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Abstract. Let φ be a linear map between operator spaces. To measure
the intensity of φ being isometric we associate with it a number, called the

isometric degree of φ and written id(φ), as follows. Call φ a strict m-isometry
with m a positive integer if it is an m-isometry, but is not an (m+1)-isometry.
Define id(φ) to be 0, m, and ∞, respectively if φ is not an isometry, a strict m-

isometry, and a complete isometry, respectively. We show that if φ : Mn → Mp

is a unital completely positive map between matrix algebras, then id(φ) ∈
{0, 1, 2, . . . , [(n− 1)/2], ∞} and that when n ≥ 3 is fixed and p is sufficiently
large, the values 1, 2, . . . , [(n− 1)/2] are attained as id(φ) for some φ. The

ranges of such maps φ with 1 ≤ id(φ) < ∞ provide natural examples of
operator systems that are isometric, but not completely isometric, to Mn. We
introduce and classify, up to unital complete isometry, a certain family of such
operator systems.

1. Introduction.

Since the publication of the pioneering paper of Choi [1] in 1972, an extensive

literature has treated the difference betweenm-positivity and (m+1)-positivity on matrix

algebras for a positive integer m (see, for example, the monograph of Paulsen [5] and the

references cited there). However the difference between m-isometry and (m+1)-isometry

seems to have been paid less attention. Here a linear map φ between operator spaces X

and Y is called an m-isometry if idm⊗φ :Mm ⊗X →Mm⊗Y , (idm ⊗φ)(
∑

i ai⊗xi) =∑
i ai⊗φ(xi), is an isometry, whereMm is the C∗-algebra of all complex m×m matrices,

an operator space X is a linear subspace of some C∗-algebra A, and Mn ⊗X is regarded

as a normed linear subspace of the C∗-algebraMn⊗A. By a complete isometry we mean a

map that is an m-isometry for all m. Clearly a complete isometry or an (m+1)-isometry

is an m-isometry. We call an m-isometry strict if it is not an (m + 1)-isometry. Hence,

with any linear map φ between operator spaces we can associate a unique number, called

the isometric degree of φ and written id(φ), defined as 0, m, and ∞, respectively if φ is

not an isometry, a strict m-isometry, and a complete isometry, respectively.

We note that if φ is a surjective linear map between C∗-algebras, then id(φ) ∈
{0, 1, ∞}, that is, id(φ) takes no integer value more than 1, or equivalently every sur-

jective 2-isometry is a complete isometry. Indeed, more generally, for a surjective linear

map between triple systems, the three notions of 2-isometry, triple isomorphism, and

complete isometry coincide ([3], Proposition 2.1). Here a triple system, also called a

ternary ring of operators (TRO), is a norm closed linear subspace of some C∗-algebra
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that is closed under the triple product [x, y, z] := xy∗z, and a triple isomorphism be-

tween triple systems is a linear bijection that preserves the triple products. A typical

example of a surjective strict 1-isometry between C∗-algebras is the transpose x 7→ tx of

the matrix algebra Mn for n ≥ 2 (see Tomiyama [6]).

The maps considered in this paper are unital completely positive maps φ :Mn →Mp

between matrix algebras. In Section 3 we show that id(φ) ∈ {0, 1, 2, . . . , [(n− 1)/2], ∞}
for such maps φ and that when n ≥ 3 is fixed, the less trivial values 1, 2, . . . , [(n− 1)/2]

are attained as id(φ) for some p and some φ : Mn → Mp. The main ingredients for

the study are a criterion for φ being an m-isometry (Lemma 3.3 (iii)) and a technique

(Lemma 3.4(ii)) making the computation of id(φ) effective via the notion of length defined

in Section 2.

In Section 4 we address the following problem. The ranges φ(Mn) of the linear

isometries φ : Mn → Mp with 1 ≤ id(φ) < ∞ constructed in Section 3 are operator

systems identical with Mn as normed spaces. But, how different are they from Mn

as operator systems? Given a positive integer n ≥ 3 we introduce a family {Mq, ζ
n } of

operator systemsMq, ζ
n that are linearly isometric images ofMn, parametrized by positive

integers q (3 ≤ q ≤ n) and unit vectors ζ in certain Hilbert spaces, and classify them

up to unital complete isometry. Moreover the group structure of all unital complete

isometries of a fixed Mq, ζ
n onto itself is determined.

In Section 5 we state two questions that have remained unanswered in this paper

and related remarks.

The author thanks the referee for his constructive critique and for suggesting many

simplifications of proofs, which will be noted in appropriate places.

2. Preliminaries.

Let φ : Mn → Mp be a unital completely positive map between matrix algebras.

Throughout the paper we always assume that it is written in the form φL : B(H1) →
B(L), which is the unital completely positive map defined as follows.

Let H1 and H2 be finite-dimensional Hilbert spaces, H̃ := H1 ⊗ H2 their Hilbert

space tensor product, and L ⊂ H̃ a linear subspace. If dimH1 = n, dimL = p and we

identify B(H1) = Mn, B(L) = Mp, then we obtain a unital completely positive map

φL :Mn →Mp defined by

φL :B(H1) → B(H1)⊗B(H2) = B(H̃) → PLB(H̃)PL = B(L), (2.1)

x 7−→ x⊗ 1H2 7−→ PL(x⊗ 1H2)PL =: φL(x).

Here 1H2 denotes the identity operator on H2, PL denotes the projection of H̃ onto

L, and we canonically identify B(H1) ⊗ B(H2) with B(H̃) and PLB(H̃)PL with B(L).

Conversely, every unital completely positive map φ :Mn →Mp between matrix algebras

is unitarily equivalent to the above map φL for some Hilbert spaces H1, H2 and some

linear subspace L of H1 ⊗ H2 such that dimH1 = n and dimL = p. Indeed, if we

identify Mp = B(H) for a Hilbert space H with dimH = p, then by the Stinespring

theorem (Paulsen [5], Theorem 4.1) there exist a finite-dimensional Hilbert space K, a

unital *-homomorphism π : Mn → B(K), and a linear isometry V : H → K such that
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φ(x) = V ∗π(x)V for all x ∈Mn. Here, that dimK <∞ follows from the fact that K is

obtained as the quotient space of the finite-dimensional tensor productMn⊗H. SinceMn

is a simple C∗-algebra, we can identify the *-homomorphism π with the amplification

B(H1) → B(H1) ⊗ B(H2), x 7→ x ⊗ 1H2 , where Mn = B(H1) and K = H1 ⊗ H2

for some Hilbert space H2. Moreover, since φ is unital, V is an isometry of H onto

L := V H ⊂ K, so that the map V · V ∗ : B(H) → B(L), x 7→ V xV ∗, defines a unitary

equivalence, and V V ∗ = PL ∈ B(H1 ⊗ H2). Hence the map φ : Mn → Mp = B(H),

x 7→ V ∗π(x)V = V ∗(x⊗ 1H2
)V , is unitarily equivalent to the map φL : B(H1) → B(L),

x 7→ V V ∗(x⊗ 1H2)V V
∗ = PL(x⊗ 1H2)PL.

The uniqueness of K = H1⊗H2 and L ⊂ H1⊗H2, up to unitary equivalence, in the

expression φ = φL follows when we further require that π(Mn)V H = K, or equivalently

that (B(H1)⊗ 1H2)L = K = H1 ⊗H2 (see [5], Proposition 4.2). But we will not assume

this condition (B(H1)⊗1H2)L = H1⊗H2 to give flexibility in the choice of L ⊂ H1⊗H2.

As usual we write B(H) =Mn when we need only specify dimH = n <∞.

In what follows we adopt the following notational convention. For H1, H2 and

H1 ⊗H2 as above we denote by the letters ξ, η and ζ vectors in H1, H2 and H1 ⊗H2,

respectively. Let H1 := {ξ∗ : ξ ∈ H1} be the complex conjugate of H1, i.e., the Hilbert

space with the linear space operation λ1ξ
∗
1 +λ2ξ

∗
2 = (λ1ξ1+λ2ξ2)

∗ and the inner product

⟨ξ∗1 , ξ∗2⟩H1
= ⟨ξ2, ξ1⟩ for λ1, λ2 ∈ C and ξ1, ξ2 ∈ H1. Then the map ξ∗ 7→ ⟨·, ξ⟩ gives a

linear isomorphism of H1 onto the dual space of H1, and it induces the canonical linear

isomorphism ρ : H1 ⊗H2 → B(H1, H2), ζ 7→ ρζ , defined by

ρξ1⊗η1ξ
∗ = ⟨ξ1, ξ⟩η1, ξ1, ξ ∈ H1, η1 ∈ H2. (2.2)

The operator ρζ ∈ B(H1, H2), ζ ∈ H1 ⊗H2, is reformulated by the following equality.

⟨ρζξ∗, η⟩ = ⟨ζ, ξ ⊗ η⟩, ξ ∈ H1, η ∈ H2. (2.3)

We use the following symbolic notation to denote inner products or operators:

ξ∗2ξ1 := ⟨ξ1, ξ2⟩, ξ1, ξ2 ∈ H1;

ξ2ξ
∗
1 : H1 → H1, ξ 7→ (ξ2ξ

∗
1)ξ = ξ2(ξ

∗
1ξ) = ⟨ξ, ξ1⟩ξ2, ξ1, ξ2 ∈ H1;

ξ1η1 := ρξ1⊗η1 : H1 → H2, ξ∗ 7→ ξ∗(ξ1η1) = (ξ∗ξ1)η1 = ⟨ξ1, ξ⟩η1, ξ1 ∈ H1, η1 ∈ H2,

etc. The meaning would be self-explanatory when we view vectors as column vectors

with respect to some orthonormal basis and juxtapositions of them as matrix products.

Then ρ∗ξ2⊗η2
: H2 → H1 and ρξ1⊗η1ρ

∗
ξ2⊗η2

: H2 → H1 → H2 are written formally as

ρ∗ξ1⊗η1
= ξ∗1η

∗
1 , ρξ1⊗η1

ρ∗ξ2⊗η2
= ⟨ξ1, ξ2⟩η1η∗2 , (2.4)

meaning the maps η 7→ ξ∗1η
∗
1η = ⟨η, η1⟩ξ∗1 and η 7→ ⟨ξ1, ξ2⟩⟨η, η2⟩η1, respectively.

For any subsets S ⊂ H1 ⊗H2 and T ⊂ H1 write

[S]T := lin{ρζξ∗ : ζ ∈ S, ξ ∈ T} = lin
∪
ζ∈S

ρζT
∗ ⊂ H2. (2.5)
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Here and throughout, lin{. . . } denotes the linear span of {. . . } in any linear space, and

T ∗ := {ξ∗ : ξ ∈ T}. In particular, if T = {ξ1, . . . , ξk}, ξi ∈ H1, write [S]ξ1, ..., ξk := [S]T ,

and if T = H1, write [[S]] := [S]H1
.

Definition 2.1. For a nonempty subset S of H1⊗H2 we call the following integer

the length of S.

lengthS := min{dimT : T ⊂ H1 linear, [S]T = [[S]]}. (2.6)

That is, l = lengthS if and only if [S]T ⫋ [[S]] for any linear subspace T of H1 of

dimT < l and [S]T = [[S]] for some linear subspace T of H1 of dimT = l.

Note that replacing S and T in (2.5) and (2.6) by their linear spans does not affect

the resulting sets and the value of lengthS, i.e., [S]T = [linS]T = [S]linT = [linS]linT ,

[[S]] = [[linS]] and lengthS = length(linS). Note also that since the map T 7→ T ∗ gives

a bijection between the set of all linear subspaces of H1 and that of H1, the equality in

(2.6) is written as
∑

ζ∈S ρζT
∗ =

∑
ζ∈S ρζH1, and (2.6) is reformulated as

lengthS = min{dimT : T ⊂ H1 linear,
∑
ζ∈S

ρζT =
∑
ζ∈S

ρζH1}. (2.7)

Definition 2.2. Let φ : X → Y be a linear map between operator spaces X and

Y .

(i) For a positive integer m we call φ a strict m-isometry if φm :Mm(X) →Mm(Y )

is an isometry, but φm+1 : Mm+1(X) → Mm+1(Y ) is not an isometry, where Mm(X) =

Mm ⊗ X, Mm(Y ) = Mm ⊗ Y , etc., and φm = idm ⊗ φ with idm denoting the identity

map on Mm.

(ii) We define the isometric degree of φ, written id(φ), to be 0,m, and∞, respectively

if φ is not an isometry, a strict m-isometry, and a complete isometry, respectively.

3. Isometric degrees of φL.

We describe the isometric degree id(φL) of the unital completely positive map φL

defined in Section 2 in terms of the orthogonal complement L⊥ of L as follows.

Theorem 3.1. As in Section 2, let H1, H2 be finite-dimensional Hilbert spaces, L

a linear subspace of H̃ := H1⊗H2, and φL : B(H1) → B(L) the unital completely positive

map associated with L. Let n := dimH1, q := dimH2, L
⊥ the orthogonal complement of

L in H̃, and l := lengthL⊥. Then :

(i) We have l ≤ min{n, q}.
(ii) The following are equivalent :

(ii1) id(φL) = ∞, i.e., φL is a complete isometry.

(ii2) [[L⊥]] ⫋ H2.

(ii3) There exists an η0 ∈ H2 \ {0} such that H1 ⊗ η0 ⊂ L.

(iii) Suppose that id(φL) <∞ and hence by (ii) that [[L⊥]] = H2. Then we have
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id(φL) =

[
l − 1

2

]
, (3.1)

where [a] for a real number a is the largest integer ≤ a. That is, if l ≤ 2, then φL is not

an isometry, and if l ≥ 3, then φL is a strict [(l − 1)/2]-isometry.

Since l ≤ n, Theorem 3.1 means that if 1 ≤ n ≤ 2, then id(φL) ∈ {0, ∞} and if

n ≥ 3, then id(φL) ∈ {0, 1, 2, . . . , [(n− 1)/2], ∞}. In particular, if 1 ≤ n ≤ 2, φL being

an isometry implies its being a complete isometry. The following theorem shows that the

values 1, 2, . . . , [(n− 1)/2] are indeed attained as id(φL) for some φL if n ≥ 3 is fixed

and p is sufficiently large.

Theorem 3.2. Let n and m be positive integers with n ≥ 3 and 1 ≤ m ≤
[(n− 1)/2]. Then there exist a positive integer p and a map φL : Mn → Mp such

that id(φL) = m. Here we can take p to be n(2m+ 1)− 1.

We separate the proofs of Theorems 3.1 and 3.2 into several lemmas. In the following

lemmas we retain the notation H1, H2, L, φL, n = dimH1, and q = dimH2 in Theorem

3.1.

Lemma 3.3. (i) For ξ1, ξ2 ∈ H1 we have ∥PL(ξ2ξ
∗
1 ⊗1H2)PL∥ = ∥ξ2ξ∗1∥ = ∥ξ1∥∥ξ2∥

if and only if there exists an η ∈ H2\{0} such that ξ1⊗η, ξ2⊗η ∈ L, where ξ2ξ
∗
1 ∈ B(H1)

is the operator ξ 7→ (ξ2ξ
∗
1)ξ = ξ2(ξ

∗
1ξ) = ⟨ξ, ξ1⟩ξ2 on H1 of rank ≤ 1 as before.

(ii) The map φL : B(H1) → B(L), φL(x) = PL(x ⊗ 1H2)PL, is an isometry if and

only if

∀ ξ1, ξ2 ∈ H1, ∃ η ∈ H2 \ {0} : ξ1 ⊗ η, ξ2 ⊗ η ∈ L. (3.2)

(iii) For a positive integer m the map φL is an m-isometry if and only if

∀ ξi ∈ H1 (1 ≤ i ≤ 2m), ∃ η ∈ H2 \ {0} : ξi ⊗ η ∈ L (1 ≤ i ≤ 2m). (3.3)

Proof. (i) Clearly ∥ξ2ξ∗1∥ = ∥ξ1∥∥ξ2∥, and for the proof we may assume that

∥ξ1∥ = ∥ξ2∥ = ∥η∥ = 1.

(⇐): Suppose such an η ∈ H2 exists. Then ξi ⊗ η ∈ L, ∥ξi ⊗ η∥ = ∥ξi∥∥η∥ = 1

(i = 1, 2),

∥PL(ξ2ξ
∗
1 ⊗ 1H2)PL∥ ≥ |⟨PL(ξ2ξ

∗
1 ⊗ 1H2)PL(ξ1 ⊗ η), ξ2 ⊗ η⟩|

= |⟨(ξ2ξ∗1 ⊗ 1H2
)(ξ1 ⊗ η), ξ2 ⊗ η⟩|

= ⟨ξ1, ξ1⟩⟨ξ2, ξ2⟩⟨η, η⟩ = 1,

and further, ∥PL(ξ2ξ
∗
1 ⊗ 1H2)PL∥ ≤ ∥ξ2ξ∗1 ⊗ 1H2∥ = ∥ξ1∥∥ξ2∥ = 1.

(⇒): The following proof was suggested by the referee; the original proof was more

lengthy. Let v = ξ2ξ
∗
1 and suppose that ∥PL(v ⊗ 1H2)PL∥ = ∥v∥ = 1. Then v is a

partial isometry with v∗v = ξ1ξ
∗
1 and vv∗ = ξ2ξ

∗
2 . Since H1 ⊗ H2 is finite-dimensional

and its unit sphere is compact, there is a unit vector ζ ∈ H1 ⊗ H2 such that ∥PL(v ⊗
1H2)PLζ∥ = 1. We show that ζ, (v ⊗ 1H2)ζ ∈ L and (v∗v ⊗ 1H2)ζ = ζ. Indeed,
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1 = ∥PL(v⊗1H2)PLζ∥ ≤ ∥PL(v⊗1H2)∥∥PLζ∥ ≤ ∥PLζ∥ ≤ ∥ζ∥ = 1 implies that ∥PLζ∥ =

∥ζ∥ and hence that ζ = PLζ ∈ L, since ∥ζ∥2 = ∥PLζ∥2 + ∥ζ − PLζ∥2. Similarly,

∥PL(v⊗1H2
)ζ∥ = ∥PL(v⊗1H2

)PLζ∥ = 1 = ∥(v⊗1H2
)ζ∥ implies (v⊗1H2

)ζ ∈ L. Since v

is a partial isometry, ∥(v∗v⊗ 1H2)ζ∥ = ∥(v⊗ 1H2)ζ∥ = 1, and ∥(v∗v⊗ 1H2)ζ∥ = 1 = ∥ζ∥.
Then, since v∗v ⊗ 1H2 = ξ1ξ

∗
1 ⊗ 1H2 is the projection onto ξ1 ⊗ H2, it follows that

(v∗v ⊗ 1H2)ζ = ζ and hence that ζ = ξ1 ⊗ η for some unit vector η ∈ H2. Then

(v ⊗ 1H2)ζ = (ξ2ξ
∗
1 ⊗ 1H2)(ξ1 ⊗ η) = ξ2 ⊗ η, and it follows that ξ1 ⊗ η, ξ2 ⊗ η ∈ L.

Note that the above argument shows that ∥PL(ξ2ξ
∗
1⊗1H2

)PLζ∥ = ∥ζ∥ for ζ ∈ H1⊗H2

if and only if ζ = ξ1 ⊗ η for some η ∈ H2 such that ξ1 ⊗ η, ξ2 ⊗ η ∈ L.

(ii) (⇒): If φL is an isometry, then ∥PL(ξ2ξ
∗
1 ⊗ 1H2)PL∥ = ∥φL(ξ2ξ

∗
1)∥ = ∥ξ2ξ∗1∥ for

all ξ1, ξ2 ∈ H1. Hence (3.2) follows from (i).

(⇐): Let x ∈ B(H1) and take any unit vectors ξi ∈ H1 (i = 1, 2). Then there exists

a unit vector η ∈ H2 as in (3.2), and so

∥φL(x)∥ ≥ |⟨PL(x⊗ 1H2)PL(ξ1 ⊗ η), ξ2 ⊗ η⟩| = |⟨(x⊗ 1H2)(ξ1 ⊗ η), ξ2 ⊗ η⟩|
= |⟨xξ1, ξ2⟩|⟨η, η⟩ = |⟨xξ1, ξ2⟩|.

Since ξ1, ξ2 are arbitrary, it follows that ∥φL(x)∥ ≥ ∥x∥, and the reverse inequality being

obvious, ∥φL(x)∥ = ∥x∥.
(iii) For φ := φL : B(H1) → B(L) in (ii), φm := idm⊗φ :Mm⊗B(H1) →Mm⊗B(L)

is given as follows. For x =
∑

1≤i, j≤m eij ⊗ xij ∈Mm ⊗B(H1), where {eij}1≤i, j≤m is a

family of matrix units for Mm and xij ∈ B(H1),

φm(x) =
∑

1≤i, j≤m

eij ⊗ φ(xij) =
∑

1≤i, j≤m

eij ⊗ PL(xij ⊗ 1H2)PL

= (1Cm ⊗ PL)(
∑

1≤i, j≤m

eij ⊗ xij ⊗ 1H2)(1Cm ⊗ PL)

= PCm⊗L(x⊗ 1H2)PCm⊗L.

That is, φm is just the φL with H1 replaced by Cm ⊗H1 and L ⊂ H1 ⊗H2 replaced by

Cm ⊗L ⊂ Cm ⊗H1 ⊗H2. Hence, by (ii), φL is an m-isometry, i.e., φm is an isometry if

and only if

∀ ξ′1, ξ′2 ∈ Cm ⊗H1, ∃ η ∈ H2 \ {0} : ξ′1 ⊗ η, ξ′2 ⊗ η ∈ Cm ⊗ L. (3.4)

For a fixed orthonormal basis {εj}1≤j≤m for Cm, Cm⊗H1 = ε1⊗H1⊕· · ·⊕εm⊗H1, the

orthogonal direct sum of right summands, and similarly Cm⊗L = ε1⊗L⊕· · ·⊕εm⊗L ⊂
ε1 ⊗ (H1 ⊗ H2) ⊕ · · · ⊕ εm ⊗ (H1 ⊗ H2). Hence, taking two vectors ξ′1, ξ

′
2 in Cm ⊗ H1

is equivalent to taking 2m vectors ξ1, ξ2, . . . , ξ2m in H1 so that ξ′1 =
∑m

j=1 εj ⊗ ξj and

ξ′2 =
∑m

j=1 εj ⊗ ξj+m, and for some η ∈ H2 \ {0}, ξ′i ⊗ η ∈ Cm ⊗ L (i = 1, 2) ⇐⇒ for

some η ∈ H2 \{0}, ξ1⊗η, ξ2⊗η, . . . , ξ2m⊗η ∈ L. Thus the equivalence (3.4) ⇐⇒ (3.3)

follows. □

Notation. For a linear subspace L of H1 ⊗H2 and ξ ∈ H1 we write

Lξ := {η ∈ H2 : ξ ⊗ η ∈ L}. (3.5)
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Lemma 3.4. (i) For ξ ∈ H1 we have Lξ = ([L⊥]ξ)
⊥, where [L⊥]ξ := {ρζξ∗ : ζ ∈

L⊥} as in (2.5).

(ii) (3.3) holds if and only if [L⊥]T ⫋ H2 for each linear subspace T of H1 of

dimT ≤ 2m.

Proof. (i) For η ∈ H2, η ∈ Lξ ⇐⇒ ξ⊗η ∈ L ⇐⇒ ⟨ρζξ∗, η⟩ = ⟨ζ, ξ⊗η⟩ = 0 for

all ζ ∈ L⊥ by (2.3) (since L is finite-dimensional and so (L⊥)⊥ = L) ⇐⇒ η ∈ {ρζξ∗ :

ζ ∈ L⊥}⊥ = ([L⊥]ξ)
⊥.

(ii) (3.3) holds ⇐⇒ ∀ξi ∈ H1 (1 ≤ i ≤ 2m):
∩

1≤i≤2m Lξi ̸= {0} ⇐⇒ ∀ξi ∈ H1

(1 ≤ i ≤ 2m):
∑

1≤i≤2m(Lξi)⊥ ̸= H2 (since (
∑

iMi)
⊥ =

∩
iM

⊥
i for any linear subspaces

Mi of H2 and since H2 is finite-dimensional). But, by (i) and (2.5),
∑

1≤i≤2m(Lξi)⊥ =∑
1≤i≤2m[L⊥]ξi = [L⊥]T , where T =

∑
1≤i≤2m Cξi. When ξi (1 ≤ i ≤ 2m) range over all

2m vectors in H1, T =
∑

1≤i≤2m Cξi ranges over all linear subspaces of H1 of dimension

≤ 2m. Hence the assertion follows. □

Lemma 3.5. (i) Let K be a finite-dimensional linear space, {Ki}i∈I a finite family

of proper linear subspaces Ki of K with di := dimKi, and r := dimK −mini∈I di > 0.

Then there exists an r-dimensional linear subspace T of K such that Ki + T = K for all

i ∈ I.

(ii) Let K and M be finite-dimensional linear spaces, {ai}i∈I a finite subset of

B(K, M), and r := maxi∈I rank ai. Then there exists an r-dimensional linear subspace

T of K such that aiT = aiK for all i ∈ I.

(iii) For any subset S of H1 ⊗H2 we have lengthS ≤ min{n, q}.

Proof. (i) We repeatedly use the following obvious fact: (∗) If {Lj} is a finite

family of proper linear subspaces of K, then
∪

j Lj ̸= K. Indeed, each Lj is closed and

has empty interior in K. So the same is true for their union
∪

j Lj , K \
∪

j Lj is open

and dense in K, and it is non-empty.

By (∗) there exists ξ1 ∈ K \
∪

i∈I Ki. Let K
(1)
i := Ki + Cξ1 (i ∈ I) and I1 := {i ∈

I : K
(1)
i ⫋ K}. For i ∈ I we have i ∈ I \ I1 ⇐⇒ di + 1 = dimKi + 1 = dimK

(1)
i = n,

i.e., di = n − 1, and so i ∈ I1 ⇐⇒ di ≤ n − 2. If I1 ̸= ∅, then again by (∗),
there exists ξ2 ∈ K \

∪
i∈I1

K
(1)
i , and we can define K

(2)
i := K

(1)
i + Cξ2 (i ∈ I1),

I2 := {i ∈ I1 : K
(2)
i ⫋ K} so that for i ∈ I, i ∈ I2 ⇐⇒ di ≤ n − 3 and i ∈ I1 \ I2

⇐⇒ di = n − 2. As long as Ij ̸= ∅ this procedure works, and since di ≥ n − r for

all i with equality for some i, it terminates precisely at the rth step. Thus we obtain

vectors ξ1, ξ2, . . . , ξr ∈ K and sets I0 := I ⊃ I1 ⊃ I2 ⊃ · · · ⊃ Ir−1 ̸= ∅ so that

Ki ⫋ K
(1)
i ⫋ · · · ⫋ K

(j)
i = Ki + Cξ1 + · · · + Cξj = K ⇐⇒ i ∈ Ij−1 \ Ij . If we set

T := Cξ1 + · · ·+ Cξr, it follows that Ki + T = K for all i ∈ I.

(ii) We may assume ai ̸= 0 for all i ∈ I. Then Ki := Ker ai ⫋ K (i ∈ I), dimKi =

n− ri, and n−mini∈I(n− ri) = maxi∈I ri = r, where n = dimK and ri := rank ai. By

(i) there exists an r-dimensional linear subspace T of K such that Ki + T = K for all

i ∈ I. Hence aiK = ai(Ki + T ) = aiT for all i ∈ I.

(iii) Clearly lengthS ≤ n since dimT ≤ dimH1 = dimH1 = n for T in (2.7). Since

dim linS ≤ dim H̃ < ∞, we have linS = lin {ζ1, . . . , ζk} for some finite {ζ1, . . . , ζk} ⊂
S. Then, by (2.7), lengthS = min{dimT : T ⊂ H1 linear,

∑k
i=1 ρζiT =

∑k
i=1 ρζiH1}.
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If r := max1≤i≤k rank ρζi = max1≤i≤k dim(ρζiH1) ≤ dimH2 = q, then by (ii) there

exists an r-dimensional linear subspace T of H1 such that ρζiT = ρζiH1 for all i. Hence

lengthS ≤ dimT = r ≤ q. □

Lemma 3.6. (i) Let s be a positive integer with 1 ≤ s ≤ min{n, q}. Define ζ0, ζij ∈
H1 ⊗ H2 by ζ0 :=

∑s
i=1 ξi ⊗ ηi, ζij := ξi ⊗ ηj (1 ≤ i ≤ s, s + 1 ≤ j ≤ q), where

{ξi}1≤i≤s ⊂ H1 is linearly independent and {ηj}1≤j≤q is a basis for H2. Then the linear

span M := lin {ζ0, ζij : 1 ≤ i ≤ s, s+1 ≤ j ≤ q} satisfies that lengthM = s, [[M ]] = H2,

and dimM = s(q − s) + 1.

(ii) Suppose that 1 ≤ dimH2 = q ≤ dimH1 = n. If ζ0 =
∑q

i=1 ξi ⊗ ηi ∈ H1 ⊗ H2

with both {ξi}1≤i≤q ⊂ H1 and {ηi}1≤i≤q ⊂ H2 linearly independent and M := Cζ0, then
lengthM = q and [[M ]] = H2.

Proof. (i) There exist linearly independent vectors {ξ′i}1≤i≤s in H1 such that

⟨ξi, ξ′j⟩ = δij , the Kronecker symbol, for all i, j. Indeed, since {ξi}1≤i≤s is a basis for

H ′
1 := lin{ξi}1≤i≤s, for each j (1 ≤ j ≤ s) the linear functional

∑s
i=1 λiξi 7→ λj (λi ∈ C)

on H ′
1 defines a unique element ξ′j ∈ H ′

1 such that ⟨
∑s

i=1 λiξi, ξ
′
j⟩ = λj for all λi ∈ C

(1 ≤ i ≤ s). Then it follows that for 1 ≤ k ≤ s,

[M ]ξ′k = {ρζξ′∗k : ζ ∈M} = lin {ρζ0ξ′∗k , ρζijξ′∗k : 1 ≤ i ≤ s, s+ 1 ≤ j ≤ q}
= lin{ηk, ηs+1, ηs+2, . . . , ηq},

since by (2.2), ρζ0ξ
′∗
k =

∑s
i=1⟨ξi, ξ′k⟩ηi = ηk and ρζijξ

′∗
k = ⟨ξi, ξ′k⟩ηj = δkiηj . Hence, for

the s-dimensional linear subspace T0 := lin {ξ′1, . . . , ξ′s} of H1, [M ]T0 =
∑s

k=1[M ]ξ′k =

lin{η1, . . . , ηs, ηs+1, ηs+2, . . . , ηq} = H2. Since [M ]T0 ⊂ [[M ]] ⊂ H2, it also follows that

[[M ]] = H2. On the other hand, if T is a k-dimensional linear subspace of H1 with basis

{ξ(r) : 1 ≤ r ≤ k} and if k < s, then, since ρζij (ξ
(r))∗ ∈ lin {ηj : s+ 1 ≤ j ≤ q},

[M ]T = lin{ρζ0(ξ(r))∗, ρζij (ξ(r))∗ : 1 ≤ r ≤ k, 1 ≤ i ≤ s, s+ 1 ≤ j ≤ q}

⊂ lin{ρζ0(ξ(r))∗ : 1 ≤ r ≤ k}+ lin {ηj : s+ 1 ≤ j ≤ q}.

The dimension of the right-hand side is at most k + (q − s) < q = dimH2, and so

[M ]T ⫋ H2. Thus it follows that lengthM = s.

The set {ζij}1≤i≤s, s+1≤j≤q is linearly independent, and so its linear span N has

dimension s(q−s). Moreover ζ0 =
∑s

i=1 ξi⊗ηi ̸∈ N , since each element of N is uniquely

written in the form
∑s

i=1 ξi ⊗
∑q

j=s+1 λijηj (λij ∈ C). Hence dimM = dim(N +Cζ0) =
s(q − s) + 1.

(ii) This is the special case of (i) where s = q and the ζij ’s are missing. □

Proof of Theorem 3.1. (i) This follows from Lemma 3.5 (iii).

(ii) (ii1) ⇐⇒ (ii2): The map φL is a complete isometry ⇐⇒ φL is an m-isometry

for all m ⇐⇒ by Lemma 3.3 (iii) and Lemma 3.4 (ii), [L⊥]T ⫋ H2 for each linear

subspace T of H1 of dimT ≤ 2m and each m ⇐⇒ [[L⊥]] = [L⊥]H1 ⫋ H2.

(ii2) ⇐⇒ (ii3): For η ∈ H2, H1 ⊗ η ⊂ L ⇐⇒ η ∈
∩

ξ∈H1
Lξ =

∩
ξ∈H1

([L⊥]ξ)
⊥ =

(
∑

ξ∈H1
[L⊥]ξ)

⊥ = ([L⊥]H1)
⊥ = ([[L⊥]])⊥ by (3.5) and Lemma 3.4(i). Hence, [[L⊥]] ⫋ H2

⇐⇒ H1 ⊗ η0 ⊂ L for some η0 ∈ H1 \ {0}.
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(iii) As noted above, Lemma 3.3 (iii) and Lemma 3.4 (ii) show that (∗) φL is an

m-isometry for m ≥ 1 if and only if [L⊥]T ⫋ H2 for each linear subspace T of H1 of

dimT ≤ 2m. Since we are assuming that [[L⊥]] = H2, the definition of length (Definition

2.1) implies that l = dimT for some linear subspace T of H1 with [L⊥]T = H2 and that

[L⊥]T ⫋ H2 for each linear subspace T of H1 of dimT < l.

If l = lengthL⊥ ≤ 2, then [L⊥]T = H2 for some linear subspace T ofH1 of dimT ≤ 2.

Hence, by (∗), φL is not an isometry.

If l ≥ 3 and m := [(l − 1)/2] ≥ 1, then m ≤ (l − 1)/2 < m + 1. Hence 2m ≤ l − 1,

2(m + 1) > l − 1, and so 2m < l, 2(m + 1) ≥ l. The inequality 2m < l shows that

[L⊥]T ⫋ H2 for each linear subspace T of H1 of dimT ≤ 2m and hence by (∗) that φL

is an m-isometry. Since [L⊥]T = H2 for some linear subspace T of H1 of dimT = l and

since 2(m+ 1) ≥ l, the condition in (∗) with m replaced by m+ 1 does not hold. Hence

φL is not an (m+ 1)-isometry. Thus φL is a strict m-isometry. □

Proof of Theorem 3.2. Set q := 2m + 1 so that 3 ≤ q ≤ n since 1 ≤ m ≤
[(n− 1)/2] ≤ (n− 1)/2, and take Hilbert spaces H1 and H2 with dimH1 = n and

dimH2 = q. Lemma 3.6 (ii) shows that for ζ0 ∈ H1 ⊗ H2 as in the statement there,

lengthCζ0 = q and [[Cζ0]] = H2. Then Theorem 3.1 (iii) shows that φL for L := {ζ0}⊥
is a strict m-isometry since [(q − 1)/2] = m. Since dimL = dim(H1⊗H2)−1 = nq−1 =

n(2m+1)−1, φL : B(H1) → B(L) may be regarded as a unital completely positive map

of Mn into Mn(2m+1)−1. □

Remark 3.7. Part (ii) of Theorem 3.1 may be well-known although we cannot

provide suitable references, and the implication (ii3) ⇒ (ii1) is obvious without any

consideration used above, sinceM := H1⊗η0 ⊂ L with η0 ∈ H2\{0} implies that the map

B(H1) → B(M), x 7→ φL(x)|M = PL(x ⊗ 1H2)PL|M , is an injective *-homomorphism,

so a complete isometry and that φL itself is a complete isometry.

4. Classification of a family {Mq, ζ
n }.

The notation H1, H2, n = dimH1 < ∞, q = dimH2 < ∞, H̃ = H1 ⊗ H2, φL :

B(H1) → B(L) for L ⊂ H̃, etc. will be as before.

In this section we assume n ≥ q ≥ 3, and introduce operator systems Mq, ζ
n , linearly

isometric to Mn, as follows. Consider the following condition for a vector ζ in H̃:

ζ =

q∑
i=1

ξi ⊗ ηi, {ξi}1≤i≤q ⊂ H1, {ηi}1≤i≤q ⊂ H2 linearly independent, (4.1)

and set

Zn, q := {ζ ∈ H̃ : ∥ζ∥ = 1, ζ satisfies (4.1)}. (4.2)

For ζ ∈ Zn, q denote by φζ the map φL defined for L := {ζ}⊥. Then id(φζ) = [(q − 1)/2],

since lengthCζ = q and [[Cζ]] = H2 by Lemma 3.6(ii) and so Theorem 3.1(iii) applies.

We have dimL = dim{ζ}⊥ = dim H̃−1 = nq−1, and [(q − 1)/2] ≥ 1 since q ≥ 3. Hence
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we may regard φζ as a unital completely positive isometry of Mn into Mnq−1, and we

obtain an operator system Mq, ζ
n := φζ(Mn) ⊂Mnq−1 as its range.

We will classify the family {Mq, ζ
n }, where n ≥ q ≥ 3 and ζ ∈ Zn, q, up to unital

complete isometry. That is, we will show when

Mq, ζ
n

∼=Mq′, ζ′

n′ (4.3)

holds for n ≥ q ≥ 3, ζ ∈ Zn, q, n
′ ≥ q′ ≥ 3, and ζ ′ ∈ Zn′, q′ . Here, for operator systems

X and Y we write X ∼= Y if there exists a unital complete isometry of X onto Y .

We first deduce that Mq, ζ
n ̸∼=Mn from the following:

Proposition 4.1. Let X be an operator system and suppose that there is a unital

completely positive isometry of Mn onto X that is not a complete isometry. Then X is

not unitally completely isometric to Mn.

Proof. Let φ : Mn → X be a surjective unital completely positive isometry

that is not a complete isometry. Suppose that there exists a surjective unital complete

isometry κ : Mn → X. Note in general that any surjective unital isometry ι between

operator systems V and W is positive. Indeed, for a ∈ V we have a ≥ 0 if and only if

f(a) ≥ 0 for all f ∈ S(V ) := {f ∈ V ∗ : ∥f∥ = f(1) = 1}, and similarly forW . Hence, the

condition on ι implies ι∗(S(W )) = S(V ), and the assertion follows. Then κ−1, being also

a surjective unital complete isometry, is completely positive, and ψ := κ−1◦φ :Mn →Mn

is a surjective unital completely positive isometry. By Kadison’s structure theorem of

surjective linear isometries between unital C∗-algebras [4], there exists a unitary u ∈Mn

such that (i) ψ(x) = uxu∗ for all x ∈ Mn or (ii) ψ(x) = utxu∗ for all x ∈ Mn. Indeed,

since Mn is a factor, ψ is a *-automorphism or an anti-*-automorphism. In the former

case, (i) is true. In the latter case, ψ composed with the transpose map, x 7→ tψ(x), is

a *-automorphism, and so ψ is of the form (ii). The map in case (ii) is not 2-positive

(Tomiyama [6], Corollary 2.3), and so the case (i) occurs. Hence φ = κ ◦ ψ is also a

complete isometry. This is a contradiction. □

Clearly (4.3) implies n = n′ since dimMq, ζ
n = dimMn = n2 and dimMq′, ζ′

n′ = n′
2
.

The following result shows that it also implies q = q′.

Theorem 4.2. The C∗-envelope C∗
e (M

q, ζ
n ) of Mq, ζ

n equals Mnq−1.

Here we recall the notion of the C∗-envelope, written C∗
e (X), of an operator system

X [2]. (We follow the usage of the notation C∗
e (X) to denote the C∗-envelope of X in

the recent literature.) An operator system X is a norm closed linear subspace of some

unital C∗-algebra such that 1 ∈ X and x ∈ X implies x∗ ∈ X. The C∗-envelope of X is

the C∗-algebra C∗
e (X) uniquely determined by the following properties:

(i) X ⊂ C∗
e (X) and X generates C∗

e (X) as a C∗-algebra;

(ii) if Y ⊂ B with B a unital C∗-algebra is an operator system, there is a unital

complete isometry κ of Y onto X, and C∗(Y ) is the C∗-subalgebra of B generated by

Y , then there exists a *-homomorphism π of C∗(Y ) onto C∗
e (X) extending κ so that

C∗(Y )/Kerπ ∼= C∗
e (X) (*-isomorphic as C∗-algebras).
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If Theorem 4.2 were true, then (4.3) would imply by the uniqueness of the C∗-

envelope that Mnq−1 = C∗
e (M

q, ζ
n ) ∼= C∗

e (M
q′, ζ′

n ) = Mnq′−1 and hence that nq − 1 =

nq′−1 and q = q′ as stated above. To show Theorem 4.2 it suffices to show that Mq, ζ
n =

φζ(Mn) ⊂Mnq−1 generates Mnq−1 as a C∗-algebra. Indeed, the C∗-envelope C∗
e (M

q, ζ
n )

is realized as the quotient C∗-algebra B/I, where B is the C∗-subalgebra of Mnq−1

generated by Mq, ζ
n and I is its ideal. But, since Mnq−1 is simple, B = Mnq−1 implies

I = {0}, and C∗
e (M

q, ζ
n ) = B = Mnq−1. Moreover, since Mnq−1 is finite-dimensional,

B =Mnq−1 if and only if (Mq, ζ
n )′ := {x ∈Mnq−1 : xy = yx, ∀y ∈Mq, ζ

n } = C1nq−1.

Hence Lemma 4.3(iii) below completes the proof of Theorem 4.2 if we take B(H1) =

Mn, PLB(H̃)PL = B(L) = Mnq−1 and PL(B(H1) ⊗ 1H2)PL = φL(B(H1)) = φζ(Mn)

there.

Lemma 4.3. (i) For any subset S of H̃, [[S]] = [S]H1 := lin {ρζH1 : ζ ∈ S} ⊂ H2

is the smallest linear subspace M of H2 such that S ⊂ H1 ⊗M , and

lin (B(H1)⊗ 1H2)S := lin {(x⊗ 1H1)ζ : x ∈ B(H1), ζ ∈ S} = H1 ⊗ [[S]]. (4.4)

(ii) We have

(PL(B(H1)⊗ 1H2)PL)
′ ∩ PLB(H̃)PL = {xPL : x ∈ 1H1 ⊗B(H2), xPL = PLx}, (4.5)

where T ′ := {x ∈ B(H̃) : xy = yx, ∀y ∈ T} for any T ⊂ B(H̃).

(iii) If L = {ζ}⊥ for ζ ∈ Zn, q, then

(PL(B(H1)⊗ 1H2)PL)
′ ∩ PLB(H̃)PL = CPL. (4.6)

Proof. (i) For η ∈ H2, [[S]] ⊂ {η}⊥ ⇐⇒ η ∈ [[S]]⊥ ⇐⇒ ⟨ρζξ∗, η⟩ = 0,

∀ξ ∈ H1, ∀ζ ∈ S ⇐⇒ ⟨ζ, ξ⊗η⟩ = 0, ∀ξ ∈ H1, ∀ζ ∈ S by (2.3) ⇐⇒ H1⊗{η} ⊂ S⊥ ⇐⇒
S ⊂ S⊥⊥ ⊂ (H1 ⊗ {η})⊥ = H1 ⊗ {η}⊥. Since [[S]] =

∩
{{η}⊥ : η ∈ H2, [[S]] ⊂ {η}⊥},

the first assertion follows. Hence S ⊂ H1 ⊗ [[S]] implies N := lin (B(H1) ⊗ 1H2)S ⊂
(B(H1) ⊗ 1H2

)(H1 ⊗ [[S]]) = H1 ⊗ [[S]]. Moreover, since (B(H1) ⊗ 1H2
)N ⊂ N , PN ∈

(B(H1)⊗ 1H2)
′ = 1H1 ⊗B(H2), and PN = 1H1 ⊗PM for some linear subspace M of H2.

It follows that S ⊂ N = H1 ⊗M , [[S]] ⊂M , and H1 ⊗ [[S]] ⊂ H1 ⊗M = N .

(ii) To elucidate the point we start from a slightly general setting. Let M be a

von Neumann algebra, N ⊂M a von Neumann subalgebra, P := N ′ ∩M , and p ∈M a

projection. Then (∗) p(P∩{p}′) ⊂ (pNp)′∩pMp, since p ∈ (pNp)′, P∩{p}′ ⊂ N ′∩{p}′ ⊂
(pNp)′, and so p(P ∩{p}′) ⊂ (pNp)′∩pMp. Under certain conditions onM, N and p we

show the reverse inclusion. Then (4.5) follows if we take M = B(H̃) = B(H1)⊗B(H2),

N = B(H1)⊗ 1H2 and p = PL, and show that the conditions hold for such M, N and p.

The argument in this and the next paragraphs is due to the referee. Suppose there

is a faithful conditional expectation ψ of M onto P such that

xψ(p) = pψ(x), ∀x ∈ (pNp)′ ∩ pMp, and (a)

if q is the support projection of ψ(p) in P , then ψ(p) is invertible in qPq. (b)

Then q is the smallest projection in P such that p ≤ q, since ψ is faithful, so ψ((1−q)p(1−



440(92)

440 M. Hamana

q)) = (1− q)ψ(p)(1− q) = 0 implies (1− q)p(1− q) = 0 and p ≤ q, and since p ≤ q′ for a

projection q′ in P implies ψ(p) ≤ ψ(q′) = q′ and q ≤ q′. Replacing x by x∗ in (a) shows

ψ(p)x = ψ(x)p, and (a) implies that x = xq = xψ(p)ψ(p)−1 = pψ(x)ψ(p)−1 and similarly

x = ψ(p)−1ψ(x)p for x ∈ (pNp)′ ∩ pMp. Here ψ(x)ψ(p)−1 = ψ(p)−1ψ(x) =: y ∈ P , so

x = py = yp holds, and it follows that y ∈ P ∩{p}′ and x = py ∈ p(P ∩{p}′), showing the

reverse inclusion in (∗). Indeed, by (a), ψ(x)ψ(p) = ψ(xψ(p)) = ψ(ψ(p)x) = ψ(p)ψ(x),

so ψ(p)−1ψ(x)q = qψ(x)ψ(p)−1, and ψ(p)−1ψ(x) = ψ(x)ψ(p)−1, since p ≤ q ∈ P and

x ∈ pMp imply that ψ(x)q = ψ(xq) = ψ(x) and qψ(x) = ψ(x).

It remains only to show the existence of ψ as above forM = B(H̃), N = B(H1)⊗1H2
,

and p = PL. The unitary group U of B(H1)⊗ 1H2 is a compact group with the unique,

normalized, left and right invariant Haar measure du. Then the left invariance of du

shows that the map ψ : B(H̃) → B(H̃) defined by ψ(x) =
∫
U
uxu∗ du, x ∈ B(H̃),

is a conditional expectation of B(H̃) onto (B(H1) ⊗ 1H2
)′ = 1H1

⊗ B(H2). Moreover,

ψ(B(H1) ⊗ 1H2) ⊂ (B(H1) ⊗ 1H2) ∩ (1H1 ⊗ B(H2)) = C1H̃ and the right invariance of

du show that ψ(a⊗ 1H2) = tr(a)1H̃ = 1H1 ⊗ tr(a)1H2 and so ψ(a⊗ b) = 1H1 ⊗ tr(a)b for

a ∈ B(H1) and b ∈ B(H2), where tr is the unique normalized trace of B(H1). Hence, if we

denote by tr⊗idB(H2) : B(H̃) = B(H1)⊗B(H2) → B(H2) the right slice map
∑

i ai⊗bi 7→∑
i tr(ai)bi, ai ∈ B(H1), bi ∈ B(H2), then ψ(x) = 1H1 ⊗ (tr ⊗ idB(H2))(x), x ∈ B(H̃).

Since tr is faithful, ψ is also faithful. If x ∈ (PL(B(H1)⊗1H2)PL)
′∩PLB(H̃)PL, then for

all u ∈ U, xPLuPLu
∗ = PLuPLxu

∗, and xuPLu
∗ = PLuxu

∗ since xPL = PLx = x. Hence

integration over U shows xψ(PL) = PLψ(x), and (a) above is true. By (i), 1H1 ⊗ P[[L]]

is the smallest projection in 1H1
⊗B(H2) majorizing PL, and by the previous paragraph

it is the support projection of ψ(PL). Finally, since 1H1 ⊗ B(H2) is finite-dimensional,

ψ(PL) is invertible in 1H1 ⊗ P[[L]]B(H2)P[[L]], showing (b).

(iii) It suffices to show that ifQ ∈ (PL(B(H1)⊗1H2)PL)
′∩PLB(H̃)PL is a projection,

then Q = 0 or PL. By (ii), Q = (1H1
⊗ q)PL for some projection q ∈ B(H2) such that

1H1 ⊗ q ∈ {PL}′. Since L = {ζ}⊥ and 1H̃ − PL = PCζ , (1H1 ⊗ q)PCζ = PCζ(1H1 ⊗ q)

equals 0 or PCζ . Hence PCζ ≤ 1H1 ⊗ (1H2 − q) or PCζ ≤ 1H1 ⊗ q. Since [[Cζ]] = H2 as

noted before, (i) implies 1H1 ⊗ 1H2 ≤ 1H1 ⊗ (1H2 − q) or 1H1 ⊗ 1H2 ≤ 1H1 ⊗ q. Therefore

q = 0 or 1H2 , Q = 0 or PL, as desired. □

The following is a key to the classification of {Mq, ζ
n }.

Theorem 4.4. For i = 1, 2 let ζi ∈ Zn, q, Li := {ζi}⊥, and regard Mq, ζi
n =

φζi(B(H1)) = PLi(B(H1)⊗ 1H2)PLi ⊂ B(H1 ⊗H2).

(i) A linear map κ : Mq, ζ1
n → Mq, ζ2

n is a surjective unital complete isometry if and

only if κ(PL1(x⊗ 1H2)PL1) = PL2(uxu
∗ ⊗ 1H2)PL2 for all x ∈ B(H1), where u ∈ B(H1)

is a unitary such that (u⊗ v)ζ1 = ζ2 for some unitary v ∈ B(H2).

(ii) We have Mq, ζ1
n

∼= Mq, ζ2
n if and only if there exist unitaries u ∈ B(H1) and

v ∈ B(H2) such that (u⊗ v)ζ1 = ζ2.

For the proof we need the following two lemmas, which take care of u and v as in

the above statement, respectively.
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Lemma 4.5. For i = 1, 2 let ζi ∈ Zn, q, Li := {ζi}⊥ and let U ∈ B(H1 ⊗H2) be a

unitary such that Uζ1 = ζ2. If

UPL1(B(H1)⊗ 1H2)PL1U
∗ = PL2(B(H1)⊗ 1H2)PL2 , (4.7)

then there exists a unitary u ∈ B(H1) such that

UPL1(x⊗ 1H2)PL1U
∗ = PL2(uxu

∗ ⊗ 1H2)PL2 , ∀x ∈ B(H1). (4.8)

Proof. The following map ψ : B(H1) → B(H1) is a surjective unital linear

isometry:

x 7→ φζ1(x) = PL1(x⊗ 1H2)PL1 7→ UPL1(x⊗ 1H2)PL1U
∗

7→ φ−1
ζ2

(UPL1(x⊗ 1H2)PL1U
∗) =: ψ(x).

Indeed, φζi : B(H1) → φζi(B(H1)) = PLi(B(H1) ⊗ 1H2)PLi (i = 1, 2) are lin-

ear isometries, and by (4.7), UPL1(x ⊗ 1H2)PL1U
∗ ∈ UPL1(B(H1) ⊗ 1H2)PL1U

∗ =

PL2(B(H1)⊗ 1H2)PL2 = φζ2(B(H1)). Then

UPL1(x⊗ 1H2)PL1U
∗ = φζ2(ψ(x)) = PL2(ψ(x)⊗ 1H2)PL2 , ∀x ∈ B(H1). (4.9)

As used in the proof of Proposition 4.1, Kadison’s result [4] shows that the unital linear

isometry ψ is of the following form: for some unitary u in B(H1), (i) ψ(x) = uxu∗ for

all x ∈ B(H1) or (ii) ψ(x) = utxu∗ for all x ∈ B(H1).

We show that the case (ii) does not occur. Indeed, if (ii) holds, then (4.9) implies

(u∗ ⊗ 1H2)UPL1(x⊗ 1H2)PL1U
∗(u⊗ 1H2)

=(u∗ ⊗ 1H2)PL2(u⊗ 1H2)(
tx⊗ 1H2)(u

∗ ⊗ 1H2)PL2(u⊗ 1H2)

=P(u∗⊗1H2 )L2
(tx⊗ 1H2)P(u∗⊗1H2 )L2

= P0(
tx⊗ 1H2)P0

for all x ∈ B(H1), where P0 := P(u∗⊗1H2
)L2

. Since the map x 7→ (u∗ ⊗ 1H2
)UPL1

(x ⊗
1H2)PL1U

∗(u ⊗ 1H2) on B(H1) is completely positive, so is the map τ : x 7→ P0(
tx ⊗

1H2)P0 on B(H1). But the latter is not 2-positive. To see this we use a well-known

argument showing that the transpose is not 2-positive (see [1]). Let ζ0 := (u∗⊗1H2)ζ2 =∑n
i=1 εi ⊗ η

(0)
i ∈ H̃, where η

(0)
i ∈ H2 and {εi}1≤i≤n is an orthonormal basis for H1.

Since ∥ζ0∥ = ∥ζ2∥ = 1, by renumbering if necessary we may assume that η
(0)
1 ̸= 0. Let

ε′1 := ∥η(0)1 ∥−1η
(0)
1 ∈ H2 so that η

(0)
1 = ∥η(0)1 ∥ε′1 and ∥ε′1∥ = 1, and let

ζ ′1 := λ1(ε1 ⊗ ε′1) + ε3 ⊗ ε′1, ζ ′2 := λ2(ε1 ⊗ ε′1)− ε2 ⊗ ε′1,

where λ1, λ2 ∈ C are specified later (note that n ≥ 3). Since ⟨ζ ′1, ζ0⟩ = λ1∥η(0)1 ∥ +

⟨ε′1, η
(0)
3 ⟩, ⟨ζ ′2, ζ0⟩ = λ2∥η(0)1 ∥−⟨ε′1, η

(0)
2 ⟩, we may take λ1, λ2 so that ⟨ζ ′1, ζ0⟩ = ⟨ζ ′2, ζ0⟩ =

0 and hence so that ζ ′1, ζ
′
2 ∈ {ζ0}⊥ = (u∗ ⊗ 1H2){ζ2}⊥ = (u∗ ⊗ 1H2)L2 = P0H̃.

If x11 := e22, x12 := e23, x21 := e32, x22 := e33 ∈ B(H1), where eij := εiε
∗
j , then
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[xij ]1≤i, j≤2 ∈ B(H1) ⊗M2 is positive, since x/2 is a projection, but τ2

([
x11 x12
x21 x22

])
=[

P0 0

0 P0

] [
tx11 ⊗ 1H2

tx12 ⊗ 1H2

tx21 ⊗ 1H2
tx22 ⊗ 1H2

] [
P0 0

0 P0

]
is not positive, since P0ζ

′
1 = ζ ′1, P0ζ

′
2 = ζ ′2,

⟨[
P0 0

0 P0

] [
tx11 ⊗ 1H2

tx12 ⊗ 1H2

tx21 ⊗ 1H2
tx22 ⊗ 1H2

] [
P0 0

0 P0

] [
ζ ′1
ζ ′2

]
,

[
ζ ′1
ζ ′2

]⟩
=

⟨[
e22 ⊗ 1H2 e32 ⊗ 1H2

e23 ⊗ 1H2 e33 ⊗ 1H2

] [
ζ ′1
ζ ′2

]
,

[
ζ ′1
ζ ′2

]⟩
=

⟨[
−ε3 ⊗ ε′1
ε2 ⊗ ε′1

]
,

[
λ1(ε1 ⊗ ε′1) + ε3 ⊗ ε′1
λ2(ε1 ⊗ ε′1)− ε2 ⊗ ε′1

]⟩
= −2.

Hence (i) holds, and substitution of (i) for (4.9) shows (4.8). □

Lemma 4.6. Let ζ1 ∈ Zn, q and L1 := {ζ1}⊥. If there exists a unitary U1 ∈
B(H1 ⊗H2) such that ζ2 = U1ζ1 ∈ Zn, q and

PL1(x⊗ 1H2)PL1 = PL1U
∗
1 (x⊗ 1H2)U1PL1 , ∀x ∈ B(H1), (4.10)

then there exist a unitary v ∈ B(H2) and λ0 ∈ C such that

U1 = 1H1 ⊗ v + λ0ζ2ζ
∗
1 , |1− λ0| = 1. (4.11)

Proof. We use the technique in the proof of Lemma 4.3 (ii) suggested by the

referee. We have (4.10) ⇐⇒

U1PL1(x⊗ 1H2)PL1 = PL2(x⊗ 1H2)U1PL1 , ∀x ∈ B(H1) (4.12)

(since U1PL1U
∗
1 = PU1L1 = PL2) ⇐⇒ U1PL1uPL1u

∗ = PL2uU1PL1u
∗, ∀u ∈ U, the

unitary group of B(H1) ⊗ 1H2 , which implies as in the proof of Lemma 4.3 (ii) that

U1PL1(1H1 ⊗ (tr ⊗ idB(H2))(PL1)) = PL2(1H1 ⊗ (tr ⊗ idB(H2))(U1PL1)) and the support

projection of (tr ⊗ idB(H2))(PL1) equals P[[L1]]. Here P[[L1]] = 1H2 , since PL1 ≤ 1H1 ⊗
P[[L1]] by Lemma 4.3 (i) and so nq − 1 = dim H̃ − 1 = rankPL1 ≤ n · rankP[[L1]] ≤ nq

and n ≥ q ≥ 3 imply rankP[[L1]] = q = dimH2. Hence (tr ⊗ idB(H2))(PL1) is invertible

in B(H2), and if we set v := (tr⊗ idB(H2))(U1PL1)(tr⊗ idB(H2))(PL1)
−1 ∈ B(H2), then

U1PL1 = PL2(1H1 ⊗ v). (4.13)

By substituting (4.13) for (4.12) it follows that PL2(B(H1)⊗1H2)PCζ2(1H1⊗v)PL1 = {0}.
Then we have PCζ2(1H1⊗v)PL1 = 0, so (1H1⊗v)PL1 = PL2(1H1⊗v)PL1 , and since (4.13)

implies PL2(1H1 ⊗ v)PL1 = PL2(1H1 ⊗ v), it follows that

(1H1 ⊗ v)PL1 = PL2(1H1 ⊗ v). (4.14)

Indeed, otherwise PCζ2(1H1 ⊗ v)PL1H̃ = Cζ2, and
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{0} = PL2(B(H1)⊗ 1H2)PCζ2(1H1 ⊗ v)PL1H̃ = PL2(B(H1)⊗ 1H2)(Cζ2)
= PL2(H1 ⊗ [[Cζ2]]) = PL2(H1 ⊗H2) = L2

by (4.4) and the fact that ζ2 ∈ Zn, q, a contradiction.

Now we show that v is a unitary in B(H2). Indeed, by (4.13) and (4.14), U1PL1 =

(1H1 ⊗ v)PL1 , and by substituting this for (4.10) it follows that

{0} = PL1(1H1 ⊗ (1H2 − v∗v))(B(H1)⊗ 1H2)PL1 ,

and by (4.4) and the fact that [[L1]] = H2 shown above,

{0} = PL1(1H1 ⊗ (1H2 − v∗v))(H1 ⊗ [[L1]])

= PL1(H1 ⊗ (1H2 − v∗v)H2).

HenceH1⊗(1H2−v∗v)H2 ⊂ L⊥
1 = Cζ1. But, since dimH1 = n ≥ 3, (1H2−v∗v)H2 = {0},

v∗v = 1H2 . Since dimH2 <∞, it follows that v is a unitary.

We have U1PCζ1 = ζ2ζ
∗
1 and PCζ2(1H1 ⊗ v) = ζ2ζ

∗
3 for some ζ3 ∈ H̃, since U1ζ1 = ζ2

and PCζ2(1H1 ⊗ v)H̃ ⊂ Cζ2, and

U1 = U1PL1
+ U1PCζ1 = PL2

(1H1
⊗ v) + U1PCζ1 (4.15)

= 1H1 ⊗ v − PCζ2(1H1 ⊗ v) + U1PCζ1 = 1H1 ⊗ v + ζ2ζ
∗
4 ,

where ζ4 := ζ1 − ζ3 ∈ H̃. Then ζ4 = λ0ζ1 for some λ0 ∈ C, since PL2U1 = U1PL1 and

PL2(1H1⊗v) = (1H1⊗v)PL1 imply that by (4.15), ζ2ζ
∗
4 = PCζ2ζ2ζ

∗
4 = PCζ2(U1−1H1⊗v) =

(U1−1H1⊗v)PCζ1 and ζ2ζ
∗
4 = ζ2ζ

∗
4PCζ1 . Hence the first equality in (4.11) follows. Finally,

since (1H1⊗v)ζ1 = U1ζ1−λ0ζ2ζ∗1 ζ1 = (1−λ0)ζ2, |1−λ0| = ∥(1−λ0)ζ2∥ = ∥(1H1⊗v)ζ1∥ =

∥ζ1∥ = 1. □

Proof of Theorem 4.4. (i) (⇐): Suppose that there exist unitaries u ∈ B(H1)

and v ∈ B(H2) such that (u ⊗ v)ζ1 = ζ2 and let U := u ⊗ v ∈ B(H1 ⊗H2). Then U is

a unitary and UPL1 = PL2U , since Uζ1 = ζ2 implies that UL1 = U{ζ1}⊥ = {Uζ1}⊥ =

{ζ2}⊥ = L2 and UPL1U
∗ = PUL1 = PL2 . Hence, for all x ∈ B(H1),

UPL1(x⊗ 1H2)PL1U
∗ = PL2U(x⊗ 1H2)U

∗PL2 = PL2(uxu
∗ ⊗ 1H2)PL2 ,

and

UMq, ζ1
n U∗ = UPL1(B(H1)⊗ 1H2)PL1U

∗ = PL2(B(H1)⊗ 1H2)PL2 =Mq, ζ2
n .

So the map PL1(x ⊗ 1H2)PL1 7→ PL2(uxu
∗ ⊗ 1H2)PL2 , x ∈ B(H1), is a unital complete

isometry of Mq, ζ1
n onto Mq, ζ2

n .

(⇒): If there exists a surjective unital complete isometry κ : Mq, ζ1
n → Mq, ζ2

n , then

κ extends to a surjective unital complete isometry κ̂ : PL1B(H1 ⊗ H2)PL1 = B(L1) →
PL2B(H1⊗H2)PL2 = B(L2), since C

∗
e (M

q, ζi
n ) = PLiB(H1⊗H2)PLi by Theorem 4.2 and

the C∗-envelopes are unique. Then there exists a surjective linear isometry U0 : L1 → L2

such that κ̂(x) = U0xU
∗
0 for all x ∈ PL1B(H1 ⊗H2)PL1 . Since H = Li ⊕ L⊥

i = Li ⊕Cζi
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(i = 1, 2), we obtain a unitary U ∈ B(H1 ⊗ H2) such that U |L1 = U0 and Uζ1 = ζ2.

Then, since κ̂(Mq, ζ1
n ) = κ(Mq, ζ1

n ) =Mq, ζ2
n and U0 = U |L1, it follows that

UPL1(B(H1)⊗ 1H2)PL1U
∗ = PL2(B(H1)⊗ 1H2)PL2 .

Now Lemma 4.5 together with Uζ1 = ζ2 shows that there exists a unitary u ∈ B(H1)

such that

UPL1(x⊗ 1H2)PL1U
∗ = PL2(uxu

∗ ⊗ 1H2)PL2 , ∀x ∈ B(H1).

If we set U1 := (u∗ ⊗ 1H2)U , then PL2(u ⊗ 1H2) = UPL1U
∗(u ⊗ 1H2) = UPL1U

∗
1 , since

Uζ1 = ζ2 implies that PL2 = UPL1U
∗ as seen above. Substituting this for the above

equality we have the following:

PL1(x⊗ 1H2)PL1 = PL1U
∗
1 (x⊗ 1H2)U1PL1 , ∀x ∈ B(H1).

Since ζ2 = Uζ1 ∈ Zn, q, we have, in view of (4.1), ζ3 := U1ζ1 = (u∗ ⊗ 1H2)Uζ1 =

(u∗ ⊗ 1H2)ζ2 ∈ Zn, q. Hence Lemma 4.6 applies, and it follows that there exist a unitary

v ∈ B(H2) and λ0 ∈ C such that

U1 = 1H1 ⊗ v + λ0ζ3ζ
∗
1 , |1− λ0| = 1.

Thus

U = (u⊗ 1H2)U1 = u⊗ v + λ0(u⊗ 1H2)ζ3ζ
∗
1 = u⊗ v + λ0ζ2ζ

∗
1 .

Since Uζ1 = ζ2 and |1−λ0| = 1, we have (u⊗ v)ζ1 = Uζ1 −λ0ζ2ζ
∗
1 ζ1 = (1−λ0)ζ2, u1 :=

(1 − λ0)
−1u ∈ B(H1) is a unitary, and (u1 ⊗ v)ζ1 = ζ2. Moreover, UPL1 = (u ⊗ v)PL1 ,

since ζ2ζ
∗
1PL1

= ζ2ζ
∗
1 (1H̃ − ζ1ζ

∗
1 ) = 0; (u1 ⊗ v)PL1

= PL2
(u1 ⊗ v), since (u1 ⊗ v)ζ1 = ζ2;

and for all x ∈ B(H1),

κ(PL1(x⊗ 1H1)PL1) = κ̂(PL1(x⊗ 1H1)PL1) = UPL1(x⊗ 1H1)PL1U
∗

= (u⊗ v)PL1(x⊗ 1H1)PL1(u⊗ v)∗

= (u1 ⊗ v)PL1(x⊗ 1H1)PL1(u1 ⊗ v)∗

= PL2(u1 ⊗ v)(x⊗ 1H1)(u
∗
1 ⊗ v∗)PL2

= PL2(u1xu
∗
1 ⊗ 1H2)PL2 .

(ii) This is obvious from the above argument in (i). □

To state the following theorem we need some notation and a lemma. Write

Mn, q := {Mq, ζ
n : ζ ∈ Zn, q};

define an equivalence relation ∼ on Mn, q by writing Mq, ζ1
n ∼ Mq, ζ2

n if and only if

Mq, ζ1
n

∼= Mq, ζ2
n ; and denote by Mn, q/∼ the set of all equivalence classes. Consider the

following set:



445(97)

Completely positive isometries between matrix algebras 445

Λq := {λ = (λ1, . . . , λq) ∈ Rq : λ1 ≥ · · · ≥ λq > 0,

q∑
i=1

λ2i = 1}. (4.16)

Since q = dimH2 ≤ dimH1 = n, we may assume H2 ⊂ H1, and we identify B(H2) =

PH2B(H1)PH2 ⊂ B(H1, H2) = PH2B(H1) ⊂ B(H1). Take a fixed orthonormal basis

{ε0i }1≤i≤n for H1 so that H2 =
∑q

i=1 Cε0i and {ε0i }1≤i≤q is an orthonormal basis for H2.

For each λ = (λi) ∈ Λq write

ζλ :=

q∑
i=1

λiε
0
i ⊗ ε0i ∈ Zn, q, Lλ := {ζλ}⊥ ⊂ H1 ⊗H2,

Mq, λ
n :=Mq, ζλ

n = PLλ
(B(H1)⊗ 1H2)PLλ

⊂ PLλ
B(H1 ⊗H2)PLλ

.

Hence we obtain the following subsets of Zn, q and Mn, q parametrized by Λq:

Z0
n, q := {ζλ : λ ∈ Λq},

M0
n, q := {Mq, λ

n : λ ∈ Λq}.

Denote by U1 = U(H1), U2 = U(H2) the unitary groups of B(H1), B(H2), respectively,

and define an action of the product group U1 × U2 on H1 ⊗H2 by

(u, v)ζ := (u⊗ v)ζ, (u, v) ∈ U1 × U2, ζ ∈ H1 ⊗H2.

Lemma 4.7. (i) Each ζ in H1 ⊗H2 is written in the form

ζ =

q∑
i=1

λiε
′
i ⊗ εi, (4.17)

where λi ∈ R (1 ≤ i ≤ q), λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0, and {ε′i}1≤i≤q ⊂ H1 and {εi}1≤i≤q ⊂
H2 are orthonormal.

(ii) The vector ζ in (i) has another expression ζ =
∑q

i=1 µiδ
′
i ⊗ δi for {µi}, {δ′i}

and {δi} as above if and only if λi = µi (1 ≤ i ≤ q) and there exist unitary matrices

[α
(k)
ij ]i, j∈Ik (1 ≤ k ≤ s) such that

δ′i =
∑
j∈Ik

α
(k)
ij ε

′
j , δi =

∑
j∈Ik

α
(k)
ij εj (i ∈ Ik, 1 ≤ k ≤ s), (4.18)

where Ik (1 ≤ k ≤ s) are the partition of {1, 2, . . . , q′} that we define by taking q′ ≤ q

as the largest i with λi > 0 and by setting {λ1, λ2, . . . , λq′} = {λ′1, . . . , λ′s} (λ′1 > · · · >
λ′s > 0) and Ik = {i ∈ {1, 2, . . . , q′} : λi = λ′k} (1 ≤ k ≤ s).

Proof. (i) For the linear isomorphism ρ : H1 ⊗ H2 → B(H1, H2) defined in

Section 2 consider the polar decomposition ρ∗ζ = u0|ρ∗ζ | of ρ∗ζ ∈ B(H2, H1), where |ρ∗ζ | ∈
B(H2) and u0 ∈ B(H2, H1) is the unique partial isometry such that u∗0u0H2 = |ρ∗ζ |H2.

The spectral decomposition of |ρ∗ζ | is of the form |ρ∗ζ | =
∑q

i=1 λiεiε
∗
i , where λ1 ≥ · · · ≥

λq ≥ 0 and {εi}1≤i≤q is an orthonormal basis for H2. Let q′ ≤ q be such that λq′ > 0
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and λi = 0 for i > q′. Then u∗0u0H2 =
∑q′

i=1 Cεi, {u0εi}1≤i≤q′ is an orthonormal

set in H1, and we may take an orthonormal set {ε′i}1≤i≤q in H1 so that u0εi = (ε′i)
∗

(1 ≤ i ≤ q′), = 0 (i > q′). It follows that ζ =
∑q

i=1 λiε
′
i ⊗ εi. Indeed, let ζ ′ =∑q

i=1 λiε
′
i ⊗ εi. Then ρ∗ζεj = u0|ρ∗ζ |εj = u0(λjεj) = λj(ε

′
j)

∗ (1 ≤ j ≤ q); by (2.4),

ρ∗ζ′εj = (
∑q

i=1 λi(ε
′
i)

∗εi
∗)εj = λj(ε

′
j)

∗ (1 ≤ j ≤ q); and since ρ is injective, ζ = ζ ′.

(ii) For simplicity we assume that λq > 0 and hence that q′ = q. The case λq = 0 is

treated similarly.

(⇒): Suppose ζ =
∑q

i=1 λiε
′
i ⊗ εi =

∑q
i=1 µiδ

′
i ⊗ δi. The argument in (i) shows

that
∑q

i=1 λiε
′
i ⊗ εi =

∑q
i=1 µiδ

′
i ⊗ δi ⇐⇒ (a) |ρ∗ζ | =

∑q
i=1 λiεiεi

∗ =
∑q

i=1 µiδiδi
∗

(by (2.4)) and (b) u0εi = ε′i
∗
, u0δi = δ′i

∗
(1 ≤ i ≤ q). Then (a) holds ⇐⇒ λi = µi

(1 ≤ i ≤ q) and
∑

i∈Ik
ε′i ⊗ εi =

∑
i∈Ik

δ′i ⊗ δi (1 ≤ k ≤ s). The latter condition

implies that δi =
∑

j∈Ik
α
(k)
ij εj for some α

(k)
ij ∈ C (i ∈ Ik, 1 ≤ k ≤ s). By (b), δ′i

∗
=

u0δi =
∑

j∈Ik
α
(k)
ij u0εj =

∑
j∈Ik

α
(k)
ij ε

′
j
∗
= (

∑
j∈Ik

α
(k)
ij ε

′
j)

∗, and δ′i =
∑

j∈Ik
α
(k)
ij ε

′
j (i ∈

Ik, 1 ≤ k ≤ s). Finally, since {δi}i∈Ik and {εi}i∈Ik are both orthonormal, the matrices

[α
(k)
ij ]i, j∈Ik are unitary.

The implication (⇐) follows from a direct computation. □

Theorem 4.8. We have M0
n, q = {Mq, λ

n : λ ∈ Λq} ⊂ Mn, q = {Mq, ζ
n : ζ ∈ Zn, q} ;

for each ζ ∈ Zn, q there exists a unique λ ∈ Λq so that Mq, ζ
n

∼=Mq, λ
n ; and if λ1, λ2 ∈ Λq

and λ1 ̸= λ2, then Mq, λ1
n ̸∼= Mq, λ2

n . Hence we can identify the set Mn, q/ ∼ of all

equivalence classes with Λq.

Proof. In view of (4.1), the set Zn, q is stable under the action of U1×U2 defined

above, and so we can consider the set Zn, q/∼ consisting of all orbits [ζ] := {(u, v)ζ :

(u, v) ∈ U1×U2} of elements ζ of Zn, q. Then Theorem 4.4(ii) shows thatMq, ζ1
n

∼=Mq, ζ2
n

if and only if [ζ1] = [ζ2] and hence that the map Mn, q → Zn, q/∼, Mq, ζ
n 7→ [ζ], induces

a bijection between Mn, q/∼ and Zn, q/∼.

Now we define a map σ : Zn, q/∼→ Λq by using (4.17) in Lemma 4.7. Let ζ ∈ Zn, q.

Then λ := (λ1, . . . , λq) ∈ Λq for λ1 ≥ · · · ≥ λq ≥ 0 in (4.17), since rank |ρ∗ζ | = rank ρ∗ζ =

rank ρζ = q, so λq > 0, and ∥ζ∥ = 1. Then define σ([ζ]) := λ. That σ is a well-

defined bijection is almost obvious. Indeed, for ζ, ζ ′ ∈ Zn, q, ζ =
∑q

i=1 λiε
′
i ⊗ εi and

ζ ′ =
∑q

i=1 λiδ
′
i ⊗ δi for some λ = (λi) ∈ Λq and orthonormal {ε′i}, {δ′i} ⊂ H1 and

{εi}, {δi} ⊂ H2 if and only if there exists (u, v) ∈ U1 × U2 such that ζ ′ = (u⊗ v)ζ, i.e.,

[ζ] = [ζ ′]. This shows that σ is a well-defined injection. Further, σ([ζλ]) = λ for each

λ ∈ Λq, and σ is a surjection. □

Let X be an operator system. We call a unital complete isometry of X onto itself

an automorphim of X, and denote by AutX the group of all automorphisms of X. We

determine the automorphism group AutMq, λ
n of the operator system Mq, λ

n . It turns

out that AutMq, λ
n is rather different from AutMn, which is isomorphic to the quotient

group U(n)/T1n, where U(n) := {u ∈ Mn : u∗u = uu∗ = 1n} is the unitary group of

Mn and T := {µ ∈ C : |µ| = 1}.
In order to describe AutMq, λ

n we introduce some notation. For λ = (λ1, . . . , λq) ∈
Λq define a subgroup Uλ of U(n) as follows. As in the statement of Lemma 4.7 (ii),
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let {λ1, . . . , λq} = {λ′1, . . . , λ′s} (λ′1 > · · · > λ′s) and Ik = {i ∈ {1, . . . , q} : λi = λ′k}
(1 ≤ k ≤ s). Further, let I0 = {q + 1, . . . , n}(= ∅ if n = q),

K1 :=
∑
i∈I1

Cε0i , . . . , Ks :=
∑
i∈Is

Cε0i , K0 :=
∑
i∈I0

Cε0i ,

so that K1⊕· · ·⊕Ks =
∑q

i=1 Cε0i = H2 ⊂ K1⊕· · ·⊕Ks⊕K0 =
∑n

i=1 Cε0i = H1. Define

a subgroup Uλ of U(n) = U(B(H1)) by

Uλ := U(K1)⊕ · · · ⊕ U(Ks)⊕ U(K0),

where U(Kk) := U(B(Kk)) is the unitary group of B(Kk) (0 ≤ k ≤ s) and when n = q

we regard the last summand U(K0) as missing.

Proposition 4.9. For λ ∈ Λq and Uλ as above, every automorphism of Mq, λ
n =

PLλ
(B(H1) ⊗ 1H2)PLλ

is of the form PLλ
(x ⊗ 1H2)PLλ

7→ PLλ
(uxu∗ ⊗ 1H2)PLλ

, x ∈
B(H1), for some u ∈ Uλ ; two such automorphisms corresponding to u, u′ ∈ Uλ coincide

if and only if u∗u′ ∈ T1n ; and the automorphism group AutMq, λ
n of Mq, λ

n is isomorphic

to Uλ/T1n.

Proof. By Theorem 4.4 (i) an automorphism ofMq, λ
n is characterized as the map

PLλ
(x⊗ 1H2)PLλ

7→ PLλ
(uxu∗ ⊗ 1H2)PLλ

, x ∈ B(H1),

for some u ∈ U(H1) for which (∗) there exists v ∈ U(H2) such that (u⊗v)ζλ = ζλ. Since

φζλ : B(H1) → PLλ
(B(H1) ⊗ 1H2)PLλ

, x 7→ PLλ
(x ⊗ 1H2)PLλ

, is a linear isometry, for

u, u′ ∈ U(H1) we have PLλ
(uxu∗ ⊗ 1H2)PLλ

= PLλ
(u′xu′

∗ ⊗ 1H2)PLλ
for all x ∈ B(H1)

if and only if uxu∗ = u′xu′
∗
for all x ∈ B(H1), i.e., u

∗u′ ∈ T1n.
Hence it remains only to show that for u ∈ U(H1) we have (∗) if and only if u ∈ Uλ.

In the notation λ′k, Ik, etc. as above we have ζλ =
∑q

i=1 λi(ε
0
i⊗ε0i ) =

∑s
k=1 λ

′
k

∑
i∈Ik

(ε0i⊗
ε0i ) and (u⊗v)ζλ =

∑s
k=1 λ

′
k

∑
i∈Ik

(uε0i ⊗vε0i ). If (u⊗v)ζλ = ζλ, then, by Lemma 4.7 (ii),

uε0i =
∑

j∈Ik
α
(k)
ij ε

0
j , vε

0
i =

∑
j∈Ik

α
(k)
ij ε

0
j (i ∈ Ik, 1 ≤ k ≤ s) for some unitary matrices

[α
(k)
ij ]i, j∈Ik (1 ≤ k ≤ s). Hence uKk = Kk (1 ≤ k ≤ s), so uK0 = K0, too, and u ∈ Uλ.

Conversely, let u ∈ Uλ and so u = u1 ⊕ · · · ⊕ us ⊕ u0 for uk ∈ U(Kk) (k = 1, . . . , s, 0).

Define unitary matrices [β
(k)
ij ]i, j∈Ik (1 ≤ k ≤ s) by ukε

0
i =

∑
j∈Ik

β
(k)
ij ε

0
j (i ∈ Ik, 1 ≤ k ≤

s). Then [β
(k)
ij ]i, j∈Ik (1 ≤ k ≤ s) are also unitary, and a unitary v ∈ U(H2) is defined

by v = v1 ⊕ · · · ⊕ vs, where vk ∈ U(Kk) and vkε
0
i =

∑
j∈Ik

β
(k)
ij ε

0
j (i ∈ Ik, 1 ≤ k ≤ s). It

follows again from Lemma 4.7 (ii) that (u⊗ v)ζλ = ζλ. □

5. Two questions.

Theorem 3.1 describes the isometric degree id(φL) of φL in terms of [[L⊥]] ⊂ H2 and

l := lengthL⊥. That is, id(φL) = ∞ if and only if [[L⊥]] ⫋ H2, and if id(φL) < ∞ and

so [[L⊥]] = H2, then id(φL) = [(l − 1)/2]. But our satisfactory computation of lengthL⊥

is essentially confined to the case dimL⊥ = 1 (Lemma 3.6). So it would be interesting
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to answer the following:

Question 1. Can we compute lengthM for any linear subspace M of H1 ⊗ H2

effectively?

The following remark may be useful in treating the case dimM ≥ 2. If we set

N := ρM = {ρζ : ζ ∈M} ⊂ B(H1, H2), then

lengthM = min{dimT : T ⊂ H1 linear, linNT = linNH1},

and by the proof of Lemma 3.5 (iii) we have the estimate:

lengthM ≤ min{ max
1≤i≤k

rank ai : a1, . . . , ak ∈ N, lin {a1, . . . , ak} = N, k = 1, 2, . . . }.

Indeed, if N = lin {a1, . . . , ak} for some finite {a1, . . . , ak} ⊂ N , then, by Lemma 3.5

(ii) there exists a linear subspace T0 of H1 with dimT0 = max1≤i≤k rank ai =: r such that

aiT0 = aiH1 for all i. Hence linNT0 = a1T0+ · · ·+akT0 = a1H1+ · · ·+akH1 = linNH1,

and (∗) lengthM ≤ r. By varying the ai’s the inequality follows.

Equality in (∗) holds provided that the ai’s (1 ≤ i ≤ k) satisfy further the condition

that the sum a1H1 + · · · + akH1 is a direct sum. For, we have rank ai0 = r for some

i0, and dim ai0H1 = r. If T is a linear subspace of H1 with dimT ≤ r − 1, then

dim ai0T ≤ dimT ≤ r − 1, and ai0T ⫋ ai0H1. By the assumption on the ai’s it follows

that linNT = a1T + · · · + akT ⫋ a1H1 + · · · + akH1 = linNH1. Thus this and the

argument in the preceding paragraph show that lengthM = r.

Question 2. Given positive integers n, m with n ≥ 3 and 1 ≤ m ≤ [(n− 1)/2],

what is the least number p for which there exists φL :Mn →Mp with id(φL) = m?

Theorem 3.2 shows that such a least number, p0, exists and p0 ≤ n(2m + 1) − 1.

Note also that if we can find one φL0 : Mn → Mp0 with id(φL0) = m, then, for each

p > p0 there exists φL : Mn → Mp such that id(φL) = m. Indeed, take Hilbert spaces

K1, K2 so that dimK1 = p0, dimK2 =: q <∞, and p0 < p ≤ p0q. Then there is a linear

subspace L of K1 ⊗K2 so that dimL = p and K1 ⊗ η0 ⊂ L ⊂ K1 ⊗K2 for some unit

vector η0 ∈ K2. By Theorem 3.1(ii), the map κ : Mp0 = B(K1) → B(K1) ⊗ B(K2) =

B(K1 ⊗ K2) → PLB(K1 ⊗ K2)PL = B(L) = Mp, x 7→ x ⊗ 1K2 7→ PL(x ⊗ 1K2)PL, is

a unital complete isometry. So it follows that κ ◦ φL0 : Mn → Mp0 → Mp is a unital

completely positive map with id(κ ◦ φL0
) = id(φL0

) = m.

The map φL : Mn → Mp is determined by Hilbert spaces H1, H2 and a linear

subspace L ofH1⊗H2 such that dimH1 = n and dimL = p. As noted above, id(φL) <∞
if and only if [[L⊥]] = H2, and in this case, id(φL) = [(l − 1)/2] with l = lengthL⊥.

Hence Question 2 is equivalent to the problem of minimizing dimL when we vary H2

and L ⊂ H1 ⊗H2 under the following condition:

m =

[
l − 1

2

]
, [[L⊥]] = H2, and l = lengthL⊥. (∗∗)

In the proof of Theorem 3.2 we obtained the value n(2m + 1) − 1 for p = dimL
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by taking M = Cζ0 in Lemma 3.6(ii) as L⊥. But, even if we take M in Lemma 3.6(i)

as L⊥, we cannot reduce this number n(2m + 1) − 1. Indeed, in the notation there, we

have 1 ≤ s ≤ min{n, q}, lengthM = s, [[M ]] = H2, and dimM = s(q − s) + 1. If (∗∗)
holds for L⊥ = M , then m = [(s− 1)/2] implies s = 2m + 1 or 2m + 2, and dimL =

dim(H1⊗H2)−dimM = nq−(s(q−s)+1) = (n−s)q+s2−1. Since n−s ≥ 0 and s ≤ q,

the minimum value of dimL when q varies is (n− s)s+ s2 − 1 = ns− 1 ≥ n(2m+1)− 1.
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