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Abstract. We give a differential-geometric construction of compact
manifolds with holonomy Spin(7) which is based on Joyce’s second con-
struction of compact Spin(7)-manifolds and Kovalev’s gluing construction of

compact G2-manifolds. We provide several examples of compact Spin(7)-
manifolds, at least one of which is new. Here in this paper we need orbifold
admissible pairs (X,D) consisting of a compact Kähler orbifold X with iso-

lated singular points modelled on C4/Z4, and a smooth anticanonical divisor

D on X. Also, we need a compatible antiholomorphic involution σ on X which

fixes the singular points on X and acts freely on the anticanoncial divisor D. If
two orbifold admissible pairs (X1, D1), (X2, D2) and compatible antiholomor-

phic involutions σi on Xi for i = 1, 2 satisfy the gluing condition, we can glue
(X1 \D1)/⟨σ1⟩ and (X2 \D2)/⟨σ2⟩ together to obtain a compact Riemannian
8-manifold (M, g) whose holonomy group Hol(g) is contained in Spin(7). Fur-

thermore, if the Â-genus of M equals 1, then M is a compact Spin(7)-manifold,
i.e. a compact Riemannian manifold with holonomy Spin(7).

1. Introduction.

According to the Berger–Simons classification of holonomy groups of irreducible

simply-connected Riemannian manifolds, the exeptional Lie group Spin(7) arises as the

‘maximal’ Lie group among the holonomy groups corresponding to simply-connected

Ricci-flat Riemannian manifolds of dimensions less than or equal to 8; if anm-dimensional

(m ≤ 8) simply-connected Riemannian manifold (M, g) satisfies Ric(g) ≡ 0 and Hol(g) ⊊
SO(m), then Hol(g) ⊆ Spin(7). For example, any complex three- and four-dimensional

Calabi–Yau manifold has a Kähler metric with holonomy SU(3) and SU(4) respectively,

where SU(3) ⊂ SU(4) ⊂ Spin(7). Since a huge number of examples of Calabi–Yau

manifolds have been discovered by mathematicians and physicists, we can expect that

there are enormous examples of compact Spin(7)-manifolds also.

However, there are only a little over 200 examples of compact Spin(7)-manifolds so

far, which are obtained by Joyce [14] and Clancy [2]: Joyce constructed the first compact

manifolds with holonomy group Spin(7) by a generalized Kummer construction [12].

Later he gave another method starting from Calabi–Yau 4-orbifold in weighted projective

spaces and provided further examples [13]. Following Joyce’s second construction, Clancy

systematically investigated such a Calabi–Yau 4-orbifold with particular singularities

admitting an antiholomorphic involution, which fixes the singularities [2]. Eventually he

discovered more new examples of compact Spin(7)-manifolds.
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In the present paper we glue two asymptotically cylindrical Spin(7)-orbifolds to

construct a compact Spin(7)-orbifold M▽, and then resolve the singularities of M▽ to

obtain a compact Spin(7)-manifold. Such an asymptotically cylindrical Spin(7)-orbifold

is obtained by setting (X \D)/⟨σ⟩ for an orbifold admissible pairs (X,D) with isolated

singular points modelled on C4/Z4, where σ is a compatible antiholomorphic involution

on X. Another technical difficulty to deal with Spin(7)-manifolds stems from these

singularities on X. Although our primary joint research project has aimed to construct

compact Spin(7)-manifolds, we first constructed Calabi–Yau manifolds in order to avoid

such technical difficulties. In a word, we constructed Calabi–Yau threefolds [5] and

fourfolds [6] by gluing together two asymptotically cylindrical Ricci-flat Kähler manifolds,

using the gluing technique which Kovalev used in constructing compact G2-manifolds

[15]. Recall that asymptotically cylindrical Ricci-flat Kähler manifolds X are obtained

from smooth admissible pairs (X,D) by settingX = X\D with SingX = ∅. Furthermore

in [6], we used the Â-genera of the resulting compact Riemannian 8-manifold (M, g)

with Hol(g) ⊆ Spin(7) in order to conclude Hol(g) = SU(4) (see Theorem 2.8). This

is a reason why we first considered Calabi–Yau constructions before Spin(7) cases. On

the other hand, our construction of compact Spin(7)-manifolds which would be the main

part of our joint research project, has been accomplished building upon Joyce’s second

construction of compact Spin(7)-manifolds. Originally, Joyce resolved X = X \ D to

obtain compact Spin(7)-manifolds when X is a four-dimensional Calabi–Yau orbifold and

D = ∅, so that X = X is compact : Beginning with a compact four-dimensional Calabi–

Yau orbifold X with isolated singular points modelled on C4/Z4, and an antiholomorphic

involution σ on X with (X)σ = SingX, Joyce proved that Z = X/⟨σ⟩ admits a torsion-

free Spin(7)-structure. Since the associated Riemannian metric is flat (Euclidean) around

the singularities of Z, he then replaced the neighborhood of each singularity of Z with a

suitable asymptotically locally Euclidean (ALE) Spin(7)-manifold to obtain a family of

simply-connected, smooth 8-manifolds {M ϵ } for ϵ ∈ (0, 1] with a Spin(7)-structure Φϵ

with small torsion, which satisfies dΦϵ → 0 as ϵ → 0 in a suitable sense. Finally, Joyce

proved that Φϵ can be deformed to a torsion-free Spin(7)-structure for sufficiently small

ϵ using the analysis on Spin(7)-structures. Hence M =M ϵ admits a Riemannian metric

with holonomy Spin(7).

In addition to the doubling method presented in previous papers [5], [6], one im-

portant benefit of the present paper is that we can successfully glue different pieces

(X1 \ D1)/⟨σ1⟩ and (X2 \ D2)/⟨σ2⟩ together to obtain practical examples of compact

Spin(7)-manifolds (see Section 6), whereas we only construct examples from two copies

of admissible pairs (X1, D1) = (X2, D2) = (X,D) in our previous papers [5], [6]. Even-

tually we discovered a new example of compact Spin(7)-manifolds in our gluing construc-

tion which we already announced at Math Society of Japan Autumn Meeting 2011 and

described in our abstract [7]. We note that asymptotically cylindrical Spin(7)-manifolds

are recently constructed by Kovalev in [16] by resolving (X \D)/⟨σ⟩.
To be specific, we begin in our construction with two orbifold admissible pairs

(X1, D1) and (X2, D2), consisting of a compact Kähler orbifold Xi and a smooth anti-

canonical divisor Di on Xi. Also, we consider an antiholomorphic involution σi acting

on each Xi. As in Joyce’s second construction, we require that Xi have isolated singular

points modelled on C4/Z4, and (Xi)
σ = SingXi (see Definitions 3.6 and 3.10). In addi-
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tion, we suppose that σ preserves and acts freely on D. Then by the existence result of an

asymptotically cylindrical Ricci-flat Kähler form on Xi \Di, each Xi \Di has a natural

σi-invariant asymptotically cylindrical torsion-free Spin(7)-structure, which pushes down

to a torsion-free Spin(7)-structure Φi on (Xi \ Di)/⟨σi⟩. Now suppose the asymptotic

models ((Di × S1)/⟨σDi×S1,cyl⟩ × R+,Φi,cyl) of ((Xi \Di)/⟨σi⟩,Φi) are isomorphic in a

suitable sense, which is ensured by the gluing condition defined later (see Section 3.4.1).

Then as in Kovalev’s construction in [15], we can glue together (X1 \ D1)/⟨σ1⟩ and

(X2 \D2)/⟨σ2⟩ along their cylindrical ends (D1 × S1)/⟨σD1×S1,cyl⟩ × (T − 1, T + 1) and

(D2 × S1)/⟨σD2×S1,cyl⟩ × (T − 1, T + 1), to obtain a compact Riemannian 8-orbifold

M▽
T . Also, we can glue together the torsion-free Spin(7)-structures Φi on (Xi \Di)/⟨σi⟩

to construct a d-closed 4-form Φ̃T on M▽
T . Furthermore, replacing each neighborhood

of singular points on M▽
T with a certain ALE Spin(7)-manifold, we construct a family

(M ϵ
T , Φ̃

ϵ
T ) of simply-connected, smooth 8-manifolds with a d-closed 4-form for sufficiently

small ϵ > 0. Here each Φ̃ϵ
T is projected to a Spin(7)-structure Φϵ

T = Θ(Φ̃ϵ
T ), with Φϵ

T → 0

as T → ∞ or ϵ → 0 in a suitable sense. Now set ϵ = e−γT for some γ > 0, and con-

sider a family (M ϵ,Φϵ) = (M ϵ
T ,Φ

ϵ
T ) of compact 8-manifolds with a Spin(7)-structure

with small torsion. Then using the analysis on Spin(7)-structures by Joyce [14], we

shall prove that Φϵ can be deformed into a torsion-free Spin(7)-structure for sufficiently

small ϵ, that is, the resulting compact manifold M ϵ admits a Riemannian metric with

holonomy contained in Spin(7). Since M =M ϵ is simply-connected, the Â-genus Â(M)

of M is 1, 2, 3 or 4, and the holonomy group is determined as Spin(7), SU(4), Sp(2),

Sp(1)× Sp(1) respectively (see Theorem 2.8). Hence if Â(M) = 1, then M is a compact

Spin(7)-manifold.

Finally we describe a remarkable difference between our previous works [5], [6] and

the present paper to provide interesting examples of compact Spin(7)-manifolds, at least

one of which is topologically new. For a given orbifold admissible pair (X1, D1) with

a compatible antiholomorphic involution σ1, it is difficult in general to find another

admissible pair (X2, D2) with σ2 such that both (Xi\Di)/⟨σi⟩ have the same asymptotic

model. One way to solve this is the ‘doubling’ method used in [5], [6], in which we take

(X1, D1) = (X2, D2) and σ1 = σ2. There is another solution, which we discuss in

Section 6.

In the present paper, we shall give 3 topologically distinct compact Spin(7)-

manifolds, at least one of which is new. Each of the examples satisfies b2(M) = b3(M) = 0

and Â(M) = 1. In order to show Â(M) = 1, we reduce the problem to computations on

the cohomology groups of D and S. Betti numbers (b2, b3, b4) of the compact Spin(7)-

manifolds in our construction are (0, 0, 910), (0, 0, 1294) and (0, 0, 1678). Of these com-

pact Spin(7)-manifolds, the resulting manifold M with χ(M) = 1680 is at least one new

example which is not diffeomorphic to the known ones (see Theorem 5.1).

This paper is organized as follows. Section 2 is a brief review on Spin(7)-structures.

In Section 3 we define orbifold admissible pairs which will be ingredients in our gluing

construction of compact Spin(7)-manifolds. This section is the heart of the present pa-

per. We consider compatible antiholomorphic involutions σ on orbifold admissible pairs

(X,D) and glue together two orbifold admissible pairs with dimCX = 4 divided by σ.

The gluing theorems are stated in Section 3.5 including both cases of Spin(7)-manifolds



352(4)

352 M. Doi and N. Yotsutani

and Calabi–Yau fourfolds. Giving a quick review of basics on weighted projective spaces

in Section 4.1, we obtain in Section 4.3 orbifold admissible pairs from complete inter-

sections in weighted projective spaces. Then in Section 5 we give a new example of

compact Spin(7)-manifolds M . In the last section we shall give other examples of com-

pact Spin(7)-manifolds taking weighted complete intersections in CP 5(1, 1, 1, 1, 4, 4). All

the resulting compact Spin(7)-manifolds are listed in Table 6.5. Finally we shall provide

a criterion for finding compact Spin(7)-manifolds (Proposition 6.2).

Acknowledgements. The authors are grateful to Professors Xiuxiong Chen and

Bin Xu for valuable discussions in University of Science and Technology of China, Hefei in

April, 2011. The second author is also grateful to Professors Shengli Kang and Haozhao

Li for their useful comments.

2. Geometry of Spin(7)-structures.

Here we shall recall some basic facts about Spin(7)-structures on oriented 8-

manifolds. For more details, see [14, Chapter 10].

We begin with the definition of Spin(7)-structures on oriented real vector spaces of

dimension 8.

Definition 2.1. Let V be an oriented real vector space of dimension 8. Let

{θ1, . . . ,θ8} be an oriented basis of V . Set

Φ0 = θ1234 + θ1256 + θ1278 + θ1357 − θ1368 − θ1458 − θ1467

− θ2358 − θ2367 − θ2457 + θ2468 + θ3456 + θ3478 + θ5678,

g0 =
8∑

i=1

θi ⊗ θi,

where θij...k = θi ∧ θj ∧ · · · ∧ θk. Define the GL+(V )-orbit spaces

A(V ) = { a∗Φ0 | a ∈ GL+(V ) } ,
Met(V ) = { a∗g0 | a ∈ GL+(V ) } .

We call A(V ) the set of Cayley 4-forms (or the set of Spin(7)-structures) on V . On

the other hand, Met(V ) is the set of positive-definite inner products on V , which is also

a homogeneous space isomorphic to GL+(V )/SO(V ), where SO(V ) is defined by

SO(V ) = { a ∈ GL+(V ) | a∗g0 = g0 } .

Now the group Spin(7) is defined as the isotropy of the action of GL(V ) (in place of

GL+(V )) on A(V ) at Φ0:

Spin(7) = { a ∈ GL(V ) | a∗Φ0 = Φ0 } .

Then one can show that Spin(7) is a compact Lie group of dimension 27 which is a Lie

subgroup of SO(V ) (see [10]). Thus we have a natural projection
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A(V ) ∼= GL+(V )/Spin(7) // // GL+(V )/SO(V ) ∼= Met(V ) ,

so that each Cayley 4-form (or Spin(7)-structure) Φ ∈ A(V ) defines a positive-definite

inner product gΦ ∈ Met(V ) on V .

Definition 2.2. Let V be an oriented vector space of dimension 8. If Φ ∈ A(V ),

then we have the orthogonal decomposition

∧4V ∗ = TΦA(V )⊕ T⊥
ΦA(V ) (2.1)

with respect to the induced inner product gΦ. We define a neighborhood T (V ) of A(V )

in ∧4V ∗ by

T (V ) = {Φ+α | Φ ∈ A(V ) and α ∈ T⊥
ΦA(V ) with |α|gΦ

< ρ } .

We choose and fix a small constant ρ so that any χ ∈ T (V ) is uniquely written as

χ = Φ+α with α ∈ T⊥
ΦA(V ). Thus we can define the projection

Θ : T (V ) −→ A(V ), χ 7−→ Φ.

Lemma 2.3 (Joyce [14, Proposition 10.5.4]). Let Φ ∈ A(V ) and ∧4V ∗ = ∧4
+V

∗ ⊕
∧4
−V

∗ be the orthogonal decomposition with respect to gΦ, where ∧4
+V

∗ (resp. ∧4
−V

∗)

is the set of self-dual (resp. anti-self-dual) 4-forms on V . Then we have the following

inclusion:

∧4
−V

∗ ⊂ TΦA(V ).

Now we define Spin(7)-structures on oriented 8-manifolds.

Definition 2.4. Let M be an oriented 8-manifold. We define A(M) −→ M to

be the fiber bundle whose fiber over x is A(T ∗
xM) ⊂ ∧4T ∗

xM . Then Φ ∈ C∞(∧4T ∗M)

is a Cayley 4-form or a Spin(7)-structure on M if Φ ∈ C∞(A(M)), i.e., Φ is a smooth

section of A(M). If Φ is a Spin(7)-structure on M , then Φ induces a Riemannian metric

gΦ since Φ|x for each x ∈ M induces a positive-definite inner product gΦ|x on TxM . A

Spin(7)-structure Φ on M is said to be torsion-free if it is parallel with respect to the

induced Riemannian metric gΦ, i.e., ∇gΦΦ = 0, where ∇gΦ is the Levi-Civita connection

of gΦ.

Definition 2.5. Let Φ be a Spin(7)-structure on an oriented 8-manifold M . We

define T (M) to be the fiber bundle whose fiber over x is T (T ∗
xM) ⊂ ∧4T ∗

xM . Then for

the constant ρ given in Definition 2.2, we have the well-defined projection Θ : T (M) −→
A(M). Also, we see from Lemma 2.3 that ∧4

−T
∗M ⊂ TΦA(M) as subbundles of ∧4T ∗M .

Lemma 2.6 (Joyce [14, Proposition 10.5.9]). Let Φ be a Spin(7)-structure on M .

There exist ϵ1, ϵ2, ϵ3 independent of M and Φ, such that the following is true.

If η ∈ C∞(∧4T ∗M) satisfies ∥η∥C0 ≤ ϵ1, then Φ+ η ∈ T (M). For this η, Θ(Φ+ η)

is well-defined as a Spin(7)-structure on M , and expanded as
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Θ(Φ + η) = Φ + p(η)− F (η), (2.2)

where p(η) is the linear term and F (η) is the higher order term in η, and for each

x ∈M , p(η)|x is the TΦA(V )-component of η|x in the orthogonal decomposition (2.1) for

V = T ∗
xM . Also, we have the following pointwise estimates for any η, η′ ∈ C∞(∧4T ∗M)

with |η|, |η′| ≤ ϵ1:

|F (η)− F (η′)| ≤ ϵ2|η − η′|(|η|+ |η′|),
|∇(F (η)− F (η′))| ≤ ϵ3{|η − η′|(|η|+ |η′|)|dΦ|+ |∇(η − η′)|(|η|+ |η′|)

+ |η − η′|(|∇η|+ |∇η′|)}.

Here all norms are measured by gΦ.

The following result is important in that it relates the holonomy contained in Spin(7)

with the d-closedness of the Spin(7)-structure.

Theorem 2.7 (Salamon [18, Lemma 12.4]). Let M be an oriented 8-manifold. Let

Φ be a Spin(7)-structure on M and gΦ the induced Riemannian metric on M . Then the

following conditions are equivalent.

(1) Φ is a torsion-free Spin(7)-structure, i.e., ∇gΦΦ = 0.

(2) dΦ = 0.

(3) The holonomy group Hol(gΦ) of gΦ is contained in Spin(7).

Now suppose Φ̃ ∈ C∞(T (M)) with dΦ̃ = 0. We shall construct such a form Φ̃ in

Section 3.4.2. Then Φ = Θ(Φ̃) is a Spin(7)-structure on M . If η ∈ C∞(∧4T ∗M) with

∥η∥C0 ≤ ϵ1, then Θ(Φ+ η) is expanded as in (2.2). Setting ϕ = Φ̃−Φ and using dΦ̃ = 0,

we have

dΘ(Φ + η) = −dϕ+ dp(η)− dF (η).

Thus the equation dΘ(Φ + η) = 0 for Θ(Φ + η) to be a torsion-free Spin(7)-structure is

equivalent to

dp(η) = dϕ+ dF (η). (2.3)

In particular, we see from Lemma 2.3 that if η ∈ C∞(∧4
−T

∗M) then p(η) = η, so that

Equation (2.3) becomes

dη = dϕ+ dF (η). (2.4)

Joyce proved by using the iteration method and dC∞(∧4
−T

∗M) = dC∞(∧4T ∗M) that

Equation (2.4) has a solution η ∈ C∞(∧4
−T

∗M) if ϕ is sufficiently small with respect to

certain norms (see Theorem 3.25).

For an oriented 8-manifold M satisfying one of the conditions (1)–(3) in Theorem

2.7, the following therem completely determines the holonomy of M from its topological

invariants.
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Theorem 2.8 (Joyce [14, Theorem 10.6.1]). Let (M, g) be a compact Riemannian

8-manifold such that its holonomy group Hol(g) is contained in Spin(7). Then the Â-

genus Â(M) of M satisfies

48Â(M) = 3τ(M)− χ(M), (2.5)

where τ(M) and χ(M) are the signature and the Euler characteristic of M respectively.

Moreover, if M is simply-connected, then Â(M) is 1, 2, 3 or 4, and the holonomy group

of (M, g) is determined as follows:

Hol(g) =


Spin(7) if Â(M) = 1,

SU(4) if Â(M) = 2,

Sp(2) if Â(M) = 3,

Sp(1)× Sp(1) if Â(M) = 4.

3. The gluing procedure.

3.1. Compact complex manifolds with an anticanonical divisor.

We suppose that X is a compact complex manifold of dimension m, and D is a

smooth irreducible anticanonical divisor on X. We recall some results in [4, Sections

3.1–3.2], and [5, Sections 3.1–3.2].

Lemma 3.1. Let X and D be as above. Then there exists a local coordinate system

{Uα, (z
1
α, . . . , z

m−1
α , wα)} on X such that

(i) wα is a local defining function of D on Uα, i.e., D ∩ Uα = {wα = 0}, and

(ii) the m-forms Ωα = (dwα/wα) ∧ dz1α ∧ · · · ∧ dzm−1
α on Uα \ D together yield a

holomorphic volume form Ω on X = X \D.

Next we shall see that X = X\D is a cylindrical manifold whose structure is induced

from the holomorphic normal bundle N = ND/X to D in X, where the definition of

cylindrical manifolds is given as follows.

Definition 3.2. Let X be a noncompact differentiable manifold of dimension r.

Then X is called a cylindrical manifold or a manifold with a cylindrical end if there exists

a diffeomorphism π : X \X0 −→ Σ×R+ = { (p, t) | p ∈ Σ, 0 < t <∞} for some compact

submanifold X0 of dimension r with boundary Σ = ∂X0. Also, extending t smoothly on

X so that t ≤ 0 on X0, we call t a cylindrical parameter on X.

Let (xα, yα) be local coordinates on Vα = Uα ∩ D, such that xα is the restriction

of zα to Vα and yα is a coordinate in the fiber direction. Then one can see easily that

dx1α ∧ · · · ∧ dxm−1
α on Vα together yield a holomorphic volume form ΩD, which is also

called the Poincaré residue of Ω along D. Let ∥ · ∥ be the norm of a Hermitian bundle

metric on N . We can define a cylindrical parameter t on N by t = (−1/2) log ∥s∥2
for s ∈ N \ D. Then the local coordinates (zα, wα) on X are asymptotic to the local

coordinates (xα, yα) on N \D in the following sense.
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Lemma 3.3. There exists a diffeomorphism φ from a neighborhood V of the zero

section of N containing t−1(R+) to a tubular neighborhood U of D in X such that φ can

be locally written as

zα = xα +O(|yα|2) = xα +O(e−t),

wα = yα +O(|yα|2) = yα +O(e−t),

where we multiply all zα and wα by a single constant to ensure t−1(R+) ⊂ V if necessary.

Hence X is a cylindrical manifold with the cylindrical parameter t via the diffeo-

morphism Φ given in the above lemma. In particular, when H0(X,OX) = 0 and ND/X

is trivial, we have a useful coordinate system near D.

Lemma 3.4 ([5, Lemma 3.4]). Let (X,D) be as in Lemma 3.1. If H1(X,OX) = 0

and the normal bundle ND/X is holomorphically trivial, then there exist an open neigh-

borhood UD of D and a holomorphic function w on UD such that w is a local defining

function of D on UD. Also, we may define the cylindrical parameter t with t−1(R+) ⊂ UD

by writing the fiber coordinate y of ND/X as y = exp(−t−
√
−1θ).

3.2. Admissible pairs and asymptotically cylindrical Ricci-flat Kähler

manifolds.

Definition 3.5. LetX be a cylindrical manifold such that π : X\X0 −→ Σ×R+ =

{(p, t)} is a corresponding diffeomorphism. If gΣ is a Riemannian metric on Σ, then it

defines a cylindrical metric gcyl = gΣ + dt2 on Σ × R+. Then a complete Riemannian

metric g on X is said to be asymptotically cylindrical (to (Σ×R+, gcyl)) if g satisfies for

some cylindrical metric gcyl = gΣ + dt2

|∇j
gcyl

(g − gcyl)|gcyl −→ 0 as t −→ ∞ for all j ≥ 0,

where we regarded gcyl as a Riemannian metric on X\X0 via the diffeomorphism π. Also,

we call (X, g) an asymptotically cylindrical manifold and (Σ × R+, gcyl) the asymptotic

model of (X, g).

Definition 3.6. Let X be a complex orbifold with isolated singular points

SingX = { p1, . . . , pk } and D a divisor on X. Then (X,D) is said to be an orbifold

admissible pair if the following conditions hold:

(a) X is a compact Kähler orbifold.

(b) D is a smooth anticanonical divisor on X with D ∩ SingX = ∅.

(c) the normal bundle ND/X is trivial.

(d) X and X \ (D ⊔ SingX) are simply-connected.

(e) Each p ∈ SingX has a neighborhood Up such that there exists a crepant resolution

Ũp 99K Up at p.
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Throughout this paper, we shall consider the action of Z4 on C4 generated by

(z1, z2, z3, z4) 7−→ (
√
−1z1,

√
−1z2,

√
−1z3,

√
−1z4) for (z1, z2, z3, z4) ∈ C4.

Under the above action, it can be shown that C4/Z4 has a unique crepant resolution. If

each Up in condition (e) is isomorphic to C4/Z4, then we shall call (X,D) an orbifold

admissible pair with isolated singular points modelled on C4/Z4. This kind of orbifold

admissible pair plays an important role later in constructing compact Spin(7)-manifolds.

If X is smooth, then SingX = ∅ and condition (e) is empty, so that the above

conditions reduce to the definition of admissible pairs which originates in Kovalev [15]

and is also used in our papers [5], [6]. From the above conditions, we see that Lemmas

3.1 and 3.4 apply to admissible pairs. Also, from conditions (a) and (b), we see that D

is a compact Kähler manifold with trivial canonical bundle. The following result holds

for orbifold admissible pairs (X,D), which uses a generalization of Tian–Yau’s theorem

[19] by Haskins–Hein–Nördstrom.

Theorem 3.7 (Haskins–Hein–Nördstrom [11]). Let (X,ω′) be a compact Kähler

manifold and m = dimCX. If (X,D) is an orbifold admissible pair, then the following

is true.

It follows from Lemmas 3.1 and 3.4, there exist a local coordinate system (UD,α,

(z1α, . . . , z
m−1
α , w)) on a neighborhood UD = ∪αUD,α of D and a holomorphic volume

form Ω on X \D such that

Ω =
dw

w
∧ dz1α ∧ · · · ∧ dzm−1

α on UD,α \D.

Let κD be the unique Ricci-flat Kähler form on D in the Kähler class [ω′|D]. Also let

(xα, y) be local coordinates of ND/X \D as in Section 3.1 and write y as y = exp(−t−√
−1θ). Now define a holomorphic volume form Ωcyl and a cylindrical Ricci-flat Kähler

form ωcyl on ND/X \D by

Ωcyl =
dy

y
∧ dx1α ∧ · · · ∧ dxm−1

α = (dt+
√
−1dθ) ∧ ΩD,

ωcyl = κD +

√
−1

2

dy ∧ dy

|y|2
= κD + dt ∧ dθ. (3.1)

Then there exist a holomorphic volume form Ω and an asymptotically cylindrical Ricci-

flat Kähler form ω on X = X \D such that

Ω− Ωcyl = dζ, ω − ωcyl = dξ for some ζ and ξ with

|∇j
gcyl

ζ|gcyl = O(e−βt), |∇j
gcyl

ξ|gcyl = O(e−βt)

for all j ≥ 0 and β ∈ (0,min { 1/2,
√
λ1 }),

where λ1 is the first eigenvalue of the Laplacian ∆gD+dθ2 acting on D × S1 with gD the

metric associated with κD.
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A pair (Ω, ω) consisting of a holomorphic volume form Ω and a Ricci-flat Kähler

form ω on an m-dimensional Kähler manifold normalized so that

ωm

m!
=

(
√
−1)m

2

2m
Ω ∧ Ω (= the volume form)

is called a Calabi–Yau structure. The above theorem states that there exists a Calabi–

Yau structure (Ω, ω) on X asymptotic to a cylindrical Calabi–Yau structure (Ωcyl, ωcyl)

on ND/X \D if we multiply Ω by some constant.

3.3. Kähler orbifolds with an antiholomorphic involution and Spin(7)

manifolds.

3.3.1. Two basic examples of ALE Spin(7)-manifolds.

Let Φ0 be the standard Spin(7)-structure on R8 = { (x1, x2, . . . , x8) }. Let α, β act

on R8 by

α : (x1, x2, . . . , x8) 7−→ (−x2, x1,−x4, x3,−x6, x5,−x8, x7),
β : (x1, x2, . . . , x8) 7−→ (x3,−x4,−x1, x2, x7,−x8,−x5, x6).

Then α, β satisfy α4 = β4 = idR8 , αβ = βα3 and α∗Φ0 = β∗Φ0 = Φ0, so that the

group G = ⟨α, β⟩ is a subgroup of Spin(7). Define complex coordinates (z1, z2, z3, z4)

and (w1, w2, w3, w4) on R8 by
z1 = x1 +

√
−1x2

z2 = x3 +
√
−1x4

z3 = x5 +
√
−1x6

z4 = x7 +
√
−1x8,


w1 = −x1 +

√
−1x3

w2 = x2 +
√
−1x4

w3 = −x5 +
√
−1x7

w4 = x6 +
√
−1x8.

Then the coordinates (z1, z2, z3, z4) and (w1, w2, w3, w4) define Calabi–Yau structures

(ω0,Ω0) and (ω′
0,Ω

′
0) on R8 by{

ω0 = (
√
−1/2)

∑4
i=1 dzi ∧ dzi

Ω0 = dz1 ∧ dz2 ∧ dz3 ∧ dz4,

{
ω′
0 = (

√
−1/2)

∑4
i=1 dwi ∧ dwi

Ω′
0 = dw1 ∧ dw2 ∧ dw3 ∧ dw4,

both of which induce the Spin(7)-structure Φ0 by

Φ0 =
1

2
ω0 ∧ ω0 +ReΩ0 =

1

2
ω′
0 ∧ ω′

0 +ReΩ′
0.

We see that α, β act on these coodinates as{
α : (z1, z2, z3, z4) 7−→ (

√
−1z1,

√
−1z2,

√
−1z3,

√
−1z4)

β : (z1, z2, z3, z4) 7−→ (z2,−z1, z4,−z3),{
α : (w1, w2, w3, w4) 7−→ (w2,−w1, w4,−w3)

β : (w1, w2, w3, w4) 7−→ (
√
−1w1,

√
−1w2,

√
−1w3,

√
−1w4).
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Now we resolve the singularity of R8/G in two ways. Let us consider the action of

α on C4 in the z-coordinates. Then we have the following commutative diagram:

β̃ ↷ Y1

crepant
���
�
�

// // X1

π1

���
�
�

β ↷ C4/⟨α⟩ // // R8/G,

where β is an antiholomorphic involution on C4/⟨α⟩ induced by β, and β̃ is the lift of β

which acts freely on Y1. Since there exists an ALE Calabi–Yau structure (ω̃1, Ω̃1) on Y1

with

β̃∗ω̃1 = −ω̃1, β̃∗Ω̃1 = (Ω̃1),

the induced torsion-free Spin(7)-structure Φ̃1 = (1/2)ω̃1 ∧ ω̃1 + Re Ω̃1 pushes down to

a torsion-free Spin(7)-structure Φ1 on X1. This gives a resolution of R8/G by an ALE

Spin(7)-manifold (X1,Φ1). Similarly, if we consider the action of β on C4 in the w-

coordinate, then we have

α̃↷ Y2

crepant
���
�
�

// // X2

π2

���
�
�

α↷ C4/⟨β⟩ // // R8/G.

If we consider

ϕ : (z1, z2, z3, z4) 7−→ (w1, w2, w3, w4), that is,

(x1, x2, . . . , x8) 7−→ (−x1, x3, x2, x4,−x5, x7, x6, x8),

then ϕ induces an isomorphism C4/⟨α⟩
∼=−→ C4/⟨β⟩, which lifts to an isomorphism ϕ̃ :

Y1

∼=−→ Y2. Let Φ2 be a Spin(7)-structure on X2 to which the Spin(7)-structure (ϕ̃−1)∗Φ̃1

on Y2 pushes down. Then (X2,Φ2) is another ALE Spin(7)-manifold which resolves R8/G,

but topologically distinct because ϕ does not commute with α, β, so that the isomorphism

ϕ acts nontrivially on R8/G.

Proposition 3.8 (Joyce [14, Section 15.1.1]). Let (Xs,Φs) for s = 1, 2 be ALE

Spin(7)-manifolds as above. Then the fundamental group of Xs is Z2, and

bi(Xs) =

{
1 if i = 0, 4

0 otherwise,
so that χ(Xs) = 2. (3.2)

3.3.2. Compatible antiholomorphic involutions on orbifold admissible

pairs.

Proposition 3.9. Let X be a complex orbifold and σ : X −→ X be an antiholo-

morphic involution. Suppose S is a complex submanifold of X such that σ preserves and
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acts freely on S. Then σ lifts to a unique antiholomorphic involution σ̃ on the blow-up

ϖ : BlS(X) 99K X of X along S such that σ̃ preserves and acts freely on ϖ−1(S).

Proof. Let m = dimCX and k = dimC S. Fix a point x ∈ S. It is enough to find

a lift σ̃ of σ acting on a neighborhood of ϖ−1(x) in BlS(X).

First we consider local coordinates near x and σ(x) in X. We can choose a neigh-

borhood U of x ∈ S and local coordinates (y, z) = (y1, . . . , yk, z1, . . . , zm−k) on U

such that S ∩ U = { z = 0 }. We can similarly choose local coordinates (y′,z′) =

(y′1, . . . , y
′
k, z

′
1, . . . , z

′
m−k) on σ(U) such that σ(S ∩ U) = { z′ = 0 } and

(y′, z′) = σ(y, z) = (α(y,z), β(y, z))

for some antiholomorphic functions α : Cm −→ Ck and β : Cm −→ Cm−k. Also,

σ(S) = S yields that for (y,0) ∈ S ∩ U we have

σ(y,0) = (α(y,0),0), that is, β(y,0) = 0. (3.3)

Next we consider local coordinates near ϖ−1(x) and ϖ−1(σ(x)) in BlS(X). Local

coordinates of BlS(X) on ϖ−1(U) are written as

{ (y, z, [ζ]) ∈ Cm × CPm−k−1 | ziζj = zjζi for all i, j ∈ { 1, . . . ,m− k } } ,

where ζ = (ζ1, . . . , ζm−k) ∈ Cm−k. Similarly, local coordinates of BlS(X) on ϖ−1(σ(U))

are written as

{ (y′, z′, [ζ′]) ∈ Cm × CPm−k−1 | z′iζ ′j = z′jζ
′
i for all i, j ∈ { 1, . . . ,m− k } } .

Thus we have

ϖ−1(y, z) = { (y, z, [z]) } for (y, z) ∈ U \ S (and so z ̸= 0),

ϖ−1(y,0) = { (y,0, [ζ]) | [ζ] ∈ CPm−k−1 } for (y,0) ∈ S ∩ U.

Now we shall find a lift σ̃ of σ acting on ϖ−1(U). For (y, z) ∈ U \ S, we must have

σ̃(y, z, [z]) = (σ(y, z), [β(y, z)]).

Then σ̃ extends naturally to ϖ−1(S ∩ U) by continuity as

σ̃(y,0, [ζ]) = lim
λ→0

σ̃(y, λζ, [λζ])

= lim
λ→0

(α(y, λζ), β(y, λζ), [β(y, λζ)])

=

(
α(y,0),0,

[
m−k∑
i=1

Dk+iβ(y,0)ζi

])
, (3.4)

where Dj is the antiholomorphic partial differentiation with respect to the j-th variable.

Since σ is an antiholomorphic diffeomorphism on X, the matrix (Diσj(y,z))1≤i,j≤m is

invertible for all (y, z) ∈ U . In particular, the invertiblility of (Diσj(y,0))1≤i,j≤m leads
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to the invertiblity of (Dk+iβj(y,0))1≤i,j≤m−k. Hence (3.4) gives the desired action of σ̃

on the neighborhood ϖ−1(U) of ϖ−1(x) in BlS(X). □

Definition 3.10. Let X be a four-dimensional compact Kähler orbifold with iso-

lated singular points modelled on C4/Z4, such that (X,D) is an orbifold admissible

pair. An antiholomorphic involution σ on X is said to be compatible with (X,D) if the

following conditions hold:

(f) We can choose a defining function w on a neighborhood UD of D given in Lemma

3.4 so that

σ∗w = w, (3.5)

where the complex conjugate f for a complex function f is defined by f(x) = f(x).

(g) (X)σ = SingX, where (X)σ is the fixed point set of the action of σ on X.

Note that (3.5) in condition (f) implies σ(D) = D, and σD = σ|D yields an anti-

holomorphic involution on D.

Lemma 3.11. Let σcyl be an antiholomorphic involution on ND/X defined by

σcyl(xα, y) = (σD(xα), y) for (xα, y) ∈ (Uα ∩D)× C ⊂ ND/X . (3.6)

Then we have

σ(zα, w) = σcyl(xα, y) +O(e−t).

Proof. Using (3.5), we can write σ(zα, w) as

σ(zα, w) = (σ1(zα, w), w) with σ1(xα, 0) = σD(xα). (3.7)

Thus the assertion follows from Lemma 3.3. □

Since the cylindrical parameter t is defined by y = exp(−t−
√
−1θ), we have

σ∗
cylt = t, σ∗

cylθ = −θ

and thus

(ND/X \D)/⟨σcyl⟩ ≃
(
(D × S1)/⟨σD×S1,cyl⟩

)
× R+, (3.8)

where σD×S1,cyl acts on D × S1 as

σD×S1,cyl(xα, θ) = (σD(xα),−θ). (3.9)

One can prove the following result by Theorem 3.7 and an argument as used in the proof

of [14, Proposition 15.2.2].
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Theorem 3.12. Let (X,ω′) be a four-dimensional Kähler orbifold with isolated

singular points modelled on C4/Z4, such that (X,D) is an orbifold admissible pair with a

compatible antiholomorphic involution σ. Then there exists an asymptotically cylindrical

Calabi–Yau structure (ω,Ω) on X = X \D asymptotic to (ωcyl,Ωcyl) on N \D, such that

σ∗g = g, σ∗ω = −ω, σ∗Ω = Ω,

where N = ND/X and g is the Riemannian metric on X associated with (ω,Ω). Thus

the torsion-free Spin(7)-structure (1/2)ω ∧ ω+ReΩ on X pushes down to a torsion-free

Spin(7)-structure Φ on X/⟨σ⟩. Also, an antiholomorphic involution σcyl defined in (3.9)

satisfies

σ∗
cylgcyl = gcyl, σ∗

cylωcyl = −ωcyl, σ∗
cylΩcyl = Ωcyl,

so that the torsion-free Spin(7)-structure (1/2)ωcyl ∧ ωcyl + ReΩcyl pushes down to a

torsion-free Spin(7)-structure Φcyl. We have

Φ− Φcyl = dΞ, for some Ξ with

|∇j
gcyl

Ξ|gcyl = O(e−βt), for all j ≥ 0 and 0 < β < min { 1/2,
√
λ1 } , (3.10)

where λ1 is the constant given in Theorem 3.7. Hence (X/⟨σ⟩,Φ) is an asymptotically

cylindrical Spin(7)-manifold, with the asymptotic model ((N \D)/⟨σcyl⟩,Φcyl), with

(N \D)/⟨σcyl⟩ ≃
(
(D × S1)/⟨σD×S1,cyl⟩

)
× R+ = { ([xα, θ], t) } ,

where [xα, θ] = [σD(xα),−θ] in (D × S1)/⟨σD×S1,cyl⟩.

Theorem 3.13 (Joyce [14, Proposition 15.2.3 and Corollary 15.2.4]). All isolated

singular points of X/⟨σ⟩ are modelled on R8/G given in Section 3.3.1. For each p ∈
SingX/⟨σ⟩ there exists an isomorphism ιp : R8/G −→ Tp(X/⟨σ⟩), which identifies the

Spin(7)-structures Φ0 on R8 and Φ on Tp(X/⟨σ⟩).

3.4. Gluing orbifold admissible pairs divided by compatible antiholo-

morphic involutions.

In this subsection we will only consider orbifold admissible pairs (X,D) with

dimCX = 4. Also, we will denote N = ND/X and X = X \D.

3.4.1. The gluing condition.

Let (X,ω′) be a four-dimensional compact Kähler orbifold with isolated singular

points modelled on C4/Z4, and (X,D) be an orbifold admissible pair with a compatible

antiholomorphic involution σ. Then we obtained in Theorem 3.12 an asymptotically

cylindrical, torsion-free Spin(7)-manifold (X,Φ), with the asymptotic model (N\D,Φcyl).

Next we consider the condition under which we can glue together X1/⟨σ1⟩ and

X2/⟨σ2⟩ obtained from orbifold admissible pairs (X1, D1) and (X2, D2) with antiholo-

morphic involutions σi. For gluing X1/⟨σ1⟩ and X2/⟨σ2⟩ to obtain a manifold with a

Spin(7)-structure with small torsion, we would like (X1/⟨σ1⟩,Φ1) and (X2/⟨σ2⟩,Φ2) to

have the same asymptotic model. Thus we put the following
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Gluing condition. There exists an isomorphism f̃ : D1 −→ D2 between the

cross-sections of the cylindrical ends of Xi \Di with

f̃ ◦ σ1|D1 = σ2|D2 ◦ f̃ ,

such that

f̃∗T

(
1

2
ω2,cyl ∧ ω2,cyl +ReΩ2,cyl

)
=

1

2
ω1,cyl ∧ ω1,cyl +ReΩ1,cyl, (3.11)

where f̃T : D1 × S1 × (0, 2T ) −→ D2 × S1 × (0, 2T ) is defined by

f̃T (x1, θ1, t) = (f̃(x1),−θ1, 2T − t) for (x1, θ1, t) ∈ D1 × S1 × (0, 2T ).

Lemma 3.14. If f̃ : D1 −→ D2 is an isomorphism satisfying f̃ ◦ σ1|D1 = σ2|D2 ◦ f̃
and f̃∗κD2 = κD1 . Then the gluing condition (3.11) holds, where we change the sign of

Ω2,cyl (and also the sign of Ω2 correspondingly).

Proof. It follows by a straightforward calculation using (3.1) and Lemma 3.11.

□

The above f̃ and f̃T pushes down to maps

f : D1/⟨σD1⟩ −→ D2/⟨σD2⟩,
fT :

(
(D1 × S1)/⟨σD1×S1,cyl⟩

)
× (0, 2T ) −→

(
(D2 × S1)/⟨σD2×S1,cyl⟩

)
× (0, 2T ),

with f([x1]) = [f̃(x1)], fT ([x1, θ1], t) = ([f̃(x1),−θ1], 2T − t)

such that

f∗TΦ2,cyl = Φ1,cyl.

3.4.2. Spin(7)-structures with small torsion.

Now we shall glue X1/⟨σ1⟩ and X2/⟨σ2⟩ under the gluing condition (3.11). Let

ρ : R −→ [0, 1] denote a smooth cut-off function

ρ(x) =

{
1 if x ≤ 0,

0 if x ≥ 1,

and define ρT : R −→ [0, 1] by

ρT (x) = ρ(x− T + 1) =

{
1 if x ≤ T − 1,

0 if x ≥ T.

Setting an approximating Calabi–Yau structure (Ωi,T , ωi,T ) on Xi by

Ωi,T =

{
Ωi − d(1− ρT−1)ζi on {ti ≤ T − 1},
Ωi,cyl + dρT−1ζi on {ti ≥ T − 2}
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and similarly

ωi,T =

{
ωi − d(1− ρT−1)ξi on {ti ≤ T − 1},
ωi,cyl + dρT−1ξi on {ti ≥ T − 2},

we can define a d-closed 4-form Φ̃i,T on each Xi/⟨σi⟩ by

Φ̃i,T = πi∗

(
1

2
ωi,T ∧ ωi,T +ReΩT

)
,

where πi : Xi −→ Xi/⟨σi⟩ are projections. We see that Φ̃i,T satisfies

Φ̃i,T =

{
Φi on {ti < T − 2},
Φi,cyl on {ti > T − 1}

and from (3.10) that

|Φ̃i,T − Φi,cyl|gΦi,cyl
= O(e−βT ) for all β ∈ (0,min { 1/2,

√
λ1 }). (3.12)

Let X1,T = {t1 < T + 1} ⊂ X1 and X2,T = {t2 < T + 1} ⊂ X2. We glue X1,T /⟨σ1⟩
and X2,T /⟨σ2⟩ along ((D1 × S1)/⟨σD1×S1,cyl⟩)× {T − 1 < t1 < T + 1} ⊂ X1,T /⟨σ1⟩ and
((D2 × S1)/⟨σD2×S1,cyl⟩) × {T − 1 < t2 < T + 1} ⊂ X2,T /⟨σ2⟩ to construct a compact

8-orbifold using the gluing map fT (more precisely, FT = φ2 ◦ fT ◦ φ−1
1 , where φ1 and

φ2 are the diffeomorphisms given in Lemma 3.3). We denote this orbifold by M▽
T (the

upper index ▽ indicates singularities to be resolved). Also, we can glue together Φ̃1,T

and Φ̃2,T to obtain a d-closed 4-form Φ̃T on M▽
T by Lemma 3.14. There exists a positive

constant T∗ such that Φ̃T ∈ C∞(T (M▽
T )) for any T with T > T∗. This Φ̃T is what was

discussed right after Theorem 2.7, from which we can define a Spin(7)-structure ΦT with

small torsion by ΦT = Θ(Φ̃T ). Letting ϕT = Φ̃T − ΦT , we have dϕT + dΦT = 0.

Proposition 3.15. Let T > T∗. Then there exist constants Ap,k,β independent of

T such that for β ∈ (0,min { 1/2,
√
λ1 }) we have

∥ϕT ∥Lp
k
≤ Ap,k,β e

−βT ,

where all norms are measured using gΦT
.

Proof. These estimates follow in a straightforward way from Theorem 3.7 and

(3.12) by an argument similar to those in [4, Section 3.5]. □

3.4.3. Resolving M▽
T by ALE Spin(7)-manifolds X1 and X2.

Let p ∈ SingM▽
T and ιp : R8/G −→ TpM

▽
T as in Theorem 3.13. Let expp :

TpM
▽
T −→M▽

T be the exponential map. Then ψp = expp ◦ιp maps each ball B2ζ(R8/G)

of 2ζ in R8/G to a neighborhood of p ∈ M▽
T . Choose ζ > 0 small so that Up =

expp ◦ιp(B2ζ(R8/G)) satisfy Up ∩ Up′ = ∅ and Up ∩ {T − 2 < ti < T + 1 } = ∅, i = 1, 2

for any p, p′ ∈M▽
T with p ̸= p′ and for any T > T∗.
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Proposition 3.16 (Joyce [14, Proposition 15.2.6]). There exists a smooth 3-form

σp on B2ζ(R8/G) for each p ∈ SingM▽
T and a constant C1 > 0 independent of T > T∗,

such that

ψ∗
pΦT − Φ0 = dσp, |∇ℓσp| ≤ C1r

3−ℓ for ℓ = 0, 1, 2

on B2ζ(R8/G). Here | · | and ∇ is defined by the metric g0 induced by Φ0, and r is the

radius function on R8/G.

Let πs : Xs −→ R8/G be the projections given in Section 3.3.1. For each ϵ ∈ (0, 1]

and s = 1, 2 let X ϵ
s = Xs, define a Spin(7)-structure Φϵ

s = ϵ4Φs and define πϵ
s : X ϵ

s −→
R8/G by πϵ

s = ϵπs. Then (X ϵ
s ,Φ

ϵ
s) is an ALE Spin(7)-manifold asymptotic to R8/G.

Proposition 3.17 (Joyce [14, Equation (15.6)]). There exist a constant C2 > 0

independent of T > T∗, and a smooth 3-form τ ϵs on R8/G \Bϵζ(R8/G) such that

(πϵ
s)∗Φ

ϵ
s − Φ0 = dτ ϵs , |∇ℓτ ϵs | ≤ C2ϵ

8r−7−ℓ for ℓ = 0, 1, 2

on R8/G \Bϵζ(R8/G).

Now we glue together

U ϵ
T =M▽

T \
∪

p∈SingM▽
T

ψp(Bϵ4/5ζ(R8/G)) and

V ϵ
p = (πϵ

sp)
−1(B2ϵ4/5ζ(R8/G)), sp ∈ { 1, 2 } ,

along the regions diffeomorphic to

B2ϵ4/5ζ(R8/G) \Bϵ4/5ζ(R8/G) in R8/G,

to obtain a compact 8-manifoldM ϵ
T . Choosing sp ∈ { 1, 2 } for each p ∈ SingM▽

T , we can

also glue the Spin(7)-structures ΦT on M▽
T and Φϵ

sp on X ϵ
sp to obtain a closed 4-form Φ̃ϵ

T

on M ϵ
T by

Φ̃ϵ
T = Φ0 + d(ρϵ−4/5rσp) + d((1− ρϵ−4/5r)τ

ϵ
sp) on U ϵ

T ∩ V ϵ
p .

Now we set ϵ = exp(−γT ) for some constant γ > 0 to be determined later, and define

M ϵ =M ϵ
T , Φ̃

ϵ = Φ̃ϵ
T and U ϵ = U ϵ

T .

Proposition 3.18 (Joyce [14, Proposition 15.2.9]). If sp = 1 for all p ∈ SingM▽
T ,

then the fundamental group of M ϵ is Z2. Otherwise, M ϵ is simply-connected.

The following result is a consequence of Propositions 3.16 and 3.17.

Lemma 3.19 (Joyce, [14, Lemma 15.2.11]). There exists a constant C3 > 0 inde-

pendent of T > T∗ such that Φ̃T satisfies

|Φ̃ϵ − Φ0| ≤ C3ϵ
8/5, |∇(Φ̃ϵ − Φ0)| ≤ C3ϵ

4/5
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on U ϵ ∩ V ϵ
p , where | · | and ∇ is defined using the metric g0 induced by Φ0.

Letting Φϵ = Θ(Φ̃ϵ) and ϕϵ = Φ̃ϵ − Φϵ, we have dϕϵ + dΦϵ = 0.

Theorem 3.20. There exists a family (M ϵ,Φϵ) of smooth 8-manifolds with a

Spin(7)-structure with small torsion and resolutions πϵ : M ϵ −→ M▽ for ϵ ∈ (0, 1]

such that we have

(i) ∥ϕϵ∥L2 ≤ λϵ24/5 and ∥dϕϵ∥L10 ≤ λϵ36/25,

(ii) the injectivity radius δ(g) satisfies δ(g) ≥ µϵ, and

(iii) the Riemann curvature R(g) satisfies ∥R(g)∥C0 ≤ νϵ−2,

where all norms are measured using the metric gϵ on M ϵ induced by Φϵ.

Proof. The proof is almost the same as that of [14, Proposition 15.2.13] except

for the contributions from the cylinder, which is diffeomorphic to Σ × (0, 2T ) with Σ =

(D × S1)/⟨σD×S1,cyl⟩. Joyce proved using Lemma 3.19 that∑
p∈SingM▽

T

∫
Uϵ∩V ϵ

p

|ϕϵ|2 ≤ λ2ϵ48/5,
∑

p∈M▽
T

∫
Uϵ∩V ϵ

p

|dϕϵ|2 ≤ λ10ϵ72/5.

Meanwhile, Proposition 3.15 gives∫
Σ×(0,2T )

|ϕT |2 ≤ 2Aβ
2e−2βT ,

∫
Σ×(0,2T )

|dϕT |10 ≤ 2Aβ
10e−10βT ,

where we take β ∈ (0,max { 1/2,
√
λ1 }) and Aβ = max {A2,0,β , A10,1,β }. Now if

we choose γ > 0 for ϵ = e−γT so that (24/5)γ ≤ β, then we have e−2βT ≤ ϵ48/5

and e−10βT ≤ ϵ72/5. Summing up the above contributions and redefining λ to be

max { (λ2 + 2Aβ
2)1/2, (λ10 + 2Aβ

10)1/10 }, we see that condition (i) holds. Conditions

(ii) and (iii) are obvious. □

3.5. Gluing theorems.

First we give a gluing and a doubling construction of Calabi–Yau fourfolds from

orbifold admissible pairs, which are generalizations of Theorem 3.10 and Corollary 3.11

in [6].

Theorem 3.21. Let (X1, ω
′
1) and (X2, ω

′
2) be compact Kähler orbifolds with

dimCXi = 4 such that (X1, D1) and (X2, D2) are orbifold admissible pairs. Suppose

there exists an isomorphism f : D1 −→ D2 such that f∗κ2 = κ1, where κi is the unique

Ricci-flat Kähler form on Di in the Kähler class [ω′
i|Di ]. Then we can glue together the

crepant resolutions of X1 and X2 along their cylindrical ends to obtain a compact simply-

connected 8-manifold M . The manifold M admits a Riemannian metric with holonomy

contained in Spin(7). Moreover, if Â(M) = 2, then M is a Calabi–Yau fourfold, i.e., M

admits a Ricci-flat Kähler metric with holonomy SU(4).
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Corollary 3.22. Let (X,D) be an orbifold admissible pair with dimCX = 4.

Then we can glue two copies of the crepant resolution of X along their cylindrical ends

to obtain a compact simply-connected 8-manifold M . Then M admits a Riemannian

metric with holonomy contained in Spin(7). If Â(M) = 2, then the manifold M is a

Calabi–Yau fourfold.

Next we give a gluing and a doubling construction of compact Spin(7)-manifolds.

Theorem 3.23. Let (X1, ω
′
1) and (X2, ω

′
2) be four-dimensional compact Kähler

orbifolds with singularities such that (X1, D1), (X2, D2) are orbifold admissible pairs

with a compatible antiholomorphic involution σi. Suppose there exists an isomorphism

f̃ : D1 −→ D2 such that f̃◦σ1|D1 = σ2|D2◦f̃ and f̃∗κ2 = κ1, where κi is the unique Ricci-

flat Kähler form on Di in the Kähler class [ω′
i|Di ]. Then we can glue together X1/⟨σ1⟩

and X2/⟨σ2⟩ along their cylindrical ends to obtain a compact 8-orbifold M▽. There exists

a compact simply-connected 8-manifoldM which resolvesM▽ at (#SingX1+#SingX2)

isolated singular points such that M admits a Riemannian metric with holonomy con-

tained in Spin(7). Furthermore if Â(M) = 1, then M is a compact Spin(7)-manifold.

Corollary 3.24. Let (X,ω′) be a four-dimensional Kähler orbifold with isolated

singular points modelled on C4/Z4, such that (X,D) be an orbifold admissible pair with

a compatible antiholomorphic involution σ. Then we can glue together two copies of

X/⟨σ⟩ = (X \D)/⟨σ⟩ to obtain a compact 8-orbifold M▽. There exists a compact simply-

connected 8-manifold M which resolves M▽ at 2(#SingX) isolated singular points such

that M admits a Riemannian metric with holonomy contained in Spin(7). Furthermore

if Â(M) = 1, then M is a compact Spin(7)-manifold.

Proof of Theorem 3.23. By Proposition 3.18, there exists a choice

{ sp ∈ { 1, 2 } | p ∈ SingM▽ } of resolutions by Xsp such that M = M ϵ is simply-

connected. The assertion for Â(M) = 1 in Theorem 3.23 follows directly from Theorem

2.8. Thus it remains to prove the existence of a torsion-free Spin(7)-structure on M ϵ for

sufficiently small ϵ ∈ (0, 1]. This is a consequence of the following.

Theorem 3.25 (Joyce [14, Theorem 13.6.1]). Let λ, µ, ν be positive constants.

Then there exists a positive constant ϵ∗ such that whenever 0 < ϵ < ϵ∗, the following is

true.

Let M be a compact 8-manifold and Φ a Spin(7)-structure on M . Suppose ϕ is a

smooth 4-form on M with dΦ + dϕ = 0, and

1. ∥ϕ∥L2 ≤ λϵ13/3 and ∥dϕ∥L10 ≤ λϵ7/5,

2. the injectivity radius δ(g) satisfies δ(g) ≥ µϵ, and

3. the Riemann curvature R(g) satisfies ∥R(g)∥C0 ≤ νϵ−2.

Let ϵ1 be as in Lemma 2.6. Then there exists η ∈ C∞(∧4T ∗
−M) with ∥η∥C0 < ϵ1 such that

dΘ(Φ+η) = 0. Hence the manifold M admits a torsion-free Spin(7)-structure Θ(Φ+ η).



368(20)

368 M. Doi and N. Yotsutani

If we set ϕ = ϕϵ, then M ϵ and ϕϵ satisfy conditions (i)–(iii) in Theorem 3.20. Thus

we can apply Theorem 3.25 to prove that Φϵ can be deformed into a torsion-free Spin(7)-

structure for sufficiently small ϵ ∈ (0, 1]. This completes the proof of Theorem 3.23. □

4. Orbifold admissible pairs and weighted projective spaces.

In order to find orbifold admissible pairs with a compatible antiholomorphic involu-

tion in Definitions 3.6 and 3.10, we will use some algebro-geometrical approach. First we

review some basics on weighted projective spaces. In Section 4.2, we explain notation on

complete intersections in weighted projective spaces. (See [8] for more details). Later in

Section 4.3, we consider a situation where the gluing condition holds naturally.

4.1. Basics on projective spaces.

First we will observe the structure of the weighted projective space as a complex

orbifold. Let a0, . . . , an be positive integers with gcd(a0, . . . , an) = 1. Recall that the

weighted projective space CPn(a0, . . . , an) is the quotient (Cn+1 \{0})/C∗, where C∗ acts

on Cn+1 \ {0} by

Cn+1 \ {0} −→ Cn+1 \ {0}, (w0, . . . , wn) 7−→ (ta0w0, . . . , t
anwn)

for t ∈ C∗. Let us fix the point p = [1, 0, . . . , 0] in CPn(a0, . . . , an). Denote the stabilizer

of p in C∗ by (C∗)p. Then the point (1, 0, . . . , 0) in Cn+1 \ {0} is taken to (ta0 , 0, . . . , 0)

under the action of t ∈ C∗. Thus we have an isomorphism

(C∗)p = { t ∈ C∗ | ta0 = 1 } ∼= Za0 ,

where Za0 is a finite cyclic group of order a0. Let [z0, . . . , zn] be the weighted homoge-

neous coordinates on CPn(a0, . . . , an). Then the affine open chart

U0 = { [z0, . . . , zn] ∈ CPn(a0, . . . , an) | z0 ̸= 0 }

is isomorphic to Cn/Za0 . Furthermore p ∈ CPn(a0, . . . , an) is a quotient singular point

with a finite cyclic group Za0 which acts on Cn by

(x1, . . . , xn) 7−→ (ζa1x1, . . . , ζ
anxn),

where ζ ∈ (C∗)p is a primitive a0-th root of unity. In this way, we see that all singularities

of CPn(a0, . . . , an) are cyclic quotient singularities.

Next we shall define CPn(a0, . . . , an) as a projective variety. Let R be the graded

ring C[z0, . . . , zn]. Suppose each variable zi has the weight ai. Then R has a natural

weight decomposition R =
⊕∞

d=0Rd where Rd denotes the vector space spanned by

all monomials zd0
0 . . . zdn

n with
∑
aidi = d. Elements of Rd are said to be weighted

homogeneous polynomials of degree d and then CPn(a0, . . . , an) is defined by

CPn(a0, . . . , an) = Proj(R).

For a given finitely generated graded ring R, Proj(R) denotes the projective scheme. Fur-

thermore, if positive integers a1, . . . , an have a common divisor, we have an isomorphism
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CPn(a0, . . . , an) ∼= CPn(a0, a1/q, . . . , an/q)

where q = gcd(a1, . . . , an). This yields the following property.

Proposition 4.1 (Fletcher [8, Corollary 5.9]). Let a0, . . . , an be positive integers

with gcd(a0, . . . , an) = 1. Then we have an isomorphism as varieties

CPn(a0, . . . , an) ∼= CPn(b0, . . . , bn)

for some positive integers b0, . . . , bn with gcd(b0, . . . , b̂i, . . . , bn) = 1 for each i. Here the

symbol b̂i means that the entry bi is omitted.

A weighted projective space CPn(a0, . . . , an) is said to be well-formed if and

only if gcd(a0, . . . , âi, . . . , an) = 1 for each i. Now we recall that the graded ring

R = C[z0, . . . , zn] is given by deg zi = ai ∈ Z>0. Let S = C[w0, . . . , wn] be the standard

polynomial ring with degwi = 1. Then we have the injective ring homomorphism

R −→ S, zi 7−→ wai
i .

This injective ring homomorphism induces the well-defined surjective morphism of vari-

eties

π : Proj(S) = CPn −→ Proj(R) = CPn(a0, . . . , an),

[w0, . . . , wn] 7−→ [z0, . . . , zn] = [wa0
0 , . . . , w

an
n ]. (4.1)

By abuse of notation, we also denote by π the canonical projection from Cn+1 \{0} onto

CPn(a0, . . . , an) :

π : Cn+1 \ {0} −→ CPn(a0, . . . , an), (w0, . . . , wn) 7−→ [wa0
0 , . . . , w

an
n ].

For this canonical projection π and a subvariety X ⊂ CPn(a0, . . . , an), we define the

affine cone CX over X to be

CX = π−1(X) ∪ {0} in Cn+1.

Then a subvariety X of CPn(a0, . . . , an) is said to be quasismooth if CX is smooth except

at the origin. Furthermore, let X be a subvariety of CPn(a0, . . . , an) of codimension k.

Then X is said to be well-formed if CPn(a0, . . . , an) is well-formed and X does not

contain a codimension k + 1 singular locus of CPn(a0, . . . , an).

4.2. Weighted complete intersections.

Let a0, . . . , an be positive integers with gcd(a0, . . . , an) = 1 and R = C[z0, . . . , zn]
be the graded ring with deg zi = ai as usual. Let f1, . . . , fk with k ≤ n+ 1 be weighted

homogeneous polynomials of the graded ring R with deg fi = di. Then I = ⟨f1, . . . , fk⟩
is a homogeneous ideal of R. We define XI by

XI = Proj(R/I) ⊂ CPn(a0, . . . , an).
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Then XI is a weighted complete intersection of multidegree (d1, . . . , dk) if the defining

ideal I can be generated by a regular sequence f1, . . . , fk. Here a sequence of elements

g1, . . . , gℓ with ℓ ≤ n+ 1 in R is said to be a regular sequence if g1 is not a zero-divisor

in R and the class [gi] is not a zero-divisor in R/⟨g1, . . . , gi−1⟩ for each 2 ≤ i ≤ ℓ. Now

we will state the following results which will be needed for our arguments later on.

Lemma 4.2 (Fletcher [8, Lemma 7.1]). Let X ⊂ CPn(a0, . . . , an) be a well-formed

quasismooth weighted complete intersection with the defining ideal I(X) = ⟨f1, . . . , fk⟩.
Suppose deg fi = di. Let A be the residue ring

A =
C[z0, . . . , zn]
⟨f1, . . . , fk⟩

.

Since each fi is homogeneous, the ring A decomposes into graded pieces as A =
⊕

mAm.

Then we have

Hq(X,OX(m)) ∼=


Am if q = 0

0 if q = 1, . . . , dimCX − 1

Aα−m if q = dimCX

for any m ∈ Z, where α =
∑k

λ=1 dλ −
∑n

i=0 ai.

In particular, we have the following result for hypersurfaces.

Theorem 4.3 (Fletcher [8, Theorem 7.2]). Let f be the defining polynomial of a

weighted hypersurface X in CPn(a0, . . . , an) with deg f = d. The Jacobian ring R(f) of

f is the quotient ring

R(f) =
C[z0, . . . , zn]

⟨∂f/∂z0, . . . , ∂f/∂zn⟩
.

Let R(f)m denote the m-th graded part of R(f). Then the Hodge numbers of X are

given by

hp,q(X) =


0 if p+ q ̸= n− 1, p ̸= q

1 if p+ q ̸= n− 1, p = q

dimCR(f)qd+α if p+ q = n− 1, p ̸= q

dimCR(f)qd+α + 1 if p+ q = n− 1, p = q,

where α = d−
∑n

i=0 ai.

4.3. Orbifold admissible pairs with a compatible antiholomorphic invo-

lution from weighted complete intersections.

We first recall the following result, which provides a way of obtaining orbifold ad-

missible pairs of Fano type.

Theorem 4.4 (Kovalev [15]). Let V be a Fano four-orbifold with isolated singular
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points which have local crepant resolutions and D ∈ |−KV | a smooth Calabi–Yau divisor.

We denote a smooth surface representing the self-intersection class of D ·D by S.

Let ϖ : X = BlS(V ) 99K V be the blow-up of V along the surface S. If we take the

proper transform D′ of D under the blow-up ϖ, then (X,D′) is an orbifold admissible

pair. Moreover, ϖ|D′ yields an isomorphism between D′ and D, and so we may denote

D′ by D.

Proof. See [15, Proposition 6.42 and Corollary 6.43]. One can see that these

results for Fano threefolds also hold for Fano four-orbifolds. □

The above orbifold admissible pair (X,D) obtained from V and D is said to be of

Fano type.

Next we consider a well-formed weighted projective space W = CP k+3(a0, a1, . . . ,

ak+3) with k ≥ 1. Let f1, . . . , fk+1 be a regular sequence of weighted homogeneous

polynomials such that

(1)
∑k

λ=1 dλ =
∑k+3

i=0 ai, where dλ = deg fλ,

(2) V is a complete intersection defined by the ideal Ik−1 = ⟨f1, . . . , fk−1⟩, with isolated

singular points modelled on C4/Z4 (we set I0 = 0 and V =W when k = 1),

(3) D is a smooth complete intersection defined by the ideal Ik = ⟨f1, . . . , fk⟩, so that

D ∩ Sing V = ∅, and

(4) S is a smooth complete intersection defined by the ideal Ik+1 = ⟨f1, . . . , fk+1⟩ with
deg fk+1 = deg fk.

Then V is a four-dimensional Fano orbifold with D a smooth anticanonical Calabi–Yau

divisor, and S is a smooth surface in D representing D ·D on V . Suppose there exists

an antiholomorphic involution σ on W such that

(5) σ∗fi = fi for i = 1, . . . , k + 1 and σ acts freely on D and S, and

(6) V σ = Sing V , where V σ = {x ∈ V | σ(x) = x }.

Then by Proposition 3.9, σ lifts to an antiholomorphic involution σ̃ on the blow-up

ϖ : X = BlS(V ) 99K V such that σ̃ preserves and acts freely on the exceptional divisor

E = ϖ−1(S). Let [z] = [z0, . . . , zk+3] be weighted homogeneous coordinates on W , with

deg zi = ai for i = 0, . . . , k + 3. We can describe the blow-up X of V , the exceptional

divisor E and the proper transform D′ of D as

X = BlS(V ) = {([z], [u, v]) ∈W × CP 1 |f1(z) = · · · = fk−1(z) = 0, vfk(z) = ufk+1(z)},

ϖ : X 99K V, ([z], [u, v]) 7−→ [z],

E = ϖ−1(S) = { ([z], [u, v]) ∈W × CP 1 | f1(z) = · · · = fk+1(z) = 0 } ∼= S × CP 1,

D′ = ϖ−1(D \ S) = { ([z], [u, v]) ∈W × CP 1 | f1(z) = · · · = fk(z) = u = 0 }
= D × { [0, 1] ∈ CP 1 } ∼= D,

E ∩D′ = S × { [0, 1] ∈ CP 1 } ∼= S.
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Note that the above equation vfk(z) = ufk+1(z) is well-defined because both fk(z) and

fk+1(z) are sections of the line bundle OW (dk). Also, we can compute as

D′ = ϖ∗D − E,

KX = ϖ∗KV + E = ϖ∗(KV +D)−D′ = −D′,

ND′/X = D′|D′ = D′ ·D′ = 0,

by the adjunction formula. Let z′ = (z′0, . . . , z
′
k+3) and consider the transformation

z′i = zi for i = 0, 1, . . . , k + 1, z′k+2 = fk(z) and z′k+3 = fk+1(z).

Then z′ define well-defined coordinates on W , and we can rewrite X and D′ as

X = { ([z′], [u, v]) ∈W × CP 1 | f ′1(z′) = · · · = f ′k−1(z
′) = 0, vz′k+2 = uz′k+3 } ,

D′ = { ([z′], [u, v]) ∈ X | u = 0 } ,

where f ′i(z
′) = fi(z) for i = 1, . . . , k − 1. In this coordinate system, it follows from the

proof of Proposition 3.9 that

σ̃(z′, [u, v]) = (σ(z′), [u, v]) for (z′, [u, v]) ∈ X.

Thus we may assume that the defining function u of D′ on X satisfies (3.5), so that

σ̃ is a compatible antiholomorphic involution on X. Observe that V inherits a Kähler

form ωV from the ambient Kähler orbifold (W,ωW ) with ωV = ωW |V , and that X is

endowed with a Kähler form ω′ = ϖ∗ωV − k−1ω[E] for sufficiently large k, where ω[E]

is a d-closed semi-positive (1, 1)-form which represents c1([E]) and satisfies ω[E]|D̃ = 0

(see Griffiths–Harris [9, pp. 186–187] and [15, Proof of Proposition 6.42]). Therefore

ϖ|D̃ : D̃ −→ D is an isomorphism with (ϖ|D̃)∗ωV |D = ω′|D̃.

Now suppose k ≥ 2 in the above situation. Let g1 = f1, . . . , gk−2 = fk−2 and

gk−1 = fk, gk = fk−1. Also, choose gk+1 so that gk+1 satisfies the above conditions (4)

and (5). Let (X1, D1), V1, S1, σ1 and (X2, D2), V2, S2, σ2 correspond to f1, . . . , fk+1 and

g1, . . . , gk+1 respectively. Then X2 and V2 may change from X1 and V1, but D2 = D1

and the asymptotic models of X1 \D1 and X2 \D2 are the same.

Setting the isomorphism f̃ : D1 −→ D2 by

f̃ = (ϖ2|D2)
−1 ◦ϖ1|D1 : D1 −→ D −→ D2,

we have f̃ ◦ σ1|D1 = σ2|D2 ◦ f̃ and f̃∗ω′
2|D2 = ω′

1|D1 . Also, we have f̃∗κ2 = κ1, where κi
is the unique Ricci-flat Kähler form on Di in the Kähler class [ω′

i|Di ]. Consequently, we

have the following theorem which we shall need in Section 6.1.

Theorem 4.5. The above isomorphism f̃ satisfies the gluing condition given in

Section 3.4.1. Thus we can apply Theorem 3.23 to (Xi, Di), σi for i = 1, 2, to obtain

a compact simply-connected Riemannian 8-manifold M , which has holonomy Spin(7) if

Â(M) = 1.
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5. A new example of compact Spin(7)-manifolds.

The main theorem of this section is the following.

Theorem 5.1. There exists a compact Spin(7)-manifold M whose Betti numbers,

the Euler characteristic and the signature are given by
b2(M) = b3(M) = 0,

b4(M) = 1678,

χ(M) = 1680 and τ(M) = 576.

(5.1)

In particular, this is a new example of compact Spin(7)-manifold.

Remark that only a small number of examples (around 200) of compact Spin(7)-

manifolds are known and all known examples of them can be found in [14, Tables 14.1–3,

15.1] and [2]. Among them, one can see that there is no example of compact Spin(7)-

manifolds which has Betti numbers (b2, b3, b4) = (0, 0, 1678). Hence it suffices to construct

a compact Spin(7)-manifold satisfying (5.1) by using Corollary 3.24.

Here and hereafter, we will use the same notation as in Section 4.3. First we provide

an explicit example of simply-connected 8-manifolds as follows.

5.1. Setup.

Let W = CP 4(1, 1, 1, 1, 4) be the weighted projective space and [z] = [z0, . . . , z4]

be weighted homogeneous coordinates on W . Then W has an isolated singular point at

p = [0, 0, 0, 0, 1], which is modelled on C4/Z4. If we define an antiholomorphic involution

σ on W by

[z0, z1, z2, z3, z4] 7−→ [−z1, z0,−z3, z2, z4], (5.2)

then we have Wσ = { p } = SingW . Define

V =W, D = { [z] ∈W | f1(z) = 0 } and S = { [z] ∈W | f1(z) = f2(z) = 0 }
(5.3)

by weighted homogeneous polynomials

f1(z) = z80 + z81 + z82 + z83 + z24 and f2(z) = az80 + az81 + bz82 + bz83 + cz24 , (5.4)

where a, b and c are real coefficients. Then we see that conditions (1)–(3), (5) and (6)

in Section 4.3 hold. Also, we can choose a, b and c so that condition (4) holds. Thus

following Section 4.3, we have an orbifold admissible pair (X,D) from V,D and S, where

X = BlS(V ) and we denote the proper transform D′ of D by D again. Then Proposition

3.9 gives a lift of σ on X, which satisfies conditions (f) and (g) in Definition 3.10 (we

denote this lift by σ again). Hence this is a compatible antiholomorphic involution on

X. Applying the doubling construction in Corollary 3.24, we can resolve the orbifold

M▽ = X/⟨σ⟩ ∪X/⟨σ⟩ to obtain a compact 8-manifold M . Hence we have the following

result.
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Proposition 5.2. This simply-connected 8-manifold M admits a Riemannian

metric with holonomy contained in Spin(7).

Now it suffices to show that the above resulting manifold (M, g) with Hol(g) ⊆
Spin(7) is a compact Spin(7)-manifold (i.e. Hol(g) = Spin(7)) which satisfies (5.1) to

prove Theorem 5.1. We will show this in Section 5.5, while Sections 5.2–5.4 are devoted

to compute the Hodge numbers of D and S.

5.2. Contributions from the singular point.

First, we observe that the branched covering of the isolated singular point p =

[0, 0, 0, 0, 1] on V = CP 4(1, 1, 1, 1, 4). Consider the surjective morphism

π : CP 4 −→ V

defined in (4.1), and let [w] = [w0, . . . , w4] be the standard homogeneous coordinates

on CP 4. Then the restriction of the map π to Σ̃4 = { [w] ∈ CP 4 | w4 = 0 } is bijective

since Σ̃4 can be identified with CP 3. On the other hand, the restriction of the map

π to Ũp = { [w] ∈ CP 4 | w4 ̸= 0 } ∼= C4 is 4 : 1 except at p. This is because we have

Up = { [z] ∈ V | z4 ̸= 0 } ∼= C4/Z4 as seen in Section 4.1:

CP 4

π
����

= (Σ̃4 ⊔ { p })

1 : 1
��

⊔ (Ũp \ { p })

4 : 1
��

V = (Σ4 ⊔ { p }) ⊔ (Up \ { p }).

(5.5)

Here we denote Σ4 = π(Σ̃4) = { [z] ∈ V | z4 = 0 }.
A straightforward computation shows the following.

Lemma 5.3. Let F̃ be a projective subvariety of CP 4 with F̃ ∩ { p } = ∅, and

F = π(F̃ ). Then we have

χ(F ) =
1

4
(χ(F̃ ) + 3χ(F̃ ∩ Σ̃4)).

5.3. Computing the topology of D.

In order to prove Theorem 5.1 first we need to calculate the Euler characteristic

χ(D). We will find this by the following two ways.

Computing χ(D): First way. Let f1 and f2 be the weighted homogeneous polynomial

defined in (5.4). Then f̃i = π∗fi for i = 1, 2 are homogeneous polynomials of degree 8 in

C[w0, . . . , w4] given by

f̃1(w) = w8
0 +w8

1 +w8
2 +w8

3 +w8
4, and f̃2(w) = aw8

0 + aw8
1 + bw8

2 + bw8
3 + cw8

4, (5.6)

where [w] = [w0, . . . , w4] are the standard homogeneous coordinates on CP 4. Setting

D̃ = { [w] ∈ CP 4 | f̃1(w) = 0 } and S̃ = { [w] ∈ CP 4 | f̃1(w) = f̃2(w) = 0 } , (5.7)
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we have π(D̃) = D, π(S̃) = S and D̃ ∩ { p } = S̃ ∩ { p } = ∅. Thus the assumption of

Lemma 5.3 holds for D̃ and S̃. Since D̃ ∩ Σ̃4 is given by

D̃ ∩ Σ̃4 = { [w] ∈ CP 4 | f̃1(w) = w4 = 0 } ∼= { [w′] ∈ CP 3 | w8
0 + w8

1 + w8
2 + w8

3 = 0 } ,
(5.8)

where [w′] = [w0, w1, w2, w3] are the standard homogeneous coordinates on CP 3, a com-

putation of the total Chern classes gives

χ(D̃) = −2096 and χ(D̃ ∩ Σ̃4) = 7808.

Hence Lemma 5.3 yields the following.

Proposition 5.4. This smooth Calabi–Yau divisor D on V has the Euler charac-

teristic

χ(D) = −296.

Computing χ(D): Second way. Theorem 4.3 determines the Hodge numbers of D as

follows. Let R(f) be the Jacobian ring of f

R(f) =
C[z0, . . . , z4]

⟨z70 , z71 , z72 , z73 , z4⟩
.

Assume that a graded ring B is finitely generated over C. Then the Hilbert series of the

graded ring B =
⊕

mBm is defined to be

HB(t) =

∞∑
m=0

(dimCBm)tm.

On the one hand, we can apply [1, Proposition 23.4] to the Jacobian ring R(f). Con-

sequently, the Hilbert series of R(f) is the power series expansion at t = 0 of a rational

function

HR(f)(t) =
(1− t7)4

(1− t)4
= 1 + 4t+ 10t2 + · · ·+ 149t8 +O(t9).

Then Theorem 4.3 gives

h1,1(D) = 1, h3,0(D) = dimCR(f)0 = 1 and h2,1(D) = dimCR(f)8 = 149.

Since the Euler characteristic χ(D) is also given by χ(D) =
∑

p,q(−1)p+qhp,q(D), the

result is consistent with Proposition 5.4.

Remark 5.5. Since D is a Calabi–Yau threefold, the Lefchetz hyperplane theorem

and the Euler characteristic determine the Hodge numbers in this example.

5.4. Computing the topology of S.

Analogously to Section 5.3, we shall find all Hodge numbers of the weighted complete

intersection S defined in (5.3).
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Recall that fi(z) and f̃i(w) for i = 1, 2 are the weighted homogeneous polynomials

given by (5.4) and (5.6) respectively. Let S̃ be a complex surface given by (5.7). Then

we have χ(S̃) = 7808. As in (5.8), we have

S̃ ∩ Σ̃4 = { [w] ∈ CP 4 | f̃1(w) = f̃2(w) = w4 = 0 }
∼= { [w′] ∈ CP 3 | w8

0 + w8
1 + w8

2 + w8
3 = aw8

0 + aw8
1 + bw8

2 + bw8
3 = 0 } ,

which is a smooth complex curve in S̃ with χ(S̃ ∩ Σ̃4) = −768. Again by using Lemma

5.3, we find χ(S) = 1376. Also, we have b1(S) = 0 by the Lefschetz hyperplane theorem.

Let us consider the residue ring

A =
C[z0, . . . , z4]

⟨f1, f2⟩
.

Using [1, Proposition 23.4] again we find that the Hilbert series of A can be written as

HA(t) =
(1− t8)2

(1− t)4(1− t4)
= 1 + 4t+ 10t2 + · · ·+ 199t8 +O(t9).

Applying Lemma 4.2 to the residue ring A for q = 2, m = 0 and α = 8, we have

h0,2(S) = dimCA8 = 199.

Since χ(S) = 1376, we find h1,1(S) = 976. By the Hodge index theorem, we also find

the signature of S is

τ(S) =

dimC S∑
p,q=0

(−1)qhp,q = −576.

Summing up our argument, we conclude the following.

Proposition 5.6. This smooth compact complex surface S has

χ(S) = 1376 and τ(S) = −576.

5.5. Proof of Theorem 5.1.

Our proof separates into the following two steps: In Step 1, we show that the

resulting manifold in Proposition 5.2 is a compact Spin(7)-manifold by Theorem 2.8. In

Step 2, we conclude that our Spin(7)-manifold M has the Betti numbers (b2, b3, b4) =

(0, 0, 1678).

Proof of Theorem 5.1.

Step 1: First we will compute the Euler characteristic and the signature of the

resulting compact simply-connected 8-manifold M . Recall that ϖ : X 99K V is the blow-

up of V along the submanifold S. It is well-known that the Euler characteristic of X

satisfies the equality

χ(X) = χ(V ) + χ(E)− χ(S) (5.9)
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where E is the exceptional divisor of the blow-up ϖ. As seen in Section 4.3, we have

E ∼= S × CP 1, and so

χ(X) = χ(V ) + χ(S) = 1381,

where we used Proposition 5.6 and χ(V ) = 5. Thus χ(X) = χ(X)−χ(D) = 1677. Since

σ fixes the singular point p on X, we have

χ(X/⟨σ⟩) = 1

2
(χ(X) + 1) = 839.

Now we construct M by resolving the orbifold M▽ = X/⟨σ⟩ ∪X/⟨σ⟩ with two isolated

singular points. Observing from (3.2) that replacing the neighborhood of each singular

point on M▽ with an ALE manifold Xs adds 1 to the Euler characteristic, we have

χ(M) = χ(M▽) + 2 = 2χ(X/⟨σ⟩) + 2 = 1680.

In order to find the signature τ(M), we see that τ(X) = τ(V )− τ(S) = 577 in the same

manner as (5.9). Hence

τ(M▽) = 2τ(X/⟨σ⟩) = τ(X) + 1

=
1

2
(2τ(X)− τ(D × CP 1)) + 1 = 578.

Consequently we obtain τ(M) = τ(M▽) − 2 = 576 by taking resolutions of isolated

singular points. Hence (2.5) implies that Â(M) = 1, that is, M is a compact Spin(7)-

manifold.

Step 2: Next we find the Betti numbers of our Spin(7)-manifold M . Consider

M▽ = Z1 ∪ Z2

where Zi = X/⟨σ⟩ for i = 1, 2. Then we have homotopy equivalences

M▽ ∼ Z1 ∪ Z2, Z1 ∩ Z2 ∼ (D × S1)/⟨σD×S1,cyl⟩ =: Y (5.10)

as in [5, Equation (4.6)]. Here the action of σD×S1,cyl is given by (3.9).

Lemma 5.7 (Kovalev [16]). Let Zi (i = 1, 2) and Y be as above. Then we have

b1(Y ) = b2(Y ) = 0 and b2(Zi) = b3(Zi) = 0.

Once Lemma 5.7 has been proved, we conclude that

b2(M▽) = b3(M▽) = 0

by applying the Mayer–Vietoris theorem to (5.10). Then it follows from χ(M▽) = 1678

that

b4(M▽) = 1676.



378(30)

378 M. Doi and N. Yotsutani

By (15.10) in [14], the Betti numbers bj(M) satisfy

bj(M) = bj(M▽) for j = 1, 2, 3 and b4(M) = b4(M▽) + k

where k = #SingM▽. Thus, we conclude our Spin(7)-manifoldM has the Betti numbers

(b2, b3, b4) = (0, 0, 1678). This completes the proof. □

It remains to prove Lemma 5.7.

Proof of Lemma 5.7. Note that bj(Y ) = 0 for j = 1, 2 were already proved in

[16, Proposition 6.2]. Hence it suffices to show b2(Zi) = b3(Zi) = 0 for our purpose.

Recall that b2(V ) = 1 and b3(V ) = 0 for V = CP 4(1, 1, 1, 1, 4). Now ϖ−1(S) ∼= S ×CP 1

where ϖ : X 99K V is the blow-up of V along S. Then the Betti numbers bi(X) are

given by the formula

bi(X) = bi(V ) + bi−2(S)

(see [3, (1.10)]). This gives

b2(X) = b2(V ) + b0(S) = 2 and b3(X) = b3(V ) + b1(S) = 0.

Since there is a tubular neighborhood U of D in X such that

X = X ∪ U and X ∩ U ≃ D × S1 × R>0, (5.11)

we apply the Mayer–Vietoris theorem to (5.11). Then we see that{
b2(X) = b2(X) + 1,

b3(X) = b3(X) + b2(D)− b2(X)
(5.12)

(see [17, (2.10)]). Let bi(X)σ be the dimension of the σ-invariant part of Hi(X,R). Then

b2(Zi) = b2(X)σ = 0

becauseH2(X,R) is generated by the Kähler form onX and is not σ-invariant. Similarly,

b3(Zi) = b3(X)σ = 0

by (5.12). The assertion is verified. □

6. Other examples.

In Section 6.1, we investigate orbifold admissible pairs (X,D) of Fano type when V

is a complete intersection in a weighted projective space W = CP k+3(a0, . . . , ak+3) with

k ≥ 2. Suppose σ is an antiholomorphic involution on W and

V = { [z] ∈W | f1(z) = · · · = fk−1(z) = 0 } ,
D = { [z] ∈W | f1(z) = · · · = fk(z) = 0 } ,
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where D is smooth and fi are weighted homogeneous polynomials satisfying deg f1+· · ·+
deg fk = a0 + · · ·+ ak+3 and σ∗fi = fi for i = 1, . . . , k. Then by the adjunction formula,

V is a Fano four-orbifold with an anticanonical Calabi–Yau divisor D. Choosing fk+1 so

that

deg fk+1 = deg fk, σ∗fk+1 = fk+1 and

S = { [z] ∈W | f1(z) = · · · = fk+1(z) = 0 } represents D ·D,

we have an orbifold admissible pair (X1, D1) with a compatible antiholomorphic involu-

tion σ1 such that (D1, σ1|D1) is isomorphic to (D,σ|D). Meanwhile, if we exchange fk
and fk−1 (and choose suitable fk+1 correspondingly), then V may change, but D does

not change. Hence we have another orbifold admissible pair (X2, D2) with σ2 which has

the same asymptotic model. This new perspective leads us to obtain practical examples

in our gluing construction.

6.1. Complete intersections in CP 5(1, 1, 1, 1, 4, 4).

Suppose k = 2 in the above argument. We consider the weighted complete in-

tersection of two weighted hypersurfaces in W = CP 5(1, 1, 1, 1, 4, 4) with homogeneous

coordinates [z] = [z0, . . . , z5]. Define an antiholomorphic involution σ :W −→W by

[z0, . . . , z5] 7−→ [−z1, z0,−z3, z2, z4, z5]. (6.1)

Consider complete intersections

V1 = { [z] ∈W | f1(z) = 0 } , D1 = { [z] ∈W | f1(z) = f2(z) = 0 } and

S1 = { [z] ∈W | f1(z) = f2(z) = f3(z) = 0 } ,

where f1 and f2 are defined by

f1(z) = z80 + z81 + z82 + z83 + z24 − z25 and f2(z) = z40 + z41 + z42 + z43 + 2z4 + z5,

and f3(z) is chosen so that deg f3 = deg f2 = 4, σ∗f3 = f3, and S1 is a smooth com-

plete intersection in W . Then V1 has two isolated singular points p1 = [0, 0, 0, 0, 1, 1]

and p2 = [0, 0, 0, 0, 1,−1], which are modelled on C4/Z4 and fixed by σ. We can see

easily that conditions (1)–(6) in Section 4.3 hold, and thus following the argument in

Section 4.3 we obtain an orbifold admissible pair (X1, D1) with a compatible antiholo-

morphic involution σ1.

Similarly, we set g1 = f2, g2 = f1 and

V2 = { [z] ∈W | g1(z) = 0 } , D2 = { [z] ∈W | g1(z) = g2(z) = 0 } and

S2 = { [z] ∈W | g1(z) = g2(z) = g3(z) = 0 } ,

where we choose g3 with deg g3 = deg g2 = 8 so that σ∗g3 = g3, and S2 is a smooth

complete intersection. Then V2 has an isolated singular point p3 = [0, 0, 0, 0, 1,−2],

which is modelled on C4/Z4 and fixed by σ. Conditions (1)–(6) in Section 4.3 also hold

in this case, and we obtain another orbifold admissible pair (X2, D2) with σ2. Note that
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(Xi\Di)/⟨σi⟩ for i = 1, 2 have the same asymptotic model, and so can be glued together.

Now we can apply Theorem 4.5. Setting Zi = (Xi \ Di)/⟨σi⟩ and M▽
ij = Zi ∪ Zj ,

where i, j ∈ { 1, 2 }, we can resolve orbifoldsM▽
11,M

▽
12 andM

▽
22 to obtain compact simply-

connected 8-manifolds M11,M12 and M22 respectively. Then we see that Â(Mij) = 1

in each case. Hence we conclude that all resulting manifolds Mij are compact Spin(7)-

manifolds. In particular, the resulting manifold M22 has the same Betti numbers as the

above Spin(7)-manifold M in Theorem 5.1. Finally we shall list all Hodge numbers in

Table 6.4 which are needed to compute χ(Mij) and τ(Mij).

Remark 6.1. Since our examples M11,M12 with (b2, b3, b4) = (0, 0, 910),

(0, 0, 1294) in Table 6.5 are already listed in [14, Table 15.1], we can not distinguish

the topological types of these examples from those in [14].

6.2. From the viewpoint of Calabi–Yau structures.

In this subsection, we shall give a useful criterion for finding a compact Spin(7)-

manifold by considering Calabi–Yau fourfolds constructed by Theorem 3.21. Let V , D

and S be as in Theorem 4.4. Let ϖ : X 99K V be the blow-up of V along S. Taking

the proper transform D′ of D under ϖ, we have an orbifold admissible pair (X,D′) by

Theorem 4.4. Then we may denote D′ by D. Let π : X̂ 99K X and π : V̂ 99K V be

the crepant resolutions of X and V respectively. Let D̂ denote the proper transform of

D ∈ | −KX | under the resolution π. Then there is an induced map ϖ̂ : X̂ 99K V̂ which

makes the following diagram commutative:

X̂

π : crepant
���
�
�

ϖ̂ //___ V̂

π : crepant
���
�
�

X
ϖ //___ V

Here the vertical maps are crepant resolutions and the horizontal maps are the blow-

ups of four-dimensional complex algebraic varieties along the complete intersections.

Furthermore, a compatible antiholomorphic involution σ on V lifts to X by Proposition

3.9. With this notation, we consider a compact simply-connected 8-manifold MCY =

(X̂1 \ D̂1)∪ (X̂2 \ D̂2) which is obtained by Theorem 3.21. Also, let MSpin be a compact

simply-connected 8-manifold which is a resolution of M▽
Spin = (X1 \ D1)/⟨σ1⟩ ∪ (X2 \

D2)/⟨σ2⟩ obtained by Theorem 3.23. Then we have the following.

Proposition 6.2. The above MCY admits a Ricci-flat Kähler metric. Moreover,

if MCY has no K3-factor, then MCY is a Calabi–Yau fourfold and MSpin is a compact

Spin(7)-manifold.

Proof. For i = 1, 2, let ki = #SingXi. In our case, each singular point is

modelled on C4/Z4 and has a unique crepant resolution with the exceptional divisor

E = Ĉ4/Z4
∼= KCP 3 . Thus we have χ(E) = 4. This implies that

χ(X̂i) = χ(Xi)− ki + χ(E)ki = χ(Xi) + 3ki.
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A straightforward calculation shows that

χ(MCY) = 2χ(MSpin) =
2∑

i=1

(
χ(Xi)− χ(Di) + 3ki

)
and

τ(MCY) = 2τ(MSpin) =
2∑

i=1

(
τ(Xi)− ki

)
.

This yields

Â(MCY) = 2Â(MSpin). (6.2)

Now Theorem 3.23 shows that Hol(MSpin) ⊆ Spin(7). Therefore we conclude that

Â(MSpin) ≥ 1 by Theorem 2.8. Then Â(MCY) is 2 or 4 by (6.2). Again by Theo-

rem 2.8, MCY admits a Ricci-flat Kähler metric. Moreover, if MCY has no K3-factor,

then Â(MCY) must be 2, and hence Â(MSpin) = 1. □

Finally we find an example of Calabi–Yau fourfolds using the same ingredients of

the previous Spin(7)-manifold in Section 5.

Example 6.3. Let V be CP 4(1, 1, 1, 1, 4). Let D and S be as in Section 5. Accord-

ing to the previous argument, we obtain MCY by gluing two copies of X̂ \ D̂ along their

cylindrical ends. Then we have χ(X̂) = 1381− 1 + 4 = 1384 and χ(D̂) = χ(D) = −296.

This implies

χ(MCY) = 2(χ(X̂)− χ(D̂)) = 3360 ̸= 576 = χ(K3×K3).

Thus MCY is a Calabi–Yau fourfold by Proposition 6.2.

Table 6.4. The list of the Hodge numbers.

Index Weighted hypersurfaces Smooth Calabi–Yau Weighted complete

in W = CP 5(14, 42) divisor on Vi intersection in Vi

i Vi D = D1 = D2 Si ∈ |Di ·Di|

1 h1,1(V1) = 1, h3,1(V1) = 35, h1,1(D) = 1, h0,2(S1) = 35,

h2,2(V1) = 232 h2,1(D) = 149 h1,1(S1) = 232

2 h1,1(V2) = h2,2(V2) = 1 h1,1(D) = 1, h0,2(S2) = 199,

h2,1(D) = 149 h1,1(S2) = 976

Table 6.5. The resulting Spin(7)-manifolds in Section 6.1.

The resulting
τ(M) χ(M) b4

Spin(7)-manifolds M

M11 320 912 910

M12 448 1296 1294

M22 576 1680 1678
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