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Abstract. The logarithmic derivative of a point process plays a key rôle
in the general approach, due to the third author, to constructing diffusions
preserving a given point process. In this paper we explicitly compute the

logarithmic derivative for determinantal processes on R with integrable kernels,
a large class that includes all the classical processes of random matrix theory
as well as processes associated with de Branges spaces. The argument uses
the quasi-invariance of our processes established by the first author.

1. Introduction.

Let P be a point process on Rd, or, in other words, a Borel probability measure

on the space of locally finite configurations Conf(Rd). It is a natural question whether

one can construct a diffusion ξ(t) = (ξ1(t), ξ2(t), . . . , ξi(t), . . . ) on the space
(
Rd
)N

such

that the configuration X(t) = {ξ1(t), ξ2(t), . . . , ξi(t), . . . } is almost surely locally finite

for every t ∈ R+, and the process X(t), considered as a process on the space Conf(Rd),

preserves the measure P. For example, if P is the standard Poisson point process on Rd,

then ξi(t) are independent Brownian motions. In the series of papers [9], [12]–[18] the

third author with collaborators developed a general approach to constructing the process

ξ. The key step is the computation of the logarithmic derivative dP of the measure P,
dP : Rd ×Conf(Rd) 7→ Rd, introduced by the third author in [13]. The process ξ is then

a solution of the infinite-dimensional stochastic differential equation

ξi(t) = ξi(0) +Bi(t) +
1

2

∫ t

0

dP(ξi(u), Xi(ξ(u)))du, i ∈ N,

where the configuration Xi is defined by the formula Xi(ξ(u)) := {ξj(u)}j ̸=i and Bi are

independent Brownian motions. In [9], [13], [18] logarithmic derivatives were calculated

for determinantal processes arising in random matrix theory: sine2, Airy2, Bessel2 and

the Ginibre point processes. The computation was based on finite particle approximation

and had to be adapted for each determinantal process separately.

Theorem 2.3, the main result of this paper, establishes existence and gives an explicit

formula for the logarithmic derivative for determinantal point processes on R with inte-

grable kernels studied in [5], a class that includes, in particular, determinantal processes
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mentioned above and those corresponding to de Branges spaces [7] .

There are other methods to constructing infinite-dimensional diffusions. In particu-

lar, in [10], [11], using extended determinantal kernels, Katori and Tanemura constructed

diffusions reversible with respect to the sine2, Airy2, and Bessel2 point processes. A dif-

ferent approach to studying the diffusion preserving the sine2 process is due to Tsai [22].

In [1], Borodin and Olshanski gave a construction of infinite-dimensional diffusions as

scaling limits of random walks on partitions.

To explain our results in more details we first give an informal definition of the log-

arithmic derivative. Consider a point process P on Rd which admits a differentiable first

correlation function ρ1 : Rd 7→ R. Denote by Pa the reduced Palm measure conditioned

at the point a ∈ Rd and define the reduced Campbell measure CP as a Borel sigma-finite

measure on the space Rd × Conf(Rd) given by

dCP(a,X) = ρ1(a)dPa(X)da.

Then, informally, the logarithmic derivative dP is defined as a gradient of the logarithm

of CP,

dP(a,X) = ∇a

(
ln ρ1(a) + lnPa(X)

)
, (1.1)

see Definition 2.1. The main problem when proving the existence of the logarithmic

derivative is to give a sense to the term ∇a lnPa(X).

Our first result is Proposition 2.2, where we find the connection between equivalence

of the Palm measures conditioned at different points and the existence of the logarithmic

derivative. More specifically, we consider a point process P on Rd as above and assume

that for any a, b ∈ Rd the reduced Palm measures Pa and Pb are equivalent,

dPb(X) = Rb,a(X)dPa(X),

the Radon–Nikodym derivative Rb,a(X) is continuous with respect to b in

L1(Pa,Conf(Rd)) and the derivative ∇bRb,a exists in appropriate sense. We then prove

that the logarithmic derivative dP exists and the formula (1.1) is valid with

∇a lnPa := ∇b

∣∣
b=a

Rb,a.

Our second and main result is the mentioned above Theorem 2.3. To establish it, it

suffices to check that assumptions of Proposition 2.2 are satisfied for the considered class

of determinantal point processes. To show this, we use the results of the paper [5], where

the first author proved that for this class of determinantal processes the reduced Palm

measures are equivalent and the Radon–Nikodym derivative has the form

Rb,a = lim
R→∞,δ→0

RR,δ
b,a where RR,δ

b,a = CR,δ
b,a

∏
X∈Conf(R): |x|<R,

|x−a|,|x−b|>δ

(
x− b

x− a

)2

,

and CR,δ
b,a are some normalizing constants. While the continuity in b of Rb,a follows

immediately from the results of [5], the proof of its differentiability requires some efforts.
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To get it, we approximate the Radon–Nikodym derivative Rb,a by the function RR,δ
b,a ,

compute the derivative of the latter, and then pass to the limit R → ∞, δ → 0 using the

techniques of normalized additive and multiplicative functionals developed in [5], which

we outline in the appendix. Finally, we find

∇b

∣∣
b=a

Rb,a = lim
R→∞,δ→0

(SR,δ
a − EaSR,δ

a ),

where SR,δ
a =

∑
x∈X: |x|<R,

|x−a|>δ

2/(a− x) and Ea stands for the expectation with respect to

the reduced Palm measure Pa.

The paper is organized as follows. In Section 2 we formulate our main results,

Proposition 2.2 and Theorem 2.3. Section 3 is devoted to the proofs. In Appendix A we

recall some results of [5] needed in the proof of Theorem 2.3.

2. Formulation of the main results.

2.1. Configurations, point processes, Palm distributions.

Consider the space of locally finite configurations

Conf(Rd) :=
{
X ⊂ Rd|X does not have limit points in Rd

}
.

A Borel probability measure P on Conf(Rd) is called a point process. Take a bounded

Borel set B ∈ B(Rd) and consider a function #B : Conf(Rd) 7→ N∪{0} such that #B(X)

is equal to the cardinality of the set B ∩X. Assume that the process P admits the first

correlation function ρ1, that is for any bounded B ∈ B(Rd) the function #B is integrable

with respect to the measure P and there exists a function ρ1 ∈ L1
loc(Rd) satisfying∫

B

ρ1(x) dx =

∫
Conf(Rd)

#B(X)dP(X), ∀B ∈ B(Rd), B is bounded.

Define the first correlation measure ρ̂1 as ρ̂1(B) =
∫
B
ρ1(x) dx.

The Campbell measure ĈP is a sigma-finite Borel measure on Rd ×Conf(Rd) defined

as

ĈP(B,Z ) =

∫
Z

#B(X)dP(X), ∀B ∈ B(Rd), Z ∈ B
(
Conf(Rd)

)
,

where B
(
Conf(Rd)

)
stands for the Borel sigma-algebra on Conf(Rd). Fix a Borel set

Z ⊂ Conf(Rd) and consider a sigma-finite measure CZ
P on Rd given by the formula

CZ
P (B) = ĈP(B,Z ), ∀B ∈ B(Rd).

By definition, for any Z ∈ B
(
Conf(Rd)

)
the measure CZ

P is absolutely continuous with

respect to ρ̂1. Then the Palm measure P̂a, defined for ρ̂1-almost every a ∈ Rd, is a

measure on Conf(Rd) given by the relation

P̂a(Z ) =
dCZ

P
dρ̂1

(a) .
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Equivalently, the Palm measure P̂a is the canonical conditional measure of the Campbell

measure ĈP with respect to the measurable partition of the space Rd × Conf(Rd) into

subsets of the form {a} × Conf(Rd), a ∈ Rd. Thus, we can write

dĈP(a,X) = dP̂a(X)ρ1(a) da.

By definition, the Palm measure P̂a is supported on the subset of configurations con-

taining a particle at the position a. The reduced Palm measure Pa is defined as the

push-forward of the Palm measure P̂a under the map X → X \ {a} erasing the particle

a from the configuration X. We then define the reduced Campbell measure CP as

dCP(a,X) = dPa(X)ρ1(a) da. (2.1)

Note that, in difference with the notions of the (reduced) Palm measure and the Campbell

measure, this definition is not standard. Writing it in a more formal way, we obtain

CP(B,Z ) =

∫
B

∫
Z

dPa(X)ρ1(a) da, ∀B ∈ B(Rd), Z ∈ B
(
Conf(Rd)

)
.

For more details see e.g. [5] and [8].

2.2. Definition of the logarithmic derivative.

A function φ : Conf(Rd) 7→ R is called local if there exists a compact set K ⊂ Rd

such that φ(X) ≡ φ(X ∩ K). For a local function φ we define symmetric functions

φn : Rnd 7→ R, n ≥ 1, by the relation

φn(x1, . . . , xn) = φ
(
{x1, . . . , xn}

)
.

We say that a local function φ is smooth if the functions φn are smooth for all n ∈ N.
We denote by D0 the space of all bounded local smooth functions on Conf(Rd).

Denote by BR a ball in Rd of radius R. Let L1
loc(Rd ×Conf(Rd), CP) be the space of

vector-functions f : Rd × Conf(Rd) 7→ Rd satisfying f ∈ L1(BR × Conf(Rd), CP), for all

R > 0.

Denote by C∞
0 the space of smooth real-valued functions on Rd which have compact

supports. We say that a function φ : Rd ×Conf(Rd) 7→ R belongs to the space C∞
0 D0 if

φ = φ1φ2, where φ1 ∈ C∞
0 (Rd) and φ2 ∈ D0.

Definition 2.1. Let P be a point process on Rd that admits the first correlation

function. A function dP ∈ L1
loc(Rd ×Conf(Rd), CP) is called the logarithmic derivative of

P if for any observable φ ∈ C∞
0 D0 we have∫

Rd×Conf(Rd)

∇aφ(a,X) dCP(a,X) = −
∫
Rd×Conf(Rd)

dP(a,X)φ(a,X) dCP(a,X).
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2.3. Logarithmic derivative of a point process with equivalent Palm mea-

sures.

Consider a point process P on Rd that admits the first correlation function ρ1; recall

that we denote by ρ̂1 the first correlation measure,

ρ̂1(da) = ρ1(a) da.

In this subsection we give a general scheme for the computation of the logarithmic de-

rivative dP under the following assumption.

Assumption 1.

1. The first correlation function ρ1 is C1-smooth.

2. For ρ̂1-almost all a, b ∈ Rd the reduced Palm measures Pa and Pb are equivalent.

Denote by Rb,a their Radon–Nikodym derivative, so that

dPb(X) = Rb,a(X) dPa(X).

3. For ρ̂1-almost all a ∈ Rd we have Rb,a → 1 as b → a in L1(Pa,Conf(Rd)).

For a function φ ∈ C∞
0 (Rd)D0 we define the function fφ : Rd 7→ R as

fφ(ε) :=

∫
Rd×Conf(Rd)

Ra+ε,a(X)φ(a,X) dCP(a,X).

4. For any φ ∈ C∞
0 (Rd)D0 the function fφ admits partial derivatives in ε at the point

ε = 0. There exist functions ∂iR : Rd × Conf(Rd) 7→ R such that for any φ as

above and any 1 ≤ i ≤ d we have

∂εifφ(0) =

∫
Rd×Conf(Rd)

∂iR(a,X)φ(a,X) dCP(a,X).

Set

∇R := (∂1R, . . . , ∂dR).

Proposition 2.2. Let P be a point process on Rd satisfying Assumption 1. Then

for ρ̂1-almost all a ∈ R its logarithmic derivative dP exists and has the form

dP(a,X) = ∇a ln ρ1(a) +∇R(a,X). (2.2)

Note that there is no need to define the logarithmic derivative at the points a ∈ Rd

where ρ1(a) = 0 since the measure ρ̂1 of the set of such a is zero. Proof of Proposition 2.2

is given in Section 3.1. It is based on the differentiation by parts, that is why we crucially

need the absolute continuity of the measure ρ̂1 and the differentiability of its density,

which is the first correlation function ρ1.
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2.4. Logarithmic derivative of a determinantal process on R with an

integrable kernel.

In this section we construct the logarithmic derivative for a class of determinantal

processes on R. A point process P on Conf(R) is called determinantal if there exists

a locally trace class operator P : L2(R, dx) 7→ L2(R, dx) such that for any bounded

measurable function h, for which the support supp(h−1) =: D is a compact set, we have

E

(∏
x∈X

h(x)

)
= det

(
1 + (h− 1)PID

)
.

Here the expectation is taken with respect to the measure P, det stands for the Fredholm
determinant and ID denotes the indicator function of the set D. See for details [19],

[21]. Since the operator P is locally trace class, it admits a kernel which we denote by

Π. Note that for any a ∈ R the function Π(a, ·) belongs to L2(R, dx). Further on we will

use the results of [5], so we impose on P and Π the following restrictions coming from

[5].

Assumption 2.

1. The operator P is an orthogonal projection onto a closed subspace L ⊂ L2(R, dx).

2. For ρ̂1-almost all a ∈ R, given any function φ ∈ L satisfying φ(a) = 0, we have

(x− a)−1φ ∈ L.

3. The kernel Π is C2-smooth on R2.

4. We have

∫
R

Π(x, x)

1 + x2
dx < ∞.

Item 2 of Assumption 2 is called the division property (cf. [6]). Recall that the kernel Π

is called integrable if there exists an open set U , such that ρ̂1(R \ U) = 0, and linearly

independent smooth functions A,B defined on U , satisfying

Π(x, y) =
A(x)B(y)−A(y)B(x)

x− y
, (2.3)

if x ̸= y. Proposition 1.2 from [5] proves that the division property is fulfilled for operators

of orthogonal projection which admit integrable kernels. In particular, it follows that

Assumption 2 is satisfied for the sine, Airy and Bessel kernels as well as for kernels

corresponding to de Branges spaces [7]. We recall that the sine, Airy and Bessel kernels

are given by the formula (2.3) with

A(x) =


π−1 sin(πx) for the sine kernel,

Ai(x) for the Airy kernel,

Jα(x) for the Bessel kernel,

and B(x) = (d/dx)A(x), where Ai is the Airy function and Jα is the Bessel function of

order α, α > −1.

Take a ∈ R, R ≫ 1 and δ ≪ 1, and consider the additive functional



457(109)

The logarithmic derivative for point processes 457

SR,δ
a : Conf(R) 7→ R, SR,δ

a (X) =
∑

x∈X: |x|<R,
|x−a|>δ

2

a− x
. (2.4)

The additive functional SR,δ
a may diverge as R → ∞. To overcome this difficulty we

define the normalized additive functional

S
R,δ

a := SR,δ
a − EaSR,δ

a ,

where Ea stands for the expectation with respect to the reduced Palm measure Pa.

Results obtained in [5] imply that, under Assumption 2, for ρ̂1-almost all a ∈ R there

exists a function Sa : Conf(R) 7→ R, such that

S
R,δ

a → Sa as R → ∞, δ → 0 in L2(Conf(R),Pa). (2.5)

Moreover, the convergence (2.5) holds uniformly in a as a ∈ R ranges in a compact set.

The required theory from [5] is recalled in Appendix A.1 and the convergence (2.5) is

established in Corollary A.2.

Theorem 2.3. Let P be a determinantal process on R satisfying Assumption 2.

Then for ρ̂1-almost all a ∈ R the logarithmic derivative dP exists and has the form

dP(a,X) =
d

da
ln ρ1(a) + Sa(X).

Theorem 2.3 is our main result and it is proven in Section 3.2. There, using results of

[5], we show that Assumption 2 implies Assumption 1 with ∇R = Sa. Then Theorem 2.3

follows from Proposition 2.2.

3. Proofs of the main results.

3.1. Proof of Proposition 2.2.

Take a function φ ∈ C∞
0 D0. We have

I := −
∫
Rd×Conf(Rd)

∂aiφ(a,X) dCP(a,X) = −
∫
Rd×Conf(Rd)

lim
ε→0

φ(a+εi, X)−φ(a,X)

ε
dCP(a,X),

where εi := εei and ei is the i-th basis vector of Rd. Using the dominated convergence

theorem, we exchange the limit with the integral. The latter can be applied since∣∣∣∣φ(a+ εi, X)− φ(a,X)

ε

∣∣∣∣ ≤ sup
X∈Conf(Rd), x∈Rd

∣∣∂xiφ(x,X)
∣∣

and φ ∈ C∞
0 D0. We get
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I = − lim
ε→0

1

ε

(∫
Rd×Conf(Rd)

φ(a+ εi, X) dCP(a,X)−
∫
Rd×Conf(Rd)

φ(a,X) dCP(a,X)

)
= lim

ε→0

1

ε

(∫
Rd×Conf(Rd)

φ(a,X) dCP(a+ εi, X)−
∫
Rd×Conf(Rd)

φ(a,X) dCP(a,X)

)
,

(3.1)

where in the last line of (3.1) we put ε := −ε. Using the definition of the reduced

Campbell measure (2.1), we find

I = lim
ε→0

1

ε

(∫
Rd×Conf(Rd)

φ(a,X)ρ1(a+ εi) dPa+εi(X)da

−
∫
Rd×Conf(Rd)

φ(a,X)ρ1(a) dPa(X)da

)
= lim

ε→0

1

ε

(∫
Rd×Conf(Rd)

φ(a,X)
(
ρ1(a+ εi)− ρ1(a)

)
dPa+εi(X)da

+

∫
Rd×Conf(Rd)

φ(a,X)ρ1(a)
(
dPa+εi(X)− dPa(X)

)
da

)
= lim

ε→0
(Iε1 + Iε2).

Using Assumption 1(3), we obtain

lim
ε→0

Iε1 =

∫
Rd×Conf(Rd)

φ(a,X)∂aiρ1(a) dPa(X)da =

∫
Rd×Conf(Rd)

φ(a,X)∂ai

(
ln ρ1(a)

)
dCP(a,X).

(3.2)

In view of Assumption 1(2), we have

lim
ε→0

Iε2 = lim
ε→0

1

ε

(∫
Rd×Conf(Rd)

φ(a,X)Ra+εi,a(X) dCP(a,X)−
∫
Rd×Conf(Rd)

φ(a,X) dCP(a,X)

)
.

Then, because of the identity Ra,a(X) ≡ 1, Assumption 1(4) implies

lim
ε→0

Iε2 =

∫
Rd×Conf(Rd)

φ(a,X)∂iR(a,X) dCP(a,X). (3.3)

Combining (3.2) with (3.3) we obtain the desired relation (2.2). □

3.2. Proof of Theorem 2.3.

In view of Proposition 2.2, it suffices to check that Assumption 1 is satisfied with

∇R(a,X) = Sa(X). Item 1 of Assumption 1 immediately follows from item 3 of As-

sumption 2. The proof of the other items relies on the results obtained in the paper

[5]; see also [4]. One of the main tools we use borrowed from the works above is the

following lemma. Take a, b ∈ R and consider the normalized multiplicative functional

Ψ
R,δ

b,a : Conf(R) 7→ R given by
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Ψ
R,δ

b,a (X) := CR,δ
b,a

∏
x∈X: |x|<R,
|x−a|,|x−b|>δ

(
x− b

x− a

)2

, (3.4)

where the constant CR,δ
a,b is specified by the normalization requirement EaΨ

R,δ

b,a = 1. Here

and further on we set
∏

x∈∅ f(x) = 1, for any function f .

Lemma 3.1. 1. Under Assumption 2, there exists α > 0 and a function Ψb,a :

Conf(R) 7→ R satisfying

Ψ
R,δ

b,a → Ψb,a as R → ∞, δ → 0 in L1+α(Conf(R),Pa), (3.5)

for ρ̂1-almost all a ∈ R, uniformly in a, b which range in compact subsets of R.
2. For ρ̂1-almost all a, b ∈ Rd, the function Ψb,a is the Radon–Nikodym derivative

of the Palm measure Pb with respect to the Palm measure Pa, i.e.

dPb(X) = Ψb,a(X) dPa(X). (3.6)

Proof. Item 1 is established in Corollary A.5(1) and follows from results obtained

in [5], which we explain in Appendix A.2. Item 2 is a particular case of Theorem 1.4 (1)

from [5] which is one of the main results of [5]. The key point of the proof of (3.6) is to

show that Palm subspaces L(p) and L(q) corresponding to conditioning at different points

p and q satisfy the relation L(p) = ((x− p)/(x− q))L(q); this relation uses Assumption

2(2). Then the proof is concluded by using a general result of [2], [3] stating the following.

If P0 is an orthogonal projection operator onto a subspace L0 ⊂ L2(R) that induces a

determinantal measure P0, then, under certain assumptions, multiplication of the space

L0 by a function g corresponds to taking the product of the determinantal measure P0

with the normalized multiplicative functional const
∏

x∈X(g(x))2. In Appendix A.3 we

give a more detailed outline of the proof of the identity (3.6).

Note that in [5] the multiplicative functional Ψ
R,δ

b,a = 1 is defined as the product over

the set {x ∈ X : |x| < R, |x− a| > δ}, so that in difference with the definition (3.4) the

point b is not isolated. It can be checked directly that this does not affect the proof at

all. □

Lemma 3.1(2) implies item 2 of Assumption 1 with Rb,a = Ψb,a. Because of the

bounds |x| < R and |x − a| > δ, the functions Ψ
R,δ

b,a (X) are Pa-almost surely contin-

uous with respect to b. Then, using the dominated convergence theorem, we see that

they are continuous in L1(Conf(R),Pa). Then the uniformity in b of convergence from

Lemma 3.1(1) implies that the functions Ψb,a also are continuous with respect to b in

L1(Conf(R),Pa). So that item 3 of Assumption 1 is fulfilled as well.

It remains to check that item 4 of Assumption 1 holds with ∇R(a,X) = Sa(X).

Due to Lemma 3.1(2), we have

fφ(ε) =

∫
R×Conf(R)

Ψa+ε,a(X)φ(a,X) dCP(a,X).
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We need to show that the function fφ is differentiable at zero and

d

dε
fφ(0) =

∫
R×Conf(R)

Sa(X)φ(a,X) dCP(a,X). (3.7)

Due to Lemma 3.1(1), we have

fφ(ε) = lim
R→∞,δ→0

fR,δ
φ (ε), (3.8)

where

fR,δ
φ (ε) =

∫
R×Conf(R)

Ψ
R,δ

a+ε,a(X)φ(a,X) dCP(a,X).

Because of the truncation |x| < R, |x − a| > δ in the definition (3.4) of the function

Ψ
R,δ

a+ε,a, for CP-almost all (a,X) the function Ψ
R,δ

a+ε,a(X) is smooth with respect to ε and,

together with its derivatives in ε, Ψ
R,δ

a+ε,a is integrable over (a,X) ∈ R × Conf(R) with

respect to the measure CP, uniformly in ε from a compact set. Then the function fR,δ
φ is

smooth in ε and we have

d

dε
fR,δ
φ (ε) =

∫
R×Conf(R)

d

dε
Ψ

R,δ

a+ε,a(X)φ(a,X) dCP(a,X). (3.9)

Proposition 3.2. Under Assumption 2, the derivative (d/dε)fR,δ
φ (ε) converges as

R → ∞, δ → 0, uniformly in ε from a small neighbourhood of zero.

Proof of Proposition 3.2 is given in the next subsection. Together with (3.8), Propo-

sition 3.2 implies that the function fφ is differentiable in a small neighbourhood of zero

and

d

dε
fφ(ε) = lim

R→∞,δ→0

d

dε
fR,δ
φ (ε). (3.10)

Let us compute the derivative (3.9). By definition (3.4) of the multiplicative functional

Ψ
R,δ

a+ε,a, we have

d

dε
Ψ

R,δ

a+ε,a =
d

dε
exp

(
lnCR,δ

a+ε,a + 2
∑

x∈X: |x|<R,
|x−a|,|x−(a+ε)|>δ

ln

∣∣∣∣x− (a+ ε)

x− a

∣∣∣∣
)

= Ψ
R,δ

a+ε,a

(
d

dε
lnCR,δ

a+ε,a + SR,δ
a,a+ε

)
, (3.11)

where

SR,δ
a,b :=

∑
x∈X: |x|<R,
|x−a|,|x−b|>δ

2

b− x
.
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Since, by definition, EaΨ
R,δ

a+ε,a ≡ 1, we have

Ea d

dε
Ψ

R,δ

a+ε,a =
d

dε
EaΨ

R,δ

a+ε,a = 0.

Then, taking the expectation Ea of the both sides of (3.11), we get

d

dε
lnCR,δ

a+ε,a = −Ea
(
Ψ

R,δ

a+ε,aS
R,δ
a,a+ε

)
. (3.12)

Now (3.11) together with (3.12) implies

d

dε
fR,δ
φ (ε) =

∫
R×Conf(R)

Ψ
R,δ

a+ε,a

(
SR,δ
a,a+ε − EaΨ

R,δ

a+ε,aS
R,δ
a,a+ε

)
φ(a,X) dCP(a,X). (3.13)

Since Ψ
R,δ

a,a = 1 and SR,δ
a,a = SR,δ

a , where the additive functional SR,δ
a is defined in (2.4),

we obtain

d

dε
fR,δ
φ (0) =

∫
R×Conf(R)

(
SR,δ
a − EaSR,δ

a

)
φ(a,X) dCP(a,X). (3.14)

Due to (2.5), the function SR,δ
a − EaSR,δ

a = S
R,δ

a converges to Sa in L2(Conf(R),Pa) as

R → ∞, δ → 0, uniformly in ρ̂1-almost all a ∈
∪

X∈Conf(R) suppφ(·, X), since the latter

set is compact. Then the right-hand side of (3.14) converges to that of (3.7). In view of

(3.10), this concludes the proof of the theorem. □

3.3. Proof of Proposition 3.2.

In view of the formula (3.13), to establish the desired convergence it suffices to show

that the function

JR,δ(a, b) := Ψ
R,δ

b,a

(
SR,δ
a,b − EaΨ

R,δ

b,a S
R,δ
a,b

)
converges as R → ∞, δ → 0, (3.15)

in L1(Conf(R),Pa) uniformly in b and ρ̂1-almost all a, where a ranges in a compact set

and b satisfies |a− b| < ϑ, for some fixed ϑ ≪ 1. All convergences below will be uniform

in a, b satisfying these restrictions, and we do not mention it any more. Further on we

assume R to be sufficiently large and δ to be sufficiently small where it is needed.

For real Borel functions f, g where g is non-negative we define the additive and mul-

tiplicative functionals Sf , Sf ,Ψg, Ψ̃g,Ψg : Conf(R) 7→ R by the formulas (A.1), (A.2),

(A.5) and (A.6). Clearly, they are well-defined if the functions f and g are bounded

and the supports supp f , supp(g − 1) are compact. However, the normalized functionals

Sf , Ψ̃g and Ψg can be defined for larger classes of functions, see Appendices A.1 and A.2.

Let us define

hR
>(x) :=

2

b− x
I{|x|<R, |x−a|>δ, |x−b|≥1}(x) =

2

b− x
I{|x|<R, |x−b|≥1}(x),

where we have used that |a−b| ≪ 1, so that the constraint |x−a| > δ holds automatically.

Set also
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hδ
<(x) :=

2

b− x
I{|x|>R, |x−a|>δ, δ<|x−b|<1}(x) =

2

b− x
I{|x−a|>δ, δ<|x−b|<1}(x).

Then we have

SR,δ
a,b = ShR

>
+ Shδ

<
.

Recall that EaΨ
R,δ

b,a = 1. Then, subtracting in the parenthesis of (3.15) the term EaShR
>

and adding the term EaΨ
R,δ

b,a EaShR
>
, we obtain

JR,δ(a, b) = Ψ
R,δ

b,a (ShR
>
+ Shδ

<
)−Ψ

R,δ

b,a Ea
(
Ψ

R,δ

b,a (ShR
>
+ Shδ

<
)
)
. (3.16)

Now, to establish the convergence (3.15) it suffices to show that the functions Ψ
R,δ

b,a ShR
>

and Ψ
R,δ

b,a Shδ
<

converge as R → ∞, δ → 0 in L1(Conf(R),Pa). Indeed, then the con-

vergence of the first summand from (3.16) will be obvious while the convergence of the

second summand will follow from Lemma 3.1(1), which states that the function Ψ
R,δ

b,a

converges in L1(Conf(R),Pa) as well.

Term Ψ
R,δ

b,a ShR
>
. Let

h>(x) :=
2

b− x
I{|x−b|≥1}(x).

Due to Corollary A.2(2), the additive functional Sh> is well-defined and we have the

convergence

ShR
>
→ Sh> as R → ∞ in Lp(Conf(R),Pa) (3.17)

with p = 2. We claim that it takes place for any p > 2 as well. This concludes consid-

eration of the term Ψ
R,δ

b,a ShR
>
since, using the Hölder inequality, from (3.17) joined with

Lemma 3.1(1) we obtain

Ψ
R,δ

b,a ShR
>
→ Ψb,a Sh> as δ → 0, R → ∞ in L1(Conf(R),Pa).

Denote

∆R := hR
> − h>.

Due to the Cauchy–Bunyakovsky–Schwarz inequality, we have

Ea|ShR
>
− Sh> |p = Ea|S∆R |p ≤

√
Ea(S∆R)2p−2

√
Ea(S∆R)2.

Due to the convergence (3.17) with p = 2, we have Ea(S∆R)2 → 0 as R → ∞. Thus,

it suffices to prove that the expectation Ea|S∆R |q is bounded uniformly in R, for any

q > 0. We have

|S∆R |q ≤ Cq

(
eS∆R + e−S∆R

)
. (3.18)
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Let us write

eS∆R = Ψ̃exp(∆R).

Due to Corollary A.5(2), we have

Ψ̃exp(∆R) → Ψ̃1 = 1 as R → ∞ in L1(Conf(R),Pa), (3.19)

where Ψ̃1 is the multiplicative functional Ψ̃g corresponding to the function g = 1. In

particular, the L1-norm EaeS∆R = EaΨ̃exp(∆R) is bounded uniformly in R. Replacing

∆R by −∆R, the same argument implies that the expectation Eae−S∆R is also bounded

uniformly in R. Then, due to (3.18), we see that the expectation Ea|S∆R |q is bounded

uniformly in R as well. So that, we obtain the desired convergence (3.17).

Term Ψ
R,δ

b,a Shδ
<
. Let us factorize

Ψ
R,δ

b,a Shδ
<
=

Ψ̃gR
1
Ψ̃gδ

2
Ψgδ

3
Shδ

<

Ea
(
Ψ̃gR

1
Ψ̃gδ

2
Ψgδ

3

) (3.20)

where

gR1 :=

((
x− b

x− a

)2

− 1

)
I{x: |x|<R, |x−b|≥1} + 1

and

gδ2 :=

(
1

(x−a)2
−1

)
I{x: |x−a|>δ, δ<|x−b|<1}+1, gδ3 :=

(
(x−b)2−1

)
I{x: |x−a|>δ, δ<|x−b|<1}+1.

Set

g1 :=

((
x− b

x− a

)2

− 1

)
I{x: |x−b|≥1} + 1

and

g2 :=

(
1

(x− a)2
− 1

)
I{x: |x−b|<1} + 1, g3 :=

(
(x− b)2 − 1

)
I{x: |x−b|<1} + 1.

Corollary A.5(2) states that

Ψ̃gR
1
→ Ψ̃g1 as R → ∞ in Lp(Conf(R),Pa), (3.21)

for any p > 0, and

Ψ̃gδ
2
→ Ψ̃g2 as δ → 0 in L1+α(Conf(R),Pa), (3.22)

for some α > 0. Since the functions gδ3, g3 are bounded uniformly in δ and (gδ3−1), (g3−1)

have compact supports, we obviously have
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Ψgδ
3
→ Ψg3 as δ → 0 in Lp(Conf(R),Pa),

for any p > 0. Then the Hölder inequality implies

Ea
(
Ψ̃gR

1
Ψ̃gδ

2
Ψgδ

3

)
→ Ea

(
Ψ̃g1Ψ̃g2Ψg3

)
as R → ∞, δ → 0.

To prove that the numerator of (3.20) converges, we note that

Ψgδ
3
Shδ

<
= 2

∑
x∈X:

|x−a|>δ, δ<|x−b|<1

(b− x)
∏

y∈X: y ̸=x
|y−a|>δ, δ<|y−b|<1

(y − b)2. (3.23)

Clearly, the right-hand side of (3.23) converges as δ → 0 in Lp(Conf(R),Pa), for any

p > 0. Together with (3.21)–(3.22), by the Hölder inequality this implies that the

numerator of (3.20) converges in L1(Conf(R),Pa) as R → ∞, δ → 0, so that the function

Ψ
R,δ

b,a Shδ
>
also does. □
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A. Regularization of additive and multiplicative functionals.

In this appendix we consider a determinantal point process P on R with the kernel

Π and assume that Π satisfies Assumption 2. We explain results from [5] which we use

in this paper and prove some auxiliary convergence results.

A.1. Additive functionals.

Let f : R → C be a Borel function. Define the corresponding additive functional

Sf : Conf(R) 7→ R, Sf (X) =
∑
x∈X

f(x), (A.1)

where the series may diverge. If Sf ∈ L1(Conf(R),P), then we introduce the normalized

additive functional
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Sf = Sf − ESf . (A.2)

Now we will show that the normalized additive functional can be defined even when the

additive functional itself is not well-defined. Introduce the Hilbert space V(Π) of real

functions with the norm

∥f∥2V(Π) =
1

2

∫ ∞

−∞

∫ ∞

−∞
|f(x)− f(y)|2|Π(x, y)|2dxdy.

Here we identify functions which differ by a constant. If a function f is such that

Sf ∈ L2(Conf(R),P), we have

E|Sf |2 = VarSf = ∥f∥2V(Π).

In particular, this is the case if the function f is bounded and has compact support.

Thus, the correspondence f → Sf is an isometric embedding of a dense subset of V(Π)

into L2(Conf(R),P). It therefore admits a unique isometric extension onto the whole

space H, and we get

Proposition A.1. There exists a unique linear isometric embedding

S : V(Π) ↪→ L2(Conf(R),P), S : f → Sf

such that

1. ESf = 0 for all f ∈ V(Π);

2. if Sf ∈ L1(Conf(R),P), then Sf is given by (A.2).

For more details see Proposition 4.1 in [5].

Let Pa be the reduced Palm measure of the measure P, conditioned at the point a.

Corollary A.2. 1. For ρ̂1-almost every a ∈ R there exists a function Sa :

Conf(R) 7→ R such that the convergence (2.5) takes place, uniformly in a ∈ R
ranging in a compact set.

2. The convergence (3.17) takes place for p = 2, uniformly in a, b ∈ R ranging in a

compact set.

To establish the corollary we need the following result. For a, x, y ∈ R set

Πa(x, y) := Π(x, y)− Π(x, a)Π(a, y)

Π(a, a)
if Π(a, a) ̸= 0 (A.3)

and Πa(x, y) := Π(x, y) if Π(a, a) = 0. Let also L(a) ⊂ L2(R, dx) be a subspace defined

as

L(a) := {φ ∈ L : φ(a) = 0}, (A.4)
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where we recall that L is a range of the orthogonal projection operator P corresponding

to the kernel Π.

Theorem A.3 (Shirai–Takahashi [20]). For ρ̂1-almost every a ∈ R, the reduced

Palm measure Pa coincides with the determinantal measure associated to the kernel Πa.

Moreover, Πa is an orthogonal projection kernel onto the space L(a).

Proof of Corollary A.2. In view of Theorem A.3, item 1 follows from Propo-

sition A.1 applied to the kernel Πa. Indeed, we have

S
R,δ

a = SfR,δ
a

with fR,δ
a (x) =

2

a− x
I{|x|<R, |x−a|>δ}.

Clearly, fR,δ
a → fa in V(Πa) uniformly in a as R → ∞, δ → 0, where

fa(x) :=
2

a− x
.

Then Proposition A.1 implies the desired convergence with Sa := Sfa . Item 2 can be

proven by the same argument. □

A.2. Multiplicative functionals.

For a bounded nonnegative function g with compact support we define the multi-

plicative functionals Ψg, Ψ̃g : Conf(R) 7→ R as

Ψg =
∏
x∈X

g(x) = eSlog g and Ψ̃g = eSlog g . (A.5)

Here we set Ψg(X) = Ψ̃g(X) = 0 if there is x ∈ X such that g(x) = 0. In view of

Proposition A.1, we can extend the multiplicative functional Ψ̃g to functions g satisfy-

ing ∥ log g∥V(Π) < ∞. If Ψ̃g ∈ L1(Conf(R),P) we define the normalized multiplicative

functional as

Ψg =
Ψ̃g

EΨ̃g

. (A.6)

Fix positive numbers α > 0, ε > 0, M > ε and two bounded Borel subsets B1, B2 ∈ B(R)
satisfying

||IB1∪B2P|| < 1.

Denote by G the set of nonnegative Borel functions g : R 7→ R satisfying

1. {x : g(x) < ε} ⊂ B1;

2. {x : g(x) > M} ⊂ B2;

3.

∫
B2

|g(x)|1+αΠ(x, x)dx+

∫
R\B2

|g(x)− 1|2Π(x, x)dx < ∞.
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We metrize G by equipping it with the distance

dG (g1, g2) =

∫
B2

|g1(x)− g2(x)|1+αΠ(x, x)dx+

∫
R\B2

|g1(x)− g2(x)|2Π(x, x)dx.

Then G becomes a complete separable metric space. Below we formulate Proposition 4.3

from [5].

Proposition A.4. For any α′ : 0 < α′ < α, the correspondences g → Ψ̃g, g → Ψg

induce continuous mappings from G to L1+α′
(Conf(R),P).

Corollary A.5. 1. Assertion of Lemma 3.1(1) is satisfied.

2. For ρ̂1-almost all a ∈ R, convergences (3.19), (3.21) and (3.22) take place and are

uniform in a, b ∈ R as a range in a compact set and b satisfies |b− a| < θ ≪ 1.

Proof.

Item 1: Due to Theorem A.3, the reduced Palm measure Pa coincides for ρ̂1-almost

all a ∈ R with the determinantal measure associated with the kernel Πa. Moreover, it is

immediate to check that the kernel Πa satisfies Assumption 2. Let

ga,b(x) :=

(
x− b

x− a

)2

and gR,δ
a,b (x) := (ga,b(x)− 1)I{|x|>R, |x−b|>δ, |x−a|>δ} + 1.

Using that the function Πa
diag(x) := Πa(x, x) has zero of second order at the point x = a,

we find that ga,b, g
R,δ
a,b ∈ G a, for an appropriate choice of the sets B1, B2 and numbers

α,M (independent from R, δ and a, b), where the space G a is defined as the space G
above, but with respect to the kernel Πa. Moreover,

dG a(gR,δ
a,b , ga,b) → 0 as R → ∞, δ → 0, (A.7)

uniformly in a, b as they range in compact sets. Then Proposition A.4 implies that

ΨgR,δ
a,b

→ Ψga,b
as R → ∞, δ → 0 in L1+α′

(Conf(R),Pa),

for any 0 < α′ < α. Since Ψ
R,δ

a,b = ΨgR,δ
a,b

, we get the desired convergence with Ψa,b =

Ψga,b
. Its uniformity in a, b follows from the uniformity of convergence (A.7) by a direct

analysis of the proof of Proposition A.4 (i.e. of Proposition 4.3 from [5]).

Item 2: Similarly with the last item, the desired convergences follow by applying

Proposition A.4 with the kernel Πa. The convergence (3.21) takes place for arbitrary

p > 0 since we assume |a − b| ≪ 1, so that the functions gR1 and g1 are bounded, and

then α can be chosen arbitrarily large. □

A.3. Quasi-invariance.

In this section we briefly recall the proof of (3.6), as presented in [5]. Let the kernels

Πa and Πb be defined as in (A.3) and the spaces L(a) and L(b)—as in (A.4). Recall that

the kernels Πa,Πb and the spaces L(a), L(b) satisfy Theorem A.3. The key point of the
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proof is the identity

L(b) =
x− b

x− a
L(a), (A.8)

which is obtained with help of the division property (see Assumption 2(2)). The re-

maining argument deduces the relation (3.6) from (A.8). It relies on an abstract result

obtained in [3] which states that a determinantal measure multiplied by a multiplicative

functional and appropriately normalized is again a determinantal measure. More specif-

ically, let P0 be an operator of orthogonal projection in L2(R) onto a closed subspace L0

and P0 be the corresponding determinantal measure. Let also g : R 7→ R be a function

which is bounded away from 0 and ∞, Pg be an orthogonal projection operator onto the

subspace gL0 and Pg be the corresponding determinantal measure. Then, under certain

additional assumptions, we have

Pg =
Ψg2P0

EP0Ψg2

, (A.9)

where Ψg2 is the multiplicative functional corresponding to the function g2 by (A.5)

and EP0 denotes the expectation with respect to the measure P0. Together with (A.8),

the relation (A.9) with g = (x− b)/(x− a) implies the desired equality (3.6). Equality

(A.9) can not be applied directly to our situation since the function g is not bounded

away neither from zero nor from infinity and the regularization procedure described in

Section A.2 must be performed firstly.
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