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Abstract. In this paper, we consider the scalar curvature of a self-
shrinker and get the gap theorem of the scalar curvature. We get also a

relationship between the upper bound of the square of the length of the sec-
ond fundamental form and the Ricci mean value.

1. Introduction.

Let x : Mn → Rn+1 be an n(n ≥ 2)-dimensional hypersurface in the (n+ 1)-dimen-

sional Euclidean space. Let xT and x⊥ denote the projection of the position vector x

onto tangent space and the normal space of Mn, respectively, then

x = xT + x⊥.

A hypersurface Mn is called a self-shrinker if it satisfies the quasi-linear elliptic system:

H = −<x⊥, en+1>, (1.1)

where en+1 an unit normal vector and H is the mean curvature of Mn. Self-shrinkers

play an important role in the study of the mean curvature flow. For example, Huisken’s

monotonicity formula for the mean curvature flow implies that any Type I blow-up limit

is a self-similar shrinking solution (cf. [5] and [6]). In other words, not only self-shrinkers

correspond to self-shrinking solutions to the mean curvature flow, but also they describe

all possible Type I blow ups at a given singularity of the mean curvature flow. The

simplest example of a self-shrinker in Rn+1 is the round sphere of radius
√
n centered

at the origin. In a remarkable recent work, Colding and Minicozzi [3] proved that a

self-shrinker which is a stable critical points of a certain entropy functional must be a

sphere or cylinder. The round sphere is also known to minimize entropy among closed

self-shrinkers.

To characterize the self-shrinkers by mean curvature H and the square of the length

of the second fundamental form ∥A∥2, some interesting gap theorems have been obtained.

For examples, for a compact self-shrinker, we have max ∥A∥2 ≥ 1 and equality sign holds

if and only if the self-shrinker is the round sphere of radius
√
n centered at the origin [8].

For the generalization to the case of arbitrary codimension and complete self-shrinkers

we refer readers to papers [1], [2] and [4]. Considering the mean curvature, by making

use of Minkowski’s formula [7], one can see that following gap theorem holds: for a
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compact self-shrinker we have minH2 − n ≤ 0 ≤ maxH2 − n, where each equality sign

holds if and only if the self-shrinker is Sn(
√
n). For the scalar R, it is easy to prove that

minR ≤ n− 1 and the equality holds if and only if the self-shrinker is Sn(
√
n). In fact,

from Gauss equation R = H2 − ∥A∥2 we have

R− n− 1

n
H2 =

1

n
H2 − ∥A∥2 ≤ 0,

where the equality holds if and only if the hypersurface is totally umbilical. Hence we

have

minR− (n− 1) = minR− n− 1

n
n ≤ minR− n− 1

n
minH2

= minR+max

(
− n− 1

n
H2

)
≤ max

(
R− n− 1

n
H2

)
≤ 0,

and the conclusion follows immediately. From this we see that minR ≤ n − 1 is a

necessary condition that a compact Riemannian manifold can be immersed in Euclidean

space as a codimension 1 self-shrinker.

In this paper, we define Ricci mean value of a hypersurface as follows:

c =
1

nV

∫
M

Ric(xT , xT )dM, (1.2)

where V is the volume of Mn and Ric(xT , xT ) denotes the Ricci curvature in tangent

vector xT . The main purpose of this paper is to get the gap theorem for the scalar

curvature. As a corollary of the main theorem we get also a relationship between the

upper bound of the square of the length of the second fundamental form and the Ricci

mean value. Explicitly, we prove following results:

Theorem 1.1. For a compact self-shrinker with scalar curvature R if either con-

dition R ≤ n − 1 + c or R ≥ n − 1 + c is satisfied, then c = 0, R = n − 1 and the

self-shrinker is isometrically homeomorphic to sphere Sn(
√
n).

In other words, we get, on a compact self-shrinker, it holds

minR− (n− 1) ≤ c ≤ maxR− (n− 1),

where each of the equality signs holds if and only if c = 0 and the self-shrinker is

isometrically homeomorphic to sphere Sn(
√
n). In particular, if R is constant then x(Mn)

is isometrically homeomorphic to sphere Sn(
√
n).

Theorem 1.2. For a compact self-shrinker, we have

1−max ∥A∥2 ≤ c ≤ (n− 1)(max ∥A∥2 − 1)

where each of the equality signs holds if and only if c = 0 and the self-shrinker is isomet-

rically homeomorphic to sphere Sn(
√
n).
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The conclusion of Theorem 1.2 is closely related to an interesting problem, i.e. the

second gap problem. The second gap problem means that dose exist a number δ(> 1)

such that if ∥A∥2 ≤ δ then ∥A∥2 = 1 or ∥A∥2 = δ, and there exists compact self-shrinker

with ∥A∥2 = δ? In other words, for compact self-shrinkers, dose exist a number δ such

that max ∥A∥2 ≥ δ and identity holds if and only if ∥A∥2 = δ and there exists compact

self-shrinker with ∥A∥2 = δ? The interval [1, δ] is called the second gap of ∥A∥2.
From Theorem 1.2 we see that it holds that if c > 0, then max ∥A∥2 > 1+(c/(n− 1));

if c < 0, then max ∥A∥2 > 1− c. This shows that if there exists the second gap [1, δ] of

∥A∥2, then c(x) ̸= 0 (x(M) is self-shrinker with max ∥A(x)∥2 = δ) and, if c(x) > 0 then

δ > 1 + (c(x)/(n− 1)); if c(x) < 0 then δ > 1− c(x).

We establish first a new integral formula for a compact self-shrinker and then, by

making use of the new formula, we prove above results.

2. An integral formula on a compact hypersurface.

Let x : Mn → Rn+1 be an n-dimensional hypersurface in the (n + 1)-dimensional

Euclidean space with inner product <·, ·>. Define nonnegative function

u =
1

2
∥x∥2.

Let xT denote the projection of the position vector x and Ric(xT , xT ) denote the Ricci

curvature in tangent vector xT . We introduce the notation

c =
1

nV

∫
M

Ric(xT , xT )dM, (2.1)

where dM is volume element and V is the volume of Mn. Quantity c relies on the metric

of Mn and immersion x but it is a constant on x(Mn) for fixed x. We have following

integral formula:

Lemma 2.1. For a compact hypersurface Mn in Rn+1, we have formula∫
M

[R∥x⊥∥2 − n(n− 1 + c)]dM = 0. (2.2)

For a self-shrinker, using condition ∥x⊥∥2 = H2 and Minkowski’s formula, we have

the following integral formula:

Corollary 2.2. For a compact self-shrinker, it holds that∫
M

[R− (n− 1 + c)]H2dM = 0. (2.3)

Proof of Lemma 2.1. Let f be a smooth function on Mn. Choosing a local

field of orthonormal tangent frames ei (1 ≤ i ≤ n) and normal vector en+1, we can

denote the components of the co-derivative of fi = ei(f) by fi,j . Laplacian ∆ is defined

by ∆f :=
∑

i fi,i. Noting that the following formula can be easily gotten by a direct

calculation and making use of Ricci identity:
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∆

(
1

2
∥∇f∥2

)
=

∑
i,j

f2
i,j +

∑
k

fk(∆f)k +
∑
ij

Rijfifj ,

we have

−
∫
M

∑
ij

RijfifjdM =

∫
M

[∑
i,j

f2
i,j − (∆f)2

]
dM. (2.4)

In the fact, (2.4) holds on a compact Riemannian manifold because it dose not involve

the structure of the hypersurface. Next step, we will apply (2.4) to the function u which

is determined by isometrically immersion x. As u satisfies following equation

ui,j = δij +<x, en+1>hij ,

∆u = n+<x, en+1>H,

we have ∑
i,j

u2
i,j − (∆u)2

= −n(n− 1)− 2(n− 1)<x, en+1>H +

(∑
ij

hijhij −H2

)
<x, en+1>

2.

Making use of (2.4) and the first Minkowski’s integral formula∫
M

(n+<x, en+1>H)dM = 0,

we have

−
∫
M

∑
ij

RijuiujdM =

∫
M

[
n(n− 1) +

(∑
ij

hijhij −H2

)
<x, en+1>

2

]
dM,

which implies (2.2). This completes the proof of the lemma. □

3. Proofs of main theorems.

In the section, we will prove Theorem 1.1 and Theorem 1.2. We need the following

proposition:

Proposition 3.1. Let Mn be a compact Riemannian manifold and x : Mn →
Rn+1 be an isometric immersion. Then there exists a point q ∈ Mn such that scalar

curvature R(q) is positive.

Proof. The function u = (1/2)<x, x> attains the maximum at a point q ∈ Mn

as Mn is compact and u is continuous. We have

du|q = 0, d2u|q ≤ 0.
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Let en+1 be the unit normal vector at point q. The second fundamental form A(q) is

defined as follows:

A(q) = <d2x|q, en+1>.

From <x, dx>|q = du|q = 0 we see x(q) ⊥ TqM . So, we have

x(q) = <x(q), en+1>en+1, <x(q), en+1> ̸= 0.

We have

0 ≥ d2u|q = <dx, dx>|q +<x, d2x>|q = <dx, dx>|q +<x(q), en+1>A(q).

Since <dx, dx>|q is positive definite, we know that <x(q), en+1>A(q) is negative definite.

Hence we know that A(q) must be definite. Let λi (1 ≤ i ≤ n) be the eigenvalue of A(q).

Then we have

λiλj > 0.

Hence we have

R(q) = (∥H∥2 − ∥A∥2)(q) =
(∑

i

λi

)2

−
∑
i

λ2
i =

∑
i ̸=j

λiλj > 0.

This completes the proof of Proposition 3.1. □

Proof of Theorem 1.1. Firstly, we prove claim: suppose R ≤ n − 1 + c or

R ≥ n− 1+ c, then R = n− 1+ c on M . From Corollary 2.2 we see that the assumption

of the theorem implies

[R− (n− 1 + c)]H2 = 0.

On open set U = {q ∈ M : H(q) ̸= 0}, we have R = n − 1 + c on U . We will

prove that constant number n − 1 + c is positive. In fact, on one hand, there exits a

point q0 such that R is positive at q0 (Proposition 3.1). On the other hand, we have

R = H2−∥A∥2 ≤ H2 = 0 on M \U . Hence q0 ∈ U and so we have n−1+ c = R(q0) > 0

on U . Note that R is a positive constant on U and is non-positive on M \ U , we know

that M \ U is empty as R is continuous on M . This completes the proof of the claim:

R = n− 1 + c on M .

Secondly, we prove claim: R = n− 1+ c on Mn implies c = 0. It is well known that

on a compact hypersurface of Rn+1 it holds the second Minkowski’s integral formula∫
M

[(n− 1)H +R<x, en+1>]dM = 0.

In particular, for self-shrinker we have∫
M

H[R− (n− 1)]dM = 0. (3.1)
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From the first claim we have

c

∫
M

HdM = 0.

As R is constant on M and M is compact we know that R is a positive constant. Using

Gaussian equation we have

0 < R = H2 − ∥A∥2 ≤ H2,

which means H ̸= 0 everywhere. So we have
∫
HdM ̸= 0. This completes the proof of

the claim: c = 0.

Thirdly, we prove claim: Mn is isometrically homeomorphic to sphere Sn(
√
n). From

inequality

0 ≥ 1

n
H2 − ∥A∥2 = −n− 1

n
H2 +H2 − ∥A∥2 = −n− 1

n
H2 +R

and equality ∫
M

H2dM =

∫
M

ndM,

we have

0 ≥
∫
M

(
1

n
H2 − ∥A∥2

)
dM =

∫
M

(−(n− 1) +R)dM.

From the second claim we know R = n− 1. We get (1/n)H2 − ∥A∥2 = 0, which means

M is totally umbilical. This completes proof of the claim and so completes the proof of

Theorem 1.1. □

Corollary 3.2. A compact self-shrinker with constant scalar curvature is isomet-

rically homeomorphic to Sn(
√
n).

Proof of Theorem 1.2. From Corollary 2.2 and Gaussian equation we have∫
M

(H2 − ∥A∥2 − n+ 1− c)H2dM = 0.

Noting ∫
M

(H2 − n)dM = 0,

we have ∫
M

(H2 − n)H2dM =

∫
M

(H2 − n)2dM ≥ 0.

Hence we have
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M

[∥A∥2 − (1− c)]H2dM ≥ 0.

We see that if ∥A∥2 ≤ 1 − c then ∥A∥2 = 1 − c and H2 = n, which implies c = 0 and

x(M) is isometrically homeomorphic to sphere Sn(
√
n). In other words, we have

sup ∥A∥2 ≥ 1− c, (3.2)

where equality holds implies c = 0 and x(M) is isometrically homeomorphic to sphere

Sn(
√
n).

On the other hand, as H2 ≤ n∥A∥2, we have R = H2 − ∥A∥2 ≤ (n− 1)∥A∥2. From
Theorem 1.1 we have

sup ∥A∥2 ≥ 1 +
c

n− 1
. (3.3)

From (3.2) and (3.3) we complete the proof of Theorem 1.2. □

Remark 3.3. For a given compact Riemannian manifold (Mn, g), if it can be

isometrically immersed in Rn+1 as a self-shrinker, then we have a non-empty set

X := {x : Mn → Rn+1|isometrically immersion as a self-shrinker}.

Functional c : X → R which is defined by (1.2) needs to satisfy

minR(g)− (n− 1) ≤ c(x) ≤ maxR(g)− (n− 1), x ∈ X.

Hence we can define two numbers α and β as follows:

α = inf
x∈X

c(x), β = sup
x∈X

c(x).

Our inequality can be written as follows:

minR(g)− (n− 1) ≤ α ≤ β ≤ maxR(g)− (n− 1). (3.4)

Theorem 1.1 shows that if there exists x0 such that c(x0) = α, then c(x0) = 0 and Mn

is isometric to sphere Sn(
√
n).
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