©2018 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 70, No. 3 (2018) pp. 1103–1110 doi: 10.2969/jmsj/73427342

Scalar curvature of self-shrinker

By Zhen Guo

(Received Oct. 24, 2015) (Revised Jan. 11, 2017)

Abstract. In this paper, we consider the scalar curvature of a selfshrinker and get the gap theorem of the scalar curvature. We get also a relationship between the upper bound of the square of the length of the second fundamental form and the Ricci mean value.

1. Introduction.

Let $x: M^n \to \mathbb{R}^{n+1}$ be an $n(n \ge 2)$ -dimensional hypersurface in the (n+1)-dimensional Euclidean space. Let x^T and x^{\perp} denote the projection of the position vector x onto tangent space and the normal space of M^n , respectively, then

$$x = x^T + x^{\perp}$$

A hypersurface M^n is called a self-shrinker if it satisfies the quasi-linear elliptic system:

$$H = -\langle x^{\perp}, e_{n+1} \rangle, \tag{1.1}$$

where e_{n+1} an unit normal vector and H is the mean curvature of M^n . Self-shrinkers play an important role in the study of the mean curvature flow. For example, Huisken's monotonicity formula for the mean curvature flow implies that any Type I blow-up limit is a self-similar shrinking solution (cf. [5] and [6]). In other words, not only self-shrinkers correspond to self-shrinking solutions to the mean curvature flow, but also they describe all possible Type I blow ups at a given singularity of the mean curvature flow. The simplest example of a self-shrinker in \mathbb{R}^{n+1} is the round sphere of radius \sqrt{n} centered at the origin. In a remarkable recent work, Colding and Minicozzi [3] proved that a self-shrinker which is a stable critical points of a certain entropy functional must be a sphere or cylinder. The round sphere is also known to minimize entropy among closed self-shrinkers.

To characterize the self-shrinkers by mean curvature H and the square of the length of the second fundamental form $||A||^2$, some interesting gap theorems have been obtained. For examples, for a compact self-shrinker, we have max $||A||^2 \ge 1$ and equality sign holds if and only if the self-shrinker is the round sphere of radius \sqrt{n} centered at the origin [8]. For the generalization to the case of arbitrary codimension and complete self-shrinkers we refer readers to papers [1], [2] and [4]. Considering the mean curvature, by making use of Minkowski's formula [7], one can see that following gap theorem holds: for a

²⁰¹⁰ Mathematics Subject Classification. Primary 53C17, 53C40, 53C42.

Key Words and Phrases. self-shrinker, scalar curvature, Ricci mean value.

The author was supported by project number 11161056, 11531012 of NSFC.

compact self-shrinker we have $\min H^2 - n \leq 0 \leq \max H^2 - n$, where each equality sign holds if and only if the self-shrinker is $\mathbb{S}^n(\sqrt{n})$. For the scalar R, it is easy to prove that $\min R \leq n - 1$ and the equality holds if and only if the self-shrinker is $\mathbb{S}^n(\sqrt{n})$. In fact, from Gauss equation $R = H^2 - ||A||^2$ we have

$$R - \frac{n-1}{n}H^2 = \frac{1}{n}H^2 - ||A||^2 \le 0,$$

where the equality holds if and only if the hypersurface is totally umbilical. Hence we have

$$\min R - (n-1) = \min R - \frac{n-1}{n}n \le \min R - \frac{n-1}{n}\min H^2$$
$$= \min R + \max\left(-\frac{n-1}{n}H^2\right) \le \max\left(R - \frac{n-1}{n}H^2\right) \le 0.$$

and the conclusion follows immediately. From this we see that $\min R \leq n-1$ is a necessary condition that a compact Riemannian manifold can be immersed in Euclidean space as a codimension 1 self-shrinker.

In this paper, we define Ricci mean value of a hypersurface as follows:

$$c = \frac{1}{nV} \int_{M} Ric(x^{T}, x^{T}) dM, \qquad (1.2)$$

where V is the volume of M^n and $Ric(x^T, x^T)$ denotes the Ricci curvature in tangent vector x^T . The main purpose of this paper is to get the gap theorem for the scalar curvature. As a corollary of the main theorem we get also a relationship between the upper bound of the square of the length of the second fundamental form and the Ricci mean value. Explicitly, we prove following results:

THEOREM 1.1. For a compact self-shrinker with scalar curvature R if either condition $R \leq n-1+c$ or $R \geq n-1+c$ is satisfied, then c = 0, R = n-1 and the self-shrinker is isometrically homeomorphic to sphere $\mathbb{S}^n(\sqrt{n})$.

In other words, we get, on a compact self-shrinker, it holds

$$\min R - (n-1) \le c \le \max R - (n-1),$$

where each of the equality signs holds if and only if c = 0 and the self-shrinker is isometrically homeomorphic to sphere $\mathbb{S}^n(\sqrt{n})$. In particular, if R is constant then $x(M^n)$ is isometrically homeomorphic to sphere $\mathbb{S}^n(\sqrt{n})$.

THEOREM 1.2. For a compact self-shrinker, we have

$$1 - \max \|A\|^2 \le c \le (n-1)(\max \|A\|^2 - 1)$$

where each of the equality signs holds if and only if c = 0 and the self-shrinker is isometrically homeomorphic to sphere $\mathbb{S}^n(\sqrt{n})$.

The conclusion of Theorem 1.2 is closely related to an interesting problem, i.e. the second gap problem. The second gap problem means that dose exist a number $\delta(>1)$ such that if $||A||^2 \leq \delta$ then $||A||^2 = 1$ or $||A||^2 = \delta$, and there exists compact self-shrinker with $||A||^2 = \delta$? In other words, for compact self-shrinkers, dose exist a number δ such that max $||A||^2 \geq \delta$ and identity holds if and only if $||A||^2 = \delta$ and there exists compact self-shrinker with $||A||^2 = \delta$? The interval $[1, \delta]$ is called the second gap of $||A||^2$.

From Theorem 1.2 we see that it holds that if c > 0, then max $||A||^2 > 1 + (c/(n-1))$; if c < 0, then max $||A||^2 > 1 - c$. This shows that if there exists the second gap $[1, \delta]$ of $||A||^2$, then $c(x) \neq 0$ (x(M) is self-shrinker with max $||A(x)||^2 = \delta$) and, if c(x) > 0 then $\delta > 1 + (c(x)/(n-1))$; if c(x) < 0 then $\delta > 1 - c(x)$.

We establish first a new integral formula for a compact self-shrinker and then, by making use of the new formula, we prove above results.

2. An integral formula on a compact hypersurface.

Let $x: M^n \to \mathbb{R}^{n+1}$ be an *n*-dimensional hypersurface in the (n + 1)-dimensional Euclidean space with inner product $\langle \cdot, \cdot \rangle$. Define nonnegative function

$$u = \frac{1}{2} \|x\|^2.$$

Let x^T denote the projection of the position vector x and $Ric(x^T, x^T)$ denote the Ricci curvature in tangent vector x^T . We introduce the notation

$$c = \frac{1}{nV} \int_M Ric(x^T, x^T) dM, \qquad (2.1)$$

where dM is volume element and V is the volume of M^n . Quantity c relies on the metric of M^n and immersion x but it is a constant on $x(M^n)$ for fixed x. We have following integral formula:

LEMMA 2.1. For a compact hypersurface M^n in \mathbb{R}^{n+1} , we have formula

$$\int_{M} [R \|x^{\perp}\|^{2} - n(n-1+c)] dM = 0.$$
(2.2)

For a self-shrinker, using condition $||x^{\perp}||^2 = H^2$ and Minkowski's formula, we have the following integral formula:

COROLLARY 2.2. For a compact self-shrinker, it holds that

$$\int_{M} [R - (n - 1 + c)] H^2 dM = 0.$$
(2.3)

PROOF OF LEMMA 2.1. Let f be a smooth function on M^n . Choosing a local field of orthonormal tangent frames e_i $(1 \le i \le n)$ and normal vector e_{n+1} , we can denote the components of the co-derivative of $f_i = e_i(f)$ by $f_{i,j}$. Laplacian Δ is defined by $\Delta f := \sum_i f_{i,i}$. Noting that the following formula can be easily gotten by a direct calculation and making use of Ricci identity:

$$\Delta\left(\frac{1}{2}\|\nabla f\|^2\right) = \sum_{i,j} f_{i,j}^2 + \sum_k f_k(\Delta f)_k + \sum_{ij} R_{ij} f_i f_j,$$

we have

$$-\int_{M} \sum_{ij} R_{ij} f_{i} f_{j} dM = \int_{M} \left[\sum_{i,j} f_{i,j}^{2} - (\Delta f)^{2} \right] dM.$$
(2.4)

In the fact, (2.4) holds on a compact Riemannian manifold because it dose not involve the structure of the hypersurface. Next step, we will apply (2.4) to the function u which is determined by isometrically immersion x. As u satisfies following equation

$$u_{i,j} = \delta_{ij} + \langle x, e_{n+1} \rangle h_{ij},$$

$$\Delta u = n + \langle x, e_{n+1} \rangle H,$$

we have

$$\sum_{i,j} u_{i,j}^2 - (\Delta u)^2$$

= $-n(n-1) - 2(n-1) < x, e_{n+1} > H + \left(\sum_{ij} h_{ij}h_{ij} - H^2\right) < x, e_{n+1} >^2.$

Making use of (2.4) and the first Minkowski's integral formula

$$\int_{M} (n + \langle x, e_{n+1} \rangle H) dM = 0,$$

we have

$$-\int_{M}\sum_{ij}R_{ij}u_{i}u_{j}dM = \int_{M}\left[n(n-1) + \left(\sum_{ij}h_{ij}h_{ij} - H^{2}\right) < x, e_{n+1} >^{2}\right]dM,$$

which implies (2.2). This completes the proof of the lemma.

3. Proofs of main theorems.

In the section, we will prove Theorem 1.1 and Theorem 1.2. We need the following proposition:

PROPOSITION 3.1. Let M^n be a compact Riemannian manifold and $x : M^n \to \mathbb{R}^{n+1}$ be an isometric immersion. Then there exists a point $q \in M^n$ such that scalar curvature R(q) is positive.

PROOF. The function u = (1/2) < x, x > attains the maximum at a point $q \in M^n$ as M^n is compact and u is continuous. We have

$$du|_q = 0, \quad d^2u|_q \le 0.$$

$$A(q) = \langle d^2 x |_q, e_{n+1} \rangle.$$

From $\langle x, dx \rangle|_q = du|_q = 0$ we see $x(q) \perp T_q M$. So, we have

$$x(q) = \langle x(q), e_{n+1} \rangle e_{n+1}, \quad \langle x(q), e_{n+1} \rangle \neq 0.$$

We have

$$0 \ge d^2 u|_q = \langle dx, dx \rangle|_q + \langle x, d^2 x \rangle|_q = \langle dx, dx \rangle|_q + \langle x(q), e_{n+1} \rangle A(q).$$

Since $\langle dx, dx \rangle|_q$ is positive definite, we know that $\langle x(q), e_{n+1} \rangle A(q)$ is negative definite. Hence we know that A(q) must be definite. Let λ_i $(1 \leq i \leq n)$ be the eigenvalue of A(q). Then we have

$$\lambda_i \lambda_j > 0.$$

Hence we have

$$R(q) = (||H||^2 - ||A||^2)(q) = \left(\sum_i \lambda_i\right)^2 - \sum_i \lambda_i^2 = \sum_{i \neq j} \lambda_i \lambda_j > 0.$$

This completes the proof of Proposition 3.1.

PROOF OF THEOREM 1.1. Firstly, we prove claim: suppose $R \leq n - 1 + c$ or $R \geq n - 1 + c$, then R = n - 1 + c on M. From Corollary 2.2 we see that the assumption of the theorem implies

$$[R - (n - 1 + c)]H^2 = 0.$$

On open set $U = \{q \in M : H(q) \neq 0\}$, we have R = n - 1 + c on U. We will prove that constant number n - 1 + c is positive. In fact, on one hand, there exits a point q_0 such that R is positive at q_0 (Proposition 3.1). On the other hand, we have $R = H^2 - ||A||^2 \leq H^2 = 0$ on $M \setminus U$. Hence $q_0 \in U$ and so we have $n - 1 + c = R(q_0) > 0$ on U. Note that R is a positive constant on U and is non-positive on $M \setminus U$, we know that $M \setminus U$ is empty as R is continuous on M. This completes the proof of the claim: R = n - 1 + c on M.

Secondly, we prove claim: R = n - 1 + c on M^n implies c = 0. It is well known that on a compact hypersurface of \mathbb{R}^{n+1} it holds the second Minkowski's integral formula

$$\int_{M} [(n-1)H + R < x, e_{n+1} >]dM = 0.$$

In particular, for self-shrinker we have

$$\int_{M} H[R - (n-1)] dM = 0.$$
(3.1)

From the first claim we have

$$c\int_M H dM = 0.$$

As R is constant on M and M is compact we know that R is a positive constant. Using Gaussian equation we have

$$0 < R = H^2 - ||A||^2 \le H^2,$$

which means $H \neq 0$ everywhere. So we have $\int H dM \neq 0$. This completes the proof of the claim: c = 0.

Thirdly, we prove claim: M^n is isometrically homeomorphic to sphere $\mathbb{S}^n(\sqrt{n}).$ From inequality

$$0 \geq \frac{1}{n}H^2 - \|A\|^2 = -\frac{n-1}{n}H^2 + H^2 - \|A\|^2 = -\frac{n-1}{n}H^2 + R$$

and equality

$$\int_M H^2 dM = \int_M n dM,$$

we have

$$0 \ge \int_M \left(\frac{1}{n}H^2 - \|A\|^2\right) dM = \int_M (-(n-1) + R) dM.$$

From the second claim we know R = n - 1. We get $(1/n)H^2 - ||A||^2 = 0$, which means M is totally umbilical. This completes proof of the claim and so completes the proof of Theorem 1.1.

COROLLARY 3.2. A compact self-shrinker with constant scalar curvature is isometrically homeomorphic to $\mathbb{S}^n(\sqrt{n})$.

PROOF OF THEOREM 1.2. From Corollary 2.2 and Gaussian equation we have

$$\int_{M} (H^{2} - \|A\|^{2} - n + 1 - c)H^{2}dM = 0.$$

Noting

$$\int_M (H^2 - n)dM = 0$$

we have

$$\int_{M} (H^{2} - n)H^{2} dM = \int_{M} (H^{2} - n)^{2} dM \ge 0.$$

Hence we have

$$\int_{M} [\|A\|^{2} - (1-c)]H^{2}dM \ge 0.$$

We see that if $||A||^2 \leq 1 - c$ then $||A||^2 = 1 - c$ and $H^2 = n$, which implies c = 0 and x(M) is isometrically homeomorphic to sphere $\mathbb{S}^n(\sqrt{n})$. In other words, we have

$$\sup \|A\|^2 \ge 1 - c, \tag{3.2}$$

where equality holds implies c = 0 and x(M) is isometrically homeomorphic to sphere $\mathbb{S}^n(\sqrt{n})$.

On the other hand, as $H^2 \leq n \|A\|^2$, we have $R = H^2 - \|A\|^2 \leq (n-1)\|A\|^2$. From Theorem 1.1 we have

$$\sup \|A\|^2 \ge 1 + \frac{c}{n-1}.$$
(3.3)

From (3.2) and (3.3) we complete the proof of Theorem 1.2.

REMARK 3.3. For a given compact Riemannian manifold (M^n, g) , if it can be isometrically immersed in \mathbb{R}^{n+1} as a self-shrinker, then we have a non-empty set

 $\mathbb{X} := \{ x : M^n \to \mathbb{R}^{n+1} | \text{isometrically immersion as a self-shrinker} \}.$

Functional $c: \mathbb{X} \to \mathbb{R}$ which is defined by (1.2) needs to satisfy

$$\min R(g) - (n-1) \le c(x) \le \max R(g) - (n-1), \quad x \in \mathbb{X}.$$

Hence we can define two numbers α and β as follows:

$$\alpha = \inf_{x \in \mathbb{X}} c(x), \quad \beta = \sup_{x \in \mathbb{X}} c(x).$$

Our inequality can be written as follows:

$$\min R(g) - (n-1) \le \alpha \le \beta \le \max R(g) - (n-1).$$

$$(3.4)$$

Theorem 1.1 shows that if there exists x_0 such that $c(x_0) = \alpha$, then $c(x_0) = 0$ and M^n is isometric to sphere $\mathbb{S}^n(\sqrt{n})$.

ACKNOWLEDGEMENTS. The author would like to thank the referees for very helpful suggestions.

References

- H.-D. Cao and H. Li, A gap theorem for self-shrinkers of the mean curvature arbitrary codimension, Calc. Var. Partial Diff. Equation, 46 (2013), 879–889.
- [2] Q.-M. Cheng and G. X. Wei, A gap theorem of self-shrinkers, Trans. Amer. Math. Soc., 367 (2015), 4895–4915.
- [3] T. H. Colding, T. Ilmanen, W. P. Minicozzi, II and B. White, The round sphere minimizes entropy among closed self-shrinkers, J. Diff. Geom., 95 (2013), 53–69.
- [4] Q. Ding and Y. Xin, The rigidity theorems of self-shrinkers, Trans. Amer. Math. Soc., 366 (2014), 5067–5085.

1109

 \Box

- [5] G. Huisken, Flow by mean curvature convex surfaces into spheres, J. Diff. Geom., 20 (1984), 237–266.
- [6] G. Huisken, Asymptotic behavior for sigularities of the mean curvature flow, J. Diff. Geom., 31 (1990), 285–299.
- [7] C. C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand., 2 (1954), 286–294.
- [8] N. Q. Le and N. Sesum, Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, Commun. Anal. Geom., **19** (2011), 633–659.

Zhen Guo

Department of Mathematics Yunnan Normal University Kunming 650500, China E-mail: gzh2001y@yahoo.com