general it is a difficult problem to determine the exact value of the Leibniz com-

plexity even for an polynomial function.

Example 3.4. Let n = 1 and write x = x1. Then we have L̃C(x + c) = LC(x +

c) = lc(x + c) = 0. L̃C(x2 + bx + c) = LC(x2 + bx + c) = lc(x2 + bx + c) = 1.

L̃C(
√
x2 + 1) = LC(

√
x2 + 1) = lc(

√
x2 + 1) = 2.

Let n = 2. For λ ∈ R, we have

LC(x21 + x22 + λx1x2) =

{
1 if |λ| ≥ 2

2 if |λ| < 2.
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In fact, x21 + x22 + λx1x2 = (x1 + (λ/2)x2)
2 + (1− λ2/4)x22. Moreover x21 + x22 + λx1x2 =

(x1 + αx2)(x1 + βx2) for some α, β ∈ R if and only if |λ| ≥ 2. The same results hold for

L̃C and lc.

Let n = 1 and write x = x1. We consider Leibniz complexity of a monomial xk. For

example, lc(x0) = lc(1) = 0, lc(x) = 0, lc(x2) = 1, lc(x3) = 2, lc(x4) = 2. Also for LC and

L̃C we have the same results. For example we calculate d(x4) = 2x2d(x2) = 4x3d(x)

by using Leibniz rule twice, and we can check that it is impossible to calculate d(x4) by

using Leibniz rule just once.

To observe the essence of the problem to estimate the Leibniz complexity, let us

digress to consider “the problem of strips”. Let k be a positive integer. Suppose we have

a sheet of paper having width k and, using a pair of scissors, we make k-strips of width 1.

We may cut several sheets of the same width at once by piling them. Then the problem

is to minimize the total number of cuts. Clearly it is at most k − 1.

The exact answer to the above problem is given by the addition chain complexity

ℓ(k) (see [11]). An addition chain of k is a sequence of integers

1 = a0, a1, a2, . . . , ar = k

satisfying that, for any i = 1, 2, . . . , r, there exist j and m with 0 ≤ j ≤ m < i, such that

ai = aj + am. Then ℓ(k) is defined as the minimum of the length r for all addition chain

of k.

A process of making k-strips as above corresponds to an addition chain bijectively.

Therefore the minimum of the total number of cuts is given by ℓ(k).

Lemma 3.5. For a positive integer k, we have

L̃C(xk) ≤ LC(xk) ≤ lc(xk) ≤ ℓ(k).

Proof. Let 1 = a0, a1, a2, . . . , ar = k be an addition chain of k. Since k =

ar = aj + am for some 0 ≤ j ≤ m < k, we have one relation

d(xk)− xajd(xam)− xamd(xaj )

in RNω(U). Thus we have

d(xk) = xajd(xam) + xamd(xaj )

in ΩNω(U) using Leibniz rule once. If j < m, we apply this procedure to d(xam). Then,

using a relation

d(xk)− xajd(xam)− xamd(xaj ) + xaj (d(xam)− xaj′d(xam′ )− xam′d(xaj′ ))

with two terms, in the sense of Section 2, in RNω(U) for some 0 ≤ j′ ≤ m′ < m, we have

d(xk) = xaj+aj′d(xam′ ) + xaj+am′d(xaj′ )
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in ΩNω(U) using Leibniz rule twice. If j = m, then xajd(xam)+xamd(xaj ) = 2xamd(xam),

and then a similar procedure is applied to d(xam). Thus we see that, by using a rela-

tion with s-terms involving Leibniz rule, d(xk) is reduced to a functional linear com-

bination of d(xa0),d(xa1), . . . ,d(xar−s) in ΩNω(U), s = 1, 2, . . . , r. Therefore we have

lc(xk)(= LC1(x
k)) ≤ r, for any addition chain of k. Hence we have lc(xk) ≤ ℓ(k). Other

inequalities follow from Lemma 3.1. □

Remark 3.6. We can define, naturally, a kind of Leibniz complexity lcpoly by using

the Kähler differential ΩA of polynomial algebra A = R[x1, . . . , xn]. Then the proof of

Lemma 3.5 gives also the inequalities lc(xk) ≤ lcpoly(x
k) ≤ ℓ(k). The authors conjecture,

at least, the equality lcpoly(x
k) = ℓ(k), but they have no proof of that.

Now we show one known strategy to obtain an explicit estimate. Consider the binary

expansion of k:

k = 2µr + 2µr−1 + · · ·+ 2µ1 ,

for some integers µr > µr−1 > · · · > µ1 ≥ 0. We set µ = µr. Then the number of

digits (‘1’ or ‘0’) is given by µ + 1, while r is the number of units, ‘1’, appearing in the

binary expansion. Then first we cut the sheet into r sheets of width 2µ, 2µr−1 , . . . , 2µ1

by (r − 1)-cuts. Second, divide the sheet of width 2µ into sheets of width 2µr−1 by

µ−µr−1-cuts. Third, divide the piled sheets of width 2µr−1 into sheets of width 2µr−2 by

µr−1−µr−2-cuts, and so on. Iterating the process, we have sheets of width 2µ1 , which we

divide into strips of width 1 by µ1-cuts finally. The total number of cuts by this method

is given by µ+ r − 1.

Thus we have by Lemma 3.5:

Corollary 3.7. For a positive integer k, we have

L̃C(xk) ≤ LC(xk) ≤ lc(xk) ≤ ℓ(k) ≤ µ+ r − 1.

Remark 3.8. The estimate in Corollary 3.7 is, by no means, best possible. For

example, let k = 31. Then 31 = 24 + 23 + 22 + 21 + 20. Therefore r = 5 and µ = 4.

Therefore µ + r − 1 = 8. Moreover we have the addition chain complexity ℓ(31) = 7.

However LC(x31) ≤ 6. In fact, since 32 = 25, we have by Lemma 3.7,

xd(x31) = d(x32)− x31d(x) = 32x31d(x)− x31d(x) = 31x31d(x),

by using Leibniz rule 6 times. Then we have d(x31) = 31x30d(x) in ΩC̃∞(U).

Related to Corollary 3.7, we observe

Lemma 3.9. For f ∈ Nω(U) and a natural number k ≥ 1, we have LC(fk) ≤
LC(f) + LC(xk).

Proof. If f is a constant function, then LC(fk) = 0, so the inequality holds

trivially. We suppose f is not a constant function. By definition, for some non-zero g ∈
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Nω(R), gd(xk) is deformed into g kxk−1dx in ΩNω(R) using Leibniz rules LC(xk)-times.

Using the same procedure, (g ◦ f)d(fk) is deformed into (g ◦ f)kfk−1df in ΩNω(U) using

Leibniz rules LC(xk)-times. Note that g◦f is non-zero inNω(U). Moreover, using Leibniz

rules LC(f) times, h(g ◦ f)kfk−1df is deformed into h(g ◦ f)
∑n

i=1 kf
k−1(∂f/∂xi)dxi

for some non-zero h ∈ Nω(U). Since g ◦ f is non-zero, h(g ◦ f) is non-zero. □

In general we have

Lemma 3.10. Let g1, . . . , gm ∈ Nω(U) and P (y1, . . . , ym) ∈ R[y1, . . . , ym] be a

polynomial regarded as a function on Rm. Then, for the Leibniz complexity of f =

P (g1, . . . , gm), we have

LC(f) ≤ lc(P ) +
m∑
i=1

LC(gi), L̃C(f) ≤ lc(P ) +
m∑
i=1

L̃C(gi), lc(f) ≤ lc(P ) +
m∑
i=1

lc(gi).

Proof. We give a proof of the first inequality only. The remaining inequalities

are proved similarly or more easily.

Using Leibniz rule lc(P ) times, we have

d(f) =
∑ ∂P

∂yi
(g1, . . . , gm)d(gi),

in ΩNω(U). For each i = 1, . . . ,m, there exists non-zero Nash function hi such that

hid(gi) = hi

n∑
j=1

∂gi
∂xj

d(xj)

by an LC(gi) times usage of Leibniz rule. Therefore, we have

h1 · · ·hmd(f) = h1 · · ·hm

 n∑
j=1

∂f

∂xj
d(xj)

 ,

in ΩNω(U), using Leibniz rule lc(P ) +
∑m

i=1 LC(gi) times in total. Therefore, we have

LC(f) ≤ lc(P ) +
∑m

i=1 LC(gi). □

Remark 3.11. The Leibniz complexity lc(P ) or lcpoly(P ) (see Remark 3.6) for

polynomials P is closely related to the non-scalar complexity of P ([12], [1]). The non-

scalar complexity of a polynomial P is defined roughly as follows. Consider any program

to produce polynomials in R[x1, . . . , xn] by scalar multiplications, additions and prod-

ucts, without divisions, starting from the 0-th stage 1, x1, . . . , xn (depth 0), and making

some pair of linear combinations of polynomials appeared in previous stages of depth ≤ r

and, as the next stage, making the product of them (depth r + 1) and so on. Then the

non-scalar complexity Lns(P ) is defined as the minimal depth of the polynomial P in all

such programs producing P . Then we have

lc(P ) ≤ lcpoly(P ) ≤ Lns(P ).
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The proof is similar to that of Lemma 3.5. The authors conjecture also that the equality

lcpoly(P ) = Lns(P ) holds, but they have no proof of the equality.

In [1], the non-scalar complexity of rational functions for programs allowing divisions

is considered. Moreover, for any rational function f , it is given an estimate of the non-

scalar complexity of partial derivatives ∂f/∂xi by means of that of f . It is interesting

to estimate the Leibniz complexity of partial derivatives of higher order by using Baur–

Strassen’s result [1].

As above, we consider “the problem of strips” starting from several number of sheets,

say, s, having width ks, ks−1, and k1 respectively. Then we have

Lemma 3.12. Let P = P (x) = asx
ks + as−1x

ks−1 + · · · + a1x
k1 ∈ R[x] be a poly-

nomial function of one variable, where aj ̸= 0 (1 ≤ j ≤ s) and ks > ks−1 > · · · > k1 ≥ 0.

Regarding the binary expansion, let µ be (the number of digits of ks ) −1, and rj the num-

ber of units of kj, 1 ≤ j ≤ s. Then, by using Leibniz rule
(
µ+

∑s
j=1(rj − 1)

)
-times to-

gether with linearity, and by supposing d(c) = 0, c ∈ R, we have d(P ) = (dP (x)/dx)d(x)

in ΩNω(U). In particular we have

L̃C(P ) ≤ LC(P ) ≤ lc(P ) ≤ µ+

s∑
j=1

(rj − 1).

Proof. Let µ = µt > µt−1 > · · · > µ1 ≥ 0 be all of the exponents appearing in

the binary expansions of ks, ks−1, . . . , k1. First, by using Leibniz rule
∑s

j=1(rj−1)-times,

we modify d(P ) into a linear combination of d(xℓ), ℓ = 2µ = 2µt , 2µt−1 , . . . , 2µ1 . Second,

by using Leibniz rule µ − µt−1-times, we modify d(xℓ), ℓ = 2µ into d(xℓ
′
), ℓ′ = 2µt−1 .

Repeating the procedure, we modify d(P ) into a multiple of d(xℓ), ℓ = 2µ1 . Finally, by

using Leibniz rule µ1-times, we modify d(P ) into a multiple of d(x). □

We estimate the Leibniz complexity for a polynomial of n-variables. Let P (x) =

P (x1, . . . , xn) ∈ R[x1, . . . , xn]. We set P (x) =
∑
bαx

α, bα ∈ R, by using multi-index

α = (α1, . . . , αn) of non-negative integers. It is trivial that lc(P ) is at most the total

number of multiplications of variables:∑
bα ̸=0

max{|α| − 1, 0}.

Instead we consider the number

σ(P ) :=
∑
bα ̸=0

max{#{i | 1 ≤ i ≤ n, αi > 0} − 1, 0},

which is needed just to separate the variables on differentiation, and we try to save the

additional usage of Leibniz rule.

Suppose that, by arranging terms with respect to xi for each i, 1 ≤ i ≤ n,

P (x) = ai,s(i)x
ki,s(i)

i + ai,s(i)−1x
ki,s(i)−1

i + · · ·+ ai,1x
ki,1

i ,
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where ai,j is a non-zero polynomial of x1, . . . , xn without xi, (1 ≤ j ≤ s(i)), and ki,s(i) >

ki,s(i)−1 > · · · > ki,1 ≥ 0. The maximal exponent ki,s(i) is written as degxi
P , the degree

of P in the variable xi. For the binary expansion of degxi
P , let µi denote (the number

of digits of degxi
P ) −1. Moreover let rij , 1 ≤ j ≤ s(i) denote the number of units of the

exponent kij for the binary expansion. Then we have

Lemma 3.13. By using the linearly, d(c) = 0, c ∈ R, and Leibniz rule(
σ(P ) +

∑n
i=1

(
µi +

∑s(i)
j=1(rij − 1)

))
-times together with linearity, we have d(P ) =∑n

i=1(∂P (x)/∂xi)d(xi) in ΩNω(U). In particular we have the estimate

lc(P ) ≤ σ(P ) +
n∑

i=1

µi +

s(i)∑
j=1

(rij − 1)

 .

Remark 3.14. We have, for any polynomial P (x) =
∑
bαx

α,

σ(P ) +
n∑

i=1

µi +

s(i)∑
j=1

(rij − 1)

 ≤
∑
bα ̸=0

max{|α| − 1, 0}.

and in almost cases the inequality is strict.

Proof of Lemma 3.13. By applying Leibniz rule to each term of P , we can

express d(P ) as a sum of the products of the forms ai,jd(x
ki,j

i ), in which we have the

differential of one variable xi and a function ai,j of the other variables. For this process

we need to use Leibniz rule σ(P )-times. Then d(P ) is the sum of the form

ai,s(i)d(x
ki,s(i)

i ) + ai,s(i)−1d(x
ki,s(i)−1

i ) + · · ·+ ai,1d(x
ki,1

i ),

(i = 1, . . . , n). By Lemma 3.12, for each i = 1, . . . , n, the form is deformed into∑n
i=1(∂P/∂xi)dxi by using Leibniz rule

(
µi +

∑s(i)
j=1(rij − 1)

)
-times. Thus we have the

estimate. □

Now we give an upper estimate of Leibniz complexities for Nash functions by those

for polynomial functions in terms of its polynomial relation. Let f ∈ Nω(U) be a Nash

function on a connected open subset U of Rn. Let P (x, y) = P (x1, . . . , xn, y) be a

polynomial such that P (x, f(x)) = 0 on U and (∂P/∂y)(x, f(x)) is not identically zero.

We set x0 = y. Suppose that, by arranging with respect to xi for each i, 0 ≤ i ≤ n, we

have

P (x, y) = ai,s(i)x
ki,s(i)

i + ai,s(i)−1x
ki,s(i)−1

i + · · ·+ ai,1x
ki,1

i ,

where ai,j is a non-zero polynomial of x0, x1, . . . , xn without xi (1 ≤ j ≤ s(i)), and

ki,s(i) > ki,s(i)−1 > · · · > ki,1 ≥ 0. For the binary expansion, let µi (resp. rij , 1 ≤ j ≤
s(i)) be (the number of digits of degxi

P ) −1 (resp. the number of units of kij), 0 ≤ i ≤ n,

respectively. Write degxi
P the degree of P with respect to xi, 0 ≤ i ≤ n and use the

same notation σ(P ) as in Lemma 3.13 for the polynomial P of n+ 1 variables.
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Proposition 3.15. Under the above notations, we have the estimate

LC(f) ≤ σ(P ) +
n∑

i=0

µi +

s(i)∑
j=1

(rij − 1)

 .

In particular we have

LC(f) ≤ σ(P ) +
n∑

i=0

{(degxi
P + 2)(log2(degxi

P )− 1)}+ n+ 1.

Example 3.16. Let n = 1, f =
√
x2 + 1 and P (x, y) = y2 − x2 − 1. Then σ(P ) =

0, µ0 = µ1 = 1 and rij = 1. Therefore the first inequality gives us that LC(f) ≤ 2 as is

seen in Introduction.

Proof of Proposition 3.15. We write the right hand side by ψ of the first

inequality. By Lemma 3.13, we have, by using Leibniz rule ψ-times,

d(P (x, y)) =
n∑

i=1

∂P

∂xi
(x, y)dxi +

∂P

∂y
(x, y)dy,

modulo several linearity relations and dc, c ∈ R in ΩNω(U×R). Then, substituting y by

f , we have that

0 = d(P (x, f)) =

n∑
i=1

∂P

∂xi
(x, f)dxi +

∂P

∂y
(x, f)df,

in ΩNω(U), therefore that

∂P

∂y
(x, f)

(
df −

n∑
i=1

∂f

∂xi
dxi

)
= 0,

in ΩNω(U), by using Leibniz rule at most ψ-times. Thus we have the first inequality. The

second equality is obtained from the first equality combined with the inequalities derived

by the definitions:

2µi ≤ degxi
P < 2µi+1, s(i) ≤ degxi

P + 1, and rij ≤ µi,

(1 ≤ j ≤ s(i), 0 ≤ i ≤ n). □

In [16], the complexity C(f) of a Nash function f is defined as the minimum the

total degree degP of non-zero polynomials P (x, y) with P (x, f) = 0. Moreover we define

S(f) := min{σ(P ◦ψ) | P (x, f) = 0, degP = C(f), ψ is an affine isomorphism on Rn+1},

i.e. the minimum of the number σ for any defining polynomial P of f with minimal total

degree under any choice of affine coordinates. We can regard S(f) a complexity for the

separation of variables in differentiation of f . Then we have the following result:
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Corollary 3.17. Let f ∈ Nω(U) be a Nash function on a connected open set

U ⊂ Rn. Then we have an estimate on the Leibniz complexity LC(f) by the Ramanako-

raisina’s complexity C(f) and another complexity S(f),

LC(f) ≤ S(f) + (n+ 1)(C(f) + 2)(log2C(f)− 1) + n+ 1.

Proof. Since degxi
P ≤ C(f) (0 ≤ i ≤ n) we have the above estimate by Propo-

sition 3.15 and Lemma 3.3. □

Naturally we would like to pose a problem to obtain any lower estimate of Leibniz

complexity.

4. Algebraic differentiation on Nash manifolds.

Let U be a connected semi-algebraic open subset of Rn andM ⊂ U a Nash subman-

ifold ([3], [19]). Suppose M is a closed connected subset in U . We consider the quotient

R-algebra Nω(U)/I by the ideal I of Nω(U) consisting of Nash functions on U which

vanish on M .

Since Nω(U) is Noetherian ([17], [14]), I is generated by a finite number of Nash

functions g1, . . . , gℓ ∈ Nω(U) over Nω(U).

An element [f ] ∈ Cω(U)/ICω(U) is called Nash if there exists a polynomial

P (x, y) = am(x)ym + am−1(x)y
m−1 + · · · + a1(x)y + a0(x) ∈ R[x, y] satisfying that

at least one of am([x]), am−1([x]), . . . , a1([x]), a0([x]) is not zero in Nω(U)/I and that

P ([x], [f ]) = 0 in Cω(U)/ICω(U). The condition is equivalent to that [f ] is algebraic over

R(x) via the composition R(x) ↪→ Cω(U) → Cω(U)/ICω(U) of natural homomorphisms.

Also the condition is equivalent to that [f ] is algebraic over Nω(U)/I via the natural

homomorphism Nω(U)/I → Cω(U)/ICω(U). Then there exist a non-zero polynomial

P (x, y) and hj ∈ Cω(U), 1 ≤ j ≤ ℓ such that

P (x, f(x)) =
ℓ∑

j=1

hj(x)gj(x),

for any x ∈ U and that (∂P/∂y)(x, f) ̸∈ ICω(U). By differentiating both sides of the

relation by xi, we have that

∂P

∂xi
(x, f(x)) +

∂P

∂y
(x, f(x))

∂f

∂xi
=

ℓ∑
j=1

gj(x)
∂hj
∂xi

(x) +
ℓ∑

j=1

hj(x)
∂gj
∂xi

(x),

so that

∂P

∂y
([x], [f ])

[
∂f

∂xi

]
= − ∂P

∂xi
([x], [f ]),

in C∞(U)/(I + ⟨∂g1/∂xi, . . . , ∂gℓ/∂xi⟩C∞(U)), for 1 ≤ i ≤ n. Note that (∂P/∂y)([x], [f ])

is non-null in Cω(U)/ICω(U) and algebraic over Nω(U)/I.
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We consider the space ΩA of Kähler differentials of A = C∞(U) (resp.

Cω(U),Nω(U)). Note that ΩA/IA
∼= ΩA/(AdI + IΩA), as an A/IA-module. For the

set S of non-zero Nash elements in Cω(U)/ICω(U), Ã/IA = (A/IA)S denote the local-

ization of A/IA = C∞(U)/IC∞(U) (resp. Cω(U)/ICω(U),Nω(U)/I) by S.

An ideal I of Nω(U) is called locally formally prime if, for each a ∈ U , the ideal Ia
in the formal algebra R[[x− a]] generated by {j∞h(a) | h ∈ I} is prime.

Then we have:

Theorem 4.1. Let U be a connected semi-algebraic open subset of Rn and I a

locally formally prime ideal in Nω(U). Let A = C∞(U)/IC∞(U), Cω(U)/ICω(U) or

Nω(U)/I. Then the following 10 conditions on [f ] ∈ Cω(U)/ICω(U) are equivalent to

each other :

(1) [f ] is Nash.

(2)A There exists a non-zero Nash element [g] ∈ Cω(U)/ICω(U) such that

[g]

(
d[f ] −

n∑
i=1

[
∂f

∂xi

]
d[xi]

)
= 0,

in the space ΩA of Kähler differentials of A.

(3)A d[f ] =
∑n

i=1 [∂f/∂xi]d[xi], in the space ΩÃ of Kähler differentials of the

localization Ã of A by the set of non-zero Nash elements.

(4)A There exist α1, . . . , αn ∈ Ã such that d[f ] =
∑n

i=1 αid[xi], in the space ΩÃ.

Remark 4.2. If I is the ideal of Nash functions vanishing on a connected closed

Nash submanifold M ⊂ U , then I is locally formally prime and ICω(U) is prime in

Cω(U).

To show Theorem 4.1, we need the following characterization of Nash function. It

is proved using the extension theorem due to Efroymson or its generalization [9]:

Lemma 4.3. Let U ⊂ Rn be a connected semi-algebraic open subset and I ⊂ Nω(U)

be an ideal. For any f ∈ Cω(U) the following conditions are equivalent to each other :

(i) [f ] ∈ Cω(U)/ICω(U) is Nash.

(ii) For any a ∈ U , the Taylor series j∞f(a) of f at a is algebraic in R[[x− a]]/Ia,

in other words, there exists a polynomial P (x, y) ∈ R[x, y], degy P > 0, which possibly

depends on a, such that j∞P (x, f)(a) ∈ Ia, where Ia is the ideal in R[[x− a]] generated

by {j∞h(a) | h ∈ I}.
(iii) There exists a Nash function g ∈ Nω(U) such that [g] = [f ] ∈ Cω(U)/ICω(U).

Proof. The implication (i) ⇒ (ii) is clear.

(ii) ⇒ (iii): Let I be the finite ideal sheaf generated by I in the sheaf Nω
U of Nash

functions. Then f defines a section of the quotient sheafNω
U /I. By the extension theorem

([6], [9]) in non-compact case, there exists g ∈ Nω(U) which defines the same section of

Nω
U /I with that defined by f . Therefore f − g ∈ Cω(U) defines a section of ICω

U , the

ideal sheaf generated by I in the sheaf Cω
U of analytic functions. Then f − g ∈ ICω(U),

by Cartan’s theorem A for real analytic functions ([5]). Thus we have (iii).
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The implication (iii) ⇒ (i) is clear. □

Proof of Theorem 4.3. (1) ⇒ (2)Nω(U)/I : Suppose (1). We take a represen-

tative f which belongs to Nω(U) by Lemma 4.3. Then we have

0 = d(P ([x], [f ])) =
n∑

i=1

∂P

∂xi
([x], [f ])d[xi] +

∂P

∂y
([x], [f ])d[f ]

=
n∑

i=1

(
−∂P
∂y

([x], [f ])

[
∂f

∂xi

])
d[xi] +

∂P

∂y
([x], [f ])d[f ]

=
∂P

∂y
([x], [f ])

(
d[f ]−

n∑
i=1

∂P

∂xi
([x], [f ])d[xi]

)
,

in ΩNω(U)/I , and (∂P/∂y)([x], [f ]) ∈ Nω(U)/I is non-zero and algebraic over Nω(U)/I.

The implications (j)Nω(U)/I ⇒ (j)Cω(U)/ICω(U) ⇒ (j)C∞(U)/IC∞(U) are clear, for j =

2, 3, 4.

The implications (2)A ⇒ (3)A, for A = Nω(U)/I, Cω(U)/ICω(U), C∞(U)/IC∞(U),

are clear, since [g] ∈ S.

The implications (3)A ⇒ (4)A for A = Nω(U)/I, Cω(U)/ICω(U), C∞(U)/IC∞(U)

are clear.

(4)C∞(U)/IC∞(U) ⇒ (1): Suppose (4)C∞(U)/IC∞(U) and [f ] is not Nash. Then, by

Lemma 4.3, there exists a point a ∈ U such that [f ] is transcendental in R[[x−a]]/Ia via

the R-algebra homomorphism φa : Nω(U)/I → R[[x−a]]/Ia, where Ia is the ideal in the

formal power series ring R[[x−a]] generated by g1, . . . , gℓ. Let K = Q(φa(Nω(U)/I)) be

the quotient field of the image of Nω(U)/I by φa. Moreover let L = K([f ], [h1], . . . , [hm])

be the extended field of K which is generated by all elements which appear in the relation

d[f ]−
∑n

i=1 αid[xi] = 0 in ΩR[[x−a]]/Ia . Then the relation holds also in ΩL.

Let u be any non-zero element of L. We extend the zero derivation D0 = 0 : K → L

to Du : K([f ]) → L by setting Du([f ]) = u, for the given non-zero element u ∈ L.

Moreover we extend Du to a derivation D : L → L. Then for an L-homomorphism

ρ : ΩL → L we have D = ρ ◦ d : L→ L. Then we have

0 = ρ

(
d[f ]−

n∑
i=1

αid[xi]

)
= D([f ]) = u.

This leads to a contradiction. Thus we have (1). □

For a Nash element [f ] ∈ Cω(U)/ICω(U), we define the Leibniz complex-

ity of [f ] by the minimal number of terms corresponding to Leibniz rule for

[g] (d[f ]−
∑n

i=1 [∂f/∂xi]d[xi]) in the free Nω(U)/I-module FNω(U)/I among all expres-

sions for all non-zero Nash element [g] ∈ Cω(U)/ICω(U). The definition is based on

the statement (2)Nω(U)/I of Theorem 4.1. We do not care about the number of terms

corresponding to linearity of the differential. Moreover we will do not count the term

generated by the relation d([1 · 1]) − [1]d([1]) − [1]d([1]). Therefore we use the relation

d([c]) = 0 for c ∈ R freely.
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Let LC([f ]) denote the Leibniz complexity of [f ]. Similarly to Proposition 3.15 we

have an upper estimate:

Proposition 4.4. Let U be a connected semi-algebraic open subset of Rn, I a

locally formally prime ideal in Nω(U) and [f ] ∈ Cω(U)/ICω(U) Nash. Let P (x, y) be a

polynomial such that P (x, f) ∈ ICω(U) and (∂P/∂y)(x, f) ̸∈ ICω(U). Then we have

LC([f ]) ≤ σ(P ) +

n∑
i=0

µi +

s(i)∑
j=1

(rij − 1)

 .
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Und Ihrer Grenzgebiete 3 Folge, Springer-Verlag, 1987.

[ 4 ] J. Bochnak and G. Efroymson, Real algebraic geometry and the 17th Hilbert problem, Math.

Ann., 251 (1980), 213–241.
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