©2019 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 71, No. 2 (2019) pp. 589–597 doi: 10.2969/jmsj/78297829

On delta invariants and indices of ideals

By Toshinori Kobayashi

(Received June 17, 2017) (Revised Dec. 3, 2017)

Abstract. Let R be a Cohen-Macaulay local ring with a canonical module. We consider Auslander's (higher) delta invariants of powers of certain ideals of R. Firstly, we shall provide some conditions for an ideal to be a parameter ideal in terms of delta invariants. As an application of this result, we give upper bounds for orders of Ulrich ideals of R when R has Gorenstein punctured spectrum. Secondly, we extend the definition of indices to the ideal case, and generalize the result of Avramov-Buchweitz-Iyengar-Miller on the relationship between the index and regularity.

1. Introduction.

Let (R, \mathfrak{m}, k) be a Cohen–Macaulay local ring with a canonical module. The Auslander δ -invariant $\delta_R(M)$ for a finitely generated *R*-module *M* is defined to be the rank of maximal free summand of the minimal Cohen–Macaulay approximation of *M*. For an integer $n \geq 0$, the *n*-th δ -invariant is defined by Auslander, Ding and Solberg [**2**] as $\delta_R^n(M) = \delta_R(\Omega_R^n M)$, where $\Omega_R^n M$ denotes the *n*-th syzygy module of *M* in the minimal free resolution.

On these invariants, combining the Auslander's result (see [2, Corollary 5.7]) and Yoshino's one [13], we have the following theorem.

THEOREM 1.1 (Auslander, Yoshino). Let d > 0 be the Krull dimension of R. Consider the following conditions.

- (a) R is a regular local ring.
- (b) There exists $n \ge 0$ such that $\delta^n(R/\mathfrak{m}) > 0$.
- (c) There exist n > 0 and l > 0 such that $\delta^n(R/\mathfrak{m}^l) > 0$.

Then, the implications (a) \Leftrightarrow (b) \Rightarrow (c) hold. The implication (c) \Rightarrow (a) holds if depth $\operatorname{gr}_{\mathfrak{m}}(R) \geq d-1$.

Here we denote by $\operatorname{gr}_{I}(R)$ the associated graded ring of R with respect to an ideal I of R. In this paper, we characterize parameter ideals in terms of (higher) δ -invariants as follows.

THEOREM 1.2. Let (R, \mathfrak{m}) be a Cohen–Macaulay local ring with a canonical module ω , having infinite residue field k and Krull dimension d > 0. Let I be an \mathfrak{m} -primary ideal of R such that I/I^2 is a free R/I-module. Consider the following conditions.

²⁰¹⁰ Mathematics Subject Classification. Primary 13A30, 13C14, 16G50.

Key Words and Phrases. Cohen-Macaulay approximation, delta invariant, Ulrich ideal.

- (a) $\delta(R/I) > 0$.
- (b) I is a parameter ideal of R.
- (c) There exists $n \ge 0$ such that $\delta^n(R/I) > 0$.
- (d) There exist n > 0 and l > 0 such that $\delta^n(R/I^l) > 0$.

Then, the implications (a) \Rightarrow (b) \Leftrightarrow (c) \Rightarrow (d) hold. The implication (d) \Rightarrow (c) holds if depth $\operatorname{gr}_{I}(R) \geq d-1$ and I^{i}/I^{i+1} is a free R/I-module for any i > 0. The implication (b) \Rightarrow (a) holds if $I \subset \operatorname{tr}(\omega)$.

Here $\operatorname{tr}(\omega)$ is the trace ideal of ω . that is, the image of the natural homomorphism $\omega \otimes_R \operatorname{Hom}_R(\omega, R) \to R$ mapping $x \otimes f$ to f(x) for $x \in \omega$ and $f \in \operatorname{Hom}_R(\omega, R)$. This result recovers Theorem 1.1 by letting $I = \mathfrak{m}$.

On the other hand, Ding [4] studies the δ -invariant of R/\mathfrak{m}^l with $l \geq 1$ and defines the index index(R) of R to be the smallest integer l such that $\delta(R/\mathfrak{m}^l) = 1$. Extending this, we define the index of an ideal.

DEFINITION 1.3. For an ideal I of R, we define the *index* index(I) of I to be the infimum of integers $l \ge 1$ such that $\delta_R(R/I^l) = 1$.

For example, we have $index(\mathfrak{m}) = index(R)$.

Taking into account the argument of Ding [5] on indices of rings, Avramov, Buchweitz, Iyengar and Miller [3, Lemma 1.5] showed the following equality.

THEOREM 1.4 (Avramov-Buchweitz-Iyengar-Miller). Assume that R is a Gorenstein local ring and $\operatorname{gr}_{\mathfrak{m}}(R)$ is Cohen-Macaulay. Then $\operatorname{index}(R) = \operatorname{reg}(\operatorname{gr}_{\mathfrak{m}}(R))+1$.

The other main aim of this paper is to prove the following result.

THEOREM 1.5. Let R be a Cohen-Macaulay local ring having a canonical module and Krull dimension d > 0, and I be an m-primary ideal of R such that $\operatorname{gr}_I(R)$ is a Cohen-Macaulay graded ring and I^l/I^{l+1} is R/I-free for $1 \leq l \leq \operatorname{index} I$. Then we have index $I \geq \operatorname{reg}(\operatorname{gr}_I(R)) + 1$. The equality holds if $I \subset \operatorname{tr}(\omega)$.

Note that this theorem recovers Theorem 1.4 by letting $I = \mathfrak{m}$.

There are some examples of ideals which satisfy the whole conditions in Theorem 1.2 and 1.5. One of them is the maximal ideal \mathfrak{m} in the case where $\operatorname{gr}_{\mathfrak{m}}(R)$ is Cohen–Macaulay (for example, R is a hypersurface or a localization of a homogeneous graded Cohen–Macaulay ring.)

Other interesting examples are Ulrich ideals. These ideals are defined in [6] and many examples of Ulrich ideals are given in [6] and [7]. We shall show in Section 3 that Ulrich ideals satisfy the assumptions of Theorems 1.2 and 1.5. We have an application of Theorem 1.2 concerning Ulrich ideals as follows.

COROLLARY 1.6. Let I be an Ulrich ideal of R that is not a parameter ideal. Assume that R is Gorenstein on the punctured spectrum. Then $I \not\subset \mathfrak{m}^{\mathrm{index}(R)}$. In particular,

590

the supremum of set of integers n satisfying $I \subset \mathfrak{m}^n$ for any Ulrich ideal I that is not a parameter ideal is finite.

We prove this result in Section 3.

2. Proofs.

Throughout this section, let (R, \mathfrak{m}, k) be a Cohen–Macaulay local ring of dimension d > 0 with a canonical module ω , and assume that k is infinite. We recall some basic properties of the Auslander δ -invariant.

For a finitely generated R-module M, a short exact sequence

$$0 \to Y \to X \xrightarrow{p} M \to 0 \tag{2.0.1}$$

is called a Cohen-Macaulay approximation of M if X is a maximal Cohen-Macaulay R-module and Y has finite injective dimension over R. We say that the sequence (2.0.1) is minimal if each endomorphism ϕ of X with $p \circ \phi = p$ is an automorphism of X. It is known (see [1], [8]) that a minimal Cohen-Macaulay approximation of M exists and is unique up to isomorphism.

If the sequence (2.0.1) is a minimal Cohen–Macaulay approximation of M, then we define the (Auslander) δ -invariant $\delta(M)$ of M as the maximal rank of a free direct summand of X. We denote by $\delta^n(M)$ the δ -invariant of n-th syzygy $\Omega^n M$ of M in the minimal free resolution for $n \geq 0$.

We prepare some basic properties of delta invariants in the next Lemma; see [10, Corollary 11.28].

LEMMA 2.1. Let M and N be finitely generated R-modules.

- (1) If there exists a surjective homomorphism $M \to N$, then $\delta(M) \ge \delta(N)$.
- (2) The equality $\delta(M \oplus N) = \delta(M) + \delta(N)$ holds true.

LEMMA 2.2. Let N be a maximal Cohen-Macaulay R-module. Then $\delta^1(N) = 0$. In particular, $\delta^n(M) = 0$ for $n \ge d+1$ and any finitely generated R-module M.

PROOF. Suppose that $\delta^1(N) > 0$. Then $\Omega^1 N$ has a free direct summand. Let $\Omega^1 N = X \oplus R$. There is a short exact sequence $0 \to X \oplus R \xrightarrow{(\sigma,\tau)^T} R^{\oplus m} \xrightarrow{\pi} N \to 0$. According to [12, Lemma 3.1], there exist exact sequences

$$0 \to R \xrightarrow{\tau} R^{\oplus m} \to B \to 0, \tag{2.2.1}$$

$$0 \to R^{\oplus m} \to A \oplus B \to N \to 0 \tag{2.2.2}$$

for some *R*-modules *A*, *B*. By the sequence (2.2.2), *B* is a maximal Cohen–Macaulay *R*-module. In view of (2.2.1), *B* is a free *R*-module provided that *B* has finite projective dimension. Then, the sequence (2.2.1) splits and τ has a left inverse map. This contradicts that the map π is minimal.

T. Kobayashi

We now remark on δ -invariants under reduction by a regular element. The following lemma is shown in [9, Corollary 2.5].

LEMMA 2.3. Let M be a finitely generated R-module and $x \in \mathfrak{m}$ be a regular element on M and R. If $0 \to Y \to X \to M \to 0$ is a minimal Cohen-Macaulay approximation of M, then

$$0 \rightarrow Y/xY \rightarrow X/xX \rightarrow M/xM \rightarrow 0$$

is a minimal Cohen-Macaulay approximation of M/xM over R/(x). In particular, it holds that $\delta_R(M) \leq \delta_{R/(x)}(M/xM)$.

In the proofs of our theorems, the following lemma plays a key role. We remark that in the case $I = \mathfrak{m}$, similar statements are shown in [5] and [13].

LEMMA 2.4. Let l > 0 be an integer, I be an \mathfrak{m} -primary ideal of R and $x \in I \setminus I^2$ be an R-regular element. Assume that I^i/I^{i+1} is a free R/I-module for any $1 \leq i \leq l$ and the multiplication map $x : I^{i-1}/I^i \to I^i/I^{i+1}$ is injective for any $1 \leq i \leq l$, where we set $I^0 = R$. Then the following hold.

(1)
$$xI^i = (x) \cap I^{i+1}$$
 for all $0 \le i \le l$.

(2)
$$I^i/I^{i+1} \cong I^{i-1}/I^i \oplus I^i/(xI^{i-1} + I^{i+1})$$
 for all $1 \le i \le l$.

(3)
$$I^i/xI^i \cong I^{i-1}/I^i \oplus I^i/xI^{i-1}$$
 for all $1 \le i \le l$.

(4)
$$(I^{i} + (x))/xI^{i} \cong R/I^{i} \oplus I^{i}/xI^{i-1}$$
 for all $1 \le i \le l$.

 $(5) \ (I^i + (x))/x(I^i + (x)) \cong R/(I^i + (x)) \oplus I^i/xI^{i-1} \ for \ all \ 1 \le i \le l.$

PROOF. (1): We prove this by induction on *i*. If i = 0, there is nothing to prove. Let i > 0. The injectivity of $x : I^{i-1}/I^i \to I^i/I^{i+1}$ shows that $xI^{i-1} \cap I^{i+1} = xI^i$. By the induction hypothesis, $xI^{i-1} = (x) \cap I^i$. Thus it is seen that

$$xI^{i} = (x) \cap I^{i}$$
$$= (x) \cap I^{i} \cap I^{i+1} = (x) \cap I^{i+1}$$

(2): As R/I is an Artinian ring, the injective map $x: I^{i-1}/I^i \to I^i/I^{i+1}$ of free R/I-modules is split injective. We can also see that the cokernel of this map is $I^i/(xI^{i-1} + I^{i+1})$. Therefore we have an isomorphism $I^i/I^{i+1} \cong I^{i-1}/I^i \oplus I^i/(xI^{i-1} + I^{i+1})$.

(3): We have the following natural commutative diagram with exact rows:

We have already seen in (2) that the second row is a split exact sequence, and thus the first row is also a split exact sequence. Therefore we have an isomorphism $I^i/xI^i \cong I^{i-1}/I^i \oplus I^i/xI^{i-1}$.

(4): The cokernel of the multiplication map $x : R/I^i \to (I^i + (x))/xI^i$ is $(I^i + (x))/(x) = I^i/((x) \cap I^i)$, which coincides with I^i/xI^{i-1} by (1). Consider the following commutative diagram with exact rows:

$$0 \longrightarrow I^{i-1}/I^{i} \xrightarrow{x} I^{i}/xI^{i} \longrightarrow I^{i}/xI^{i-1} \longrightarrow 0$$

$$\downarrow^{\iota_{1}} \qquad \qquad \downarrow^{\iota_{2}} \qquad \qquad \downarrow^{=}$$

$$0 \longrightarrow R/I^{i} \xrightarrow{x} (I^{i} + (x))/xI^{i} \longrightarrow I^{i}/xI^{i-1} \longrightarrow 0$$

Here ι_1, ι_2 are the natural inclusions. The first row is a split exact sequence as in (3). Therefore the second row is also a split exact sequence and we have an isomorphism $(I^i + (x))/xI^i \cong R/I^i \oplus I^i/xI^{i-1}$.

(5): The cokernel of the multiplication map $x : R/(I^i + (x)) \to (I^i + (x))/x(I^i + (x))$ is $(I^i + (x))/(x) = I^i/xI^{i-1}$. We can get the following commutative diagram with exact rows:

Here π_1, π_2 are the natural surjections. Then we can prove (5) in a manner similar to (4).

In the case that the dimension d is at most 1, the δ -invariants mostly vanish.

LEMMA 2.5. Assume $d \leq 1$ and I is an m-primary ideal of R. If $\delta(I) > 0$, then I is a parameter ideal of R.

PROOF. Since $d \leq 1$, the **m**-primary ideal I is a maximal Cohen–Macaulay Rmodule. Therefore the condition $\delta(I) > 0$ provides that I has a free direct summand. We have I = J + (x) and $J \cap (x) = 0$ for some ideal J and R-regular element $x \in I$. Let $y \in J$. Then $xy \in J \cap (x) = 0$. Since x is R-regular, the equality xy = 0 implies y = 0. This shows that J = 0 and I = (x).

Now we can prove Theorem 1.2.

PROOF OF THEOREM 1.2. (b) \Rightarrow (c): If I is a parameter ideal, then $\Omega^d(R/I) = R$ and hence $\delta^d(R/I) = 1 > 0$.

(a), (c) \Rightarrow (b): Assume that $\delta(R/I) > 0$. Then the inequality $\delta(I) > 0$ also holds because I/I^2 is a free R/I-module and thus there is a surjective homomorphism $I \rightarrow R/I$. Therefore we only need to prove the implication (c) \Rightarrow (b) in the case n > 0. We show the implication by induction on the dimension d.

T. Kobayashi

If d = 1, then n = 1 by Lemma 2.2. Using Lemma 2.5, it follows that I is a parameter ideal.

Now let d > 1. Take $x \in I \setminus \mathfrak{m}I$ to be an *R*-regular element. Then the image of x in the free R/I-module I/I^2 forms a part of a free basis over R/I. This provides that the map $x : R/I \to I/I^2$ is injective. We see from Lemma 2.3 that

$$\delta_{R/(x)}^{n-1}(I/xI) = \delta_{R/(x)}(\Omega_{R/(x)}^{n-1}(I/xI))$$

$$= \delta_{R/(x)}(\Omega_R^{n-1}(I) \otimes_R R/(x))$$

$$\geq \delta_R(\Omega_R^{n-1}I) = \delta_R^n(R/I) > 0.$$
(2.5.1)

Applying Lemma 2.4 (3) to i = 1, we have an isomorphism $I/xI \cong R/I \oplus I/(x)$ and hence we obtain an equality

$$\delta_{R/(x)}^{n-1}(I/xI) = \delta_{R/(x)}^{n-1}(R/I) + \delta_{R/(x)}^{n-1}(I/(x)).$$

It follows from (2.5.1) that $\delta_{R/(x)}^{n-1}(R/I) > 0$ or $\delta_{R/(x)}^{n-1}(I/(x)) > 0$. Note that the ideal $\overline{I} := I/(x)$ of $\overline{R} := R/(x)$ satisfies the same condition as (c), that is, the module $\overline{I}/\overline{I}^2$ is free over $\overline{R}/\overline{I} = R/I$, because $\overline{I}/\overline{I}^2 = I/((x) + I^2)$ is a direct summand of I/I^2 by Lemma 2.4 (2). By the induction hypothesis, the ideal \overline{I} is a parameter ideal of \overline{R} . Then we see that I is also a parameter ideal of R.

(c) \Rightarrow (d): This implication is trivial.

Next we prove by induction on d the implication $(d) \Rightarrow (b)$ when depth $\operatorname{gr}_{I}(R) \geq d-1$ and I^{i}/I^{i+1} is a free R/I-module for any i > 0. If d = 1, then $\delta(I^{l}) > 0$ by Lemma 2.2. By Lemma 2.5, it follows that I^{l} is a parameter ideal. Set $(y) := I^{l}$. Taking a minimal reduction (t) of I, we have $I^{m+1} = tI^{m}$ for any $m \gg 0$. Setting m = pl, we obtain that $I \cong y^{p}I = I^{m+1} = tI^{m} = (ty^{p})$. This shows that I is a parameter ideal.

Assume d > 1. Since k is infinite, there is an element $x \in I \setminus I^2$ such that the initial form $x^* \in G$ is a non-zerodivisor of G. The G-regularity of x^* yields that the map $x : I^{i-1}/I^i \to I^i/I^{i+1}$ is injective for every $i \ge 1$. We see from Lemma 2.3 that $\delta_{R/(x)}^{n-1}(I^l/xI^l) \ge \delta_R^n(R/I^l) > 0$ in the same way as (2.5.1). Applying Lemma 2.4 (3), we get an isomorphism $I^l/xI^l \cong I^{l-1}/I^l \oplus I^l/xI^{l-1}$ and then we see that

$$\delta_{R/(x)}^{n-1}(I^l/xI^l) = \delta_{R/(x)}^{n-1}(I^{l-1}/I^l) + \delta_{R/(x)}^{n-1}(I^l/xI^{l-1}).$$

Since I^{l-1}/I^l is a free R/I-module, we have $\delta_{R/(x)}^{n-1}(R/I) > 0$ or $\delta_{R/(x)}^{n-1}(I^l/xI^{l-1}) > 0$. In the case that $\delta_{R/(x)}^{n-1}(R/I) > 0$, we already showed that I is a parameter ideal. So we may assume that $\delta_{R/(x)}^{n-1}(I^l/xI^{l-1}) > 0$. The equality $xI^{l-1} = I^l \cap (x)$ in Lemma 2.4 (1) shows that the image $\overline{I^l}$ of I^l in R/(x) coinsides with I^l/xI^{l-1} . Thus it holds that $\delta_{R/(x)}^{n-1}(\overline{I^l}) > 0$. We also note that $\overline{I^i}/\overline{I^{i+1}}$ is free over $\overline{R}/\overline{I}$ by Lemma 2.4 (3). By the induction hypothesis, \overline{I} is a parameter ideal of R/(x). This implies that I is also a parameter ideal of R.

Finally, the implication (b) \Rightarrow (a) follows from the proof of [10, Theorem 11.42]. \Box

Next, to prove Theorem 1.5, we start by recalling the definition of regularity; see

594

[**11**, Definition 3].

DEFINITION 2.6. Let A be a positively graded homogeneous ring and M be a finitely generated graded A-module. Then the (*Castelnuovo-Mumford*) regularity of M is defined by $\operatorname{reg}_A(M) = \sup\{i + j \mid H^i_{A_{\perp}}(M)_j \neq 0\}$.

Here we state some properties of regularity.

REMARK 2.7. Let A and M be the same as in the definition above.

- (1) Let $a \in A$ be a homogeneous *M*-regular element of degree 1. Then we have $\operatorname{reg}_{A/(a)}(M/aM) = \operatorname{reg}_A(M)$.
- (2) If A is an artinian ring, then $reg(M) = max\{p \mid M_p \neq 0\}$.

Now let us state the proof of Theorem 1.5.

PROOF OF THEOREM 1.5. Since k is infinite, there exists a regular sequence x_1, \ldots, x_d of R in I such that the sequence of initial forms x_1^*, \ldots, x_d^* makes a homogeneous system of parameters of $\operatorname{gr}_I(R)$. Then the equality $\operatorname{gr}_I(R)/(x_1^*, \ldots, x_d^*) = \operatorname{gr}_{I'}(R')$ holds, where $R' = R/(x_1, \ldots, x_d)$ and $I' = I/(x_1, \ldots, x_d)$. It holds that

$$\operatorname{reg}(\operatorname{gr}_{I}(R)) = \operatorname{reg}(\operatorname{gr}_{I'}(R'))$$
$$= \max\{p \mid \operatorname{gr}_{I'}(R')_{p} \neq 0\}$$
$$= \max\{p \mid \operatorname{gr}_{I}(R)_{p} \not\subset (x_{1}^{*}, \dots, x_{d}^{*})\}$$
$$= \max\{p \mid I^{p} \not\subset (x_{1}, \dots, x_{d})\}.$$

To show the inequality $\operatorname{index}(I) \geq \operatorname{reg}(\operatorname{gr}_I(R)) + 1$, it is enough to check that $I^p \subset (x_1, \ldots, x_d)$ if $p = \operatorname{index}(I)$. We prove this by induction on d.

Let \overline{R} be the quotient ring $R/(x_1)$ and \overline{I} be the ideal $I/(x_1)$ of \overline{R} . Now put p =index(I) and we have $\delta_R(R/I^p) > 0$ by definition. Since there is a surjection from $J := I^p + (x)$ to R/I^p by Lemma 2.4 (4), $\delta_R(J)$ is greater than 0. Lemma 2.3 yields that $\delta_{\overline{R}}(J/x_1J) \ge \delta_R(J) > 0$. Using Lemma 2.4 (5), we obtain an isomorphism $J/x_1J \cong R/J \oplus I^p/x_1I^{p-1}$, and hence $\delta_{\overline{R}}(J/x_1J) = \delta_{\overline{R}}(R/J) + \delta_{\overline{R}}(I^p/x_1I^{p-1})$. Therefore we see that $\delta_{\overline{R}}(R/J) > 0$ or $\delta_{\overline{R}}(I^p/x_1I^{p-1}) > 0$. Now assume that d = 1. If $\delta_{\overline{R}}(I^p/x_1I^{p-1}) > 0$, then $I^p/x_1I^{p-1} = \overline{R}$ since $I^p/x_1I^{p-1} = I^p/(x_1) \cap I^p$ is an ideal of the Artinian ring \overline{R} and we apply Lemma 2.5. Therefore $I^p = R$ and this is a contradiction. So we get $\delta_{\overline{R}}(R/J) > 0$. In this case, R/J must have an \overline{R} -free summand. This shows that $J = (x_1)$ and $I^p \subset (x_1)$.

Next we assume that d > 1. By Theorem 1.2, $\delta_{\overline{R}}(I^p/x_1I^{p-1}) = 0$. So we have $\delta_{\overline{R}}(R/J) > 0$. Then $R/J = R/(I^p + (x_1)) = \overline{R}/\overline{I}^p$ hold. By the induction hypothesis, $\overline{I}^p \subset (x_1, x_2, \ldots, x_d)/(x_1)$. Hence we get $I^p \subset (x_1, \ldots, x_d)$.

It remains to show that $\operatorname{index}(I) = \operatorname{reg}(\operatorname{gr}_I(R)) + 1$ if $I \subset \operatorname{tr}(\omega)$. We only need to prove that $I^p \subset (x_1, \ldots, x_d)$ implies $\delta(R/I^p) > 0$. This immediately follows from the inequalities $\delta(R/I^p) \geq \delta(R/(x_1, \ldots, x_d))$ and $\delta(R/(x_1, \ldots, x_d)) > 0$ by applying Theorem 1.2 (b) \Rightarrow (a) to the ideal (x_1, \ldots, x_d) .

3. Examples.

In this section, (R, \mathfrak{m}, k) , and d are the same as in the previous section. Let I be an \mathfrak{m} -primary ideal of R. To begin with, let us recall the definition of Ulrich ideals.

DEFINITION 3.1. We say that I is an Ulrich ideal of R if it satisfies the following.

(1) $\operatorname{gr}_{I}(R)$ is a Cohen–Macaulay ring with $a(\operatorname{gr}_{I}(R)) \leq 1 - d$.

(2) I/I^2 is a free R/I-module.

Here we denote by $a(\operatorname{gr}_{I}(R))$ the *a*-invariant of $a(\operatorname{gr}_{I}(R))$. Since *k* is infinite, the condition (1) of Definition 3.1 is equivalent to saying that $I^{2} = QI$ for some minimal reduction Q of *I*.

Next, we prove that Ulrich ideals satisfies the assumption of Theorem 1.2 and 1.5.

PROPOSITION 3.2. Let I be an Ulrich ideal of R. Then I^l/I^{l+1} is a free R/I-module for any $l \ge 1$.

PROOF. By definition, I/I^2 is free over R/I. Take a minimal reduction Q of I. Consider the canonical exact sequence

$$0 \to I^l/Q^l \to Q^{l-1}/Q^l \to Q^{l-1}/I^l \to 0$$

of R/Q-modules. Then Q^{l-1}/Q^l is a free R/Q-module and

$$Q^{l-1}/I^l = Q^{l-1}/IQ^{l-1} = R/I \otimes_{R/Q} Q^{l-1}/Q^l$$

is a free R/I-module. Therefore

$$I^l/Q^l = \Omega_{R/Q}((R/I)^{\oplus m}) = \Omega_{R/Q}(R/I)^{\oplus m} = (I/Q)^{\oplus m}$$

for some *m*. Since I/Q is free over R/I, I^l/Q^l is also a free R/I-module. We now look at the canonical exact sequence $0 \to Q^l/I^{l+1} \to I^l/I^{l+1} \to I^l/Q^l \to 0$ of R/I-modules. Then as we already saw, I^l/Q^l and Q^l/I^{l+1} are both free over R/I. Thus the sequence is split exact and I^l/I^{l+1} is a free R/I-module.

Now we give the proof of Corollary 1.6.

PROOF OF COROLLARY 1.6. It follows from [4, Theorem 1.1] that index(R) is finite number. Since I is not a parameter ideal, we have $\delta(R/I) = 0$ by Theorem 1.2. If $I \subset \mathfrak{m}^{index(R)}$, then we have a surjective homomorphism $R/I \to R/\mathfrak{m}^{index(R)}$ and thus $\delta(R/I) \geq \delta(R/\mathfrak{m}^{index(R)}) > 0$. This is a contradiction.

To end this section, we give an example of an ideal showing that the condition I/I^2 is free over R/I does not imply that I^l/I^{l+1} is free over R/I for any $l \ge 1$.

EXAMPLE 3.3. Let S = k[[x, y]] be the formal power series ring in two variables, **n** be the maximal ideal of S, $L = (x^4)S$, $J = (x^2, y)S$, R = S/L be the quotient ring of S by L and I be the ideal J/L of R. Then I/I^2 is free over R/I but I^2/I^3 is not so.

PROOF. We note that J is a parameter ideal of S and therefore J^l/J^{l+1} is free over S/J for any $l \ge 1$. Since $I^2 = (J^2 + L)/L = J^2/L$, we have $I/I^2 = (J/L)/(J^2/L) \cong J/J^2$ which is free over $S/J \cong R/I$. On the other hand, we have $l_R(I^2/I^3) = l_S(J^2/(J^3 + L)) = 4$, $l_R(R/I) = l_S(S/J) = 2$ and $\mu_R(I^2) = 3$, here we denote by $l_A(M)$ the length of A-module M for a commutative ring A and by $\mu_A(M)$ the number of minimal generator of M. Thus $l_R(I^2/I^3) \neq \mu_R(I^2)l_R(R/I)$. This shows that I^2/I^3 is not free over R/I. \Box

ACKNOWLEGMENTS. The author is grateful to his supervisor Ryo Takahashi for giving him helpful advice throughout the paper. The author also thanks the referee for his/her kind and helpful advice.

References

- M. Auslander and R. O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mem. Soc. Math. France, 38 (1989), 5–37.
- [2] M. Auslander, S. Ding and Ø. Solberg, Liftings and weak liftings of modules, J. Algebra, 156 (1993), 273–317.
- [3] L. L. Avramov, R.-O. Buchweitz, S. B. Iyengar and C. Miller, Homology of perfect complexes, Adv. in Math., 223 (2010), 1731–1781.
- [4] S. Ding, A note on the index of Cohen–Macaulay local rings, Comm. Algebra, 21 (1993), 53–71.
- [5] S. Ding, The associated graded ring and the index of a Gorenstein local ring, Proc. Amer. Math. Soc., 120 (1994), 1029–1033.
- [6] S. Goto, K. Ozeki, R. Takahashi, K. Watanabe and K. Yoshida, Ulrich ideals and modules, Math. Proc. Cambridge Philos. Soc., 156 (2014), 137–166.
- [7] S. Goto, K. Ozeki, R. Takahashi, K. Watanabe and K. Yoshida, Ulrich ideals and modules over two-dimensional rational singularities, Nagoya Math. J., 221 (2016), 69–110.
- [8] M. Hashimoto and A. Shida, Some remarks on index and generalized Loewy length of a Gorenstein local ring, J. Algebra, 187 (1997), 150–162.
- [9] K. Yoshida, A note on minimal Cohen–Macaulay approximations, Communications in Algebra, 24 (1996), 235–246.
- [10] G. J. Leuschke and R. Wiegand, Cohen-Macaulay Representations, Mathematical Surveys and Monographs, 181, American Mathematical Society, Providence, RI, 2012.
- [11] A. Ooishi, Castelnuovo's regularity of graded rings and modules, Hiroshima Math. J., 12 (1982), 627–644.
- [12] R. Takahashi, Syzygy modules with semidualizing or G-projective summands, J. Algebra, 295 (2006), 179–194.
- [13] Y. Yoshino, On the higher delta invariants of a Gorenstein local ring, Proc. Amer. Math. Soc., 124 (1996), 2641–2647.

Toshinori KOBAYASHI Graduate School of Mathematics Nagoya University Furocho, Chikusaku, Nagoya Aichi 464-8602, Japan E-mail: m16021z@math.nagoya-u.ac.jp