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Abstract. We present an L2-extension theorem with an estimate de-
pending on the weight functions for domains in C. When the Hartogs domain
defined by the weight function is strictly pseudoconvex, this estimate is strictly

sharper than known optimal estimates. When the weight function is radial,
we prove that our estimate provides the L2-minimum extension.

1. Introduction.

The Ohsawa–Takegoshi L2-extension theorem [OT] states that, for a bounded pseu-

doconvex domain Ω, a submanifold V of Ω with certain conditions and a plurisubhar-

monic function φ on Ω, we can extend holomorphic functions on V to ones on Ω with

a priori L2-estimates independent of φ. This theorem and its generalizations are widely

used in the studies of several complex variables and complex geometry.

Recently, the optimal estimate for the L2-extension theorem was proved in [Blo] and

[GZ]. Using this estimate, many problems including Suita conjecture were solved. After

that, a new proof of the optimal estimate was given in [BL]. Here we state the optimal

result in the setting of [BL].

Theorem 1.1 (Optimal estimate, [Blo], [GZ], [BL]). Let Ω ⊂ Cn be a bounded

pseudoconvex domain and φ ∈ PSH(Ω) be a plurisubharmonic function. Let V be a

closed submanifold of Ω with codimension k. Let G be a negative plurisubharmonic func-

tion in Ω such that

G(z) ≤ log d2V (z) +A(z) on Ω, and

G(z) ≥ log d2V (z)−B(z) near V,

where A(z) and B(z) are continuous functions. Then, for every f ∈ O(V ) with∫
V
|f |2e−φ+kB < +∞, there exists F ∈ O(Ω) such that F |V = f and∫

Ω

|F |2e−φ ≤ σk

∫
V

|f |2e−φ+kB .

Here, σk denotes the volume of the unit ball in Ck.
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In this paper, we call the function G satisfying the conditions above a Green-type

function on Ω with poles along V .

Note that this estimate does not depend on the weight functions φ. Thus we may

sharpen the estimate if we allow the constant to depend on the weights. In this paper,

using Theorem 1.1, we prove a sharper estimate depending on weights φ for domains in

C.
Let Ω be a bounded domain in C with 0 ∈ Ω. For a subharmonic function φ on Ω,

we will define a domain Ω̃ in C2 as

Ω̃ := {(z, w) ∈ C2 : z ∈ Ω, |w|2 < e−φ(z)}.

Note that Ω̃ is pseudoconvex since φ is subharmonic. We will assume that there exists a

Green-type function on Ω̃ with poles along {z = 0}, i.e. there exists a negative plurisub-

harmonic function G̃ = G{z=0},Ω̃ with log |z|2 + Ã(z, w) ≥ G̃ ≥ log |z|2 − B̃(z, w) for

some continuous functions Ã and B̃ on Ω̃. Then our main theorem is as follows:

Theorem 1.2. Let Ω be a bounded domain in C and φ be a subharmonic function

on Ω with φ(0) = 0. Let Ω̃ and B̃ as above. Then,

(1) there exists a holomorphic function f ∈ O(Ω) such that f(0) = 1 and∫
Ω

|f(z)|2e−φ(z)dλ(z) ≤
∫
|w|<1

eB̃(0,w)dλ(w).

(2) Assume that ∂Ω is smooth and Ω = {r < 0} for some function r ∈ C∞(Ω) such

that r(0) = −1 and r is strictly subharmonic on a neighborhood of Ω. Under these

assumptions, φ = − log(−r) is a subharmonic function on Ω with φ(0) = 0. Let

GΩ,0 be the Green function with a pole at 0. Then, the estimate in (1) can be

strictly sharper than one in Theorem 1.1. Precisely, there exist functions G̃, Ã and

B̃ satisfying the conditions above and∫
|w|<1

eB̃(0,w)dλ(w) < πeB(0),

where B(z) = GΩ,0 − log |z|2 is a difference between the Green function on Ω and

log |z|2.

When we take G̃ as G̃(z, w) = GΩ,0(z), we have that∫
|w|<1

eB̃(0,w)dλ(w) = πeB(0).

In this case, (1) is the same to Theorem 1.1 in one-dimensional cases.

The proof of Theorem 1.2 (1) is a simple application of Theorem 1.1. To prove (2),

we will use the existence of solutions of complex Monge–Ampère equations.

In radial cases, i.e. when Ω is the unit disc ∆ ⊂ C and the weight function φ(z)

depends only on |z|, we can prove that the Theorem 1.2 gives the value of the L2-norm
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of the L2-minimum extension. These cases are treated in Section 3. We do not know if

Theorem 1.2 gives the minimum extension in general, even in the case where Ω̃ is strictly

pseudoconvex.

In Theorem 1.2, we use a Hartogs domain Ω̃ over Ω. This kind of technique is also

used in [BL] and [MV] to relax the condition G < 0 on Green-type functions.

The organization of the paper is as follows. In Section 2, we prove Theorem 1.2. In

Section 3, we treat the case with radial weight functions.

2. Proof of the main theorem.

Proof of Theorem 1.2 (1). We apply Theorem 1.1 to the submanifold {z =

0} ⊂ Ω̃ using the Green-type function G̃. Here we use the trivial metric e−φ̃ ≡ 1 on Ω̃.

Then we obtain an extension F on Ω̃ of the constant function 1 on {z = 0} such that∫
Ω̃

|F |2 ≤ π

∫
|w|<1

eB(0,w).

Consider the following function:

f(z) := F (z, 0).

Then we have f(0) = 1 and, by the mean-value inequality, it follows that

π

∫
Ω

|f(z)|2e−φ(z) ≤
∫
Ω̃

|F |2.

Therefore f satisfies the desired conditions. □

To prove (2), we use the theory of complex Monge–Ampère equations to produce

Green-type functions G̃. The following existence and uniqueness result for the Dirichlet

problem of the complex Monge–Ampère equation was obtained by Bedford–Taylor:

Theorem 2.1 ([BT, Theorem D]). Let Ω ⊂ Cn be a bounded strictly pseudoconvex

domain, ϕ ∈ C(∂Ω), and f ∈ C(Ω), f ≥ 0. Then there exists a unique function u ∈
C(Ω) ∩ PSH(Ω) such that

(ddcu)n = f on Ω, and

u = ϕ on ∂Ω.

We also use the minimum principle:

Theorem 2.2 ([BT, Theorem A]). Let Ω ⊂ Cn be a bounded open set and u, v ∈
C(Ω) ∩ PSH(Ω). When (ddcu)n ≤ (ddcv)n on Ω, then it holds that

min
Ω

(u− v) = min
∂Ω

(u− v).

In other words, if (ddcu)n ≤ (ddcv)n on Ω and u ≥ v on ∂Ω, then u ≥ v also on Ω.
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Proof of Theorem 1.2 (2). In this case, we can write

Ω̃ = {(z, w) ∈ Ω× C : |w|2 + r(z) < 0}.

Since the function |w|2 + r(z) is smooth and strictly plurisubharmonic, Ω̃ has smooth

boundaries and is strictly pseudoconvex. By Theorem 2.1, there exists a plurisubhar-

monic function ũ on Ω̃ which is continuous on a neighborhood of Ω̃ such that

(ddcũ)2 = 0 on Ω, and

ũ = −max(log |z|2, C) on ∂Ω,

where C is a sufficiently negative constant, which we will choose later in this proof. We

let G̃ = G̃C := log |z|2 + ũ. Then, on ∂Ω, we have

G̃ = log |z|2 −max(log |z|2, C) ≤ log |z|2 − log |z|2 = 0.

Therefore, by the maximum principle, we have that G̃ ≤ 0 on Ω̃. By continuity of ũ, we

can take Ã = ũ and B̃ = −ũ. We have to check∫
|w|<1

e−ũ(0,w)dλ(w) < πeB(0).

Recall that we write the Green function on Ω with a pole at 0 as

GΩ,0 = log |z|2 −B(z).

Note that B is a harmonic function. We can take a sufficiently negative C such that

max(log |z|2, C)−B(z) < 0 on Ω.

Then, the function ũ′(z, w) := −B(z) as a function on Ω̃ satisfies the following conditions:

(ddcũ′)2 = 0 on Ω̃, and

ũ′ = −B(z) on ∂Ω̃.

Since −max(log |z|2, C) ≥ −B(z) on Ω (and thus on ∂Ω̃), Theorem 2.2 yields that ũ ≥ ũ′

on Ω̃. In particular, it holds that ũ(0, w) ≥ ũ′(0, w) = −B(0) for |w| < 1. The boundary

value of ũ on {z = 0} ∩ ∂Ω̃ is −max(log 0, C) = −C > B(0) and ũ is continuous on Ω̃

up to boundary, thus we have that the set {w : |w| < 1, ũ(0, w) > −B(0)} has positive

measure. Thus we have a strict inequality∫
|w|<1

e−ũ(0,w)dλ(w) <

∫
|w|<1

eB(0)dλ(w) = πeB(0). □
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3. Radial case.

In radial cases, we can write G̃ explicitly and prove that the estimate can be the

best possible. Assume that Ω = ∆ is the unit disc in C and φ is radial, i.e. φ(z) depends

only on |z|. Then we can write as φ(z) = u(log |z|2) for a convex increasing function u

on R<0. First we assume that u is strictly increasing and limt→−0 u(t) = +∞. Define

ψ(w) := −u−1(− log |w|2).

Then we can take G̃ as follows:

G̃ = log |z|2 + ψ(w).

We prove the following

Proposition 3.1. It holds that∫
∆

e−φ(z)dλ(z) =

∫
|w|<1

e−ψ(0,w).

Proof. We prove

2π

∫ 1

r=0

e−u(log r
2)rdr = 2π

∫ 1

r=0

eu
−1(− log r2)rdr.

Using the substitution 2 log r = t, this is equivalent to∫ 0

t=−∞
e−u(t)etdt =

∫ 0

−∞
eu

−1(−t)etdt.

In the right-hand side, letting u−1(−t) = s, we have that

(RHS) =

∫ −∞

0

ese−u(s)(−u′(s))ds =
∫ 0

−∞
es−u(s)u′(s)ds.

Then we can calculate the difference as follows:∫ 0

t=−∞
e−u(t)etdt−

∫ 0

s=−∞
es−u(s)u′(s)ds

=

∫ 0

t=−∞
(1− u′(t))et−u(t)dt

=

∫ −∞

q=−∞
eqdq = 0.

In the last line, we use the substitution t−u(t) = q and this integral equals to 0 because

both endpoints of the interval of integration are −∞. □

By Proposition 3.1 and Theorem 1.2, when u is strictly increasing and u(−0) = +∞,

there exists a holomorphic function f on ∆ such that f(0) = 1 and



914(226)

914 G. Hosono∫
∆

|f |2e−φ ≤
∫
∆

e−φ.

For a general radial subharmonic function φ, apply this estimate to φ − ϵ log(1 − |z|2)
and take a limit ϵ ↓ 0.

When the weight is radial, the constant function 1 has the smallest L2-norm with

weight φ among extensions of the function 1 on the subvariety {0} (by the mean-value

inequality). By Proposition 3.1, we can show that the estimate in Theorem 1.2 provides

the L2-minimum extension in radial cases.
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