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Abstract. Let M be a compact complex manifold admitting a Kähler
structure. A conformally Kähler, Einstein–Maxwell metric (cKEM metric for
short) is a Hermitian metric g̃ on M with constant scalar curvature such that
there is a positive smooth function f with g = f2g̃ being a Kähler metric and

f being a Killing Hamiltonian potential with respect to g. Fixing a Kähler
class, we characterize such Killing vector fields whose Hamiltonian function f
with respect to some Kähler metric g in the fixed Kähler class gives a cKEM
metric g̃ = f−2g. The characterization is described in terms of critical points

of certain volume functional. The conceptual idea is similar to the cases of
Kähler–Ricci solitons and Sasaki–Einstein metrics in that the derivative of the
volume functional gives rise to a natural obstruction to the existence of cKEM
metrics. However, unlike the Kähler–Ricci soliton case and Sasaki–Einstein

case, the functional is neither convex nor proper in general, and often has
more than one critical points. The last observation matches well with the
ambitoric examples studied earlier by LeBrun and Apostolov–Maschler.

1. Introduction.

Let (M,J) be a compact Kähler manifold. We call a Hermitian metric g̃ on (M,J) a

conformally Kähler, Einstein–Maxwell metric (cKEM metric for short) if it satisfies the

following three conditions:

(a) There exists a positive smooth function f on M such that g = f2g̃ is Kähler.

(b) The Hamiltonian vector field K = Jgradgf is Killing for both g and g̃.

(c) The scalar curvature sg̃ of g̃ is constant.

Since the Ricci tensors Ricg and Ricg̃ of g and g̃ are related by

Ricg̃ 0 = Ricg 0 +2f−1 Hess0 f

where [ ]0 denotes (throughout this paper) the trace free part (c.f. (1.161b) in Besse

[5]), the condition (b) is equivalent to

(b′) Ricg̃(J ·, J ·) = Ricg̃(·, ·).

The condition (c) is equivalent to
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sg̃ = 2

(
2m− 1

m− 1

)
fm+1∆g

(
1

f

)m−1

+ sgf
2 = const, (1)

where dimC M = m.

If g̃ is a cKEM metric and if dimR = 4, then one obtains a solution (M,h, F ) of the

following Einstein–Maxwell equation studied in General Relativity (see LeBrun [21]):

(i) h is a Riemannian metric. (In our case h = g̃).

(ii) F is a real 2-form.

(iii) dF = 0, d ∗ F = 0, [Ric+F ◦ F ]0 = 0. Here (F ◦ F )jk = Fj
ℓFℓk. (In our case F+

is the Kähler form ωg, and F− = f−2ρ0(g̃)/2 with ρ0(g̃) the traceless Ricci form

of g̃.)

Except for the constant scalar curvature Kähler (cscK for short) metrics in which case

f is a constant function, not many examples are known. The most well-known examples

may be the conformally Kähler Einstein metrics by Page [25] on the one-point-blow-up of

CP2, by Chen–LeBrun–Weber [7] on the two-point-blow-up of CP2. Further examples

are the ones by Apostolov–Calderbank–Gauduchon [1], [2] on 4-orbifolds and by Bérard-

Bergery [4] on P1-bundles over Fano Kähler–Einstein manifolds. In the more recent

studies, non-Einstein cKEM examples are constructed by LeBrun [21], [22] showing

that there are ambitoric examples on CP1 × CP1 and the one-point-blow-up of CP2,

and by Koca–Tønnesen-Friedman [18] on ruled surfaces of higher genus.

In [3], Apostolov and Maschler initiated a study in the framework similar to the

Kähler geometry, and set the existence problem of cKEM metrics in the Donaldson–

Fujiki picture [9], [12]. In particular, fixing a Kähler class, they defined an obstruction

to the existence of cKEM metrics in a similar manner to the Kähler–Einstein and cscK

cases [13], [14]. They further studied the toric surfaces and showed the equivalence

between the existence of cKEM metrics and toric K-stability on toric surfaces with con-

vex quadrilateral moment map images, extending earlier works by Legendre [23] and

Donaldson [10], [11]. We remark that Lichnerowicz–Matsushima reductiveness theorem

for cscK manifolds is also extended to the cKEM manifolds by Lahdili [19] and us [16]

independently.

The purpose of the present paper is to study for which Killing vector field we can

find a cKEM metric. We show that, fixing a Kähler class, such Killing vector fields are

critical points of certain volume functional. We also show that, for toric manifolds, this

idea gives an efficient way to decide which vector fields in the Lie algebra of the torus can

have a solution of the cKEM problem. The idea is similar to the cases of Kähler–Ricci

solitons and Sasaki–Einstein metrics, so let us digress to these two cases. A Kähler–

Ricci soliton is a Kähler metric with its Kähler form ω ∈ c1(M) such that there exists

a Killing Hamiltonian vector field X in the Lie algebra h of the maximal torus of the

automorphism group such that

ρω = ω + LJXω

= ω + i∂∂fX
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where ρω is the Ricci form of ω and fX is the Hamiltonian function of X. To find such

X that there is a Kähler form ω satisfying the Kähler–Ricci soliton equation, let g be

an arbitrary Kähler metric with its Kähler class ωg ∈ c1(M), and let hg be a smooth

function such that

ρg − ωg = i∂∂hg.

Tian and Zhu defined in [27] a functional FX : h → R by

FX(Y ) =

∫
M

(JY )(hg − fX)efXωm
g

where fX is the Hamiltonian function of X with the normalization
∫
M

efXωm
g =

∫
M

ωm
g .

FX is independent of the choice of ωg ∈ c1(M), and if there exists a Kähler–Ricci soliton

for X then FX vanishes identically. To find such X with vanishing FX , they considered

the weighted volume functional V : h → R defined by

V (Z) =

∫
M

euZωm
g

where uZ is the Hamiltonian function of Z ∈ h with the normalization
∫
M

uZe
hgωm

g = 0.

They showed that V is independent of ωg, that dVX(Y ) = c FX(Y ) with a constant c,

that V is a strictly convex proper function, and that there is a unique minimum X. This

minimum X is the right choice to solve the Kähler–Ricci soliton equation.

Let us turn to the Sasaki–Einstein metrics. An odd dimensional Riemannian mani-

fold S is said to be a Sasakian manifold if its Riemannian cone manifold C(S) is a Kähler

manifold, and a Sasakian manifold S is said to be a Sasaki–Einstein manifold if S is also

an Einstein manifold. A fundamental fact is that S is Sasaki–Einstein if and only if its

cone C(S) is a Ricci-flat Kähler manifold, and also if and only if the local leaf spaces

of the 1-dimensional foliation generated by the Reeb vector field J(r∂/∂r) have Kähler–

Einstein metrics where r denotes the radial coordinate on the cone C(S). There is an

obstruction to the existence of Sasaki–Einstein metrics similar to Kähler–Einstein metrics

[17], [6]. Fixing a holomorphic structure of the cone C(S), a natural deformation space

of Sasakian structures is the deformation space of the cone structures of C(S). If such a

deformation is given by r 7→ r′ = reφ then we have a deformation of the Reeb vector field

J(r∂/∂r) 7→ J(r′∂/∂r′). Thus, this deformation can be regarded as a deformation of the

Reeb vector fields. Let us define the volume functional V : KCS(C(S), J) → R on the

space KCS(C(S), J) of the Kähler cone structures with a fixed holomorphic structure J

by V (S, g) = vol(S, g) where S = {r = 1} is the Sasakian manifold determined by the

Kähler cone structure. Denote by G the maximal torus of the group of automorphisms

commuting with the flow generated by r∂/∂r. Martelli–Sparks–Yau [24] showed that

the derivative dV(S,g) gives rise to a linear function on Lie(G) which coincides with the

obstruction to the existence of Sasaki–Einstein metrics mentioned above. They further

showed that, when S is toric (meaning C(S) is toric), the volume functional V restricted

to the space of toric deformations (meaning deformations of the Reeb vector field in the

Lie algebra of the torus) is a strictly convex proper function, and the unique minimum
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is the right choice of the Reeb vector field, i.e. the right choice of the Sasakian structure

to solve the Sasaki–Einstein equation because this minimum assures the vanishing of the

obstruction. For this choice we can always find a Sasaki–Einstein metric [17], [8]. See

also the survey articles [15], [26].

To be more precise in our cKEM problem, let G be a maximal torus of a maximal

reductive subgroup of the automorphism group, and take K ∈ g := Lie(G). Let ω0 be a

Kähler form, and Ω = [ω0] ∈ H2
DR(M,R) be a fixed Kähler class. The problem is to find

a G-invariant Kähler metric g with its Kähler form ωg ∈ Ω such that

(i) g̃ = f−2g is a cKEM metric,

(ii) Jgradgf = K.

Denote by KG
Ω the space of G-invariant Kähler metrics g with ωg ∈ Ω. For any (K, a, g) ∈

g ×R × KG
Ω , there exists a unique function fK,a,g ∈ C∞(M,R) satisfying the following

two conditions:

ιK ωg = −dfK,a,g,

∫
M

fK,a,g

ωm
g

m!
= a. (2)

Noting min{fK,a,g |x ∈ M} is independent of g with ωg ∈ Ω (see Section 2), we put

PG
Ω := {(K, a) ∈ g×R | fK,a,g > 0}, (3)

HG
Ω :=

{
g̃K,a =

1

f2
K,a,g

g

∣∣∣∣ (K, a) ∈ PG
Ω , g ∈ KG

Ω

}
. (4)

Hereafter the Kähler metric g and its Kähler form ωg are often identified, and ωg is often

denoted by ω. Fixing (K, a) ∈ PG
Ω , put

HG
Ω,K,a := {g̃K,a | g ∈ KG

Ω} (5)

and

dΩ,K,a :=
S(g̃K,a)

Vol(g̃K,a)
=

∫
M

sg̃K,a

(
1

fK,a,g

)2m
ωm

m!∫
M

(
1

fK,a,g

)2m
ωm

m!

. (6)

Then dΩ,K,a is a constant independent of the choice of g ∈ KG
Ω as shown in [3]. For any

real number γ, let us put further

P̃G
Ω := {(K, a) ∈ PG

Ω | dΩ,K,a = γ}. (7)

We may normalize γ = 1, 0 or −1 if it is more convenient, but this is not really necessary.

The main result in this paper is the following volume minimization property of

cKEM metrics.

Theorem 1.1. Let (K, a) ∈ P̃G
Ω . Then if there exists a conformally Kähler,

Einstein–Maxwell metric g̃K,a ∈ HG
Ω,K,a then (K, a) is a critical point of Vol : P̃G

Ω → R
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given by Vol(K, a) := Vol(g̃K,a) for (K, a) ∈ P̃G
Ω . Further, (K, a) is a critical point of

Vol : P̃G
Ω → R if and only if FG

Ω,K,a ≡ 0.

Here FG
Ω,K,a is an obstruction to the existence of cKEM metric defined in [3], de-

scribed as follows. For (K, a) ∈ PG
Ω , the following hold:

cΩ,K,a :=

∫
M

sg̃K,a

(
1

fK,a,g

)2m+1
ωm

m!∫
M

(
1

fK,a,g

)2m+1
ωm

m!

(8)

is a constant independent of the choice of g ∈ KG
Ω . Then

FG
Ω,K,a : g → R, FG

Ω,K,a(H) :=

∫
M

(
sg̃K,a − cΩ,K,a

f2m+1
K,a,g

)
fH,b,g

ωm

m!
(9)

is a linear function independent of the choice of (g, b) ∈ KG
Ω×R. Obviously, if there exists

a constant scalar curvature metric in HΩ,K,a, then FG
Ω,K,a is identically zero. For termi-

nological convenience we call FG
Ω,K,a the cKEM-Futaki invariant. A merit of Theorem

1.1 is to give a systematic computation of the cKEM-Futaki invariant.

This paper is organized as follows. In Section 2 we give a proof of Theorem 1.1.

In Section 3 we give examples of non Kähler cKEM metrics. This is an extension of

LeBrun’s construction ([21]) on CP1 ×CP1 to CP1 ×M for higher dimensional M ’s.

In Section 4, we use Maxima (a descendant of Macsyma) to compute the cKEM-Futaki

invariant of CP1×CP1, the blow-up of CP2 at one point and other Hirzebruch surfaces.

2. Proof of Theorem 1.1.

Let M be a compact n-manifold with n ≥ 3. Let Riem(M) denote the set of all

Riemannian metrics onM , Ricg the Ricci tensor of g, sg the scalar curvature of g, and dvg
the volume form of g. The normalized Einstein–Hilbert functional EH : Riem(M) → R

is defined by

EH(g) :=
S(g)

(Vol(g))(n−2)/n

where S(g) =
∫
M

sg dvg is the total scalar curvature and Vol(g) =
∫
M

dvg is the volume

of g.

The following first variation formulae are standard, and can be found in [5]. Let gt
be a smooth family of Riemannian metrics such that g0 = g and d/dt|t=0gt = h. Then

d

dt |t=0

S(gt) =

∫
M

⟨
sg
2
g − Ricg, h

⟩
g

dvg. (10)

Let ft be a smooth family of positive functions such that f0 = 1, d/dt|t=0ft = ϕ.

Then



1498

1498 A. Futaki and H. Ono

d

dt |t=0
S(ftg) =

∫
M

⟨
sg
2
g − Ricg, ϕg

⟩
dvg =

n− 2

2

∫
M

sgϕdvg

and

d

dt |t=0
Vol(ftg) =

d

dt |t=0

∫
M

f
n/2
t dvg =

n

2

∫
M

ϕdvg.

Therefore

d

dt |t=0
EH(ftg) =

n− 2

2(Vol(g))(n−2)/n

∫
M

(
sg −

S(g)

Vol(g)

)
ϕdvg. (11)

By (11), if sg is a constant then g is a critical point of EH restricted to the conformal

class of g.

Let ft be a smooth family of positive functions such that f0 = f, d/dt|t=0ft = ϕ.

Denote (1/f2
t )g =: g̃t, g̃ =: g̃0. Then

d

dt |t=0
S(g̃t) =

∫
M

⟨
sg̃
2

− Ricg̃,
−2ϕ

f
g̃

⟩
g̃

dvg̃ = (2− n)

∫
M

sg̃ϕ

fn+1
dvg

and

d

dt |t=0
Vol(g̃t) =

d

dt |t=0

∫
M

1

fn
t

dvg = −n

∫
M

ϕ

fn+1
dvg.

Therefore

d

dt |t=0
EH(g̃t) =

2− n

(Vol(g̃))(n−2)/n

∫
M

sg̃ − S(g̃)/Vol(g̃)

fn+1
ϕdvg. (12)

We wish to apply the formula (12) to the existence problem of cKEM metrics. Let us

recall the situation explained in the introduction. Let M be a compact Kähler manifold

of complex dimension m so that n = 2m. Fix a compact group G ⊂ Autr(M,J) in

the group of reduced automorphisms of (M,J), and consider a fixed Kähler class Ω

on (M,J). Denote by KG
Ω the space of G-invariant Kähler metrics ω in Ω. For any

(K, a, g) ∈ g ×R × KG
Ω , there exists unique function fK,a,g ∈ C∞(M,R) satisfying the

following two conditions:

ιKω = −dfK,a,g,

∫
M

fK,a,g
ωm

m!
= a. (13)

By (12) and (13), it is easy to see that fK,a,g has the following properties:

fK+H,a+b,g = fK,a,g + fH,b,g, (14)

f0,a,g =
a

Vol(M,ω)
, (15)

fCK,Ca,g = CfK,a,g. (16)

If K ̸= 0,
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mK,Ω := min{fK,0,g |x ∈ M} < 0.

Note here that, by Lemma 1 of [3], min{fK,0,g |x ∈ M} is independent of the choice of

g ∈ KG
Ω . Hence fK,a,g is positive if a > lK,Ω := −mK,Ω Vol(M,ω), by (14) and (15).

The set PG
Ω defined in (3) in the introduction then can be expressed as

PG
Ω = {(K, a) ∈ g×R | a > lK,Ω}.

With the notation of HG
Ω,K,a given in (5), the main problem of the cKEM metrics we

wish to consider is the following :

Problem 2.1. Is there a cKEM metric in HG
Ω,K,a for (K, a) ∈ PG

Ω ?

By (13), the Hamiltonian function fK,a,g of K with respect to the Kähler metric

g is Killing for both g and g̃K,a = f−2
K,a,gg. So the problem above is equivalent to the

existence of the constant scalar curvature metric in HG
Ω,K,a. As was explained in the

introduction, Apostolov and Maschler [3] introduced an obstruction FG
Ω,K,a : g → R to

this problem, see (9).

Fix (K, a) ∈ PG
Ω . By Corollary 2 of [3], the functional S is constant on HG

Ω,K,a.

Similarly by the proof of Lemma 1 of [3], Vol is constant on HG
Ω,K,a. Thus we obtain the

following proposition.

Proposition 2.2. With the notations as above, we have the following.

1. For (K, a) ∈ PG
Ω ,

dΩ,K,a :=
S(g̃K,a)

Vol(g̃K,a)
=

∫
M

sg̃K,a

(
1

fK,a,g

)2m
ωm

m!∫
M

(
1

fK,a,g

)2m
ωm

m!

(17)

is a constant independent of the choice of g ∈ KG
Ω .

2. The function

V : PG
Ω → R, (K, a) 7→ EH(g̃K,a) (18)

is well-defined.

Theorem 2.3. We have the following results.

(a) If there exists a cKEM metric g̃K,a ∈ HG
Ω,K,a, then (K, a) is a critical point of

V : PG
Ω → R.

(b) If (K, a) is a critical point of V : PG
Ω → R, FG

Ω,K,a vanishes identically.

Proof. The first statement (a) is trivial by the first variation of the Einstein–

Hilbert functional (12). To prove the second statement (b), suppose that (K, a) ∈ PG
Ω is
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a critical point of V . For H ∈ g,

0 =
d

dt |t=0
V (K + tH, a)

=
2− 2m

Vol(M, g̃K,a)(m−1)/m

∫
M

(
sg̃K,a

− dΩ,K,a

f2m+1
K,a,g

)
fH,0,g

ωm

m!
(19)

by (12), (14) and (16). Note here that, in general, cΩ,K,a does not coincide with dΩ,K,a.

So (19) does not mean the vanishing of cKEM-Futaki invariant FG
Ω,K,a in (9). However

if there exists a cKEM metric in HΩ,K,a, cΩ,K,a = dΩ,K,a holds, i.e. cΩ,K,a − dΩ,K,a is

an obstruction to the existence of cKEM metric. This obstruction can be represented as

the R-direction first variation of V as follows:

0 =
d

dt |t=0
V (K, a+ t)

=
2− 2m

Vol(M, g̃K,a)(2m−1)/m
(cΩ,K,a − dΩ,K,a)

∫
M

1

f2m+1
K,a,g

ωm

m!
. (20)

Therefore if (K, a) ∈ PG
Ω is a critical point of V , then FG

Ω,K,a ≡ 0. □

There exists a cKEM metric in HG
Ω,K,a if and only if there exists a cKEM metric in

HG
Ω,CK,Ca for C > 0. Therefore Problem 2.1 is equivalent to the following problem.

Problem 2.4. Is there a cKEM metric in HG
Ω,K,a for [(K, a)] ∈ PG

Ω /R>0?

So we wish to have good representatives of elements in PG
Ω /R>0. This is the mo-

tivation to define P̃G
Ω as in the introduction, see (7). Since dΩ,CK,Ca = C2dΩ,K,a for

C > 0,

P̃G
Ω ≃ PG

Ω /R>0, (K, a) 7→ [(K, a)]

is bijective.

Proof of Theorem 1.1. Let (K(t), a(t)), t ∈ (−ε, ε) be a smooth curve in P̃G
Ω

such that (K(0), a(0)) = (K, a), (K ′(0), a′(0)) = (H, b). Then

S(g̃K(t),a(t)) = γVol(g̃K(t),a(t))

holds for any t ∈ (−ε, ε). By differentiating this equation at t = 0, we have

(m− 1)

∫
M

sg̃K,a
fH,b,g

f2m+1
K,a,g

ωm

m!
= mγ

∫
M

fH,b,g

f2m+1
K,a,g

ωm

m!
. (21)

Hence

FG
Ω,K,a(H) =

(
mγ

m− 1
− cΩ,K,a

)∫
M

fH,b,g

f2m+1
K,a,g

ωm

m!
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=

(
γ

m− 1
− cΩ,K,a

m

)
d

dt |t=0
Vol(M, g̃K(t),a(t)) (22)

holds by (9) and (21). If there exists a cKEM metric in HG
Ω,K,a for (K, a) ∈ P̃G

Ω , then

cΩ,K,a = dΩ,K,a = γ

and

FG
Ω,K,a(H) = 0.

Therefore for any nonzero real constant γ we have

d

dt |t=0
Vol(M, g̃K(t),a(t)) = 0. (23)

If γ = 0 then the left hand side of (21) vanishes. From this and the equalities in (19)

and (20) we obtain (23). □

3. Examples of non Kähler cKEM metrics.

In this section, we construct compact, non-Kähler examples of cKEM metrics of

dimension greater than two.

Let g1 be an S1-invariant metric on CP1 and g2 a Kähler metric with sg2 = c on an

(m − 1)-dimensional compact complex manifold M . The S1-invariant metric g1 can be

written in the action-angle coordinates (t, θ) ∈ (a, b)× (0, 2π] as

g1 =
dt2

Ψ(t)
+ Ψ(t)dθ2

for some smooth function Ψ(t). The Hamiltonian function of the generator of the S1-

action is t1. Suppose that a > 0. We will look for Ψ such that the Hermitian metric

g/t2, where g = g1+g2, on CP1×M has constant scalar curvature. Since ∂/∂θ is Killing

both for g and g/t2, if we find such Ψ, g/t2 is a non-Kähler cKEM metric. The scalar

curvature of g1 is given by

s1 = ∆g1 logΨ = −Ψ′′(t).

Thus the scalar curvature of g is given by

s = s1 + s2 = c−Ψ′′(t).

We want to arrange that the scalar curvature of h = t−2g is d, which is to say that

d = sh = 2

(
2m− 1

m− 1

)
tm+1∆g(t

1−m) + (c−Ψ′′(t))t2. (24)

1In this section, instead of sliding the Hamiltonian function by constant, we move the interval (a, b)

(moment image).
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We may rewrite this as

c−Ψ′′ =
d

t2
− 2

(
2m− 1

m− 1

)
tm−1∆g1(t

1−m)

since the Hessian of t is trivial in the M -directions. Since

∆g1

(
1

tm−1

)
= (m− 1)

(
Ψ

tm

)′

,

the equation (24) reduces to the ODE

c−Ψ′′ =
d

t2
− 2(2m− 1)

Ψ′

t
+ 2m(2m− 1)

Ψ

t2
,

or equivalently

t2Ψ′′ − 2(2m− 1)tΨ′ + 2m(2m− 1)Ψ = ct2 − d. (25)

The general solution of the equation (25) is

Ψ(t) = At2m +Bt2m−1 +
c

2(m− 1)(2m− 3)
t2 − d

2m(2m− 1)
.

Now, in order to get a metric on S2, we need to impose the boundary conditions that

Ψ(a) = Ψ(b) = 0,Ψ′(a) = −Ψ′(b) = 2, Ψ(t) > 0 (on (a, b)).

The first four conditions reduce to a simultaneous linear equation for A,B, c and d. The

solution is

Aa,b,m = (a2b2(a+ b){2(a− b)(b2m−2 + a2m−2)m

+ 3b2m−1 − ab2m−2 + a2m−2b− 3a2m−1})/Ea,b,m,

Ba,b,m = (2a2b2(a+ b){((b− a)(b2m−1 + a2m−1))m

− (bm − am)(bm + am)})/Ea,b,m,

ca,b,m
2(m− 1)(2m− 3)

= (b2m(2a2mb2 − 2a2m+2)m

− a2b4m + b2m(a2m+2 − a2mb2) + a4mb2)/Ea,b,m,

da,b,m
2m(2m− 1)

= (b2m(2a2m+1b3 − 2a2m+3b)m

− a4b4m + a4mb4 + b2m(2a2m+3b− 2a2m+1b3))/Ea,b,m,

where

Ea,b,m = (2a2mb2m(b− a)
2
(b+ a))m2 − 3a2mb2m(b− a)

2
(b+ a)m

− (bm − am)(bm + am)(a3b2m − a2mb3). (26)
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If we set

Ψa,b,m(t) = Aa,b,mt2m +Ba,b,mt2m−1 +
ca,b,m

2(m− 1)(2m− 3)
t2 − da,b,m

2m(2m− 1)
,

we have Ψa,b,m > 0 on (a, b) by the following lemma for any m and 0 < a < b. Therefore,

for m ≥ 2,

ga,b,m =
dt2

Ψa,b,m(t)
+ Ψa,b,m(t)dθ2

defines a metric on CP1.

Lemma 3.1. Let m ≥ 2 be an integer and 0 < a < b. If a real valued function

f(t) = αt2m + βt2m−1 + γt2 + δ

satisfies the boundary conditions

f(a) = f(b) = 0, f ′(a),−f ′(b) > 0,

then f > 0 on (a, b).

Proof. Suppose that there exists c ∈ (a, b) such that f(c) ≤ 0. Then, by the

boundary condition, there exist at least three critical points of f in (a, b). On the other

hand, since

f ′(t)

t
= 2mαt2m−2 + (2m− 1)βt2m−3 + 2γ,(

f ′(t)

t

)′

= t2m−4{2m(2m− 2)αt+ (2m− 1)(2m− 3)β},

f ′/t has at most two zeros in (a, b). This is a contradiction. □

Moreover if g2 is a Kähler metric with sg2 = ca,b,m on an (m − 1)-dimensional

compact complex manifold M ,

ha,b,m(g2) =
1

t2
(ga,b,m + g2)

is an S1-invariant cKEM metric with sha,b,m(g2) = da,b,m on CP1 ×M .

For simplicity, we now put b = a+ 1. Let

Cm = {ca,a+1,m | a > 0}.

Since

lim
a→+0

ca,a+1,m = ∞, lim
a→∞

ca,a+1,m = 8m− 8,

we see that (8m− 8,∞) ⊂ Cm. Hence we have proved the following.
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Theorem 3.2. Let c > 8m− 8. Then there exists a > 0 such that for any Kähler

metric g2 with sg2 = c = ca,a+1,m on an (m− 1)-dimensional compact complex manifold

M , ha,a+1,m(g2) is an S1-invariant cKEM metric on CP1 ×M . On the other hand, if

c ̸∈ Cm, for any a > 0 and g2, ha,a+1,m(g2) is not a cKEM metric.

Note here that, for small m, e.g. m = 2, 3, 4, 5, we can directly confirm that Cm =

(8m− 8,∞). Hence in such cases, c ̸∈ Cm if and only if c ≤ 8m− 8.

This theorem extends the case when M = CP1 due to LeBrun [21].

4. Computations in the case of toric surfaces.

Let (M,J, g) be an m-dimensional compact toric Kähler manifold. We denote by

∆ ⊂ Rm, u and Hu the moment polytope, the symplectic potential and the inverse

Hess(u)−1 of the Hessian of u respectively. Then by the equation (22) in [3],

sg̃K,a

f2m
K,a,g

= −fK,a,g

m∑
i,j=1

(
1

f2m−1
K,a,g

Hu
ij

)
,ij

(27)

holds. Since fK,a,g is an affine linear function of action coordinates, the equation (30) in

[3] implies ∫
M

sg̃K,a

f2m
K,a,g

ωm

m!
=

2(2π)m

m!

∫
∂∆

1

f2m−2
K,a,g

dσ. (28)

On the other hand ∫
M

1

f2m
K,a,g

ωm

m!
=

(2π)m

m!

∫
∆

1

f2m
K,a,g

dµ

holds. Therefore V is given by

V (K, a) =
4π

(m!)1/m

∫
∂∆

1

f2m−2
K,a,g

dσ(∫
∆

1

f2m
K,a,g

dµ

)(m−1)/m
. (29)

In what follows, the coordinates of the moment map image of toric Kähler surfaces

will be denoted by (µ1, µ2).

4.1. CP2 case.

In this case, up to scale, ∆ is the convex hull of the three points (0, 0), (1, 0) and (0, 1).

An affine linear function f = aµ1+bµ2+c is positive on ∆ if and only if c, a+c, b+c > 0.

Since ∫
∂∆

dσ

(aµ1 + bµ2 + c)2
=

3c+ a+ b

c(a+ c)(b+ c)
,∫

∆

dµ1dµ2

(aµ1 + bµ2 + c)4
=

3c2 + 2(a+ b)c+ ab

6c2(a+ c)2(b+ c)2
,
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we have

V (a, b, c) := 2
√
2π

∫
∂∆

1

(aµ1 + bµ2 + c)2
dσ(∫

∆

1

(aµ1 + bµ2 + c)4
dµ1dµ2

)1/2

=
4
√
3π(3c+ a+ b)√

3c2 + 2(a+ b)c+ ab
(30)

and

∂V

∂c
(a, b, c) = − 4

√
3π(a2 − ab+ b2)

(3c2 + 2(a+ b)c+ ab)3/2
. (31)

Therefore, by (20) and (31), HT 2

Ω,(a,b),c admits cKEM equation only if (a, b) = (0, 0).

(Note that the notation HT 2

Ω,(a,b),c is a replacement of the previous notation HG
Ω,K,a; this

is allowed because (K, a) is determined by ((a, b), c).) Hence, we obtain the following

result.

Proposition 4.1. Up to constant multiple, the Fubini–Study metric is the only

T 2-invariant cKEM metric on CP2.

Note that it is possible to prove this proposition without using the volume mini-

mization. In fact, (iii) in the introduction can be written as

Ric0 = −F+ ◦ F−

with F+ and F− are self-dual and anti-self dual harmonic forms (c.f. [21]). Thus, on

CP2, we have F− = 0, and the cKEM metric is Einstein. But compact Hermitian

Einstein 4-manifolds are classified by LeBrun [20] to be either the Fubini–Study metric

on CP2, the Page metric or Chen–LeBrun–Weber metric. Thus the Fubini–Study metric

is the only cKEM metric on CP2. Orbifold cKEM metrics on weighted projective planes

are also classified by Apostolov–Maschler [3], Theorem 4.

4.2. CP1 × CP1 case.

Let ∆p be the convex hull of (0, 0), (p, 0), (p, 1), (0, 1), where p ≥ 1. An affine linear

function f = aµ1 + bµ2 + c is positive on ∆p if and only if c, pa+ c, pa+ b+ c, b+ c > 0.

We denote

Pp := {(a, b, c) ∈ R3 | c, pa+ c, pa+ b+ c, b+ c > 0},
Pp(1) := Pp ∩ {(a, b, c) | b+ pa+ 2c = 1}.

Note that this choice of b+pa+2c = 1 can be replaced by any other affine linear function

giving a slice of Pp. We chose this simply because it gives a simpler computation. For

(a, b, c) ∈ Pp, we define sp(a, b, c) and vp(a, b, c) by
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∂∆p

dσ

(aµ1 + bµ2 + c)2

=
1

c(b+ c)
+

p

(b+ c)(b+ pa+ c)
+

1

(b+ pa+ c)(pa+ c)
+

p

(pa+ c)c

=
(2ac+ a2 + ab)p2 + (2c2 + 2(a+ b)c+ ab+ b2)p+ 2c2 + 2bc

(pa+ c)(b+ pa+ c)(b+ c)c

=
sp(a, b, c)

(pa+ c)(b+ pa+ c)(b+ c)c

and ∫
∆p

dµ1dµ2

(aµ1 + bµ2 + c)4

= p{(2a3c+ a3b)p3 + (8a2c2 + 8a2bc+ 2a2b2)p2

+ (12ac3 + 18abc2 + 8ab2c+ ab3)p

+ 6c4 + 12bc3 + 8b2c2 + 2b3c}/(6(pa+ c)2(b+ pa+ c)2(b+ c)2c2)

=
vp(a, b, c)

6(pa+ c)2(b+ pa+ c)2(b+ c)2c2
.

Then, for (a, b, c) ∈ Pp(1), we have

(Vp(a, b))
2 :=

48π2sp(a, b, (1− b− pa)/2)2

vp(a, b, (1− b− pa)/2)

= − 96π2(a2p3 − a2p2 − b2p− p+ b2 − 1)
2

p(a4p4 − 2a2b2p2 + 2a2p2 + b4 + 2b2 − 3)
. (32)

Note here that, in general, the function V on PG
Ω is scale invariant, that is V (dK, da) =

V (K, a) for any (K, a) ∈ PG
Ω and d > 0. Hence if (a, b) is a critical point of Vp(a, b)

and (a, b, (1 − b − pa)/2) ∈ Pp(1), then cKEM-Futaki invariant for (a, b, (1 − b − pa)/2)

vanishes. The derivatives are computed as follows:

∂V 2
p

∂a
= −768π2ap(a2p3 + b2p− p− 2b2 + 2)(a2p3 − a2p2 − b2p− p+ b2 − 1)

(a4p4 − 2a2b2p2 + 2a2p2 + b4 + 2b2 − 3)
2 ,

∂V 2
p

∂b
=

768π2b(a2p3 − a2p2 − b2p− p+ b2 − 1)(2a2p3 − a2p2 − 2p− b2 + 1)

p(a4p4 − 2a2b2p2 + 2a2p2 + b4 + 2b2 − 3)
2 .

Both of the above vanish only when either of following holds.[
a =

√
b2 + (p+ 1)/(p− 1)

p

]
,

[
a = −

√
b2 + (p+ 1)/(p− 1)

p

]
, [ a = 0, b = 0 ],

[ a = 0, b = −
√
1− 2 p ], [ a = 0, b =

√
1− 2 p ],[

a = 0, b = −
√
− p

p− 1
− 1

p− 1

]
,

[
a = 0, b =

√
− p

p− 1
− 1

p− 1

]
,
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a = −

√
p− 2

p3/2
, b = 0

]
,

[
a =

√
p− 2

p3/2
, b = 0

]
,[

a = −
√

1− 2/p

p− 1
, b = −

√
1− 2 p

p− 1

]
,

[
a =

√
1− 2/p

p− 1
, b = −

√
1− 2 p

p− 1

]
,[

a = −
√

1− 2/p

p− 1
, b =

√
1− 2 p

p− 1

]
,

[
a =

√
1− 2/p

p− 1
, b =

√
1− 2 p

p− 1

]
.

Case p = 1.

∂V 2
1 /∂a = ∂V 2

1 /∂b = 0 if and only if b(a2 − b2 − 1) = a(a2 − b2 + 1) = 0, that is

[a = 0, b = 0].

Case p > 1.

The real solutions of ∂V 2
p /∂a = ∂V 2

p /∂b = 0 are[
a =

√
b2 + (p+ 1)/(p− 1)

p

]
,

[
a = −

√
b2 + (p+ 1)/(p− 1)

p

]
, [ a = 0, b = 0 ],[

a = −
√
p− 2

p3/2
, b = 0

]
,

[
a =

√
p− 2

p3/2
, b = 0

]
,

where the last two solutions appear only when p > 2.

• [a = 0, b = 0]: In this case, (0, 0, 1/2) ∈ Pp(1).

•
[
a =

√
b2 + (p+ 1)/(p− 1)

p

]
: In this case, we have

c =
1

2
(1− b− pa) =

1

2

(
1− b−

√
b2 +

p+ 1

p− 1

)
.

But c > 0 when b < 1/(1− p) < 0. However we get

b+ c =
1

2

(
1 + b−

√
b2 +

p+ 1

p− 1

)
< 0.

Hence (a, b, c) ̸∈ Pp(1).

•
[
a = −

√
b2 + (p+ 1)/(p− 1)

p

]
: In this case we have

c =
1

2
(1− b− pa) =

1

2

(
1− b+

√
b2 +

p+ 1

p− 1

)
.

c > 0 when b > 1/(1− p). However, we get

pa+ c =
1

2

(
1− b−

√
b2 +

p+ 1

p− 1

)
< 0.

Hence (a, b, c) ̸∈ Pp(1).
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•
[
a = −

√
p− 2

p3/2
, b = 0

]
: In this case we have

c =
1

2
(1− b− pa) =

1

2

(
1 +

√
p− 2

p

)
> 0,

pa+ c =
1

2

(
1−

√
p− 2

p

)
> 0.

Hence (a, b, c) ∈ Pp(1).

•
[
a =

√
p− 2

p3/2
, b = 0

]
: In this case we have

c =
1

2
(1− b− pa) =

1

2

(
1−

√
p− 2

p

)
> 0,

pa+ c =
1

2

(
1 +

√
p− 2

p

)
> 0.

Hence (a, b, c) ∈ Pp(1).

We summarize our results of this Subsection 4.2 as follows.

Proposition 4.2. For the toric Kähler surface corresponding to ∆p, if 1 ≤ p ≤ 2

then the cKEM-Futaki invariant vanishes only when (a, b) = (0, 0). If p > 2 then the

cKEM-Futaki invariant vanishes when (a, b) = (0, 0), (±
√
p− 2/p3/2, 0). In this case

p > 2, LeBrun ([21], Theorem C) shows that the Kähler class Ω contains two distinct

cKEM metrics, which are ambitoric in the sense of [1].

Our computation complements LeBrun’s result in that there are no non-Kähler

solution for 1 < p < 2. But this nonexistence result has been obtained by Apostolov–

Maschler [3] by showing the non-vanishing of the cKEM-Futaki invariant using computer-

assisted calculation.

4.3. The case of the one point blow up of CP2.

Let ∆p be the convex hull of (0, 0), (p, 0), (p, 1 − p), (0, 1), (0 < p < 1). An affine

linear function f = aµ1 + bµ2 + c is positive on ∆p if and only if

c, b+ c, (1− p)b+ pa+ c, pa+ c > 0.

We put

Pp := {(a, b, c) ∈ R3|c, b+ c, (1− p)b+ pa+ c, pa+ c > 0},
Pp(1) := Pp ∩ {(a, b, c)|(2− p)b+ 2pa+ 4c = 1}.

For (a, b, c) ∈ Pp, we define sp(a, b, c) and vp(a, b, c) by∫
∂∆p

dσ

(aµ1 + bµ2 + c)2
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=
1

c(b+ c)
+

p

(b+ c)((1− p)b+ pa+ c)

+
1− p

((1− p)b+ pa+ c)(pa+ c)
+

p

(pa+ c)c

=
((2a− b)c+ a2 − b2)p2 + (c2 + 2ac+ ab+ b2)p+ 2c2 + 2bc

c(b+ c)(pa+ c)((1− p)b+ pa+ c)

=
sp(a, b, c)

c(b+ c)(pa+ c)((1− p)b+ pa+ c)
,∫

∆p

dµ1dµ2

(aµ1 + bµ2 + c)4

= p{−a(a− b)(c2 − 2ac+ 2bc− ab+ b2)p3

− 2(2ac− bc+ ab)(c2 − 2ac+ 2bc− ab+ b2)p2

− (3c4 − 12ac3 + 12bc3 − 18abc2 + 12b2c2 − 8ab2c+ 4b3c− ab3)p

+ 2c(c+ b)(3c2 + 3bc+ b2)}/(6c2(b+ c)2(pa+ c)2((1− p)b+ pa+ c)2)

=
vp(a, b, c)

6c2(b+ c)2(pa+ c)2((1− p)b+ pa+ c)2
.

Hence for (a, b, c) ∈ Pp(1), we have

Vp(a, b)
2

:=
48π2sp(a, b, (1 + (p− 2)b− 2pa)/4)2

vp(a, b, (1 + (p− 2)b− 2pa)/4)

= 96π2(3(2a− b)
2
p3 − 2(4a2 − 4ab+ 2a− 5b2 − b)p2 − (20b2 + 1)p+ 8b2 − 2)2

/p((2a− b)
2
(4a2 − 4ab+ 5b2)p5

− 2(2a− b)(8a3 − 12a2b+ 8a2 + 6ab2 − 8ab− b3 + 6b2)p4

− 2(48a2b2 − 4a2 − 48ab3 − 16ab2 + 4ab+ 4b4 + 8b3 − 3b2)p3

+ 4(16a2b2 − 4a2 − 16ab3 − 8ab2 + 4ab+ 2a− 12b4 + 4b3 − 5b2 − b)p2

+ (80b4 + 24b2 − 3)p− 32b4 − 16b2 + 6).

Then ∂V 2
p /∂a = ∂V 2

p /∂b = 0 only when

(1) a =
2
√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + 3bp2 + (1− 2b)p

6p2 − 4p
,

(2) a = −
2
√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1− 3bp2 + (2b− 1)p

6p2 − 4p
,

(3) a = − 1

3p2 − 2p

√
p3 − 6p2 + 4p

p− 2
− 1

6p− 4

√
5p− 2

p− 2
+

1

6p− 4
,

b = − 1

3p− 2

√
5p− 2

p− 2
,
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(4) a =
1

3p2 − 2p

√
p3 − 6p2 + 4p

p− 2
− 1

6p− 4

√
5p− 2

p− 2
+

1

6p− 4
,

b = − 1

3p− 2

√
5p− 2

p− 2
,

(5) a = − 1

3p2 − 2p

√
p3 − 6p2 + 4p

p− 2
+

1

6p− 4

√
5p− 2

p− 2
+

1

6p− 4
,

b =
1

3p− 2

√
5p− 2

p− 2
,

(6) a =
1

3p2 − 2p

√
p3 − 6p2 + 4p

p− 2
+

1

6p− 4

√
5p− 2

p− 2
+

1

6p− 4
,

b =
1

3p− 2

√
5p− 2

p− 2
,

(7) a =
p− 1

p2
, b =

1

p
,

(8) a = − 1

p2
, b = −1

p
,

(9) a = −
√
9p2 − 8p+ p

4p2
, b = 0,

(10) a =

√
9p2 − 8p− p

4p2
, b = 0,

(11) a = − 1

6p− 4

√
p2 + p− 1

p− 1
+

1

6p− 4
, b = − 1

3p− 2

√
p2 + p− 1

p− 1
,

(12) a =
1

6p− 4

√
p2 + p− 1

p− 1
+

1

6p− 4
, b =

1

3p− 2

√
p2 + p− 1

p− 1
,

(13) a = −
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 + 4p− 2

2p3 − 4p2 + 12p− 8
,

b = −
√
p4 − 4p3 + 16p2 − 16p+ 4

p3 − 2p2 + 6p− 4
,

(14) a =

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 − 4p+ 2

2p3 − 4p2 + 12p− 8
,

b =

√
p4 − 4p3 + 16p2 − 16p+ 4

p3 − 2p2 + 6p− 4
,

(15) a = −−p+ 2
√
1− p+ 2

2p2
, b = 0,
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(16) a =
p+ 2

√
1− p− 2

2p2
, b = 0.

Up to this point in this subsection, we used Maxima to derive the above conclusions.

Among the above, real solutions are the following:

(1), (2), (7), (8), (15), (16),

(9), (10) : when 1 > p ≥ 8/9

(11), (12) : when 0 < p < (
√
5− 1)/2

(13), (14) : when 0 < p ≤ α, β ≤ p < 1, where 0 < α < β < 1 are the real roots of

p4 − 4p3 + 16p2 − 16p+ 4 = 0.

Let us check the cases (7)–(16) whether (a, b, c) ∈ Pp(1) or not. The proof of each case

is elementary. We only give a detailed proof only for (11) and (13) for the reader’s

convenience. We leave the cases (1) and (2) to later study.

(7) : (a, b, c) ̸∈ Pp(1) since c = (1 + (p− 2)b− 2pa)/4 = 0.

(8) : (a, b, c) ̸∈ Pp(1) since b+ c = 0.

(9) : (a, b, c) ∈ Pp(1) since

c = b+ c =
3

8
+

√
9p2 − 8p

8p
> 0

and

(1− p)b+ pa+ c = pa+ c =
1

8
−

√
9p2 − 8p

8p
> 0.

(10) : (a, b, c) ∈ Pp(1) since

c = b+ c =
3

8
−

√
9p2 − 8p

8p
> 0

and

(1− p)b+ pa+ c = pa+ c =
1

8
+

√
9p2 − 8p

8p
> 0.

(11) : (a, b, c) ̸∈ Pp(1).

Proof. First of all, recall 0 < p < (
√
5− 1)/2. We need to check the signs

of

c =

√
(p2 + p− 1)/(p− 1) + p− 1

6p− 4
,

b+ c = −
√
(p2 + p− 1)/(p− 1)− p+ 1

6p− 4
,

(1− p)b+ pa+ c =
(p− 1)

√
(p2 + p− 1)/(p− 1) + 2p− 1

6p− 4
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and

pa+ c = −
(p− 1)

√
(p2 + p− 1)/(p− 1)− 2p+ 1

6p− 4
.

Since 4− 6p > 0, it is sufficient to prove that

(4− 6p)(pa+ c) = (p− 1)

√
p2 + p− 1

p− 1
− 2p+ 1 < 0. (33)

When 1/2 ≤ p < (
√
5− 1)/2, (33) is trivial. When 0 < p < 1/2,

(p− 1)

√
p2 + p− 1

p− 1
< 2p− 1 ⇐⇒

√
p2 + p− 1

p− 1
>

2p− 1

p− 1

⇐⇒ p2 + p− 1

p− 1
>

(2p− 1)2

(p− 1)2

⇐⇒ p2 − 4p+ 2 > 0.

This completes the proof. □

(12) : (a, b, c) ̸∈ Pp(1) since

c = −
√
(p2 + p− 1)/(p− 1)− p+ 1

6p− 4
,

b+ c =

√
(p2 + p− 1)/(p− 1) + p− 1

6p− 4
,

(1− p)b+ pa+ c = −
(p− 1)

√
(p2 + p− 1)/(p− 1)− 2p+ 1

6p− 4
< 0

and

pa+ c =
(p− 1)

√
(p2 + p− 1)/(p− 1) + 2p− 1

6p− 4
.

(13) : If 0 < p ≤ α then (a, b, c) ∈ Pp(1). If β ≤ p < 1, then (a, b, c) ̸∈ Pp(1). This is

because

c =

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 + 2p− 2

2(p3 − 2p2 + 6p− 4)
,

b+ c = −
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 − 2p+ 2

2(p3 − 2p2 + 6p− 4)
,

(1− p)b+ pa+ c =
(p− 1)(

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 − 2p+ 2)

2(p3 − 2p2 + 6p− 4)
,

pa+ c = − (p− 1)(
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 + 2p− 2)

2(p3 − 2p2 + 6p− 4)
.
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When 0 < p ≤ α, then c, b + c, (1 − p)b + pa + c and pa + c are positive. On the

other hand, when β ≤ p < 1, we have (1− p)b+ pa+ c < 0.

Proof. For 0 < p ≤ α = 0.386 · · · , (a, b, c) ∈ Pp(1)

c =

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 + 2p− 2

2(p3 − 2p2 + 6p− 4)
,

b+ c =
−
√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 + 2p− 2

2(p3 − 2p2 + 6p− 4)
,

(1− p)b+ pa+ c = (1− p)
−
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 + 2p− 2

2(p3 − 2p2 + 6p− 4)
,

pa+ c = (1− p)

√
p4 − 4p3 + 16p2 − 16p+ 4− p2 + 2p− 2

2(p3 − 2p2 + 6p− 4)
.

It is easy to see that p3−2p2+6p−4 is negative on (0, α]. So, to prove c, b+c, (1−
p)b+ pa+ c, pa+ c > 0, it is sufficient to see that

A := 2(p3 − 2p2 + 6p− 4)c

=
√

p4 − 4p3 + 16p2 − 16p+ 4 + p2 + 2p− 2 < 0,

B := 2(p3 − 2p2 + 6p− 4)(b+ c)

= −
√

p4 − 4p3 + 16p2 − 16p+ 4 + p2 + 2p− 2 < 0,

C :=
2(p3 − 2p2 + 6p− 4)((1− p)b+ pa+ c)

1− p

= −
√

p4 − 4p3 + 16p2 − 16p+ 4− p2 + 2p− 2 < 0,

D :=
2(p3 − 2p2 + 6p− 4)(pa+ c)

1− p

=
√

p4 − 4p3 + 16p2 − 16p+ 4− p2 + 2p− 2 < 0.

Since A ≥ B and A ≥ D ≥ C, it sufficient to see A < 0. For 0 < p ≤ α,

p4 − 4p3 + 16p2 − 16p+ 4,−p2 − 2p+ 2 > 0. Therefore

A < 0 ⇐⇒ p4 − 4p3 + 16p2 − 16p+ 4 < (−p2 − 2p+ 2)2 ⇐⇒ −8(p− 1)2p < 0.

Thus we are done for 0 < p ≤ α.

For β = 0.844 · · · ≤ p < 1, it is easy to see that p3 − 2p2 + 6p− 4 and p2 − 2p+ 2

are positive. Hence

(1− p)b+ pa+ c =
(p− 1)(

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 − 2p+ 2)

2(p3 − 2p2 + 6p− 4)
< 0.

Thus we are done for β ≤ p < 1. □



1514

1514 A. Futaki and H. Ono

(14) : If 0 < p ≤ α, then (a, b, c) ∈ Pp(1). If β ≤ p < 1, then (a, b, c) ̸∈ Pp(1).

c = −
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 − 2p+ 2

2(p3 − 2p2 + 6p− 4)
,

b+ c =

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 + 2p− 2

2(p3 − 2p2 + 6p− 4)
,

(1− p)b+ pa+ c = − (p− 1)(
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 + 2p− 2)

2(p3 − 2p2 + 6p− 4)
,

pa+ c =
(p− 1)(

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 − 2p+ 2)

2(p3 − 2p2 + 6p− 4)
.

When 0 < p ≤ α β ≤ p < 1, c, b+ c, (1− p)b+ pa+ c and pa+ c are positive. On

the other hand, when β ≤ p < 1, we have (1− p)b+ pa+ c < 0.

(15) : (a, b, c) ̸∈ Pp(1)

c = b+ c =

√
1− p+ 1

2p
,

pa+ c = (1− p)b+ pa+ c = −−p+
√
1− p+ 1

2p
< 0.

(16) : (a, b, c) ∈ Pp(1)

c = b+ c = −
√
1− p− 1

2p
> 0,

(1− p)b+ pa+ c = pa+ c =
p+

√
1− p− 1

2p
> 0.

We record the data of the cases (1), (2) for later study.

(1):

c = −
√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + (3b− 1)p− 2b+ 1

6p− 4
,

b+ c =

−
√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + (−3b− 1)p+ 2b+ 1

6p− 4
,

(1− p)b+ pa+ c =√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + (3b+ 3)p− 2b− 1

6p− 4
,

pa+ c =√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + 6bp2 + (3− 7b)p+ 2b− 1

6p− 4
.
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(2):

c =

√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + (1− 3b)p+ 2b− 1

6p− 4
,

b+ c =√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + (3b+ 1)p− 2b− 1

6p− 4
,

(1− p)b+ pa+ c =

−
√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1 + 3bp2 + (−5b− 2)p+ 2b+ 1

6p− 4
,

pa+ c =

−
√
−9b2p3 + (21b2 + 1)p2 + (1− 16b2)p+ 4b2 − 1− 3bp2 + (5b− 2)p− 2b+ 1

6p− 4
.

To sum up, leaving (1), (2) aside, if 0 < p < α then the cKEM-Futaki invariant

vanishes for (13), (14), and (16). If α ≤ p ≤ 8/9 then the cKEM-Futaki invariant

vanishes only for (16). If 8/9 < p < 1 then cKEM-Futaki invariant vanishes for (9), (10)

and (16). We wish to compare this with the following result of LeBrun.

Theorem 4.3 (LeBrun [22]). Let M be the blow-up of CP2 at one point.

(a) For any Kähler class, there exists a Kähler metric which is conformal to a confor-

mally Kähler, Einstein–Maxwell metric.

(b) Express an arbitrary Kähler class as Ω = uL− vE where L and E are the Poincaré

duals of a projective line and the exceptional divisor. If 9 < u/v then there are two

Kähler metrics which are conformal to a conformally Kähler, Einstein–Maxwell

metric. One of these metrics g has two positive potential functions f of Hamil-

tonian Killing vector fields such that g̃ = f−2g is a conformally Kähler, Einstein–

Maxwell metric. Further there is an orientation reversing isometry between these

two conformally Kähler, Einstein–Maxwell metrics g̃.

All the Kähler metrics and positive potential functions of Hamiltonian Killing vector fields

in (a) and (b) are U(2)-invariant, and there are no other U(2)-invariant conformally

Kähler, Einstein–Maxwell metrics.

Theorem 4.4. Let M be the blow-up of CP2 at one point, ∆p the convex hull

of (0, 0), (p, 0), (p, 1 − p), (0, 1), (0 < p < 1) in (µ1, µ2)-plane, and consider ∆p as the

moment map image of M . Let 0 < α < β < 1 be the real roots of

p4 − 4p3 + 16p2 − 16p+ 4 = 0.

(a) For 0 < p < 1, the affine function

f =
p+ 2

√
1− p− 2

2p2
µ1 −

√
1− p− 1

2p
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corresponds to the conformally Kähler, Einstein–Maxwell metric in (a) in Theo-

rem 4.3.

(b) For 8/9 < p < 1, the two affine functions

f = −
√

9p2 − 8p+ p

4p2
µ1 +

3

8
+

√
9p2 − 8p

8p
,

f =

√
9p2 − 8p− p

4p2
µ1 +

3

8
−

√
9p2 − 8p

8p

correspond to the conformally Kähler, Einstein–Maxwell metric in (b) in Theo-

rem 4.3.

(c) For 0 < p < α, the two affine functions

f =−
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 + 4p− 2

2p3 − 4p2 + 12p− 8
µ1

−
√
p4 − 4p3 + 16p2 − 16p+ 4

p3 − 2p2 + 6p− 4
µ2

+

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 + 2p− 2

2(p3 − 2p2 + 6p− 4)
,

f =

√
p4 − 4p3 + 16p2 − 16p+ 4 + p2 − 4p+ 2

2p3 − 4p2 + 12p− 8
µ1

+

√
p4 − 4p3 + 16p2 − 16p+ 4

p3 − 2p2 + 6p− 4
µ2

−
√
p4 − 4p3 + 16p2 − 16p+ 4− p2 − 2p+ 2

2(p3 − 2p2 + 6p− 4)

are positive and satisfy Futf = 0. If there is a Kähler metric g such that f−2g gives

a conformally Kähler, Einstein–Maxwell metric then it has U(1)×U(1)-symmetry.

Proof. Recall that, in the classification (1)–(16), the cases with Futf = 0 are

the cases (1), (2), (9), (10), (13), (14) and (16). A toric cKEM metric in these cases, if

any, has U(2)-symmetry if and only if b = 0.

We see that (1) with b = 0 or (2) with b = 0 do not occur. In fact, if (1) with b = 0

occurs then

a =
2
√
p2 + p− 1 + p

6p2 − 4p
, 4c =

2p− 2−
√
2p2 + p− 1

3p− 2
.

We have to have p2+p−1 > 0, and thus we have only to consider the case (
√
5−1)/2 <

p < 1. In this range, we have

pa+ c

c
=

1 + 2pa

1− 2pa
=

−
√

p2 + p− 1− 2p+ 1√
p2 + p− 1 + 1− p

< 0.
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Hence c or pa+ c is negative. So f(0, 0) < 0 or f(p, 0) < 0. If (2) with b = 0 occurs then

a = −2
√

p2 + p− 1− p

6p2 − 4p
, pa+ c =

−
√

p2 + p− 1 + 2p− 1

6p− 4
.

For (
√
5− 1)/2 < p < 1 we have pa+ c < 0 since the numerator and denominator both

change sign at p = 2/3 and pa+ c = −3/4 at p = 2/3. So f(p, 0) < 0.

It follows that U(2)-symmetry occurs exactly when (9), (10), (16) because we have

b = 0 in the cases (9), (10) and (16).

The moment map image ∆p determines the Kähler class Ω = uL − vE with u = 1

and v = 1 − p. Thus u/v ≤ 9 if and only if p ≤ 8/9. In this region, only the case (16)

allows an f with vanishing cKEM-Futaki invariant, and in fact Theorem 4.3 shows there

is one cKEM metric with U(2)-symmetry. Moreover by Theorem 3 in [3], for a given f ,

a toric Kähler metric g such that f−2g is a cKEM metric is unique. Thus (a) holds.

In the region u/v > 9, that is, p > 8/9, the case (9), (10) and (16) gives an f with

vanishing cKEM-Futaki invariant. By the similar arguments as in the case of p ≤ 8/9,

these three cases correspond to the three LeBrun solutions in Theorem 4.3 cited above.

Moreover the cases (9) and (10) correspond to (b) in Theorem 4.3, which can be checked

by computing Vp(a, 0)
2 in (32). Put

f(a, p) :=
Vp(a, 0)

2

96π2

=
(12a2p3 − 4a(2a+ 1)p2 − p− 2)2

p(16a4p5 − 32a3(a+ 1)p4 + 8a2p3 + 8a(1− 2a)p2 − 3p+ 6)
.

Then we have

f

(
−

√
9p2 − 8p+ p

4p2
, p

)
= f

(√
9p2 − 8p− p

4p2
, p

)
= 5− 2

p
,

which shows the solutions corresponding to (9) and (10) are homothetic. (These are not

isometric since the total scalar curvature and the volume have different values.) But for

the case (16) the value of f(a, p) is not equal to the cases (9) and (10) because

f

(
p+ 2

√
1− p− 2

2p2
, p

)
= −4p4 +

√
1− p(24p3 − 112p2 + 112p− 32)− 68p3 + 164p2 − 128p+ 32

p4 + 6p3 +
√
1− p(16p2 − 16p)− 24p2 + 16p

and

f

(
−

√
9p2 − 8p+ p

4p2
, p

)
− f

(
p+ 2

√
1− p− 2

2p2
, p

)
=

9p3 +
√
1− p(24p2 − 32p)− 40p2 + 32p

p3 + 6p2 +
√
1− p(16p− 16)− 24p+ 16

.

Hence we have proved (b).



1518

1518 A. Futaki and H. Ono

The statement (c) is the possibility of the cases (13) and (14). This completes the

proof of Theorem 4.4. □

We have not been able to construct a cKEM metric for the cases (13) and (14).

There is an ansatz to construct local and global ambitoric solutions, see [1], [2], [3]. We

have not been able to rule out the cases (1) and (2). We leave these problems to the

interested readers.

4.4. Hirzebruch surfaces.

Let ∆p,q be the convex hull of (0, 0), (p, 0), (p, (1 − p)q), (0, q), (0 < p < 1, q ∈
N). An affine linear function f = aµ1 + bµ2 + c is positive on ∆p,q if and only if

c, qb+ c, (1− p)qb+ pa+ c, pa+ c > 0. We put

Pp,q := {(a, b, c) ∈ R3|c, qb+ c, (1− p)qb+ pa+ c, pa+ c > 0},
Pp,q(1) := Pp ∩ {(a, b, c)|(2− p)qb+ 2pa+ 4c = 1}.

For (a, b, c) ∈ Pp,q, we have∫
∂∆p,q

dσ

(aµ1 + bµ2 + c)2

=
q

c(qb+ c)
+

p

(qb+ c)((1− p)qb+ pa+ c)

+
(1− p)q

(pa+ c)((1− p)qb+ pa+ c)
+

p

c(pa+ c)

= −{((ab+ b2)q2 + (bc− a2 − ab)q − 2ac)p2

+ ((2bc− ab− b2)q2 + (c2 − 2(a+ b)c)q − 2c2)p− 2cq(qb+ c)}
/{(pa+ c)((1− p)qb+ pa+ c)(qb+ c)c}

=
sp,q(a, b, c)

(pa+ c)((1− p)qb+ pa+ c)(qb+ c)c
,∫

∆p

dµ1dµ2

(aµ1 + bµ2 + c)4

= {pq(ab3p3q3 + 2b3cp2q3 − 2ab3p2q3 − 4b3cpq3 + ab3pq3 + 2b3cq3

+ 2ab2cp3q2 − 2a2b2p3q2 + 4b2c2p2q2 − 10ab2cp2q2 + 2a2b2p2q2

− 12b2c2pq2 + 8ab2cpq2 + 8b2c2q2 + abc2p3q − 4a2bcp3q + a3bp3q

+ 2bc3p2q − 14abc2p2q + 8a2bcp2q − 12bc3pq + 18abc2pq + 12bc3q

− a2c2p3 + 2a3cp3 − 4ac3p2 + 8a2c2p2 − 3c4p+ 12ac3p+ 6c4)}

/{6c2(pa+ c)
2
(qb+ c)

2
((1− p)qb+ pa+ c)

2}

=
vp,q(a, b, c)

6c2(pa+ c)
2
(qb+ c)

2
((1− p)qb+ pa+ c)

2 .

Hence for (a, b, c) ∈ Pp,q(1), we have



1519

Volume minimization and conformally Kähler, Einstein–Maxwell geometry 1519

Vp,q(a, b)
2

:=
48π2sp,q(a, b, (1 + (p− 2)qb− 2pa)/4)2

vp,q(a, b, (1 + (p− 2)qb− 2pa)/4)

= {6(b2p3q3 + 2b2p2q3 − 12b2pq3 + 8b2q3 − 4abp3q2 + 2b2p3q2

+ 8abp2q2 + 8b2p2q2 + 2bp2q2 − 8b2pq2 + 4a2p3q − 8abp3q

− 8a2p2q − 4ap2q + pq − 2q + 8a2p3 − 2p)2}
/{pq(5b4p5q4 − 2b4p4q4 − 8b4p3q4 − 48b4p2q4 + 80b4pq4 − 32b4q4

− 24ab3p5q3 + 16ab3p4q3 + 12b3p4q3 + 96ab3p3q3 − 16b3p3q3 − 64ab3p2q3

+ 16b3p2q3 + 40a2b2p5q2 − 48a2b2p4q2 − 40ab2p4q2 − 96a2b2p3q2 + 32ab2p3q2

+ 6b2p3q2 + 64a2b2p2q2 − 32ab2p2q2 − 20b2p2q2 + 24b2pq2 − 16b2q2

− 32a3bp5q + 64a3bp4q + 48a2bp4q − 8abp3q + 16abp2q − 4bp2q + 16a4p5

− 32a4p4 − 32a3p4 + 8a2p3 − 16a2p2 + 8ap2 − 3p+ 6)}.

For example, the following are real solutions of ∂V 2
p,q/∂a = ∂V 2

p,q/∂b = 0:

(1)

[
a =

p+ 2
√
1− p− 2

2p2
, b = 0

]
,

(2)

[
a =

±
√
p(pq2 + 4q(p− 2)− 4p)− pq

4p2
, b = 0

]
,

(3)

[
a = −

√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4 − 2(p− 1)q + p(p− 2)

2(2(p− 1)(p− 2)q − p3)
,

b = −
√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4

q(2(p− 1)(p− 2)q − p3)

]
,

(4)

[
a =

√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4 + 2(p− 1)q − p(p− 2)

2(2(p− 1)(p− 2)q − p3)
,

b =

√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4

q(2(p− 1)(p− 2)q − p3)

]
.

Let us check these four cases.

(1)

[
a =

p+ 2
√
1− p− 2

2p2
, b = 0

]
: (a, b, c) ∈ Pp,q(1).

In this case, c = qb+ c, pa+ c = (1−p)qb+pa+ c are independent of q. Hence these

are positive by the computation when q = 1.

(2)

[
a =

±
√
p(pq2 + 4q(p− 2)− 4p)− pq

4p2
, b = 0

]
: (a, b, c) ̸∈ Pp,q(1).

When q = 2, these are not real solutions. When q ≥ 3 and

pq2 + 4q(p− 2)− 4p > 0,
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we have

pa+ c =
(2− q)p±

√
p(pq2 + 4q(p− 2)− 4p)

8p
< 0.

(3)

[
a = −

√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4 − 2(p− 1)q + p(p− 2)

2(2(p− 1)(p− 2)q − p3)
,

b = −
√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4

q(2(p− 1)(p− 2)q − p3)

]
,

(4)

[
a =

√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4 + 2(p− 1)q − p(p− 2)

2(2(p− 1)(p− 2)q − p3)
,

b =

√
4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4

q(2(p− 1)(p− 2)q − p3)

]
.

Take q = 2, 3, 4 and perform a numerical analysis, then we see that there are two

roots 0 < αq < βq < 1 of the quartic equation in p:

4(1− p)2q2 − 4(p− 1)(p− 2)pq + p4 = 0,

and that for 0 < p < αq, we have (a, b, c) ∈ Pp,q(1) so that the cKEM-Futaki invariant

vanishes.

We conclude this section with the following two remarks.

Remark 4.5. It is likely that the case (1) corresponds to LeBrun’s construction

in [22], Theorem D with k ≥ 2. This case should be the only case with U(2)-symmetry.

We may prove it by showing b = 0 occurs only in the case (1).

Remark 4.6. It would be interesting if one can prove or disprove the existence of

cKEM metrics in the cases of (3) and (4) with 0 < p < αq since, if any, the solutions

necessarily have U(1)× U(1)-symmetry.
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