Completely positive isometries between matrix algebras

By Masamichi Hamana

(Received June 21, 2017)
(Revised Oct. 17, 2017)

Abstract

Let φ be a linear map between operator spaces. To measure the intensity of φ being isometric we associate with it a number, called the isometric degree of φ and written $\operatorname{id}(\varphi)$, as follows. Call φ a strict m-isometry with m a positive integer if it is an m-isometry, but is not an $(m+1)$-isometry. Define $\operatorname{id}(\varphi)$ to be $0, m$, and ∞, respectively if φ is not an isometry, a strict m isometry, and a complete isometry, respectively. We show that if $\varphi: M_{n} \rightarrow M_{p}$ is a unital completely positive map between matrix algebras, then $\operatorname{id}(\varphi) \in$ $\{0,1,2, \ldots,[(n-1) / 2], \infty\}$ and that when $n \geq 3$ is fixed and p is sufficiently large, the values $1,2, \ldots,[(n-1) / 2]$ are attained as $\operatorname{id}(\varphi)$ for some φ. The ranges of such maps φ with $1 \leq \operatorname{id}(\varphi)<\infty$ provide natural examples of operator systems that are isometric, but not completely isometric, to M_{n}. We introduce and classify, up to unital complete isometry, a certain family of such operator systems.

1. Introduction.

Since the publication of the pioneering paper of Choi [1] in 1972, an extensive literature has treated the difference between m-positivity and ($m+1$)-positivity on matrix algebras for a positive integer m (see, for example, the monograph of Paulsen [5] and the references cited there). However the difference between m-isometry and ($m+1$)-isometry seems to have been paid less attention. Here a linear map φ between operator spaces X and Y is called an m-isometry if $\mathrm{id}_{m} \otimes \varphi: M_{m} \otimes X \rightarrow M_{m} \otimes Y,\left(\operatorname{id}_{m} \otimes \varphi\right)\left(\sum_{i} a_{i} \otimes x_{i}\right)=$ $\sum_{i} a_{i} \otimes \varphi\left(x_{i}\right)$, is an isometry, where M_{m} is the C^{*}-algebra of all complex $m \times m$ matrices, an operator space X is a linear subspace of some C^{*}-algebra A, and $M_{n} \otimes X$ is regarded as a normed linear subspace of the C^{*}-algebra $M_{n} \otimes A$. By a complete isometry we mean a map that is an m-isometry for all m. Clearly a complete isometry or an $(m+1)$-isometry is an m-isometry. We call an m-isometry strict if it is not an $(m+1)$-isometry. Hence, with any linear map φ between operator spaces we can associate a unique number, called the isometric degree of φ and written $\operatorname{id}(\varphi)$, defined as $0, m$, and ∞, respectively if φ is not an isometry, a strict m-isometry, and a complete isometry, respectively.

We note that if φ is a surjective linear map between C^{*}-algebras, then $\operatorname{id}(\varphi) \in$ $\{0,1, \infty\}$, that is, $\operatorname{id}(\varphi)$ takes no integer value more than 1 , or equivalently every surjective 2 -isometry is a complete isometry. Indeed, more generally, for a surjective linear map between triple systems, the three notions of 2 -isometry, triple isomorphism, and complete isometry coincide ([3], Proposition 2.1). Here a triple system, also called a ternary ring of operators (TRO), is a norm closed linear subspace of some C^{*}-algebra

[^0]that is closed under the triple product $[x, y, z]:=x y^{*} z$, and a triple isomorphism between triple systems is a linear bijection that preserves the triple products. A typical example of a surjective strict 1-isometry between C^{*}-algebras is the transpose $x \mapsto^{t} x$ of the matrix algebra M_{n} for $n \geq 2$ (see Tomiyama [6]).

The maps considered in this paper are unital completely positive maps $\varphi: M_{n} \rightarrow M_{p}$ between matrix algebras. In Section 3 we show that $\operatorname{id}(\varphi) \in\{0,1,2, \ldots,[(n-1) / 2], \infty\}$ for such maps φ and that when $n \geq 3$ is fixed, the less trivial values $1,2, \ldots,[(n-1) / 2]$ are attained as $\operatorname{id}(\varphi)$ for some p and some $\varphi: M_{n} \rightarrow M_{p}$. The main ingredients for the study are a criterion for φ being an m-isometry (Lemma 3.3 (iii)) and a technique (Lemma 3.4(ii)) making the computation of id (φ) effective via the notion of length defined in Section 2.

In Section 4 we address the following problem. The ranges $\varphi\left(M_{n}\right)$ of the linear isometries $\varphi: M_{n} \rightarrow M_{p}$ with $1 \leq \operatorname{id}(\varphi)<\infty$ constructed in Section 3 are operator systems identical with M_{n} as normed spaces. But, how different are they from M_{n} as operator systems? Given a positive integer $n \geq 3$ we introduce a family $\left\{M_{n}^{q, \zeta}\right\}$ of operator systems $M_{n}^{q, \zeta}$ that are linearly isometric images of M_{n}, parametrized by positive integers $q(3 \leq q \leq n)$ and unit vectors ζ in certain Hilbert spaces, and classify them up to unital complete isometry. Moreover the group structure of all unital complete isometries of a fixed $M_{n}^{q, \zeta}$ onto itself is determined.

In Section 5 we state two questions that have remained unanswered in this paper and related remarks.

The author thanks the referee for his constructive critique and for suggesting many simplifications of proofs, which will be noted in appropriate places.

2. Preliminaries.

Let $\varphi: M_{n} \rightarrow M_{p}$ be a unital completely positive map between matrix algebras. Throughout the paper we always assume that it is written in the form $\varphi_{L}: B\left(H_{1}\right) \rightarrow$ $B(L)$, which is the unital completely positive map defined as follows.

Let H_{1} and H_{2} be finite-dimensional Hilbert spaces, $\widetilde{H}:=H_{1} \otimes H_{2}$ their Hilbert space tensor product, and $L \subset \widetilde{H}$ a linear subspace. If $\operatorname{dim} H_{1}=n, \operatorname{dim} L=p$ and we identify $B\left(H_{1}\right)=M_{n}, B(L)=M_{p}$, then we obtain a unital completely positive map $\varphi_{L}: M_{n} \rightarrow M_{p}$ defined by

$$
\begin{align*}
\varphi_{L}: B\left(H_{1}\right) & \rightarrow B\left(H_{1}\right) \otimes B\left(H_{2}\right)=B(\widetilde{H}) \rightarrow P_{L} B(\widetilde{H}) P_{L}=B(L), \tag{2.1}\\
x & \longmapsto x \otimes 1_{H_{2}} \quad \longmapsto \quad P_{L}\left(x \otimes 1_{H_{2}}\right) P_{L}=: \varphi_{L}(x) .
\end{align*}
$$

Here $1_{H_{2}}$ denotes the identity operator on H_{2}, P_{L} denotes the projection of \widetilde{H} onto L, and we canonically identify $B\left(H_{1}\right) \otimes B\left(H_{2}\right)$ with $B(\widetilde{H})$ and $P_{L} B(\widetilde{H}) P_{L}$ with $B(L)$. Conversely, every unital completely positive map $\varphi: M_{n} \rightarrow M_{p}$ between matrix algebras is unitarily equivalent to the above map φ_{L} for some Hilbert spaces H_{1}, H_{2} and some linear subspace L of $H_{1} \otimes H_{2}$ such that $\operatorname{dim} H_{1}=n$ and $\operatorname{dim} L=p$. Indeed, if we identify $M_{p}=B(H)$ for a Hilbert space H with $\operatorname{dim} H=p$, then by the Stinespring theorem (Paulsen [5], Theorem 4.1) there exist a finite-dimensional Hilbert space K, a unital *-homomorphism $\pi: M_{n} \rightarrow B(K)$, and a linear isometry $V: H \rightarrow K$ such that
$\varphi(x)=V^{*} \pi(x) V$ for all $x \in M_{n}$. Here, that $\operatorname{dim} K<\infty$ follows from the fact that K is obtained as the quotient space of the finite-dimensional tensor product $M_{n} \otimes H$. Since M_{n} is a simple C^{*}-algebra, we can identify the ${ }^{*}$-homomorphism π with the amplification $B\left(H_{1}\right) \rightarrow B\left(H_{1}\right) \otimes B\left(H_{2}\right), x \mapsto x \otimes 1_{H_{2}}$, where $M_{n}=B\left(H_{1}\right)$ and $K=H_{1} \otimes H_{2}$ for some Hilbert space H_{2}. Moreover, since φ is unital, V is an isometry of H onto $L:=V H \subset K$, so that the map $V \cdot V^{*}: B(H) \rightarrow B(L), x \mapsto V x V^{*}$, defines a unitary equivalence, and $V V^{*}=P_{L} \in B\left(H_{1} \otimes H_{2}\right)$. Hence the map $\varphi: M_{n} \rightarrow M_{p}=B(H)$, $x \mapsto V^{*} \pi(x) V=V^{*}\left(x \otimes 1_{H_{2}}\right) V$, is unitarily equivalent to the map $\varphi_{L}: B\left(H_{1}\right) \rightarrow B(L)$, $x \mapsto V V^{*}\left(x \otimes 1_{H_{2}}\right) V V^{*}=P_{L}\left(x \otimes 1_{H_{2}}\right) P_{L}$.

The uniqueness of $K=H_{1} \otimes H_{2}$ and $L \subset H_{1} \otimes H_{2}$, up to unitary equivalence, in the expression $\varphi=\varphi_{L}$ follows when we further require that $\pi\left(M_{n}\right) V H=K$, or equivalently that $\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) L=K=H_{1} \otimes H_{2}$ (see [5], Proposition 4.2). But we will not assume this condition $\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) L=H_{1} \otimes H_{2}$ to give flexibility in the choice of $L \subset H_{1} \otimes H_{2}$.

As usual we write $B(H)=M_{n}$ when we need only specify $\operatorname{dim} H=n<\infty$.
In what follows we adopt the following notational convention. For H_{1}, H_{2} and $H_{1} \otimes H_{2}$ as above we denote by the letters ξ, η and ζ vectors in H_{1}, H_{2} and $H_{1} \otimes H_{2}$, respectively. Let $\overline{H_{1}}:=\left\{\xi^{*}: \xi \in H_{1}\right\}$ be the complex conjugate of H_{1}, i.e., the Hilbert space with the linear space operation $\lambda_{1} \xi_{1}^{*}+\lambda_{2} \xi_{2}^{*}=\left(\overline{\lambda_{1}} \xi_{1}+\overline{\lambda_{2}} \xi_{2}\right)^{*}$ and the inner product $\left\langle\xi_{1}^{*}, \xi_{2}^{*}\right\rangle_{\overline{H_{1}}}=\left\langle\xi_{2}, \xi_{1}\right\rangle$ for $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ and $\xi_{1}, \xi_{2} \in H_{1}$. Then the map $\xi^{*} \mapsto\langle\cdot, \xi\rangle$ gives a linear isomorphism of $\overline{H_{1}}$ onto the dual space of H_{1}, and it induces the canonical linear isomorphism $\rho: H_{1} \otimes H_{2} \rightarrow B\left(\overline{H_{1}}, H_{2}\right), \zeta \mapsto \rho_{\zeta}$, defined by

$$
\begin{equation*}
\rho_{\xi_{1} \otimes \eta_{1}} \xi^{*}=\left\langle\xi_{1}, \xi\right\rangle \eta_{1}, \quad \xi_{1}, \xi \in H_{1}, \quad \eta_{1} \in H_{2} . \tag{2.2}
\end{equation*}
$$

The operator $\rho_{\zeta} \in B\left(\overline{H_{1}}, H_{2}\right), \zeta \in H_{1} \otimes H_{2}$, is reformulated by the following equality.

$$
\begin{equation*}
\left\langle\rho_{\zeta} \xi^{*}, \eta\right\rangle=\langle\zeta, \xi \otimes \eta\rangle, \quad \xi \in H_{1}, \eta \in H_{2} \tag{2.3}
\end{equation*}
$$

We use the following symbolic notation to denote inner products or operators:

$$
\begin{aligned}
& \xi_{2}^{*} \xi_{1}:=\left\langle\xi_{1}, \xi_{2}\right\rangle, \quad \xi_{1}, \xi_{2} \in H_{1} \\
& \xi_{2} \xi_{1}^{*}: H_{1} \rightarrow H_{1}, \xi \mapsto\left(\xi_{2} \xi_{\xi}^{*}\right) \xi=\xi_{2}\left(\xi_{1}^{*} \xi\right)=\left\langle\xi, \xi_{1}\right\rangle \xi_{2}, \quad \xi_{1}, \xi_{2} \in H_{1} ; \\
& \xi_{1} \eta_{1}:=\rho_{\xi_{1} \otimes \eta_{1}}: \overline{H_{1}} \rightarrow H_{2}, \quad \xi^{*} \mapsto \xi^{*}\left(\xi_{1} \eta_{1}\right)=\left(\xi^{*} \xi_{1}\right) \eta_{1}=\left\langle\xi_{1}, \xi\right\rangle \eta_{1}, \quad \xi_{1} \in H_{1}, \eta_{1} \in H_{2},
\end{aligned}
$$

etc. The meaning would be self-explanatory when we view vectors as column vectors with respect to some orthonormal basis and juxtapositions of them as matrix products. Then $\rho_{\xi_{2} \otimes \eta_{2}}^{*}: H_{2} \rightarrow \overline{H_{1}}$ and $\rho_{\xi_{1} \otimes \eta_{1}} \rho_{\xi_{2} \otimes \eta_{2}}^{*}: H_{2} \rightarrow \overline{H_{1}} \rightarrow H_{2}$ are written formally as

$$
\begin{equation*}
\rho_{\xi_{1} \otimes \eta_{1}}^{*}=\xi_{1}^{*} \eta_{1}^{*}, \quad \rho_{\xi_{1} \otimes \eta_{1}} \rho_{\xi_{2} \otimes \eta_{2}}^{*}=\left\langle\xi_{1}, \xi_{2}\right\rangle \eta_{1} \eta_{2}^{*}, \tag{2.4}
\end{equation*}
$$

meaning the maps $\eta \mapsto \xi_{1}^{*} \eta_{1}^{*} \eta=\left\langle\eta, \eta_{1}\right\rangle \xi_{1}^{*}$ and $\eta \mapsto\left\langle\xi_{1}, \xi_{2}\right\rangle\left\langle\eta, \eta_{2}\right\rangle \eta_{1}$, respectively.
For any subsets $S \subset H_{1} \otimes H_{2}$ and $T \subset H_{1}$ write

$$
\begin{equation*}
[S]_{T}:=\operatorname{lin}\left\{\rho_{\zeta} \xi^{*}: \zeta \in S, \xi \in T\right\}=\operatorname{lin} \bigcup_{\zeta \in S} \rho_{\zeta} T^{*} \subset H_{2} \tag{2.5}
\end{equation*}
$$

Here and throughout, $\operatorname{lin}\{\ldots\}$ denotes the linear span of $\{\ldots\}$ in any linear space, and $T^{*}:=\left\{\xi^{*}: \xi \in T\right\}$. In particular, if $T=\left\{\xi_{1}, \ldots, \xi_{k}\right\}, \xi_{i} \in H_{1}$, write $[S]_{\xi_{1}, \ldots, \xi_{k}}:=[S]_{T}$, and if $T=H_{1}$, write $[[S]]:=[S]_{H_{1}}$.

Definition 2.1. For a nonempty subset S of $H_{1} \otimes H_{2}$ we call the following integer the length of S.

$$
\begin{equation*}
\text { length } S:=\min \left\{\operatorname{dim} T: T \subset H_{1} \text { linear, }[S]_{T}=[[S]]\right\} \tag{2.6}
\end{equation*}
$$

That is, $l=$ length S if and only if $[S]_{T} \varsubsetneqq[[S]]$ for any linear subspace T of H_{1} of $\operatorname{dim} T<l$ and $[S]_{T}=[[S]]$ for some linear subspace T of H_{1} of $\operatorname{dim} T=l$.

Note that replacing S and T in (2.5) and (2.6) by their linear spans does not affect the resulting sets and the value of length S, i.e., $[S]_{T}=[\operatorname{lin} S]_{T}=[S]_{\operatorname{lin} T}=[\operatorname{lin} S]_{\operatorname{lin} T}$, $[[S]]=[[\operatorname{lin} S]]$ and length $S=\operatorname{length}(\operatorname{lin} S)$. Note also that since the map $T \mapsto T^{*}$ gives a bijection between the set of all linear subspaces of H_{1} and that of $\overline{H_{1}}$, the equality in (2.6) is written as $\sum_{\zeta \in S} \rho_{\zeta} T^{*}=\sum_{\zeta \in S} \rho_{\zeta} \overline{H_{1}}$, and (2.6) is reformulated as

$$
\begin{equation*}
\text { length } S=\min \left\{\operatorname{dim} T: T \subset \overline{H_{1}} \text { linear, } \sum_{\zeta \in S} \rho_{\zeta} T=\sum_{\zeta \in S} \rho_{\zeta} \overline{H_{1}}\right\} \tag{2.7}
\end{equation*}
$$

Definition 2.2. Let $\varphi: X \rightarrow Y$ be a linear map between operator spaces X and Y.
(i) For a positive integer m we call φ a strict m-isometry if $\varphi_{m}: M_{m}(X) \rightarrow M_{m}(Y)$ is an isometry, but $\varphi_{m+1}: M_{m+1}(X) \rightarrow M_{m+1}(Y)$ is not an isometry, where $M_{m}(X)=$ $M_{m} \otimes X, M_{m}(Y)=M_{m} \otimes Y$, etc., and $\varphi_{m}=\operatorname{id}_{m} \otimes \varphi$ with id ${ }_{m}$ denoting the identity map on M_{m}.
(ii) We define the isometric degree of φ, $\operatorname{written} \operatorname{id}(\varphi)$, to be $0, m$, and ∞, respectively if φ is not an isometry, a strict m-isometry, and a complete isometry, respectively.

3. Isometric degrees of φ_{L}.

We describe the isometric degree $\operatorname{id}\left(\varphi_{L}\right)$ of the unital completely positive map φ_{L} defined in Section 2 in terms of the orthogonal complement L^{\perp} of L as follows.

Theorem 3.1. As in Section 2, let H_{1}, H_{2} be finite-dimensional Hilbert spaces, L a linear subspace of $\widetilde{H}:=H_{1} \otimes H_{2}$, and $\varphi_{L}: B\left(H_{1}\right) \rightarrow B(L)$ the unital completely positive map associated with L. Let $n:=\operatorname{dim} H_{1}, q:=\operatorname{dim} H_{2}, L^{\perp}$ the orthogonal complement of L in \widetilde{H}, and $l:=$ length L^{\perp}. Then:
(i) We have $l \leq \min \{n, q\}$.
(ii) The following are equivalent:
(ii1) $\operatorname{id}\left(\varphi_{L}\right)=\infty$, i.e., φ_{L} is a complete isometry.
(ii2) $\left[\left[L^{\perp}\right]\right] \varsubsetneqq H_{2}$.
(ii3) There exists an $\eta_{0} \in H_{2} \backslash\{0\}$ such that $H_{1} \otimes \eta_{0} \subset L$.
(iii) Suppose that $\operatorname{id}\left(\varphi_{L}\right)<\infty$ and hence by (ii) that $\left[\left[L^{\perp}\right]\right]=H_{2}$. Then we have

$$
\begin{equation*}
\operatorname{id}\left(\varphi_{L}\right)=\left[\frac{l-1}{2}\right] \tag{3.1}
\end{equation*}
$$

where $[a]$ for a real number a is the largest integer $\leq a$. That is, if $l \leq 2$, then φ_{L} is not an isometry, and if $l \geq 3$, then φ_{L} is a strict $[(l-1) / 2]$-isometry.

Since $l \leq n$, Theorem 3.1 means that if $1 \leq n \leq 2$, then $\operatorname{id}\left(\varphi_{L}\right) \in\{0, \infty\}$ and if $n \geq 3$, then $\operatorname{id}\left(\varphi_{L}\right) \in\{0,1,2, \ldots,[(n-1) / 2], \infty\}$. In particular, if $1 \leq n \leq 2, \varphi_{L}$ being an isometry implies its being a complete isometry. The following theorem shows that the values $1,2, \ldots,[(n-1) / 2]$ are indeed attained as $\operatorname{id}\left(\varphi_{L}\right)$ for some φ_{L} if $n \geq 3$ is fixed and p is sufficiently large.

THEOREM 3.2. Let n and m be positive integers with $n \geq 3$ and $1 \leq m \leq$ $[(n-1) / 2]$. Then there exist a positive integer p and a map $\varphi_{L}: M_{n} \rightarrow M_{p}$ such that $\operatorname{id}\left(\varphi_{L}\right)=m$. Here we can take p to be $n(2 m+1)-1$.

We separate the proofs of Theorems 3.1 and 3.2 into several lemmas. In the following lemmas we retain the notation $H_{1}, H_{2}, L, \varphi_{L}, n=\operatorname{dim} H_{1}$, and $q=\operatorname{dim} H_{2}$ in Theorem 3.1.

Lemma 3.3. (i) For $\xi_{1}, \xi_{2} \in H_{1}$ we have $\left\|P_{L}\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right) P_{L}\right\|=\left\|\xi_{2} \xi_{1}^{*}\right\|=\left\|\xi_{1}\right\|\left\|\xi_{2}\right\|$ if and only if there exists an $\eta \in H_{2} \backslash\{0\}$ such that $\xi_{1} \otimes \eta, \xi_{2} \otimes \eta \in L$, where $\xi_{2} \xi_{1}^{*} \in B\left(H_{1}\right)$ is the operator $\xi \mapsto\left(\xi_{2} \xi_{1}^{*}\right) \xi=\xi_{2}\left(\xi_{1}^{*} \xi\right)=\left\langle\xi, \xi_{1}\right\rangle \xi_{2}$ on H_{1} of rank≤ 1 as before.
(ii) The map $\varphi_{L}: B\left(H_{1}\right) \rightarrow B(L), \varphi_{L}(x)=P_{L}\left(x \otimes 1_{H_{2}}\right) P_{L}$, is an isometry if and only if

$$
\begin{equation*}
\forall \xi_{1}, \xi_{2} \in H_{1}, \exists \eta \in H_{2} \backslash\{0\}: \xi_{1} \otimes \eta, \xi_{2} \otimes \eta \in L \tag{3.2}
\end{equation*}
$$

(iii) For a positive integer m the $\operatorname{map} \varphi_{L}$ is an m-isometry if and only if

$$
\begin{equation*}
\forall \xi_{i} \in H_{1}(1 \leq i \leq 2 m), \exists \eta \in H_{2} \backslash\{0\}: \xi_{i} \otimes \eta \in L(1 \leq i \leq 2 m) \tag{3.3}
\end{equation*}
$$

Proof. (i) Clearly $\left\|\xi_{2} \xi_{1}^{*}\right\|=\left\|\xi_{1}\right\|\left\|\xi_{2}\right\|$, and for the proof we may assume that $\left\|\xi_{1}\right\|=\left\|\xi_{2}\right\|=\|\eta\|=1$.
(\Leftarrow) : Suppose such an $\eta \in H_{2}$ exists. Then $\xi_{i} \otimes \eta \in L,\left\|\xi_{i} \otimes \eta\right\|=\left\|\xi_{i}\right\|\|\eta\|=1$ $(i=1,2)$,

$$
\begin{aligned}
\left\|P_{L}\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right) P_{L}\right\| & \geq\left|\left\langle P_{L}\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right) P_{L}\left(\xi_{1} \otimes \eta\right), \xi_{2} \otimes \eta\right\rangle\right| \\
& =\left|\left\langle\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right)\left(\xi_{1} \otimes \eta\right), \xi_{2} \otimes \eta\right\rangle\right| \\
& =\left\langle\xi_{1}, \xi_{1}\right\rangle\left\langle\xi_{2}, \xi_{2}\right\rangle\langle\eta, \eta\rangle=1
\end{aligned}
$$

and further, $\left\|P_{L}\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right) P_{L}\right\| \leq\left\|\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right\|=\left\|\xi_{1}\right\|\left\|\xi_{2}\right\|=1$.
(\Rightarrow) : The following proof was suggested by the referee; the original proof was more lengthy. Let $v=\xi_{2} \xi_{1}^{*}$ and suppose that $\left\|P_{L}\left(v \otimes 1_{H_{2}}\right) P_{L}\right\|=\|v\|=1$. Then v is a partial isometry with $v^{*} v=\xi_{1} \xi_{1}^{*}$ and $v v^{*}=\xi_{2} \xi_{2}^{*}$. Since $H_{1} \otimes H_{2}$ is finite-dimensional and its unit sphere is compact, there is a unit vector $\zeta \in H_{1} \otimes H_{2}$ such that $\| P_{L}(v \otimes$ $\left.1_{H_{2}}\right) P_{L} \zeta \|=1$. We show that $\zeta,\left(v \otimes 1_{H_{2}}\right) \zeta \in L$ and $\left(v^{*} v \otimes 1_{H_{2}}\right) \zeta=\zeta$. Indeed,
$1=\left\|P_{L}\left(v \otimes 1_{H_{2}}\right) P_{L} \zeta\right\| \leq\left\|P_{L}\left(v \otimes 1_{H_{2}}\right)\right\|\left\|P_{L} \zeta\right\| \leq\left\|P_{L} \zeta\right\| \leq\|\zeta\|=1$ implies that $\left\|P_{L} \zeta\right\|=$ $\|\zeta\|$ and hence that $\zeta=P_{L} \zeta \in L$, since $\|\zeta\|^{2}=\left\|P_{L} \zeta\right\|^{2}+\left\|\zeta-P_{L} \zeta\right\|^{2}$. Similarly, $\left\|P_{L}\left(v \otimes 1_{H_{2}}\right) \zeta\right\|=\left\|P_{L}\left(v \otimes 1_{H_{2}}\right) P_{L} \zeta\right\|=1=\left\|\left(v \otimes 1_{H_{2}}\right) \zeta\right\|$ implies $\left(v \otimes 1_{H_{2}}\right) \zeta \in L$. Since v is a partial isometry, $\left\|\left(v^{*} v \otimes 1_{H_{2}}\right) \zeta\right\|=\left\|\left(v \otimes 1_{H_{2}}\right) \zeta\right\|=1$, and $\left\|\left(v^{*} v \otimes 1_{H_{2}}\right) \zeta\right\|=1=\|\zeta\|$. Then, since $v^{*} v \otimes 1_{H_{2}}=\xi_{1} \xi_{1}^{*} \otimes 1_{H_{2}}$ is the projection onto $\xi_{1} \otimes H_{2}$, it follows that $\left(v^{*} v \otimes 1_{H_{2}}\right) \zeta=\zeta$ and hence that $\zeta=\xi_{1} \otimes \eta$ for some unit vector $\eta \in H_{2}$. Then $\left(v \otimes 1_{H_{2}}\right) \zeta=\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right)\left(\xi_{1} \otimes \eta\right)=\xi_{2} \otimes \eta$, and it follows that $\xi_{1} \otimes \eta, \xi_{2} \otimes \eta \in L$.

Note that the above argument shows that $\left\|P_{L}\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right) P_{L} \zeta\right\|=\|\zeta\|$ for $\zeta \in H_{1} \otimes H_{2}$ if and only if $\zeta=\xi_{1} \otimes \eta$ for some $\eta \in H_{2}$ such that $\xi_{1} \otimes \eta, \xi_{2} \otimes \eta \in L$.
(ii) (\Rightarrow) : If φ_{L} is an isometry, then $\left\|P_{L}\left(\xi_{2} \xi_{1}^{*} \otimes 1_{H_{2}}\right) P_{L}\right\|=\left\|\varphi_{L}\left(\xi_{2} \xi_{1}^{*}\right)\right\|=\left\|\xi_{2} \xi_{1}^{*}\right\|$ for all $\xi_{1}, \xi_{2} \in H_{1}$. Hence (3.2) follows from (i).
(\Leftarrow) : Let $x \in B\left(H_{1}\right)$ and take any unit vectors $\xi_{i} \in H_{1}(i=1,2)$. Then there exists a unit vector $\eta \in H_{2}$ as in (3.2), and so

$$
\begin{aligned}
\left\|\varphi_{L}(x)\right\| & \geq\left|\left\langle P_{L}\left(x \otimes 1_{H_{2}}\right) P_{L}\left(\xi_{1} \otimes \eta\right), \xi_{2} \otimes \eta\right\rangle\right|=\left|\left\langle\left(x \otimes 1_{H_{2}}\right)\left(\xi_{1} \otimes \eta\right), \xi_{2} \otimes \eta\right\rangle\right| \\
& =\left|\left\langle x \xi_{1}, \xi_{2}\right\rangle\right|\langle\eta, \eta\rangle=\left|\left\langle x \xi_{1}, \xi_{2}\right\rangle\right| .
\end{aligned}
$$

Since ξ_{1}, ξ_{2} are arbitrary, it follows that $\left\|\varphi_{L}(x)\right\| \geq\|x\|$, and the reverse inequality being obvious, $\left\|\varphi_{L}(x)\right\|=\|x\|$.
(iii) For $\varphi:=\varphi_{L}: B\left(H_{1}\right) \rightarrow B(L)$ in (ii), $\varphi_{m}:=\operatorname{id}_{m} \otimes \varphi: M_{m} \otimes B\left(H_{1}\right) \rightarrow M_{m} \otimes B(L)$ is given as follows. For $x=\sum_{1 \leq i, j \leq m} e_{i j} \otimes x_{i j} \in M_{m} \otimes B\left(H_{1}\right)$, where $\left\{e_{i j}\right\}_{1 \leq i, j \leq m}$ is a family of matrix units for M_{m} and $x_{i j} \in B\left(H_{1}\right)$,

$$
\begin{aligned}
\varphi_{m}(x) & =\sum_{1 \leq i, j \leq m} e_{i j} \otimes \varphi\left(x_{i j}\right)=\sum_{1 \leq i, j \leq m} e_{i j} \otimes P_{L}\left(x_{i j} \otimes 1_{H_{2}}\right) P_{L} \\
& =\left(1_{\mathbb{C}^{m}} \otimes P_{L}\right)\left(\sum_{1 \leq i, j \leq m} e_{i j} \otimes x_{i j} \otimes 1_{H_{2}}\right)\left(1_{\mathbb{C}^{m}} \otimes P_{L}\right) \\
& =P_{\mathbb{C}^{m} \otimes L}\left(x \otimes 1_{H_{2}}\right) P_{\mathbb{C}^{m} \otimes L} .
\end{aligned}
$$

That is, φ_{m} is just the φ_{L} with H_{1} replaced by $\mathbb{C}^{m} \otimes H_{1}$ and $L \subset H_{1} \otimes H_{2}$ replaced by $\mathbb{C}^{m} \otimes L \subset \mathbb{C}^{m} \otimes H_{1} \otimes H_{2}$. Hence, by (ii), φ_{L} is an m-isometry, i.e., φ_{m} is an isometry if and only if

$$
\begin{equation*}
\forall \xi_{1}^{\prime}, \xi_{2}^{\prime} \in \mathbb{C}^{m} \otimes H_{1}, \exists \eta \in H_{2} \backslash\{0\}: \xi_{1}^{\prime} \otimes \eta, \xi_{2}^{\prime} \otimes \eta \in \mathbb{C}^{m} \otimes L \tag{3.4}
\end{equation*}
$$

For a fixed orthonormal basis $\left\{\varepsilon_{j}\right\}_{1 \leq j \leq m}$ for $\mathbb{C}^{m}, \mathbb{C}^{m} \otimes H_{1}=\varepsilon_{1} \otimes H_{1} \oplus \cdots \oplus \varepsilon_{m} \otimes H_{1}$, the orthogonal direct sum of right summands, and similarly $\mathbb{C}^{m} \otimes L=\varepsilon_{1} \otimes L \oplus \cdots \oplus \varepsilon_{m} \otimes L \subset$ $\varepsilon_{1} \otimes\left(H_{1} \otimes H_{2}\right) \oplus \cdots \oplus \varepsilon_{m} \otimes\left(H_{1} \otimes H_{2}\right)$. Hence, taking two vectors $\xi_{1}^{\prime}, \xi_{2}^{\prime}$ in $\mathbb{C}^{m} \otimes H_{1}$ is equivalent to taking $2 m$ vectors $\xi_{1}, \xi_{2}, \ldots, \xi_{2 m}$ in H_{1} so that $\xi_{1}^{\prime}=\sum_{j=1}^{m} \varepsilon_{j} \otimes \xi_{j}$ and $\xi_{2}^{\prime}=\sum_{j=1}^{m} \varepsilon_{j} \otimes \xi_{j+m}$, and for some $\eta \in H_{2} \backslash\{0\}, \xi_{i}^{\prime} \otimes \eta \in \mathbb{C}^{m} \otimes L(i=1,2) \Longleftrightarrow$ for some $\eta \in H_{2} \backslash\{0\}, \xi_{1} \otimes \eta, \xi_{2} \otimes \eta, \ldots, \xi_{2 m} \otimes \eta \in L$. Thus the equivalence (3.4) \Longleftrightarrow (3.3) follows.

Notation. For a linear subspace L of $H_{1} \otimes H_{2}$ and $\xi \in H_{1}$ we write

$$
\begin{equation*}
L^{\xi}:=\left\{\eta \in H_{2}: \xi \otimes \eta \in L\right\} . \tag{3.5}
\end{equation*}
$$

Lemma 3.4. (i) For $\xi \in H_{1}$ we have $L^{\xi}=\left(\left[L^{\perp}\right]_{\xi}\right)^{\perp}$, where $\left[L^{\perp}\right]_{\xi}:=\left\{\rho_{\zeta} \xi^{*}: \zeta \in\right.$ $\left.L^{\perp}\right\}$ as in (2.5).
(ii) (3.3) holds if and only if $\left[L^{\perp}\right]_{T} \varsubsetneqq H_{2}$ for each linear subspace T of H_{1} of $\operatorname{dim} T \leq 2 m$.

Proof. (i) For $\eta \in H_{2}, \eta \in L^{\xi} \Longleftrightarrow \xi \otimes \eta \in L \Longleftrightarrow\left\langle\rho_{\zeta} \xi^{*}, \eta\right\rangle=\langle\zeta, \xi \otimes \eta\rangle=0$ for all $\zeta \in L^{\perp}$ by (2.3) (since L is finite-dimensional and so $\left.\left(L^{\perp}\right)^{\perp}=L\right) \Longleftrightarrow \eta \in\left\{\rho_{\zeta} \xi^{*}\right.$: $\left.\zeta \in L^{\perp}\right\}^{\perp}=\left(\left[L^{\perp}\right]_{\xi}\right)^{\perp}$.
(ii) (3.3) holds $\Longleftrightarrow \forall \xi_{i} \in H_{1}(1 \leq i \leq 2 m): \bigcap_{1 \leq i \leq 2 m} L^{\xi_{i}} \neq\{0\} \Longleftrightarrow \forall \xi_{i} \in H_{1}$ $(1 \leq i \leq 2 m): \sum_{1 \leq i \leq 2 m}\left(L^{\xi_{i}}\right)^{\perp} \neq H_{2}$ (since $\left(\sum_{i} M_{i}\right)^{\perp}=\bigcap_{i} M_{i}^{\perp}$ for any linear subspaces M_{i} of H_{2} and since H_{2} is finite-dimensional). But, by (i) and (2.5), $\sum_{1 \leq i \leq 2 m}\left(L^{\xi_{i}}\right)^{\perp}=$ $\sum_{1 \leq i \leq 2 m}\left[L^{\perp}\right]_{\xi_{i}}=\left[L^{\perp}\right]_{T}$, where $T=\sum_{1 \leq i \leq 2 m} \mathbb{C} \xi_{i}$. When $\xi_{i}(1 \leq i \leq 2 m)$ range over all $2 m$ vectors in $H_{1}, T=\sum_{1 \leq i \leq 2 m} \mathbb{C} \xi_{i}$ ranges over all linear subspaces of H_{1} of dimension $\leq 2 m$. Hence the assertion follows.

Lemma 3.5. (i) Let K be a finite-dimensional linear space, $\left\{K_{i}\right\}_{i \in I}$ a finite family of proper linear subspaces K_{i} of K with $d_{i}:=\operatorname{dim} K_{i}$, and $r:=\operatorname{dim} K-\min _{i \in I} d_{i}>0$. Then there exists an r-dimensional linear subspace T of K such that $K_{i}+T=K$ for all $i \in I$.
(ii) Let K and M be finite-dimensional linear spaces, $\left\{a_{i}\right\}_{i \in I}$ a finite subset of $B(K, M)$, and $r:=\max _{i \in I} \operatorname{rank} a_{i}$. Then there exists an r-dimensional linear subspace T of K such that $a_{i} T=a_{i} K$ for all $i \in I$.
(iii) For any subset S of $H_{1} \otimes H_{2}$ we have length $S \leq \min \{n, q\}$.

Proof. (i) We repeatedly use the following obvious fact: $(*)$ If $\left\{L_{j}\right\}$ is a finite family of proper linear subspaces of K, then $\bigcup_{j} L_{j} \neq K$. Indeed, each L_{j} is closed and has empty interior in K. So the same is true for their union $\bigcup_{j} L_{j}, K \backslash \bigcup_{j} L_{j}$ is open and dense in K, and it is non-empty.

By $(*)$ there exists $\xi_{1} \in K \backslash \bigcup_{i \in I} K_{i}$. Let $K_{i}^{(1)}:=K_{i}+\mathbb{C} \xi_{1}(i \in I)$ and $I_{1}:=\{i \in$ $\left.I: K_{i}^{(1)} \varsubsetneqq K\right\}$. For $i \in I$ we have $i \in I \backslash I_{1} \Longleftrightarrow d_{i}+1=\operatorname{dim} K_{i}+1=\operatorname{dim} K_{i}^{(1)}=n$, i.e., $d_{i}=n-1$, and so $i \in I_{1} \Longleftrightarrow d_{i} \leq n-2$. If $I_{1} \neq \emptyset$, then again by (*), there exists $\xi_{2} \in K \backslash \bigcup_{i \in I_{1}} K_{i}^{(1)}$, and we can define $K_{i}^{(2)}:=K_{i}^{(1)}+\mathbb{C} \xi_{2}\left(i \in I_{1}\right)$, $I_{2}:=\left\{i \in I_{1}: K_{i}^{(2)} \varsubsetneqq K\right\}$ so that for $i \in I, i \in I_{2} \Longleftrightarrow d_{i} \leq n-3$ and $i \in I_{1} \backslash I_{2}$ $\Longleftrightarrow d_{i}=n-2$. As long as $I_{j} \neq \emptyset$ this procedure works, and since $d_{i} \geq n-r$ for all i with equality for some i, it terminates precisely at the r th step. Thus we obtain vectors $\xi_{1}, \xi_{2}, \ldots, \xi_{r} \in K$ and sets $I_{0}:=I \supset I_{1} \supset I_{2} \supset \cdots \supset I_{r-1} \neq \emptyset$ so that $K_{i} \varsubsetneqq K_{i}^{(1)} \varsubsetneqq \cdots \varsubsetneqq K_{i}^{(j)}=K_{i}+\mathbb{C} \xi_{1}+\cdots+\mathbb{C} \xi_{j}=K \Longleftrightarrow i \in I_{j-1} \backslash I_{j}$. If we set $T:=\mathbb{C} \xi_{1}+\cdots+\mathbb{C} \xi_{r}$, it follows that $K_{i}+T=K$ for all $i \in I$.
(ii) We may assume $a_{i} \neq 0$ for all $i \in I$. Then $K_{i}:=\operatorname{Ker} a_{i} \varsubsetneqq K(i \in I), \operatorname{dim} K_{i}=$ $n-r_{i}$, and $n-\min _{i \in I}\left(n-r_{i}\right)=\max _{i \in I} r_{i}=r$, where $n=\operatorname{dim} K$ and $r_{i}:=\operatorname{rank} a_{i}$. By (i) there exists an r-dimensional linear subspace T of K such that $K_{i}+T=K$ for all $i \in I$. Hence $a_{i} K=a_{i}\left(K_{i}+T\right)=a_{i} T$ for all $i \in I$.
(iii) Clearly length $S \leq n$ since $\operatorname{dim} T \leq \operatorname{dim} \overline{H_{1}}=\operatorname{dim} H_{1}=n$ for T in (2.7). Since $\operatorname{dim} \operatorname{lin} S \leq \operatorname{dim} \widetilde{H}<\infty$, we have $\operatorname{lin} S=\operatorname{lin}\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}$ for some finite $\left\{\zeta_{1}, \ldots, \zeta_{k}\right\} \subset$ S. Then, by (2.7), length $S=\min \left\{\operatorname{dim} T: T \subset \overline{H_{1}}\right.$ linear, $\left.\sum_{i=1}^{k} \rho_{\zeta_{i}} T=\sum_{i=1}^{k} \rho_{\zeta_{i}} \overline{H_{1}}\right\}$.

If $r:=\max _{1 \leq i \leq k} \operatorname{rank} \rho_{\zeta_{i}}=\max _{1 \leq i \leq k} \operatorname{dim}\left(\rho_{\zeta_{i}} \overline{H_{1}}\right) \leq \operatorname{dim} H_{2}=q$, then by (ii) there exists an r-dimensional linear subspace T of $\overline{H_{1}}$ such that $\rho_{\zeta_{i}} T=\rho_{\zeta_{i}} \overline{H_{1}}$ for all i. Hence length $S \leq \operatorname{dim} T=r \leq q$.

Lemma 3.6. (i) Let s be a positive integer with $1 \leq s \leq \min \{n, q\}$. Define $\zeta_{0}, \zeta_{i j} \in$ $H_{1} \otimes H_{2}$ by $\zeta_{0}:=\sum_{i=1}^{s} \xi_{i} \otimes \eta_{i}, \zeta_{i j}:=\xi_{i} \otimes \eta_{j}(1 \leq i \leq s, s+1 \leq j \leq q)$, where $\left\{\xi_{i}\right\}_{1 \leq i \leq s} \subset H_{1}$ is linearly independent and $\left\{\eta_{j}\right\}_{1 \leq j \leq q}$ is a basis for H_{2}. Then the linear span $M:=\operatorname{lin}\left\{\zeta_{0}, \zeta_{i j}: 1 \leq i \leq s, s+1 \leq j \leq q\right\}$ satisfies that length $M=s,[[M]]=H_{2}$, and $\operatorname{dim} M=s(q-s)+1$.
(ii) Suppose that $1 \leq \operatorname{dim} H_{2}=q \leq \operatorname{dim} H_{1}=n$. If $\zeta_{0}=\sum_{i=1}^{q} \xi_{i} \otimes \eta_{i} \in H_{1} \otimes H_{2}$ with both $\left\{\xi_{i}\right\}_{1 \leq i \leq q} \subset H_{1}$ and $\left\{\eta_{i}\right\}_{1 \leq i \leq q} \subset H_{2}$ linearly independent and $M:=\mathbb{C} \zeta_{0}$, then length $M=q$ and $[[M]]=H_{2}$.

Proof. (i) There exist linearly independent vectors $\left\{\xi_{i}^{\prime}\right\}_{1 \leq i \leq s}$ in H_{1} such that $\left\langle\xi_{i}, \xi_{j}^{\prime}\right\rangle=\delta_{i j}$, the Kronecker symbol, for all i, j. Indeed, since $\left\{\xi_{i}\right\}_{1 \leq i \leq s}$ is a basis for $H_{1}^{\prime}:=\operatorname{lin}\left\{\xi_{i}\right\}_{1 \leq i \leq s}$, for each $j(1 \leq j \leq s)$ the linear functional $\sum_{i=1}^{s} \lambda_{i} \xi_{i} \mapsto \lambda_{j}\left(\lambda_{i} \in \mathbb{C}\right)$ on H_{1}^{\prime} defines a unique element $\xi_{j}^{\prime} \in H_{1}^{\prime}$ such that $\left\langle\sum_{i=1}^{s} \lambda_{i} \xi_{i}, \xi_{j}^{\prime}\right\rangle=\lambda_{j}$ for all $\lambda_{i} \in \mathbb{C}$ $(1 \leq i \leq s)$. Then it follows that for $1 \leq k \leq s$,

$$
\begin{aligned}
{[M]_{\xi_{k}^{\prime}} } & =\left\{\rho_{\zeta} \xi_{k}^{\prime *}: \zeta \in M\right\}=\operatorname{lin}\left\{\rho_{\zeta_{0}} \xi_{k}^{\prime *}, \rho_{\zeta_{i j}} \xi_{k}^{\prime *}: 1 \leq i \leq s, s+1 \leq j \leq q\right\} \\
& =\operatorname{lin}\left\{\eta_{k}, \eta_{s+1}, \eta_{s+2}, \ldots, \eta_{q}\right\}
\end{aligned}
$$

since by $(2.2), \rho_{\zeta_{0}} \xi_{k}^{\prime *}=\sum_{i=1}^{s}\left\langle\xi_{i}, \xi_{k}^{\prime}\right\rangle \eta_{i}=\eta_{k}$ and $\rho_{\zeta_{i j}} \xi_{k}^{* *}=\left\langle\xi_{i}, \xi_{k}^{\prime}\right\rangle \eta_{j}=\delta_{k i} \eta_{j}$. Hence, for the s-dimensional linear subspace $T_{0}:=\operatorname{lin}\left\{\xi_{1}^{\prime}, \ldots, \xi_{s}^{\prime}\right\}$ of $H_{1},[M]_{T_{0}}=\sum_{k=1}^{s}[M]_{\xi_{k}^{\prime}}=$ $\operatorname{lin}\left\{\eta_{1}, \ldots, \eta_{s}, \eta_{s+1}, \eta_{s+2}, \ldots, \eta_{q}\right\}=H_{2}$. Since $[M]_{T_{0}} \subset[[M]] \subset H_{2}$, it also follows that [$[M]]=H_{2}$. On the other hand, if T is a k-dimensional linear subspace of H_{1} with basis $\left\{\xi^{(r)}: 1 \leq r \leq k\right\}$ and if $k<s$, then, since $\rho_{\zeta_{i j}}\left(\xi^{(r)}\right)^{*} \in \operatorname{lin}\left\{\eta_{j}: s+1 \leq j \leq q\right\}$,

$$
\begin{aligned}
{[M]_{T} } & =\operatorname{lin}\left\{\rho_{\zeta_{0}}\left(\xi^{(r)}\right)^{*}, \rho_{\zeta_{i j}}\left(\xi^{(r)}\right)^{*}: 1 \leq r \leq k, 1 \leq i \leq s, s+1 \leq j \leq q\right\} \\
& \subset \operatorname{lin}\left\{\rho_{\zeta_{0}}\left(\xi^{(r)}\right)^{*}: 1 \leq r \leq k\right\}+\operatorname{lin}\left\{\eta_{j}: s+1 \leq j \leq q\right\}
\end{aligned}
$$

The dimension of the right-hand side is at most $k+(q-s)<q=\operatorname{dim} H_{2}$, and so $[M]_{T} \varsubsetneqq H_{2}$. Thus it follows that length $M=s$.

The set $\left\{\zeta_{i j}\right\}_{1 \leq i \leq s, s+1 \leq j \leq q}$ is linearly independent, and so its linear span N has dimension $s(q-s)$. Moreover $\zeta_{0}=\sum_{i=1}^{s} \xi_{i} \otimes \eta_{i} \notin N$, since each element of N is uniquely written in the form $\sum_{i=1}^{s} \xi_{i} \otimes \sum_{j=s+1}^{q} \lambda_{i j} \eta_{j}\left(\lambda_{i j} \in \mathbb{C}\right)$. Hence $\operatorname{dim} M=\operatorname{dim}\left(N+\mathbb{C} \zeta_{0}\right)=$ $s(q-s)+1$.
(ii) This is the special case of (i) where $s=q$ and the $\zeta_{i j}$'s are missing.

Proof of Theorem 3.1. (i) This follows from Lemma 3.5 (iii).
(ii) (ii1) \Longleftrightarrow (ii2): The map φ_{L} is a complete isometry $\Longleftrightarrow \varphi_{L}$ is an m-isometry for all $m \Longleftrightarrow$ by Lemma 3.3 (iii) and Lemma 3.4 (ii), $\left[L^{\perp}\right]_{T} \varsubsetneqq H_{2}$ for each linear subspace T of H_{1} of $\operatorname{dim} T \leq 2 m$ and each $m \Longleftrightarrow\left[\left[L^{\perp}\right]\right]=\left[L^{\perp}\right]_{H_{1}} \varsubsetneqq H_{2}$.
(ii2) \Longleftrightarrow (ii3): For $\eta \in H_{2}, H_{1} \otimes \eta \subset L \Longleftrightarrow \eta \in \bigcap_{\xi \in H_{1}} L^{\xi}=\bigcap_{\xi \in H_{1}}\left(\left[L^{\perp}\right]_{\xi}\right)^{\perp}=$ $\left(\sum_{\xi \in H_{1}}\left[L^{\perp}\right]_{\xi}\right)^{\perp}=\left(\left[L^{\perp}\right]_{H_{1}}\right)^{\perp}=\left(\left[\left[L^{\perp}\right]\right]\right)^{\perp}$ by (3.5) and Lemma 3.4(i). Hence, $\left[\left[L^{\perp}\right]\right] \varsubsetneqq H_{2}$ $\Longleftrightarrow H_{1} \otimes \eta_{0} \subset L$ for some $\eta_{0} \in H_{1} \backslash\{0\}$.
(iii) As noted above, Lemma 3.3 (iii) and Lemma 3.4 (ii) show that $(*) \varphi_{L}$ is an m-isometry for $m \geq 1$ if and only if $\left[L^{\perp}\right]_{T} \varsubsetneqq H_{2}$ for each linear subspace T of H_{1} of $\operatorname{dim} T \leq 2 m$. Since we are assuming that $\left[\left[L^{\perp}\right]\right]=H_{2}$, the definition of length (Definition 2.1) implies that $l=\operatorname{dim} T$ for some linear subspace T of H_{1} with $\left[L^{\perp}\right]_{T}=H_{2}$ and that $\left[L^{\perp}\right]_{T} \varsubsetneqq H_{2}$ for each linear subspace T of H_{1} of $\operatorname{dim} T<l$.

If $l=$ length $L^{\perp} \leq 2$, then $\left[L^{\perp}\right]_{T}=H_{2}$ for some linear subspace T of H_{1} of $\operatorname{dim} T \leq 2$. Hence, by $(*), \varphi_{L}$ is not an isometry.

If $l \geq 3$ and $m:=[(l-1) / 2] \geq 1$, then $m \leq(l-1) / 2<m+1$. Hence $2 m \leq l-1$, $2(m+1)>l-1$, and so $2 m<l, 2(m+1) \geq l$. The inequality $2 m<l$ shows that $\left[L^{\perp}\right]_{T} \varsubsetneqq H_{2}$ for each linear subspace T of H_{1} of $\operatorname{dim} T \leq 2 m$ and hence by $(*)$ that φ_{L} is an m-isometry. Since $\left[L^{\perp}\right]_{T}=H_{2}$ for some linear subspace T of H_{1} of $\operatorname{dim} T=l$ and since $2(m+1) \geq l$, the condition in $(*)$ with m replaced by $m+1$ does not hold. Hence φ_{L} is not an $(m+1)$-isometry. Thus φ_{L} is a strict m-isometry.

Proof of Theorem 3.2. Set $q:=2 m+1$ so that $3 \leq q \leq n$ since $1 \leq m \leq$ $[(n-1) / 2] \leq(n-1) / 2$, and take Hilbert spaces H_{1} and H_{2} with $\operatorname{dim} H_{1}=n$ and $\operatorname{dim} H_{2}=q$. Lemma 3.6 (ii) shows that for $\zeta_{0} \in H_{1} \otimes H_{2}$ as in the statement there, length $\mathbb{C} \zeta_{0}=q$ and $\left[\left[\mathbb{C} \zeta_{0}\right]\right]=H_{2}$. Then Theorem 3.1 (iii) shows that φ_{L} for $L:=\left\{\zeta_{0}\right\}^{\perp}$ is a strict m-isometry since $[(q-1) / 2]=m$. Since $\operatorname{dim} L=\operatorname{dim}\left(H_{1} \otimes H_{2}\right)-1=n q-1=$ $n(2 m+1)-1, \varphi_{L}: B\left(H_{1}\right) \rightarrow B(L)$ may be regarded as a unital completely positive map of M_{n} into $M_{n(2 m+1)-1}$.

Remark 3.7. Part (ii) of Theorem 3.1 may be well-known although we cannot provide suitable references, and the implication (ii3) \Rightarrow (ii1) is obvious without any consideration used above, since $M:=H_{1} \otimes \eta_{0} \subset L$ with $\eta_{0} \in H_{2} \backslash\{0\}$ implies that the map $B\left(H_{1}\right) \rightarrow B(M), x \mapsto \varphi_{L}(x)\left|M=P_{L}\left(x \otimes 1_{H_{2}}\right) P_{L}\right| M$, is an injective *-homomorphism, so a complete isometry and that φ_{L} itself is a complete isometry.

4. Classification of a family $\left\{M_{n}^{q, \zeta}\right\}$.

The notation $H_{1}, H_{2}, n=\operatorname{dim} H_{1}<\infty, q=\operatorname{dim} H_{2}<\infty, \widetilde{H}=H_{1} \otimes H_{2}, \varphi_{L}$: $B\left(H_{1}\right) \rightarrow B(L)$ for $L \subset \widetilde{H}$, etc. will be as before.

In this section we assume $n \geq q \geq 3$, and introduce operator systems $M_{n}^{q, \zeta}$, linearly isometric to M_{n}, as follows. Consider the following condition for a vector ζ in \widetilde{H} :

$$
\begin{equation*}
\zeta=\sum_{i=1}^{q} \xi_{i} \otimes \eta_{i}, \quad\left\{\xi_{i}\right\}_{1 \leq i \leq q} \subset H_{1},\left\{\eta_{i}\right\}_{1 \leq i \leq q} \subset H_{2} \text { linearly independent } \tag{4.1}
\end{equation*}
$$

and set

$$
\begin{equation*}
Z_{n, q}:=\{\zeta \in \widetilde{H}:\|\zeta\|=1, \zeta \text { satisfies (4.1) }\} . \tag{4.2}
\end{equation*}
$$

For $\zeta \in Z_{n, q}$ denote by φ_{ζ} the map φ_{L} defined for $L:=\{\zeta\}^{\perp}$. Then $\operatorname{id}\left(\varphi_{\zeta}\right)=[(q-1) / 2]$, since length $\mathbb{C} \zeta=q$ and $[[\mathbb{C} \zeta]]=H_{2}$ by Lemma 3.6(ii) and so Theorem 3.1(iii) applies. We have $\operatorname{dim} L=\operatorname{dim}\{\zeta\}^{\perp}=\operatorname{dim} \widetilde{H}-1=n q-1$, and $[(q-1) / 2] \geq 1$ since $q \geq 3$. Hence
we may regard φ_{ζ} as a unital completely positive isometry of M_{n} into $M_{n q-1}$, and we obtain an operator system $M_{n}^{q, \zeta}:=\varphi_{\zeta}\left(M_{n}\right) \subset M_{n q-1}$ as its range.

We will classify the family $\left\{M_{n}^{q, \zeta}\right\}$, where $n \geq q \geq 3$ and $\zeta \in Z_{n, q}$, up to unital complete isometry. That is, we will show when

$$
\begin{equation*}
M_{n}^{q, \zeta} \cong M_{n^{\prime}}^{q^{\prime}, \zeta^{\prime}} \tag{4.3}
\end{equation*}
$$

holds for $n \geq q \geq 3, \zeta \in Z_{n, q}, n^{\prime} \geq q^{\prime} \geq 3$, and $\zeta^{\prime} \in Z_{n^{\prime}, q^{\prime}}$. Here, for operator systems X and Y we write $X \cong Y$ if there exists a unital complete isometry of X onto Y.

We first deduce that $M_{n}^{q, \zeta} \neq M_{n}$ from the following:
Proposition 4.1. Let X be an operator system and suppose that there is a unital completely positive isometry of M_{n} onto X that is not a complete isometry. Then X is not unitally completely isometric to M_{n}.

Proof. Let $\varphi: M_{n} \rightarrow X$ be a surjective unital completely positive isometry that is not a complete isometry. Suppose that there exists a surjective unital complete isometry $\kappa: M_{n} \rightarrow X$. Note in general that any surjective unital isometry ι between operator systems V and W is positive. Indeed, for $a \in V$ we have $a \geq 0$ if and only if $f(a) \geq 0$ for all $f \in S(V):=\left\{f \in V^{*}:\|f\|=f(1)=1\right\}$, and similarly for W. Hence, the condition on ι implies $\iota^{*}(S(W))=S(V)$, and the assertion follows. Then κ^{-1}, being also a surjective unital complete isometry, is completely positive, and $\psi:=\kappa^{-1} \circ \varphi: M_{n} \rightarrow M_{n}$ is a surjective unital completely positive isometry. By Kadison's structure theorem of surjective linear isometries between unital C^{*}-algebras [4], there exists a unitary $u \in M_{n}$ such that (i) $\psi(x)=u x u^{*}$ for all $x \in M_{n}$ or (ii) $\psi(x)=u^{t} x u^{*}$ for all $x \in M_{n}$. Indeed, since M_{n} is a factor, ψ is a ${ }^{*}$-automorphism or an anti-*-automorphism. In the former case, (i) is true. In the latter case, ψ composed with the transpose map, $x \mapsto{ }^{t} \psi(x)$, is a *-automorphism, and so ψ is of the form (ii). The map in case (ii) is not 2-positive (Tomiyama [6], Corollary 2.3), and so the case (i) occurs. Hence $\varphi=\kappa \circ \psi$ is also a complete isometry. This is a contradiction.

Clearly (4.3) implies $n=n^{\prime}$ since $\operatorname{dim} M_{n}^{q, \zeta}=\operatorname{dim} M_{n}=n^{2}$ and $\operatorname{dim} M_{n^{\prime}}^{q^{\prime}} \zeta^{\prime}=n^{\prime 2}$. The following result shows that it also implies $q=q^{\prime}$.

Theorem 4.2. The C^{*}-envelope $C_{e}^{*}\left(M_{n}^{q, \zeta}\right)$ of $M_{n}^{q, \zeta}$ equals $M_{n q-1}$.
Here we recall the notion of the C^{*}-envelope, written $C_{e}^{*}(X)$, of an operator system $X[\mathbf{2}]$. (We follow the usage of the notation $C_{e}^{*}(X)$ to denote the C^{*}-envelope of X in the recent literature.) An operator system X is a norm closed linear subspace of some unital C^{*}-algebra such that $1 \in X$ and $x \in X$ implies $x^{*} \in X$. The C^{*}-envelope of X is the C^{*}-algebra $C_{e}^{*}(X)$ uniquely determined by the following properties:
(i) $X \subset C_{e}^{*}(X)$ and X generates $C_{e}^{*}(X)$ as a C^{*}-algebra;
(ii) if $Y \subset B$ with B a unital C^{*}-algebra is an operator system, there is a unital complete isometry κ of Y onto X, and $C^{*}(Y)$ is the C^{*}-subalgebra of B generated by Y, then there exists a ${ }^{*}$-homomorphism π of $C^{*}(Y)$ onto $C_{e}^{*}(X)$ extending κ so that $C^{*}(Y) / \operatorname{Ker} \pi \cong C_{e}^{*}(X)$ (*-isomorphic as C^{*}-algebras).

If Theorem 4.2 were true, then (4.3) would imply by the uniqueness of the C^{*} envelope that $M_{n q-1}=C_{e}^{*}\left(M_{n}^{q, \zeta}\right) \cong C_{e}^{*}\left(M_{n}^{q^{\prime}, \zeta^{\prime}}\right)=M_{n q^{\prime}-1}$ and hence that $n q-1=$ $n q^{\prime}-1$ and $q=q^{\prime}$ as stated above. To show Theorem 4.2 it suffices to show that $M_{n}^{q, \zeta}=$ $\varphi_{\zeta}\left(M_{n}\right) \subset M_{n q-1}$ generates $M_{n q-1}$ as a C^{*}-algebra. Indeed, the C^{*}-envelope $C_{e}^{*}\left(M_{n}^{q, \zeta}\right)$ is realized as the quotient C^{*}-algebra B / I, where B is the C^{*}-subalgebra of $M_{n q-1}$ generated by $M_{n}^{q, \zeta}$ and I is its ideal. But, since $M_{n q-1}$ is simple, $B=M_{n q-1}$ implies $I=\{0\}$, and $C_{e}^{*}\left(M_{n}^{q, \zeta}\right)=B=M_{n q-1}$. Moreover, since $M_{n q-1}$ is finite-dimensional, $B=M_{n q-1}$ if and only if $\left(M_{n}^{q, \zeta}\right)^{\prime}:=\left\{x \in M_{n q-1}: x y=y x, \forall y \in M_{n}^{q, \zeta}\right\}=\mathbb{C} 1_{n q-1}$.

Hence Lemma 4.3(iii) below completes the proof of Theorem 4.2 if we take $B\left(H_{1}\right)=$ $M_{n}, P_{L} B(\widetilde{H}) P_{L}=B(L)=M_{n q-1}$ and $P_{L}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L}=\varphi_{L}\left(B\left(H_{1}\right)\right)=\varphi_{\zeta}\left(M_{n}\right)$ there.

Lemma 4.3. (i) For any subset S of $\widetilde{H},[[S]]=[S]_{H_{1}}:=\operatorname{lin}\left\{\rho_{\zeta} \overline{H_{1}}: \zeta \in S\right\} \subset H_{2}$ is the smallest linear subspace M of H_{2} such that $S \subset H_{1} \otimes M$, and

$$
\begin{equation*}
\operatorname{lin}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) S:=\operatorname{lin}\left\{\left(x \otimes 1_{H_{1}}\right) \zeta: x \in B\left(H_{1}\right), \zeta \in S\right\}=H_{1} \otimes[[S]] . \tag{4.4}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\left(P_{L}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L}\right)^{\prime} \cap P_{L} B(\widetilde{H}) P_{L}=\left\{x P_{L}: x \in 1_{H_{1}} \otimes B\left(H_{2}\right), x P_{L}=P_{L} x\right\} \tag{4.5}
\end{equation*}
$$

where $T^{\prime}:=\{x \in B(\widetilde{H}): x y=y x, \forall y \in T\}$ for any $T \subset B(\widetilde{H})$.
(iii) If $L=\{\zeta\}^{\perp}$ for $\zeta \in Z_{n, q}$, then

$$
\begin{equation*}
\left(P_{L}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L}\right)^{\prime} \cap P_{L} B(\widetilde{H}) P_{L}=\mathbb{C} P_{L} \tag{4.6}
\end{equation*}
$$

Proof. (i) For $\eta \in H_{2},[[S]] \subset\{\eta\}^{\perp} \Longleftrightarrow \eta \in[[S]]^{\perp} \Longleftrightarrow\left\langle\rho_{\zeta} \xi^{*}, \eta\right\rangle=0$, $\forall \xi \in H_{1}, \forall \zeta \in S \Longleftrightarrow\langle\zeta, \xi \otimes \eta\rangle=0, \forall \xi \in H_{1}, \forall \zeta \in S$ by $(2.3) \Longleftrightarrow H_{1} \otimes\{\eta\} \subset S^{\perp} \Longleftrightarrow$ $S \subset S^{\perp \perp} \subset\left(H_{1} \otimes\{\eta\}\right)^{\perp}=H_{1} \otimes\{\eta\}^{\perp}$. Since $[[S]]=\bigcap\left\{\{\eta\}^{\perp}: \eta \in H_{2},[[S]] \subset\{\eta\}^{\perp}\right\}$, the first assertion follows. Hence $S \subset H_{1} \otimes[[S]]$ implies $N:=\operatorname{lin}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) S \subset$ $\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right)\left(H_{1} \otimes[[S]]\right)=H_{1} \otimes[[S]]$. Moreover, since $\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) N \subset N, P_{N} \in$ $\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right)^{\prime}=1_{H_{1}} \otimes B\left(H_{2}\right)$, and $P_{N}=1_{H_{1}} \otimes P_{M}$ for some linear subspace M of H_{2}. It follows that $S \subset N=H_{1} \otimes M,[[S]] \subset M$, and $H_{1} \otimes[[S]] \subset H_{1} \otimes M=N$.
(ii) To elucidate the point we start from a slightly general setting. Let M be a von Neumann algebra, $N \subset M$ a von Neumann subalgebra, $P:=N^{\prime} \cap M$, and $p \in M$ a projection. Then $(*) p\left(P \cap\{p\}^{\prime}\right) \subset(p N p)^{\prime} \cap p M p$, since $p \in(p N p)^{\prime}, P \cap\{p\}^{\prime} \subset N^{\prime} \cap\{p\}^{\prime} \subset$ $(p N p)^{\prime}$, and so $p\left(P \cap\{p\}^{\prime}\right) \subset(p N p)^{\prime} \cap p M p$. Under certain conditions on M, N and p we show the reverse inclusion. Then (4.5) follows if we take $M=B(\widetilde{H})=B\left(H_{1}\right) \otimes B\left(H_{2}\right)$, $N=B\left(H_{1}\right) \otimes 1_{H_{2}}$ and $p=P_{L}$, and show that the conditions hold for such M, N and p.

The argument in this and the next paragraphs is due to the referee. Suppose there is a faithful conditional expectation ψ of M onto P such that

$$
\begin{align*}
& x \psi(p)=p \psi(x), \forall x \in(p N p)^{\prime} \cap p M p \text {, and } \tag{a}\\
& \text { if } q \text { is the support projection of } \psi(p) \text { in } P \text {, then } \psi(p) \text { is invertible in } q P q \text {. } \tag{b}
\end{align*}
$$

Then q is the smallest projection in P such that $p \leq q$, since ψ is faithful, so $\psi((1-q) p(1-$
$q))=(1-q) \psi(p)(1-q)=0$ implies $(1-q) p(1-q)=0$ and $p \leq q$, and since $p \leq q^{\prime}$ for a projection q^{\prime} in P implies $\psi(p) \leq \psi\left(q^{\prime}\right)=q^{\prime}$ and $q \leq q^{\prime}$. Replacing x by x^{*} in (a) shows $\psi(p) x=\psi(x) p$, and (a) implies that $x=x q=x \psi(p) \psi(p)^{-1}=p \psi(x) \psi(p)^{-1}$ and similarly $x=\psi(p)^{-1} \psi(x) p$ for $x \in(p N p)^{\prime} \cap p M p$. Here $\psi(x) \psi(p)^{-1}=\psi(p)^{-1} \psi(x)=: y \in P$, so $x=p y=y p$ holds, and it follows that $y \in P \cap\{p\}^{\prime}$ and $x=p y \in p\left(P \cap\{p\}^{\prime}\right)$, showing the reverse inclusion in (*). Indeed, by (a), $\psi(x) \psi(p)=\psi(x \psi(p))=\psi(\psi(p) x)=\psi(p) \psi(x)$, so $\psi(p)^{-1} \psi(x) q=q \psi(x) \psi(p)^{-1}$, and $\psi(p)^{-1} \psi(x)=\psi(x) \psi(p)^{-1}$, since $p \leq q \in P$ and $x \in p M p$ imply that $\psi(x) q=\psi(x q)=\psi(x)$ and $q \psi(x)=\psi(x)$.

It remains only to show the existence of ψ as above for $M=B(\widetilde{H}), N=B\left(H_{1}\right) \otimes 1_{H_{2}}$, and $p=P_{L}$. The unitary group \mathcal{U} of $B\left(H_{1}\right) \otimes 1_{H_{2}}$ is a compact group with the unique, normalized, left and right invariant Haar measure $d u$. Then the left invariance of $d u$ shows that the map $\psi: B(\widetilde{H}) \rightarrow B(\widetilde{H})$ defined by $\psi(x)=\int_{u} u x u^{*} d u, x \in B(\widetilde{H})$, is a conditional expectation of $B(\widetilde{H})$ onto $\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right)^{\prime}=1_{H_{1}} \otimes B\left(H_{2}\right)$. Moreover, $\psi\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) \subset\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) \cap\left(1_{H_{1}} \otimes B\left(H_{2}\right)\right)=\mathbb{C}_{\widetilde{H}}$ and the right invariance of $d u$ show that $\psi\left(a \otimes 1_{H_{2}}\right)=\operatorname{tr}(a) 1_{\widetilde{H}}=1_{H_{1}} \otimes \operatorname{tr}(a) 1_{H_{2}}$ and so $\psi(a \otimes b)=1_{H_{1}} \otimes \operatorname{tr}(a) b$ for $a \in B\left(H_{1}\right)$ and $b \in B\left(H_{2}\right)$, where tr is the unique normalized trace of $B\left(H_{1}\right)$. Hence, if we denote by $\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}: B(\widetilde{H})=B\left(H_{1}\right) \otimes B\left(H_{2}\right) \rightarrow B\left(H_{2}\right)$ the right slice map $\sum_{i} a_{i} \otimes b_{i} \mapsto$ $\sum_{i} \operatorname{tr}\left(a_{i}\right) b_{i}, a_{i} \in B\left(H_{1}\right), b_{i} \in B\left(H_{2}\right)$, then $\psi(x)=1_{H_{1}} \otimes\left(\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}\right)(x), x \in B(\widetilde{H})$. Since tr is faithful, ψ is also faithful. If $x \in\left(P_{L}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L}\right)^{\prime} \cap P_{L} B(\widetilde{H}) P_{L}$, then for all $u \in \mathcal{U}, x P_{L} u P_{L} u^{*}=P_{L} u P_{L} x u^{*}$, and $x u P_{L} u^{*}=P_{L} u x u^{*}$ since $x P_{L}=P_{L} x=x$. Hence integration over \mathcal{U} shows $x \psi\left(P_{L}\right)=P_{L} \psi(x)$, and (a) above is true. By (i), $1_{H_{1}} \otimes P_{[[L]]}$ is the smallest projection in $1_{H_{1}} \otimes B\left(H_{2}\right)$ majorizing P_{L}, and by the previous paragraph it is the support projection of $\psi\left(P_{L}\right)$. Finally, since $1_{H_{1}} \otimes B\left(H_{2}\right)$ is finite-dimensional, $\psi\left(P_{L}\right)$ is invertible in $1_{H_{1}} \otimes P_{[[L]]} B\left(H_{2}\right) P_{[[L]]}$, showing (b).
(iii) It suffices to show that if $Q \in\left(P_{L}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L}\right)^{\prime} \cap P_{L} B(\widetilde{H}) P_{L}$ is a projection, then $Q=0$ or P_{L}. By (ii), $Q=\left(1_{H_{1}} \otimes q\right) P_{L}$ for some projection $q \in B\left(H_{2}\right)$ such that $1_{H_{1}} \otimes q \in\left\{P_{L}\right\}^{\prime}$. Since $L=\{\zeta\}^{\perp}$ and $1_{\tilde{H}}-P_{L}=P_{\mathbb{C} \zeta},\left(1_{H_{1}} \otimes q\right) P_{\mathbb{C} \zeta}=P_{\mathbb{C} \zeta}\left(1_{H_{1}} \otimes q\right)$ equals 0 or $P_{\mathbb{C} \zeta}$. Hence $P_{\mathbb{C} \zeta} \leq 1_{H_{1}} \otimes\left(1_{H_{2}}-q\right)$ or $P_{\mathbb{C} \zeta} \leq 1_{H_{1}} \otimes q$. Since $[[\mathbb{C} \zeta]]=H_{2}$ as noted before, (i) implies $1_{H_{1}} \otimes 1_{H_{2}} \leq 1_{H_{1}} \otimes\left(1_{H_{2}}-q\right)$ or $1_{H_{1}} \otimes 1_{H_{2}} \leq 1_{H_{1}} \otimes q$. Therefore $q=0$ or $1_{H_{2}}, Q=0$ or P_{L}, as desired.

The following is a key to the classification of $\left\{M_{n}^{q, \zeta}\right\}$.
Theorem 4.4. For $i=1,2$ let $\zeta_{i} \in Z_{n, q}, L_{i}:=\left\{\zeta_{i}\right\}^{\perp}$, and regard $M_{n}^{q, \zeta_{i}}=$ $\varphi_{\zeta_{i}}\left(B\left(H_{1}\right)\right)=P_{L_{i}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{i}} \subset B\left(H_{1} \otimes H_{2}\right)$.
(i) A linear map $\kappa: M_{n}^{q, \zeta_{1}} \rightarrow M_{n}^{q, \zeta_{2}}$ is a surjective unital complete isometry if and only if $\kappa\left(P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}}\right)=P_{L_{2}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{2}}$ for all $x \in B\left(H_{1}\right)$, where $u \in B\left(H_{1}\right)$ is a unitary such that $(u \otimes v) \zeta_{1}=\zeta_{2}$ for some unitary $v \in B\left(H_{2}\right)$.
(ii) We have $M_{n}^{q,} \zeta_{1} \cong M_{n}^{q, \zeta_{2}}$ if and only if there exist unitaries $u \in B\left(H_{1}\right)$ and $v \in B\left(H_{2}\right)$ such that $(u \otimes v) \zeta_{1}=\zeta_{2}$.

For the proof we need the following two lemmas, which take care of u and v as in the above statement, respectively.

Lemma 4.5. For $i=1,2$ let $\zeta_{i} \in Z_{n, q}, L_{i}:=\left\{\zeta_{i}\right\}^{\perp}$ and let $U \in B\left(H_{1} \otimes H_{2}\right)$ be a unitary such that $U \zeta_{1}=\zeta_{2}$. If

$$
\begin{equation*}
U P_{L_{1}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=P_{L_{2}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{2}} \tag{4.7}
\end{equation*}
$$

then there exists a unitary $u \in B\left(H_{1}\right)$ such that

$$
\begin{equation*}
U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=P_{L_{2}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{2}}, \quad \forall x \in B\left(H_{1}\right) \tag{4.8}
\end{equation*}
$$

Proof. The following map $\psi: B\left(H_{1}\right) \rightarrow B\left(H_{1}\right)$ is a surjective unital linear isometry:

$$
\begin{aligned}
x \mapsto \varphi_{\zeta_{1}}(x)=P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} & \mapsto U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*} \\
& \mapsto \varphi_{\zeta_{2}}^{-1}\left(U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}\right)=: \psi(x) .
\end{aligned}
$$

Indeed, $\varphi_{\zeta_{i}}: B\left(H_{1}\right) \rightarrow \varphi_{\zeta_{i}}\left(B\left(H_{1}\right)\right)=P_{L_{i}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{i}}(i=1,2)$ are linear isometries, and by (4.7), $U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*} \in U P_{L_{1}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=$ $P_{L_{2}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{2}}=\varphi_{\zeta_{2}}\left(B\left(H_{1}\right)\right)$. Then

$$
\begin{equation*}
U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=\varphi_{\zeta_{2}}(\psi(x))=P_{L_{2}}\left(\psi(x) \otimes 1_{H_{2}}\right) P_{L_{2}}, \quad \forall x \in B\left(H_{1}\right) \tag{4.9}
\end{equation*}
$$

As used in the proof of Proposition 4.1, Kadison's result [4] shows that the unital linear isometry ψ is of the following form: for some unitary u in $B\left(H_{1}\right)$, (i) $\psi(x)=u x u^{*}$ for all $x \in B\left(H_{1}\right)$ or (ii) $\psi(x)=u^{t} x u^{*}$ for all $x \in B\left(H_{1}\right)$.

We show that the case (ii) does not occur. Indeed, if (ii) holds, then (4.9) implies

$$
\begin{aligned}
& \left(u^{*} \otimes 1_{H_{2}}\right) U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}\left(u \otimes 1_{H_{2}}\right) \\
= & \left(u^{*} \otimes 1_{H_{2}}\right) P_{L_{2}}\left(u \otimes 1_{H_{2}}\right)\left({ }^{t} x \otimes 1_{H_{2}}\right)\left(u^{*} \otimes 1_{H_{2}}\right) P_{L_{2}}\left(u \otimes 1_{H_{2}}\right) \\
= & P_{\left(u^{*} \otimes 1_{H_{2}}\right) L_{2}}\left({ }^{t} x \otimes 1_{H_{2}}\right) P_{\left(u^{*} \otimes 1_{H_{2}}\right) L_{2}}=P_{0}\left({ }^{t} x \otimes 1_{H_{2}}\right) P_{0}
\end{aligned}
$$

for all $x \in B\left(H_{1}\right)$, where $P_{0}:=P_{\left(u^{*} \otimes 1_{H_{2}}\right) L_{2}}$. Since the map $x \mapsto\left(u^{*} \otimes 1_{H_{2}}\right) U P_{L_{1}}(x \otimes$ $\left.1_{H_{2}}\right) P_{L_{1}} U^{*}\left(u \otimes 1_{H_{2}}\right)$ on $B\left(H_{1}\right)$ is completely positive, so is the map $\tau: x \mapsto P_{0}{ }^{t} x \otimes$ $\left.1_{H_{2}}\right) P_{0}$ on $B\left(H_{1}\right)$. But the latter is not 2-positive. To see this we use a well-known argument showing that the transpose is not 2-positive (see [1]). Let $\zeta_{0}:=\left(u^{*} \otimes 1_{H_{2}}\right) \zeta_{2}=$ $\sum_{i=1}^{n} \varepsilon_{i} \otimes \eta_{i}^{(0)} \in \widetilde{H}$, where $\eta_{i}^{(0)} \in H_{2}$ and $\left\{\varepsilon_{i}\right\}_{1 \leq i \leq n}$ is an orthonormal basis for H_{1}. Since $\left\|\zeta_{0}\right\|=\left\|\zeta_{2}\right\|=1$, by renumbering if necessary we may assume that $\eta_{1}^{(0)} \neq 0$. Let $\varepsilon_{1}^{\prime}:=\left\|\eta_{1}^{(0)}\right\|^{-1} \eta_{1}^{(0)} \in H_{2}$ so that $\eta_{1}^{(0)}=\left\|\eta_{1}^{(0)}\right\| \varepsilon_{1}^{\prime}$ and $\left\|\varepsilon_{1}^{\prime}\right\|=1$, and let

$$
\zeta_{1}^{\prime}:=\lambda_{1}\left(\varepsilon_{1} \otimes \varepsilon_{1}^{\prime}\right)+\varepsilon_{3} \otimes \varepsilon_{1}^{\prime}, \quad \zeta_{2}^{\prime}:=\lambda_{2}\left(\varepsilon_{1} \otimes \varepsilon_{1}^{\prime}\right)-\varepsilon_{2} \otimes \varepsilon_{1}^{\prime},
$$

where $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ are specified later (note that $n \geq 3$). Since $\left\langle\zeta_{1}^{\prime}, \zeta_{0}\right\rangle=\lambda_{1}\left\|\eta_{1}^{(0)}\right\|+$ $\left\langle\varepsilon_{1}^{\prime}, \eta_{3}^{(0)}\right\rangle,\left\langle\zeta_{2}^{\prime}, \zeta_{0}\right\rangle=\lambda_{2}\left\|\eta_{1}^{(0)}\right\|-\left\langle\varepsilon_{1}^{\prime}, \eta_{2}^{(0)}\right\rangle$, we may take λ_{1}, λ_{2} so that $\left\langle\zeta_{1}^{\prime}, \zeta_{0}\right\rangle=\left\langle\zeta_{2}^{\prime}, \zeta_{0}\right\rangle=$ 0 and hence so that $\zeta_{1}^{\prime}, \zeta_{2}^{\prime} \in\left\{\zeta_{0}\right\}^{\perp}=\left(u^{*} \otimes 1_{H_{2}}\right)\left\{\zeta_{2}\right\}^{\perp}=\left(u^{*} \otimes 1_{H_{2}}\right) L_{2}=P_{0} \widetilde{H}$. If $x_{11}:=e_{22}, x_{12}:=e_{23}, x_{21}:=e_{32}, x_{22}:=e_{33} \in B\left(H_{1}\right)$, where $e_{i j}:=\varepsilon_{i} \varepsilon_{j}^{*}$, then
$\left[x_{i j}\right]_{1 \leq i, j \leq 2} \in B\left(H_{1}\right) \otimes M_{2}$ is positive, since $x / 2$ is a projection, but $\tau_{2}\left(\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]\right)=$ $\left[\begin{array}{cc}P_{0} & 0 \\ 0 & P_{0}\end{array}\right]\left[\begin{array}{l}t x_{11} \otimes 1_{H_{2}}{ }^{t} x_{12} \otimes 1_{H_{2}} \\ { }^{t} x_{21} \otimes 1_{H_{2}}{ }^{t} x_{22} \otimes 1_{H_{2}}\end{array}\right]\left[\begin{array}{cc}P_{0} & 0 \\ 0 & P_{0}\end{array}\right]$ is not positive, since $P_{0} \zeta_{1}^{\prime}=\zeta_{1}^{\prime}, P_{0} \zeta_{2}^{\prime}=\zeta_{2}^{\prime}$,

$$
\begin{aligned}
& \left\langle\left[\begin{array}{cc}
P_{0} & 0 \\
0 & P_{0}
\end{array}\right]\left[\begin{array}{l}
t \\
t_{11} x_{11} 1_{H_{2}}{ }^{t} x_{12} \otimes 1_{H_{2}} \\
{ }^{t} x_{21} \otimes 1_{H_{2}}{ }^{t} x_{22} \otimes 1_{H_{2}}
\end{array}\right]\left[\begin{array}{cc}
P_{0} & 0 \\
0 & P_{0}
\end{array}\right]\left[\begin{array}{l}
\zeta_{1}^{\prime} \\
\zeta_{2}^{\prime}
\end{array}\right],\left[\begin{array}{l}
\zeta_{1}^{\prime} \\
\zeta_{2}^{\prime}
\end{array}\right]\right\rangle \\
& =\left\langle\left[\begin{array}{c}
e_{22} \otimes 1_{H_{2}} e_{32} \otimes 1_{H_{2}} \\
e_{23} \otimes 1_{H_{2}} e_{33} \otimes 1_{H_{2}}
\end{array}\right]\left[\begin{array}{l}
\zeta_{1}^{\prime} \\
\zeta_{2}^{\prime}
\end{array}\right],\left[\begin{array}{l}
\zeta_{1}^{\prime} \\
\zeta_{2}^{\prime}
\end{array}\right]\right\rangle \\
& =\left\langle\left[\begin{array}{c}
-\varepsilon_{3} \otimes \varepsilon_{1}^{\prime} \\
\varepsilon_{2} \otimes \varepsilon_{1}^{\prime}
\end{array}\right],\left[\begin{array}{l}
\lambda_{1}\left(\varepsilon_{1} \otimes \varepsilon_{1}^{\prime}\right)+\varepsilon_{3} \otimes \varepsilon_{1}^{\prime} \\
\lambda_{2}\left(\varepsilon_{1} \otimes \varepsilon_{1}^{\prime}\right)-\varepsilon_{2} \otimes \varepsilon_{1}^{\prime}
\end{array}\right]\right\rangle=-2 .
\end{aligned}
$$

Hence (i) holds, and substitution of (i) for (4.9) shows (4.8).
Lemma 4.6. Let $\zeta_{1} \in Z_{n, q}$ and $L_{1}:=\left\{\zeta_{1}\right\}^{\perp}$. If there exists a unitary $U_{1} \in$ $B\left(H_{1} \otimes H_{2}\right)$ such that $\zeta_{2}=U_{1} \zeta_{1} \in Z_{n, q}$ and

$$
\begin{equation*}
P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}}=P_{L_{1}} U_{1}^{*}\left(x \otimes 1_{H_{2}}\right) U_{1} P_{L_{1}}, \quad \forall x \in B\left(H_{1}\right), \tag{4.10}
\end{equation*}
$$

then there exist a unitary $v \in B\left(H_{2}\right)$ and $\lambda_{0} \in \mathbb{C}$ such that

$$
\begin{equation*}
U_{1}=1_{H_{1}} \otimes v+\lambda_{0} \zeta_{2} \zeta_{1}^{*}, \quad\left|1-\lambda_{0}\right|=1 \tag{4.11}
\end{equation*}
$$

Proof. We use the technique in the proof of Lemma 4.3 (ii) suggested by the referee. We have (4.10) \Longleftrightarrow

$$
\begin{equation*}
U_{1} P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}}=P_{L_{2}}\left(x \otimes 1_{H_{2}}\right) U_{1} P_{L_{1}}, \quad \forall x \in B\left(H_{1}\right) \tag{4.12}
\end{equation*}
$$

(since $\left.U_{1} P_{L_{1}} U_{1}^{*}=P_{U_{1} L_{1}}=P_{L_{2}}\right) \Longleftrightarrow U_{1} P_{L_{1}} u P_{L_{1}} u^{*}=P_{L_{2}} u U_{1} P_{L_{1}} u^{*}, \forall u \in \mathcal{U}$, the unitary group of $B\left(H_{1}\right) \otimes 1_{H_{2}}$, which implies as in the proof of Lemma 4.3 (ii) that $U_{1} P_{L_{1}}\left(1_{H_{1}} \otimes\left(\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}\right)\left(P_{L_{1}}\right)\right)=P_{L_{2}}\left(1_{H_{1}} \otimes\left(\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}\right)\left(U_{1} P_{L_{1}}\right)\right)$ and the support projection of $\left(\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}\right)\left(P_{L_{1}}\right)$ equals $P_{\left[\left[L_{1}\right]\right]}$. Here $P_{\left[\left[L_{1}\right]\right]}=1_{H_{2}}$, since $P_{L_{1}} \leq 1_{H_{1}} \otimes$ $P_{\left[\left[L_{1}\right]\right]}$ by Lemma 4.3 (i) and so $n q-1=\operatorname{dim} \widetilde{H}-1=\operatorname{rank} P_{L_{1}} \leq n \cdot \operatorname{rank} P_{\left[\left[L_{1}\right]\right]} \leq n q$ and $n \geq q \geq 3$ imply rank $P_{\left[\left[L_{1}\right]\right]}=q=\operatorname{dim} H_{2}$. Hence $\left(\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}\right)\left(P_{L_{1}}\right)$ is invertible in $B\left(H_{2}\right)$, and if we set $v:=\left(\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}\right)\left(U_{1} P_{L_{1}}\right)\left(\operatorname{tr} \otimes \operatorname{id}_{B\left(H_{2}\right)}\right)\left(P_{L_{1}}\right)^{-1} \in B\left(H_{2}\right)$, then

$$
\begin{equation*}
U_{1} P_{L_{1}}=P_{L_{2}}\left(1_{H_{1}} \otimes v\right) \tag{4.13}
\end{equation*}
$$

By substituting (4.13) for (4.12) it follows that $P_{L_{2}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{\mathbb{C} \zeta_{2}}\left(1_{H_{1}} \otimes v\right) P_{L_{1}}=\{0\}$. Then we have $P_{\mathbb{C} \zeta_{2}}\left(1_{H_{1}} \otimes v\right) P_{L_{1}}=0$, so $\left(1_{H_{1}} \otimes v\right) P_{L_{1}}=P_{L_{2}}\left(1_{H_{1}} \otimes v\right) P_{L_{1}}$, and since (4.13) implies $P_{L_{2}}\left(1_{H_{1}} \otimes v\right) P_{L_{1}}=P_{L_{2}}\left(1_{H_{1}} \otimes v\right)$, it follows that

$$
\begin{equation*}
\left(1_{H_{1}} \otimes v\right) P_{L_{1}}=P_{L_{2}}\left(1_{H_{1}} \otimes v\right) \tag{4.14}
\end{equation*}
$$

Indeed, otherwise $P_{\mathbb{C} \zeta_{2}}\left(1_{H_{1}} \otimes v\right) P_{L_{1}} \widetilde{H}=\mathbb{C} \zeta_{2}$, and

$$
\begin{aligned}
\{0\} & =P_{L_{2}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{\mathbb{C} \zeta_{2}}\left(1_{H_{1}} \otimes v\right) P_{L_{1}} \widetilde{H}=P_{L_{2}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right)\left(\mathbb{C} \zeta_{2}\right) \\
& =P_{L_{2}}\left(H_{1} \otimes\left[\left[\mathbb{C} \zeta_{2}\right]\right]\right)=P_{L_{2}}\left(H_{1} \otimes H_{2}\right)=L_{2}
\end{aligned}
$$

by (4.4) and the fact that $\zeta_{2} \in Z_{n, q}$, a contradiction.
Now we show that v is a unitary in $B\left(H_{2}\right)$. Indeed, by (4.13) and (4.14), $U_{1} P_{L_{1}}=$ $\left(1_{H_{1}} \otimes v\right) P_{L_{1}}$, and by substituting this for (4.10) it follows that

$$
\{0\}=P_{L_{1}}\left(1_{H_{1}} \otimes\left(1_{H_{2}}-v^{*} v\right)\right)\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{1}}
$$

and by (4.4) and the fact that $\left[\left[L_{1}\right]\right]=H_{2}$ shown above,

$$
\begin{aligned}
\{0\} & =P_{L_{1}}\left(1_{H_{1}} \otimes\left(1_{H_{2}}-v^{*} v\right)\right)\left(H_{1} \otimes\left[\left[L_{1}\right]\right]\right) \\
& =P_{L_{1}}\left(H_{1} \otimes\left(1_{H_{2}}-v^{*} v\right) H_{2}\right) .
\end{aligned}
$$

Hence $H_{1} \otimes\left(1_{H_{2}}-v^{*} v\right) H_{2} \subset L_{1}^{\perp}=\mathbb{C} \zeta_{1}$. But, since $\operatorname{dim} H_{1}=n \geq 3,\left(1_{H_{2}}-v^{*} v\right) H_{2}=\{0\}$, $v^{*} v=1_{H_{2}}$. Since $\operatorname{dim} H_{2}<\infty$, it follows that v is a unitary.

We have $U_{1} P_{\mathbb{C} \zeta_{1}}=\zeta_{2} \zeta_{1}^{*}$ and $P_{\mathbb{C} \zeta_{2}}\left(1_{H_{1}} \otimes v\right)=\zeta_{2} \zeta_{3}^{*}$ for some $\zeta_{3} \in \widetilde{H}$, since $U_{1} \zeta_{1}=\zeta_{2}$ and $P_{\mathbb{C} \zeta_{2}}\left(1_{H_{1}} \otimes v\right) \widetilde{H} \subset \mathbb{C} \zeta_{2}$, and

$$
\begin{align*}
U_{1} & =U_{1} P_{L_{1}}+U_{1} P_{\mathbb{C} \zeta_{1}}=P_{L_{2}}\left(1_{H_{1}} \otimes v\right)+U_{1} P_{\mathbb{C} \zeta_{1}} \tag{4.15}\\
& =1_{H_{1}} \otimes v-P_{\mathbb{C} \zeta_{2}}\left(1_{H_{1}} \otimes v\right)+U_{1} P_{\mathbb{C} \zeta_{1}}=1_{H_{1}} \otimes v+\zeta_{2} \zeta_{4}^{*}
\end{align*}
$$

where $\zeta_{4}:=\zeta_{1}-\zeta_{3} \in \widetilde{H}$. Then $\zeta_{4}=\overline{\lambda_{0}} \zeta_{1}$ for some $\lambda_{0} \in \mathbb{C}$, since $P_{L_{2}} U_{1}=U_{1} P_{L_{1}}$ and $P_{L_{2}}\left(1_{H_{1}} \otimes v\right)=\left(1_{H_{1}} \otimes v\right) P_{L_{1}}$ imply that by (4.15), $\zeta_{2} \zeta_{4}^{*}=P_{\mathbb{C} \zeta_{2}} \zeta_{2} \zeta_{4}^{*}=P_{\mathbb{C} \zeta_{2}}\left(U_{1}-1_{H_{1}} \otimes v\right)=$ $\left(U_{1}-1_{H_{1}} \otimes v\right) P_{\mathbb{C} \zeta_{1}}$ and $\zeta_{2} \zeta_{4}^{*}=\zeta_{2} \zeta_{4}^{*} P_{\mathbb{C} \zeta_{1}}$. Hence the first equality in (4.11) follows. Finally, since $\left(1_{H_{1}} \otimes v\right) \zeta_{1}=U_{1} \zeta_{1}-\lambda_{0} \zeta_{2} \zeta_{1}^{*} \zeta_{1}=\left(1-\lambda_{0}\right) \zeta_{2},\left|1-\lambda_{0}\right|=\left\|\left(1-\lambda_{0}\right) \zeta_{2}\right\|=\left\|\left(1_{H_{1}} \otimes v\right) \zeta_{1}\right\|=$ $\left\|\zeta_{1}\right\|=1$.

Proof of Theorem 4.4. (i) (\Leftarrow) : Suppose that there exist unitaries $u \in B\left(H_{1}\right)$ and $v \in B\left(H_{2}\right)$ such that $(u \otimes v) \zeta_{1}=\zeta_{2}$ and let $U:=u \otimes v \in B\left(H_{1} \otimes H_{2}\right)$. Then U is a unitary and $U P_{L_{1}}=P_{L_{2}} U$, since $U \zeta_{1}=\zeta_{2}$ implies that $U L_{1}=U\left\{\zeta_{1}\right\}^{\perp}=\left\{U \zeta_{1}\right\}^{\perp}=$ $\left\{\zeta_{2}\right\}^{\perp}=L_{2}$ and $U P_{L_{1}} U^{*}=P_{U L_{1}}=P_{L_{2}}$. Hence, for all $x \in B\left(H_{1}\right)$,

$$
U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=P_{L_{2}} U\left(x \otimes 1_{H_{2}}\right) U^{*} P_{L_{2}}=P_{L_{2}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{2}},
$$

and

$$
U M_{n}^{q, \zeta_{1}} U^{*}=U P_{L_{1}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=P_{L_{2}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{2}}=M_{n}^{q, \zeta_{2}} .
$$

So the map $P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} \mapsto P_{L_{2}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{2}}, x \in B\left(H_{1}\right)$, is a unital complete isometry of $M_{n}^{q, \zeta_{1}}$ onto $M_{n}^{q, \zeta_{2}}$.
(\Rightarrow) : If there exists a surjective unital complete isometry $\kappa: M_{n}^{q, \zeta_{1}} \rightarrow M_{n}^{q, \zeta_{2}}$, then κ extends to a surjective unital complete isometry $\hat{\kappa}: P_{L_{1}} B\left(H_{1} \otimes H_{2}\right) P_{L_{1}}=B\left(L_{1}\right) \rightarrow$ $P_{L_{2}} B\left(H_{1} \otimes H_{2}\right) P_{L_{2}}=B\left(L_{2}\right)$, since $C_{e}^{*}\left(M_{n}^{q, \zeta_{i}}\right)=P_{L_{i}} B\left(H_{1} \otimes H_{2}\right) P_{L_{i}}$ by Theorem 4.2 and the C^{*}-envelopes are unique. Then there exists a surjective linear isometry $U_{0}: L_{1} \rightarrow L_{2}$ such that $\hat{\kappa}(x)=U_{0} x U_{0}^{*}$ for all $x \in P_{L_{1}} B\left(H_{1} \otimes H_{2}\right) P_{L_{1}}$. Since $H=L_{i} \oplus L_{i}^{\perp}=L_{i} \oplus \mathbb{C} \zeta_{i}$
$(i=1,2)$, we obtain a unitary $U \in B\left(H_{1} \otimes H_{2}\right)$ such that $U \mid L_{1}=U_{0}$ and $U \zeta_{1}=\zeta_{2}$. Then, since $\hat{\kappa}\left(M_{n}^{q, \zeta_{1}}\right)=\kappa\left(M_{n}^{q, \zeta_{1}}\right)=M_{n}^{q, \zeta_{2}}$ and $U_{0}=U \mid L_{1}$, it follows that

$$
U P_{L_{1}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=P_{L_{2}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{2}}
$$

Now Lemma 4.5 together with $U \zeta_{1}=\zeta_{2}$ shows that there exists a unitary $u \in B\left(H_{1}\right)$ such that

$$
U P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}} U^{*}=P_{L_{2}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{2}}, \quad \forall x \in B\left(H_{1}\right)
$$

If we set $U_{1}:=\left(u^{*} \otimes 1_{H_{2}}\right) U$, then $P_{L_{2}}\left(u \otimes 1_{H_{2}}\right)=U P_{L_{1}} U^{*}\left(u \otimes 1_{H_{2}}\right)=U P_{L_{1}} U_{1}^{*}$, since $U \zeta_{1}=\zeta_{2}$ implies that $P_{L_{2}}=U P_{L_{1}} U^{*}$ as seen above. Substituting this for the above equality we have the following:

$$
P_{L_{1}}\left(x \otimes 1_{H_{2}}\right) P_{L_{1}}=P_{L_{1}} U_{1}^{*}\left(x \otimes 1_{H_{2}}\right) U_{1} P_{L_{1}}, \quad \forall x \in B\left(H_{1}\right) .
$$

Since $\zeta_{2}=U \zeta_{1} \in Z_{n, q}$, we have, in view of (4.1), $\zeta_{3}:=U_{1} \zeta_{1}=\left(u^{*} \otimes 1_{H_{2}}\right) U \zeta_{1}=$ $\left(u^{*} \otimes 1_{H_{2}}\right) \zeta_{2} \in Z_{n, q}$. Hence Lemma 4.6 applies, and it follows that there exist a unitary $v \in B\left(H_{2}\right)$ and $\lambda_{0} \in \mathbb{C}$ such that

$$
U_{1}=1_{H_{1}} \otimes v+\lambda_{0} \zeta_{3} \zeta_{1}^{*}, \quad\left|1-\lambda_{0}\right|=1
$$

Thus

$$
U=\left(u \otimes 1_{H_{2}}\right) U_{1}=u \otimes v+\lambda_{0}\left(u \otimes 1_{H_{2}}\right) \zeta_{3} \zeta_{1}^{*}=u \otimes v+\lambda_{0} \zeta_{2} \zeta_{1}^{*} .
$$

Since $U \zeta_{1}=\zeta_{2}$ and $\left|1-\lambda_{0}\right|=1$, we have $(u \otimes v) \zeta_{1}=U \zeta_{1}-\lambda_{0} \zeta_{2} \zeta_{1}^{*} \zeta_{1}=\left(1-\lambda_{0}\right) \zeta_{2}, u_{1}:=$ $\left(1-\lambda_{0}\right)^{-1} u \in B\left(H_{1}\right)$ is a unitary, and $\left(u_{1} \otimes v\right) \zeta_{1}=\zeta_{2}$. Moreover, $U P_{L_{1}}=(u \otimes v) P_{L_{1}}$, since $\zeta_{2} \zeta_{1}^{*} P_{L_{1}}=\zeta_{2} \zeta_{1}^{*}\left(1_{\tilde{H}}-\zeta_{1} \zeta_{1}^{*}\right)=0 ;\left(u_{1} \otimes v\right) P_{L_{1}}=P_{L_{2}}\left(u_{1} \otimes v\right)$, since $\left(u_{1} \otimes v\right) \zeta_{1}=\zeta_{2} ;$ and for all $x \in B\left(H_{1}\right)$,

$$
\begin{aligned}
\kappa\left(P_{L_{1}}\left(x \otimes 1_{H_{1}}\right) P_{L_{1}}\right) & =\hat{\kappa}\left(P_{L_{1}}\left(x \otimes 1_{H_{1}}\right) P_{L_{1}}\right)=U P_{L_{1}}\left(x \otimes 1_{H_{1}}\right) P_{L_{1}} U^{*} \\
& =(u \otimes v) P_{L_{1}}\left(x \otimes 1_{H_{1}}\right) P_{L_{1}}(u \otimes v)^{*} \\
& =\left(u_{1} \otimes v\right) P_{L_{1}}\left(x \otimes 1_{H_{1}}\right) P_{L_{1}}\left(u_{1} \otimes v\right)^{*} \\
& =P_{L_{2}}\left(u_{1} \otimes v\right)\left(x \otimes 1_{H_{1}}\right)\left(u_{1}^{*} \otimes v^{*}\right) P_{L_{2}} \\
& =P_{L_{2}}\left(u_{1} x u_{1}^{*} \otimes 1_{H_{2}}\right) P_{L_{2}} .
\end{aligned}
$$

(ii) This is obvious from the above argument in (i).

To state the following theorem we need some notation and a lemma. Write

$$
\mathcal{M}_{n, q}:=\left\{M_{n}^{q, \zeta}: \zeta \in Z_{n, q}\right\} ;
$$

define an equivalence relation \sim on $\mathcal{M}_{n, q}$ by writing $M_{n}^{q, \zeta_{1}} \sim M_{n}^{q, \zeta_{2}}$ if and only if $M_{n}^{q, \zeta_{1}} \cong M_{n}^{q, \zeta_{2}}$; and denote by $\mathcal{M}_{n, q} / \sim$ the set of all equivalence classes. Consider the following set:

$$
\begin{equation*}
\Lambda_{q}:=\left\{\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in \mathbb{R}^{q}: \lambda_{1} \geq \cdots \geq \lambda_{q}>0, \quad \sum_{i=1}^{q} \lambda_{i}^{2}=1\right\} \tag{4.16}
\end{equation*}
$$

Since $q=\operatorname{dim} H_{2} \leq \operatorname{dim} H_{1}=n$, we may assume $H_{2} \subset H_{1}$, and we identify $B\left(H_{2}\right)=$ $P_{H_{2}} B\left(H_{1}\right) P_{H_{2}} \subset B\left(H_{1}, H_{2}\right)=P_{H_{2}} B\left(H_{1}\right) \subset B\left(H_{1}\right)$. Take a fixed orthonormal basis $\left\{\varepsilon_{i}^{0}\right\}_{1 \leq i \leq n}$ for H_{1} so that $H_{2}=\sum_{i=1}^{q} \mathbb{C} \varepsilon_{i}^{0}$ and $\left\{\varepsilon_{i}^{0}\right\}_{1 \leq i \leq q}$ is an orthonormal basis for H_{2}. For each $\lambda=\left(\lambda_{i}\right) \in \Lambda_{q}$ write

$$
\begin{aligned}
& \zeta_{\lambda}:=\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i}^{0} \otimes \varepsilon_{i}^{0} \in Z_{n, q}, \quad L_{\lambda}:=\left\{\zeta_{\lambda}\right\}^{\perp} \subset H_{1} \otimes H_{2}, \\
& M_{n}^{q, \lambda}:=M_{n}^{q, \zeta_{\lambda}}=P_{L_{\lambda}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{\lambda}} \subset P_{L_{\lambda}} B\left(H_{1} \otimes H_{2}\right) P_{L_{\lambda}}
\end{aligned}
$$

Hence we obtain the following subsets of $Z_{n, q}$ and $\mathcal{M}_{n, q}$ parametrized by Λ_{q} :

$$
\begin{aligned}
Z_{n, q}^{0} & :=\left\{\zeta_{\lambda}: \lambda \in \Lambda_{q}\right\}, \\
\mathcal{M}_{n, q}^{0} & :=\left\{M_{n}^{q, \lambda}: \lambda \in \Lambda_{q}\right\} .
\end{aligned}
$$

Denote by $\mathcal{U}_{1}=U\left(H_{1}\right), \mathcal{U}_{2}=U\left(H_{2}\right)$ the unitary groups of $B\left(H_{1}\right), B\left(H_{2}\right)$, respectively, and define an action of the product group $\mathcal{U}_{1} \times \mathcal{U}_{2}$ on $H_{1} \otimes H_{2}$ by

$$
(u, v) \zeta:=(u \otimes v) \zeta, \quad(u, v) \in \mathcal{U}_{1} \times \mathcal{U}_{2}, \zeta \in H_{1} \otimes H_{2}
$$

Lemma 4.7. (i) Each ζ in $H_{1} \otimes H_{2}$ is written in the form

$$
\begin{equation*}
\zeta=\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i}^{\prime} \otimes \varepsilon_{i} \tag{4.17}
\end{equation*}
$$

where $\lambda_{i} \in \mathbb{R}(1 \leq i \leq q), \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{q} \geq 0$, and $\left\{\varepsilon_{i}^{\prime}\right\}_{1 \leq i \leq q} \subset H_{1}$ and $\left\{\varepsilon_{i}\right\}_{1 \leq i \leq q} \subset$ H_{2} are orthonormal.
(ii) The vector ζ in (i) has another expression $\zeta=\sum_{i=1}^{q} \mu_{i} \delta_{i}^{\prime} \otimes \delta_{i}$ for $\left\{\mu_{i}\right\},\left\{\delta_{i}^{\prime}\right\}$ and $\left\{\delta_{i}\right\}$ as above if and only if $\lambda_{i}=\mu_{i}(1 \leq i \leq q)$ and there exist unitary matrices $\left[\alpha_{i j}^{(k)}\right]_{i, j \in I_{k}}(1 \leq k \leq s)$ such that

$$
\begin{equation*}
\delta_{i}^{\prime}=\sum_{j \in I_{k}} \overline{\alpha_{i j}^{(k)}} \varepsilon_{j}^{\prime}, \quad \delta_{i}=\sum_{j \in I_{k}} \alpha_{i j}^{(k)} \varepsilon_{j} \quad\left(i \in I_{k}, 1 \leq k \leq s\right), \tag{4.18}
\end{equation*}
$$

where $I_{k}(1 \leq k \leq s)$ are the partition of $\left\{1,2, \ldots, q^{\prime}\right\}$ that we define by taking $q^{\prime} \leq q$ as the largest i with $\lambda_{i}>0$ and by setting $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q^{\prime}}\right\}=\left\{\lambda_{1}^{\prime}, \ldots, \lambda_{s}^{\prime}\right\}\left(\lambda_{1}^{\prime}>\cdots>\right.$ $\left.\lambda_{s}^{\prime}>0\right)$ and $I_{k}=\left\{i \in\left\{1,2, \ldots, q^{\prime}\right\}: \lambda_{i}=\lambda_{k}^{\prime}\right\}(1 \leq k \leq s)$.

Proof. (i) For the linear isomorphism $\rho: H_{1} \otimes H_{2} \rightarrow B\left(\overline{H_{1}}, H_{2}\right)$ defined in Section 2 consider the polar decomposition $\rho_{\zeta}^{*}=u_{0}\left|\rho_{\zeta}^{*}\right|$ of $\rho_{\zeta}^{*} \in B\left(H_{2}, \overline{H_{1}}\right)$, where $\left|\rho_{\zeta}^{*}\right| \in$ $B\left(H_{2}\right)$ and $u_{0} \in B\left(H_{2}, \overline{H_{1}}\right)$ is the unique partial isometry such that $u_{0}^{*} u_{0} H_{2}=\left|\rho_{\zeta}^{*}\right| H_{2}$. The spectral decomposition of $\left|\rho_{\zeta}^{*}\right|$ is of the form $\left|\rho_{\zeta}^{*}\right|=\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i} \varepsilon_{i}^{*}$, where $\lambda_{1} \geq \cdots \geq$ $\lambda_{q} \geq 0$ and $\left\{\varepsilon_{i}\right\}_{1 \leq i \leq q}$ is an orthonormal basis for H_{2}. Let $q^{\prime} \leq q$ be such that $\lambda_{q^{\prime}}>0$
and $\lambda_{i}=0$ for $i>q^{\prime}$. Then $u_{0}^{*} u_{0} H_{2}=\sum_{i=1}^{q^{\prime}} \mathbb{C} \varepsilon_{i},\left\{u_{0} \varepsilon_{i}\right\}_{1 \leq i \leq q^{\prime}}$ is an orthonormal set in $\overline{H_{1}}$, and we may take an orthonormal set $\left\{\varepsilon_{i}^{\prime}\right\}_{1 \leq i \leq q}$ in H_{1} so that $u_{0} \varepsilon_{i}=\left(\varepsilon_{i}^{\prime}\right)^{*}$ $\left(1 \leq i \leq q^{\prime}\right),=0\left(i>q^{\prime}\right)$. It follows that $\zeta=\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i}^{\prime} \otimes \varepsilon_{i}$. Indeed, let $\zeta^{\prime}=$ $\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i}^{\prime} \otimes \varepsilon_{i}$. Then $\rho_{\zeta}^{*} \varepsilon_{j}=u_{0}\left|\rho_{\zeta}^{*}\right| \varepsilon_{j}=u_{0}\left(\lambda_{j} \varepsilon_{j}\right)=\lambda_{j}\left(\varepsilon_{j}^{\prime}\right)^{*}(1 \leq j \leq q) ;$ by (2.4), $\rho_{\zeta^{\prime}}^{*}, \varepsilon_{j}=\left(\sum_{i=1}^{q} \lambda_{i}\left(\varepsilon_{i}^{\prime}\right)^{*} \varepsilon_{i}^{*}\right) \varepsilon_{j}=\lambda_{j}\left(\varepsilon_{j}^{\prime}\right)^{*}(1 \leq j \leq q)$; and since ρ is injective, $\zeta=\zeta^{\prime}$.
(ii) For simplicity we assume that $\lambda_{q}>0$ and hence that $q^{\prime}=q$. The case $\lambda_{q}=0$ is treated similarly.
(\Rightarrow) : Suppose $\zeta=\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i}^{\prime} \otimes \varepsilon_{i}=\sum_{i=1}^{q} \mu_{i} \delta_{i}^{\prime} \otimes \delta_{i}$. The argument in (i) shows that $\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i}^{\prime} \otimes \varepsilon_{i}=\sum_{i=1}^{q} \mu_{i} \delta_{i}^{\prime} \otimes \delta_{i} \Longleftrightarrow$ (a) $\left|\rho_{\zeta}^{*}\right|=\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i} \varepsilon_{i}{ }^{*}=\sum_{i=1}^{q} \mu_{i} \delta_{i} \delta_{i}{ }^{*}$ (by (2.4)) and (b) $u_{0} \varepsilon_{i}=\varepsilon_{i}^{\prime *}, u_{0} \delta_{i}=\delta_{i}^{\prime *}(1 \leq i \leq q)$. Then (a) holds $\Longleftrightarrow \lambda_{i}=\mu_{i}$ $(1 \leq i \leq q)$ and $\sum_{i \in I_{k}} \varepsilon_{i}^{\prime} \otimes \varepsilon_{i}=\sum_{i \in I_{k}} \delta_{i}^{\prime} \otimes \delta_{i}(1 \leq k \leq s)$. The latter condition implies that $\delta_{i}=\sum_{j \in I_{k}} \alpha_{i j}^{(k)} \varepsilon_{j}$ for some $\alpha_{i j}^{(k)} \in \mathbb{C}\left(i \in I_{k}, 1 \leq k \leq s\right)$. By (b), $\delta_{i}^{\prime *}=$ $u_{0} \delta_{i}=\sum_{j \in I_{k}} \alpha_{i j}^{(k)} u_{0} \varepsilon_{j}=\sum_{j \in I_{k}} \alpha_{i j}^{(k)} \varepsilon_{j}^{\prime *}=\left(\sum_{j \in I_{k}} \overline{\alpha_{i j}^{(k)}} \varepsilon_{j}^{\prime}\right)^{*}$, and $\delta_{i}^{\prime}=\sum_{j \in I_{k}} \overline{\alpha_{i j}^{(k)}} \varepsilon_{j}^{\prime}(i \in$ $\left.I_{k}, 1 \leq k \leq s\right)$. Finally, since $\left\{\delta_{i}\right\}_{i \in I_{k}}$ and $\left\{\varepsilon_{i}\right\}_{i \in I_{k}}$ are both orthonormal, the matrices $\left[\alpha_{i j}^{(k)}\right]_{i, j \in I_{k}}$ are unitary.

The implication (\Leftarrow) follows from a direct computation.
Theorem 4.8. We have $\mathcal{M}_{n, q}^{0}=\left\{M_{n}^{q, \lambda}: \lambda \in \Lambda_{q}\right\} \subset \mathcal{M}_{n, q}=\left\{M_{n}^{q, \zeta}: \zeta \in Z_{n, q}\right\}$; for each $\zeta \in Z_{n, q}$ there exists a unique $\lambda \in \Lambda_{q}$ so that $M_{n}^{q, \zeta} \cong M_{n}^{q, \lambda}$; and if $\lambda_{1}, \lambda_{2} \in \Lambda_{q}$ and $\lambda_{1} \neq \lambda_{2}$, then $M_{n}^{q, \lambda_{1}} \not \neq M_{n}^{q, \lambda_{2}}$. Hence we can identify the set $\mathcal{M}_{n, q} / \sim$ of all equivalence classes with Λ_{q}.

Proof. In view of (4.1), the set $Z_{n, q}$ is stable under the action of $\mathcal{U}_{1} \times \mathcal{U}_{2}$ defined above, and so we can consider the set $Z_{n, q} / \sim$ consisting of all orbits $[\zeta]:=\{(u, v) \zeta$: $\left.(u, v) \in \mathcal{U}_{1} \times \mathcal{U}_{2}\right\}$ of elements ζ of $Z_{n, q}$. Then Theorem 4.4(ii) shows that $M_{n}^{q, \zeta_{1}} \cong M_{n}^{q, \zeta_{2}}$ if and only if $\left[\zeta_{1}\right]=\left[\zeta_{2}\right]$ and hence that the map $\mathcal{M}_{n, q} \rightarrow Z_{n, q} / \sim, M_{n}^{q, \zeta} \mapsto[\zeta]$, induces a bijection between $\mathcal{M}_{n, q} / \sim$ and $Z_{n, q} / \sim$.

Now we define a map $\sigma: Z_{n, q} / \sim \rightarrow \Lambda_{q}$ by using (4.17) in Lemma 4.7. Let $\zeta \in Z_{n, q}$. Then $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in \Lambda_{q}$ for $\lambda_{1} \geq \cdots \geq \lambda_{q} \geq 0$ in (4.17), since rank $\left|\rho_{\zeta}^{*}\right|=\operatorname{rank} \rho_{\zeta}^{*}=$ $\operatorname{rank} \rho_{\zeta}=q$, so $\lambda_{q}>0$, and $\|\zeta\|=1$. Then define $\sigma([\zeta]):=\lambda$. That σ is a welldefined bijection is almost obvious. Indeed, for $\zeta, \zeta^{\prime} \in Z_{n, q}, \zeta=\sum_{i=1}^{q} \lambda_{i} \varepsilon_{i}^{\prime} \otimes \varepsilon_{i}$ and $\zeta^{\prime}=\sum_{i=1}^{q} \lambda_{i} \delta_{i}^{\prime} \otimes \delta_{i}$ for some $\lambda=\left(\lambda_{i}\right) \in \Lambda_{q}$ and orthonormal $\left\{\varepsilon_{i}^{\prime}\right\},\left\{\delta_{i}^{\prime}\right\} \subset H_{1}$ and $\left\{\varepsilon_{i}\right\},\left\{\delta_{i}\right\} \subset H_{2}$ if and only if there exists $(u, v) \in \mathcal{U}_{1} \times \mathcal{U}_{2}$ such that $\zeta^{\prime}=(u \otimes v) \zeta$, i.e., $[\zeta]=\left[\zeta^{\prime}\right]$. This shows that σ is a well-defined injection. Further, $\sigma\left(\left[\zeta_{\lambda}\right]\right)=\lambda$ for each $\lambda \in \Lambda_{q}$, and σ is a surjection.

Let X be an operator system. We call a unital complete isometry of X onto itself an automorphim of X, and denote by Aut X the group of all automorphisms of X. We determine the automorphism group Aut $M_{n}^{q, \lambda}$ of the operator system $M_{n}^{q, \lambda}$. It turns out that Aut $M_{n}^{q, \lambda}$ is rather different from Aut M_{n}, which is isomorphic to the quotient group $U(n) / \mathbb{T} 1_{n}$, where $U(n):=\left\{u \in M_{n}: u^{*} u=u u^{*}=1_{n}\right\}$ is the unitary group of M_{n} and $\mathbb{T}:=\{\mu \in \mathbb{C}:|\mu|=1\}$.

In order to describe Aut $M_{n}^{q, \lambda}$ we introduce some notation. For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{q}\right) \in$ Λ_{q} define a subgroup U_{λ} of $U(n)$ as follows. As in the statement of Lemma 4.7 (ii),
let $\left\{\lambda_{1}, \ldots, \lambda_{q}\right\}=\left\{\lambda_{1}^{\prime}, \ldots, \lambda_{s}^{\prime}\right\}\left(\lambda_{1}^{\prime}>\cdots>\lambda_{s}^{\prime}\right)$ and $I_{k}=\left\{i \in\{1, \ldots, q\}: \lambda_{i}=\lambda_{k}^{\prime}\right\}$ $(1 \leq k \leq s)$. Further, let $I_{0}=\{q+1, \ldots, n\}(=\emptyset$ if $n=q)$,

$$
K_{1}:=\sum_{i \in I_{1}} \mathbb{C} \varepsilon_{i}^{0}, \ldots, \quad K_{s}:=\sum_{i \in I_{s}} \mathbb{C} \varepsilon_{i}^{0}, \quad K_{0}:=\sum_{i \in I_{0}} \mathbb{C} \varepsilon_{i}^{0},
$$

so that $K_{1} \oplus \cdots \oplus K_{s}=\sum_{i=1}^{q} \mathbb{C} \varepsilon_{i}^{0}=H_{2} \subset K_{1} \oplus \cdots \oplus K_{s} \oplus K_{0}=\sum_{i=1}^{n} \mathbb{C} \varepsilon_{i}^{0}=H_{1}$. Define a subgroup U_{λ} of $U(n)=U\left(B\left(H_{1}\right)\right)$ by

$$
U_{\lambda}:=U\left(K_{1}\right) \oplus \cdots \oplus U\left(K_{s}\right) \oplus U\left(K_{0}\right)
$$

where $U\left(K_{k}\right):=U\left(B\left(K_{k}\right)\right)$ is the unitary group of $B\left(K_{k}\right)(0 \leq k \leq s)$ and when $n=q$ we regard the last summand $U\left(K_{0}\right)$ as missing.

Proposition 4.9. For $\lambda \in \Lambda_{q}$ and U_{λ} as above, every automorphism of $M_{n}^{q, \lambda}=$ $P_{L_{\lambda}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{\lambda}}$ is of the form $P_{L_{\lambda}}\left(x \otimes 1_{H_{2}}\right) P_{L_{\lambda}} \mapsto P_{L_{\lambda}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{\lambda}}, x \in$ $B\left(H_{1}\right)$, for some $u \in U_{\lambda}$; two such automorphisms corresponding to $u, u^{\prime} \in U_{\lambda}$ coincide if and only if $u^{*} u^{\prime} \in \mathbb{T} 1_{n}$; and the automorphism group Aut $M_{n}^{q, \lambda}$ of $M_{n}^{q, \lambda}$ is isomorphic to $U_{\lambda} / \mathbb{T} 1_{n}$.

Proof. By Theorem 4.4 (i) an automorphism of $M_{n}^{q, \lambda}$ is characterized as the map

$$
P_{L_{\lambda}}\left(x \otimes 1_{H_{2}}\right) P_{L_{\lambda}} \mapsto P_{L_{\lambda}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{\lambda}}, \quad x \in B\left(H_{1}\right),
$$

for some $u \in U\left(H_{1}\right)$ for which (*) there exists $v \in U\left(H_{2}\right)$ such that $(u \otimes v) \zeta_{\lambda}=\zeta_{\lambda}$. Since $\varphi_{\zeta_{\lambda}}: B\left(H_{1}\right) \rightarrow P_{L_{\lambda}}\left(B\left(H_{1}\right) \otimes 1_{H_{2}}\right) P_{L_{\lambda}}, x \mapsto P_{L_{\lambda}}\left(x \otimes 1_{H_{2}}\right) P_{L_{\lambda}}$, is a linear isometry, for $u, u^{\prime} \in U\left(H_{1}\right)$ we have $P_{L_{\lambda}}\left(u x u^{*} \otimes 1_{H_{2}}\right) P_{L_{\lambda}}=P_{L_{\lambda}}\left(u^{\prime} x u^{\prime *} \otimes 1_{H_{2}}\right) P_{L_{\lambda}}$ for all $x \in B\left(H_{1}\right)$ if and only if $u x u^{*}=u^{\prime} x u^{\prime *}$ for all $x \in B\left(H_{1}\right)$, i.e., $u^{*} u^{\prime} \in \mathbb{T} 1_{n}$.

Hence it remains only to show that for $u \in U\left(H_{1}\right)$ we have (*) if and only if $u \in U_{\lambda}$. In the notation λ_{k}^{\prime}, I_{k}, etc. as above we have $\zeta_{\lambda}=\sum_{i=1}^{q} \lambda_{i}\left(\varepsilon_{i}^{0} \otimes \varepsilon_{i}^{0}\right)=\sum_{k=1}^{s} \lambda_{k}^{\prime} \sum_{i \in I_{k}}\left(\varepsilon_{i}^{0} \otimes\right.$ $\left.\varepsilon_{i}^{0}\right)$ and $(u \otimes v) \zeta_{\lambda}=\sum_{k=1}^{s} \lambda_{k}^{\prime} \sum_{i \in I_{k}}\left(u \varepsilon_{i}^{0} \otimes v \varepsilon_{i}^{0}\right)$. If $(u \otimes v) \zeta_{\lambda}=\zeta_{\lambda}$, then, by Lemma 4.7 (ii), $u \varepsilon_{i}^{0}=\sum_{j \in I_{k}} \overline{\alpha_{i j}^{(k)}} \varepsilon_{j}^{0}, v \varepsilon_{i}^{0}=\sum_{j \in I_{k}} \alpha_{i j}^{(k)} \varepsilon_{j}^{0}\left(i \in I_{k}, 1 \leq k \leq s\right)$ for some unitary matrices $\left[\alpha_{i j}^{(k)}\right]_{i, j \in I_{k}}(1 \leq k \leq s)$. Hence $u K_{k}=K_{k}(1 \leq k \leq s)$, so $u K_{0}=K_{0}$, too, and $u \in U_{\lambda}$. Conversely, let $u \in U_{\lambda}$ and so $u=u_{1} \oplus \cdots \oplus u_{s} \oplus u_{0}$ for $u_{k} \in U\left(K_{k}\right)(k=1, \ldots, s, 0)$. Define unitary matrices $\left[\beta_{i j}^{(k)}\right]_{i, j \in I_{k}}(1 \leq k \leq s)$ by $u_{k} \varepsilon_{i}^{0}=\sum_{j \in I_{k}} \beta_{i j}^{(k)} \varepsilon_{j}^{0}\left(i \in I_{k}, 1 \leq k \leq\right.$ s). Then $\left[\overline{\beta_{i j}^{(k)}}\right]_{i, j \in I_{k}}(1 \leq k \leq s)$ are also unitary, and a unitary $v \in U\left(H_{2}\right)$ is defined by $v=v_{1} \oplus \cdots \oplus v_{s}$, where $v_{k} \in U\left(K_{k}\right)$ and $v_{k} \varepsilon_{i}^{0}=\sum_{j \in I_{k}} \overline{\beta_{i j}^{(k)}} \varepsilon_{j}^{0}\left(i \in I_{k}, 1 \leq k \leq s\right)$. It follows again from Lemma 4.7 (ii) that $(u \otimes v) \zeta_{\lambda}=\zeta_{\lambda}$.

5. Two questions.

Theorem 3.1 describes the isometric degree $\operatorname{id}\left(\varphi_{L}\right)$ of φ_{L} in terms of $\left[\left[L^{\perp}\right]\right] \subset H_{2}$ and $l:=\operatorname{length} L^{\perp}$. That is, $\operatorname{id}\left(\varphi_{L}\right)=\infty$ if and only if $\left[\left[L^{\perp}\right]\right] \varsubsetneqq H_{2}$, and if $\operatorname{id}\left(\varphi_{L}\right)<\infty$ and so $\left[\left[L^{\perp}\right]\right]=H_{2}$, then $\operatorname{id}\left(\varphi_{L}\right)=[(l-1) / 2]$. But our satisfactory computation of length L^{\perp} is essentially confined to the case $\operatorname{dim} L^{\perp}=1$ (Lemma 3.6). So it would be interesting
to answer the following:
Question 1. Can we compute length M for any linear subspace M of $H_{1} \otimes H_{2}$ effectively?

The following remark may be useful in treating the case $\operatorname{dim} M \geq 2$. If we set $N:=\rho_{M}=\left\{\rho_{\zeta}: \zeta \in M\right\} \subset B\left(\overline{H_{1}}, H_{2}\right)$, then

$$
\text { length } M=\min \left\{\operatorname{dim} T: T \subset \overline{H_{1}} \text { linear, } \operatorname{lin} N T=\operatorname{lin} N \overline{H_{1}}\right\}
$$

and by the proof of Lemma 3.5 (iii) we have the estimate:

$$
\text { length } M \leq \min \left\{\max _{1 \leq i \leq k} \operatorname{rank} a_{i}: a_{1}, \ldots, a_{k} \in N, \operatorname{lin}\left\{a_{1}, \ldots, a_{k}\right\}=N, k=1,2, \ldots\right\}
$$

Indeed, if $N=\operatorname{lin}\left\{a_{1}, \ldots, a_{k}\right\}$ for some finite $\left\{a_{1}, \ldots, a_{k}\right\} \subset N$, then, by Lemma 3.5 (ii) there exists a linear subspace T_{0} of $\overline{H_{1}}$ with $\operatorname{dim} T_{0}=\max _{1 \leq i \leq k} \operatorname{rank} a_{i}=: r$ such that $a_{i} T_{0}=a_{i} \overline{H_{1}}$ for all i. Hence $\operatorname{lin} N T_{0}=a_{1} T_{0}+\cdots+a_{k} T_{0}=a_{1} \overline{H_{1}}+\cdots+a_{k} \overline{H_{1}}=\operatorname{lin} N \overline{H_{1}}$, and $(*)$ length $M \leq r$. By varying the a_{i} 's the inequality follows.

Equality in $(*)$ holds provided that the a_{i} 's $(1 \leq i \leq k)$ satisfy further the condition that the sum $a_{1} \overline{H_{1}}+\cdots+a_{k} \overline{H_{1}}$ is a direct sum. For, we have rank $a_{i_{0}}=r$ for some i_{0}, and $\operatorname{dim} a_{i_{0}} \overline{H_{1}}=r$. If T is a linear subspace of $\overline{H_{1}}$ with $\operatorname{dim} T \leq r-1$, then $\operatorname{dim} a_{i_{0}} T \leq \operatorname{dim} T \leq r-1$, and $a_{i_{0}} T \varsubsetneqq a_{i_{0}} \overline{H_{1}}$. By the assumption on the a_{i} 's it follows that $\operatorname{lin} N T=a_{1} T+\cdots+a_{k} T \varsubsetneqq a_{1} \overline{H_{1}}+\cdots+a_{k} \overline{H_{1}}=\operatorname{lin} N \overline{H_{1}}$. Thus this and the argument in the preceding paragraph show that length $M=r$.

Question 2. Given positive integers n, m with $n \geq 3$ and $1 \leq m \leq[(n-1) / 2]$, what is the least number p for which there exists $\varphi_{L}: M_{n} \rightarrow M_{p}$ with $\operatorname{id}\left(\varphi_{L}\right)=m$?

Theorem 3.2 shows that such a least number, p_{0}, exists and $p_{0} \leq n(2 m+1)-1$. Note also that if we can find one $\varphi_{L_{0}}: M_{n} \rightarrow M_{p_{0}}$ with $\operatorname{id}\left(\varphi_{L_{0}}\right)=m$, then, for each $p>p_{0}$ there exists $\varphi_{L}: M_{n} \rightarrow M_{p}$ such that $\operatorname{id}\left(\varphi_{L}\right)=m$. Indeed, take Hilbert spaces K_{1}, K_{2} so that $\operatorname{dim} K_{1}=p_{0}, \operatorname{dim} K_{2}=: q<\infty$, and $p_{0}<p \leq p_{0} q$. Then there is a linear subspace L of $K_{1} \otimes K_{2}$ so that $\operatorname{dim} L=p$ and $K_{1} \otimes \eta_{0} \subset L \subset K_{1} \otimes K_{2}$ for some unit vector $\eta_{0} \in K_{2}$. By Theorem 3.1(ii), the map $\kappa: M_{p_{0}}=B\left(K_{1}\right) \rightarrow B\left(K_{1}\right) \otimes B\left(K_{2}\right)=$ $B\left(K_{1} \otimes K_{2}\right) \rightarrow P_{L} B\left(K_{1} \otimes K_{2}\right) P_{L}=B(L)=M_{p}, x \mapsto x \otimes 1_{K_{2}} \mapsto P_{L}\left(x \otimes 1_{K_{2}}\right) P_{L}$, is a unital complete isometry. So it follows that $\kappa \circ \varphi_{L_{0}}: M_{n} \rightarrow M_{p_{0}} \rightarrow M_{p}$ is a unital completely positive map with $\operatorname{id}\left(\kappa \circ \varphi_{L_{0}}\right)=\operatorname{id}\left(\varphi_{L_{0}}\right)=m$.

The map $\varphi_{L}: M_{n} \rightarrow M_{p}$ is determined by Hilbert spaces H_{1}, H_{2} and a linear subspace L of $H_{1} \otimes H_{2}$ such that $\operatorname{dim} H_{1}=n$ and $\operatorname{dim} L=p$. As noted above, $\operatorname{id}\left(\varphi_{L}\right)<\infty$ if and only if $\left[\left[L^{\perp}\right]\right]=H_{2}$, and in this case, $\operatorname{id}\left(\varphi_{L}\right)=[(l-1) / 2]$ with $l=$ length L^{\perp}. Hence Question 2 is equivalent to the problem of minimizing $\operatorname{dim} L$ when we vary H_{2} and $L \subset H_{1} \otimes H_{2}$ under the following condition:

$$
\begin{equation*}
m=\left[\frac{l-1}{2}\right], \quad\left[\left[L^{\perp}\right]\right]=H_{2}, \quad \text { and } \quad l=\operatorname{length} L^{\perp} . \tag{**}
\end{equation*}
$$

In the proof of Theorem 3.2 we obtained the value $n(2 m+1)-1$ for $p=\operatorname{dim} L$
by taking $M=\mathbb{C} \zeta_{0}$ in Lemma 3.6(ii) as L^{\perp}. But, even if we take M in Lemma 3.6(i) as L^{\perp}, we cannot reduce this number $n(2 m+1)-1$. Indeed, in the notation there, we have $1 \leq s \leq \min \{n, q\}$, length $M=s,[[M]]=H_{2}$, and $\operatorname{dim} M=s(q-s)+1$. If $(* *)$ holds for $L^{\perp}=M$, then $m=[(s-1) / 2]$ implies $s=2 m+1$ or $2 m+2$, and $\operatorname{dim} L=$ $\operatorname{dim}\left(H_{1} \otimes H_{2}\right)-\operatorname{dim} M=n q-(s(q-s)+1)=(n-s) q+s^{2}-1$. Since $n-s \geq 0$ and $s \leq q$, the minimum value of $\operatorname{dim} L$ when q varies is $(n-s) s+s^{2}-1=n s-1 \geq n(2 m+1)-1$.

References

[1] M.-D. Choi, Positive linear maps on C^{*}-algebras, Canad. J. Math., 24 (1972), 520-529.
[2] M. Hamana, Injective envelopes of operator systems, Publ. Res. Inst. Math. Sci., Kyoto Univ., 15 (1979), 773-785.
[3] M. Hamana, Triple envelopes and Šilov boundaries of operator spaces, Math. J. Toyama Univ., 22 (1999), 77-93.
[4] R. V. Kadison, Isometries of operator algebras, Ann. Math., 54 (1951), 325-338.
[5] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math. 78, Cambridge Univ. Press, 2002.
[6] J. Tomiyama, On the transpose map of matrix algebras, Proc. Amer. Math. Soc., 88 (1983), 635-638.

Masamichi Hamana
Ooizumi 1551-1
Toyama, 939-8058, Japan
E-mail: m.hamana@amber.plala.or.jp

[^0]: 2010 Mathematics Subject Classification. Primary 46L07; Secondary 46B04.
 Key Words and Phrases. completely positive isometry, matrix algebra, operator system.

