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Abstract. The main result of this note is that two blow-analytically

equivalent real analytic plane function germs are sub-analytically bi-Lipschitz
contact equivalent.

1. Introduction.

The bi-Lipschitz classification of regular (analytic, smooth, definable) function germs

is rather recent. Beyond the plane case, very little is known. As Parusiński and Henry

showed in [10], the bi-Lipschitz right equivalence of real analytic plane function germs,

unlike the classical case of the topological right equivalence [7], already presents moduli.

The blow-analytic equivalence (of real analytic function germs) introduced more

than thirty years ago by Kuo [13], nevertheless has no moduli. Roughly speaking a

blow-analytic homeomorphism is obtained by blowing-down an analytic isomorphism

between blown-up manifolds (obtained by finite composition of blowings-up at the source

and at the target respectively). Although not bi-Lipschitz in general it is still a rigid

homeomorphism.

Birbrair, Fernandes and Grandjean, jointly with Gabrielov, recently exhibited a

complete invariant, called minimal pizza, of the sub-analytic bi-Lipschitz contact equiv-

alence of Lipschitz sub-analytic plane function germs [4]. The existence of this complete

invariant implies that this equivalence has no moduli (result already known for analytic

plane germs from a previous work of Birbrair and Fernandes, jointly with Costa and Ruas

[3]). A pizza is a way to encode, by means of finitely many rational numbers, all the

sub-analytic asymptotic behaviors of the considered function at the considered point. As

the result of [4] states, such combinatorial data encoding the asymptotics of a given germ

is indeed of metric nature. The local monomialization/resolution of (sub-)analytic func-

tion germs, although using a parameterization (the associated blowing-down mapping),

is very convenient to investigate the sub-analytic asymptotic behaviors at the consid-

ered point. In the category of real analytic plane function germs, such hints suggest
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looking for relations between blow-analytic equivalence and bi-Lipschitz contact equiva-

lence. Nevertheless Koike and Parusiński have already provided examples of bi-Lipschitz

right-equivalent real analytic plane function germs (thus bi-Lipschitz contact equivalent)

which are not blow-analytic equivalent [15].

This note establishes the relation between the blow-analytic equivalence and the

sub-analytical bi-Lipschitz contact equivalence, namely

Theorem 5.1. Blow-analytic equivalent real analytic plane function germs are sub-

analytically bi-Lipschitz contact equivalent.

The proof of this result is a consequence of the combinatorial local data of both

blowings-up mapping in the definition of the (cascade) blow-analytic homeomorphism

and of the combinatorial data of the blow-analytic equivalent function germs (once re-

solved). The analytic isomorphism inducing the homeomorphism preserves the combina-

torial data of the pair “resolved function and corresponding resolution mapping” (one of

the composition of blowings-up) and the other pair “resolved function and corresponding

resolution mapping”. The combinatorial data of a given pair function/resolution can be

computed explicitly, using the parameterization in the resolved manifold, and this data

can be used to produce all the ingredients that are needed to cook-up a pizza of the

function. These ingredients encoded by finitely many rational numbers, are preserved

by the blow-analytic homeomorphism, because of the isomorphism between the resolved

manifolds preserving the combinatorial data of the pair function/resolution. More pre-

cisely our key argument is that a blow-analytic isomorphism preserves contact between

any two real-analytic half-branches as well as the normalized order of a real analytic func-

tion along a real-analytic half-branch (see also [14]). When combined with an equivalent

criterion of sub-analytic bi-Lipschitz contact equivalence, stated in Proposition 3.7, the

blow-analytic homeomorphism maps a pizza (of one function) into an equivalent pizza

(of the other function), so that Theorem 5.1 is true by the results of [4].

The paper is organized as follows.

Section 2 recalls quickly the notion of blow-analytic equivalence and two properties

of metric nature. Section 3 presents the (sub-analytic) bi-Lipschitz contact equivalence

with a new equivalence criterion, Proposition 3.7. It is followed by Section 4 where

Lemma 4.1 shows the local normal form of any finite sequence of points blowings-up

at any point of the exceptional divisor. This constitutes what we call the Hsiang and

Pati (local) data of the blowing-down mapping, and further in this section we see how it

reflects in any (cascade) blow-analytic homeomorphism. Section 5 provides a complete

proof of the main result via several simple intermediary results leading to Proposition

5.2 stating that the considered blow-analytic homeomorphism induces an equivalence of

Pizza, although stricto sensu not being one. The last section proposes a sketch of a proof

of the existence of pizzas for plane real analytic function germs, providing clues why the

result presented here was to be expected.

2. Blow-analytic equivalence.

We will only work with real analytic plane function germs, following the exposition

of [14].
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We start by fixing some notation we will use in the whole paper.

Let O2 be the local R-algebra of real analytic function germs (R2, 0) → R at the

origin 0 of R2. Let m2 be its maximal ideal.

Let S be a real analytic regular surface with structural sheaf OS . Let a be a point

of S. We denote by OS,a the R-algebra of real analytic function germs (S, a) → R. If I

is any (coherent) OS-ideal sheaf, let Ia be the OS,a-ideal induced at a.

Definition 2.1. A homeomorphism germ h : (R2, 0) → (R2, 0) is blow-analytic if

there exists a commutative diagram

(M,E)
π−→ (R2, 0)

Φ ↓ h ↓
(M ′, E′)

π′

−→ (R2, 0)

with the following properties

- Φ is a real analytic isomorphism which induces h.

- Both mappings π and π′ are finite composition of points blowings-up and E and

E′ are (simple) normal crossing divisors.

Consequently any blow-analytic homeomorphism is sub-analytic. Such homeomor-

phisms clearly form of sub-group of the homeomorphism germs (R2, 0) → (R2, 0).

The blow-analytic equivalence of two function germs of O2 is thus defined as ex-

pected:

Definition 2.2. Two real analytic function germs f, g : (R2, 0) → R are blow-

analytic equivalent if there exists a blow-analytic homeomorphism h : (R2, 0) → (R2, 0)

such that f = g ◦ h.

The blow-analytic equivalence is a right-equivalence, but is indeed an equivalence,

which is not obvious at first sight (see Proposition 2 and its Corollary in [13]). A

remarkable fact of this equivalence is that it does not admit moduli [13].

An à-priori refinement of the notion of blow-analytic homeomorphism is found in

the next

Definition 2.3. A homeomorphism germ h : (R2, 0) → (R2, 0) is cascade blow-

analytic if there exists a commutative diagram

(Mk, Ek)
πk−→ (Mk−1, Ek−1)

πk−1−→ · · · π2−→ (M1, E1)
π1−→ (R2, 0)

Φ ↓ hk−1 ↓ h1 ↓ h ↓

(M ′
k, E

′
k)

π′
k−→ (M ′

k−1, E
′
k−1)

π′
k−1−→ · · · π′

2−→ (M ′
1, E

′
1)

π′
1−→ (R2, 0)

with the following properties

(i) Φ is a real analytic isomorphism which induces h.

(ii) Each πi (resp. π
′
j) is the blowing-up of a point in Mi−1 (resp. M ′

i−1).
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(iii) Each hi :Mi →M ′
i is a homeomorphism such that hi(Ei) = E′

i.

The condition (iii) implies that the center of the next blowing-up in Mi must be

mapped by hi onto the center of the next blowing-up in M ′
i .

Although a cascade blow-analytic homeomorphism germ seems to be far more rigid

than just a blow-analytic homeomorphism germ, it is not so as states the next

Theorem 2.4 ([14]). A homeomorphism germ h : (R2, 0) → (R2, 0) is blow-

analytic if and only if it is cascade blow-analytic.

As we will see in the proof of our main result in Section 5, the property described

in Theorem 2.4 is absolutely fundamental, since the combinatorial data controlling the

blow-analytic maps and the equivalent functions (once resolved) are depending mostly

on the component(s) of the exceptional divisor(s).

A (real analytic) half-branch is the image of the restriction, to the germ at 0 of the

non-negative real half-line R≥0, of a non constant real analytic map germ (R, 0) → (R2, 0).

Let C1 and C2 be two half-branches. For r positive and small enough, let Sr be the

Euclidean sphere centered at 0 of radius r. Let c(r) = dist(C1∩Sr, C2∩Sr). The function

c is sub-analytic and thus admits a Puiseux expansion of the form

c(r) = rβ · (α+ ϕ(r))

where β ∈ ([1,+∞[∩Q) ∪ {+∞}; by convention β = +∞ if and only if C1 = C2, where ϕ
is a sub-analytic function germ tending to 0 at 0 and where α is a positive real number.

The order of contact between the real analytic half-branches C1 and C2 is the rational

number β.

We are interested in the following properties of blow-analytic homeomorphism germs,

which are similar to some of (sub-analytic) bi-Lipschitz homeomorphism germs.

Proposition 2.5 ([14]). Let h : (R2, 0) → (R2, 0) be a germ of blow-analytic

homeomorphism.

(1) The order of contact between real analytic half-branches is preserved by h.

(2) There exists constants 0 < A < B such that for r positive and small enough

A|x| ≤ |h(x)| ≤ B|x| once |x| ≤ r.

We will show these properties in Section 4.

3. Bi-Lipschitz contact equivalence.

We give here a short account of the (sub-analytic) bi-Lipschitz contact equivalence

with a focus on the special case of plane real analytic function germs.

We present an equivalent criterion below, to be used to demonstrate the main result

of this note, which, although obvious, was not observed in [4].
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The contact equivalence between (smooth) mappings, as per se, was first introduced

by Mather [16]. The natural extension of Mather’s definition to the Lipschitz setting in

the function case appeared in [3], and to the general case in [17]

Definition 3.1. Two map-germs f, g : (Rn, 0) −→ (Rp, 0) are called K-bi-

Lipschitz equivalent (or contact bi-Lipschitz equivalent) if there exist two germs of bi-

Lipschitz homeomorphisms h : (Rn, 0) −→ (Rn, 0) and H : (Rn ×Rp, 0) −→ (Rn ×Rp, 0)

such that H(Rn × {0}) = Rn × {0} and the following diagram is commutative:

(Rn, 0)
(id, f)−→ (Rn × Rp, 0)

πn−→ (Rn, 0)

h ↓ H ↓ h ↓
(Rn, 0)

(id, g)−→ (Rn × Rp, 0)
πn−→ (Rn, 0)

where id : Rn −→ Rn is the identity map and πn : Rn × Rp −→ Rn is the canonical

projection.

The map-germs f and g are called C-bi-Lipschitz equivalent if h = id.

The R-bi-Lipschitz equivalence admits moduli [10], while the K-bi-Lipschitz contact

equivalence has none [3]. The following 1-parameter analytic family of real analytic plane

function germs

ft : (R2, 0) → (R, 0), defined as (x, y) → ft(x, y) = x3 + y6 − 3t2xy4, for t ∈ R,

has moduli [10], while the sub-family (fs)0<s<ε has a single K-bi-Lipschitz class once ε

is small enough, by [3].

We can think of a C-bi-Lipschitz equivalence as being a family of origin preserving bi-

Lipschitz maps of Rp to Rp, parameterized by Rn which carry f(x) to g(x) for all x ∈ Rn.

If p = 1, then R−{0} is the union of two contractible sets; each homeomorphism creates

a bijection between these components, and this bijection is independent of x. This gives

an equivalent form for contact equivalence in the bi-Lipschitz category if p = 1:

Theorem 3.2 ([3]). Let f, g : (Rn, 0) → R be two smooth function germs. The

functions f and g are bi-Lipschitz contact equivalent (or K-bi-Lipschitz equivalent) if

there exists a bi-Lipschitz homeomorphism germ h : (Rn, 0) → (Rn, 0), there exist non

zero, same sign constants A, B and a sign σ ∈ {−1, 1} such that in a neighborhood of

the origin 0 the following inequalities hold true

A · g < σ · f ◦ h < B · g.

If furthermore h is required to be sub-analytic we will then speak of sub-analytic bi-

Lipschitz contact equivalence.

Proof. See Theorem 2.4 of [3]. □

The inequality enters into the proof of the theorem as follows. The functions x →
f(x)/g(x) are bounded by the inequality. Once is checked that the partial derivatives of

the function (x, y) → (f(x)/g(x)) · y, where y is the coordinate on R, are bounded on
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the closed domain (with non-empty interior) 0 ≤ |y| ≤ |g(x)|, we deduce that they are

Lipschitz on this domain (see [3]). Since (f/g) · (y ◦ g) = f , the functions (f/g) · y on

0 ≤ |y| ≤ |g(x)| can be used as part of a family of bi-Lipschitz homeomorphisms.

We recall that the bi-Lipschitz contact equivalence of bi-Lipschitz functions has no

moduli [3].

Specializing to the case of f : (R2, 0) → R, we are going now to recall some material

presented in [4]. We will keep it to the minimum needed here.

An arc (at the origin) is the Puiseux series parameterization γ : (R≥0, 0) → (R2, 0)

of a given real analytic half-branch such that

|γ(t)| = t.

As an abuse of language we will confuse the notion of arc with its image.

The order of contact between two arcs means the order of contact between the

respective half-branch images.

Let γ be an arc and let f ∈ O2 be a real analytic function germ. The function germ

t→ f ◦ γ(t) is a (converging) Puiseux series written as

f ◦ γ(t) = tν(A+ ψ(t)),

where ν ∈]0,+∞] ∩Q, with Q := Q ∪ {+∞}; by convention ν = +∞ if and only if f ◦ γ
is identically 0, and otherwise ψ is a sub-analytic function germ tending to 0 at 0 and

where A is a non-zero real number. The rational number νf (γ) := ν is the normalized

order (at the origin) of the function f along the half-branch γ. The normalized order is

the function

νf : {arcs at 0} → Q defined as γ → νf (γ).

It has the following properties:

Remark 3.3. The normalized order of f is always larger than or equal to the

multiplicity mf of f at 0. It is also preserved under sub-analytic bi-Lipschitz contact

equivalence.

A Hölder triangle, introduced in [1], is any image of the quadrant (R≥0×R≥0, 0) by

a sub-analytic homeomorphism (R2, 0) → (R2, 0). The exponent β(T ) of a given Hölder

triangle T is the order of contact at the origin of the boundary curve of T (the images

of the axis of the quadrant). By extension and also abuse of language if we speak of a

Hölder triangle of exponent +∞, we just mean a half-branch. A second abuse of language

is that any neighborhood of the origin is considered as a Hölder triangle with exponent

1 but boundary-less.

Remark 3.4. Since (sub-analytic) bi-Lipschitz homeomorphisms preserve the or-

der of contact between curves, the image of a Hölder triangle by such an homeomorphism

is a Hölder triangle with the same exponent.

Definition 3.5. Let γ be an arc, let f ∈ O2 and let q = νf (γ) ≥ mf .
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The width of f along γ is the infimum of the exponents taken among all the Hölder

triangles T containing the arc γ and such that the normalized order νf stays constant

and equal to q along any arc contained in T . This infimum exists and is rational [4]. It

is infinite if and only if f vanishes identically along γ.

We denote this number by µf (γ).

Remark 3.6. The width of f along arcs is preserved by the (sub-analytic) bi-

Lipschitz contact equivalence.

As can be seen in [4], the notion of width is at the basis of the construction of the

complete invariant – minimal pizza – of a sub-analytic bi-Lipschitz contact equivalence

class.

The criterion we mention is the following result. We give it in the real analytic

category, but it is valid in the category used in [4] for the same reasons as those of the

real analytic category.

Proposition 3.7. Two real analytic function germs f, g : (R2, 0) → (R, 0) are

(sub-analytically) bi-Lipschitz contact equivalent if and only if there exists a (sub-

analytic) homeomorphism h : (R2, 0) → (R2, 0) such that

(i) for any arc γ, we get

νf (γ) = νg(h∗γ),

where h∗γ is the arc corresponding to the half-branch h(γ).

(ii) for any arc γ, we get

µf (γ) = µg(h∗γ).

Proof. If the functions are already bi-Lipschitz contact equivalent, any equiva-

lence of minimal pizzas is such a homeomorphism (see [4]).

Assume there exists such a sub-analytic homeomorphism. Conditions (i) and (ii)

implies that f and g have combinatorially equivalent minimal pizzas [4, Sections 2 and 3],

which is sufficient to imply that both functions are sub-analytically bi-Lipschitz contact

equivalent.

We do not use that f , g are real analytic, but just that they are sub-analytic and

Lipschitz in order to apply [4]. □

4. Local normal form at exceptional points.

This section is devoted to the local form of the blowing down mapping of a finite

composition of point blowings-up initiated with the blowing-up of the origin 0 of R2. We

can use such semi-local data in order to investigate the asymptotic properties at 0 of the

restriction of a function germ f ∈ O2 to meaningful Hölder triangles (namely in which

the function is “monomial”).

Let π : (M,E) → (R2, 0) be a finite composition of points blowings-up.
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Local analytic coordinates (u, v) centered at a ∈ E are called adapted to E at a if

the following inclusions for germs hold true

{u = 0} ⊂ (E, a) ⊂ {u · v = 0}.

Any local coordinate system at a /∈ E is adapted to E at a.

A (coherent) OM -ideal sheaf I is principal and monomial in E if it is co-supported

in E and at any point a of E, the ideal is locally generated by a monomial in local

coordinates adapted to E at a:

- if (u, v) are local adapted coordinates at a smooth/regular point a of E, that is

such that (E, a) = {u = 0}, we find that Ia is locally generated by up for some

non-negative integer p;

- if (u, v) are local adapted coordinates at a corner point a of E, that is such that

(E, a) = {u · v = 0}, we find that Ia is locally generated by upvq for some non-

negative integers p, q.

As part of the folklore, we recall the following two facts (both proved by induction

on the number of blowings-up):

i) The pull back Iπ := π∗(m2) of the maximal ideal is principal and monomial in E

and its co-support is E.

ii) Let Jπ be the ideal generated by the determinant of dπ. Then it is also principal

and monomial and its co-support is also E (see [6, p. 217]).

The local form of π at any point of the exceptional divisor is given in the following

Lemma 4.1. Let π : (M,E) → (R2, 0) be the finite composition of point blowings-up

presented above. The mapping π has the following properties:

(i) For any non corner point a of the normal crossing divisor E, there exists (u, v)

local adapted coordinates to E at a such that (E, a) = {u = 0} such that Iπ,a = (ul)

and Jπ,a = (ul) with l ≥ 2l − 1. Moreover, (and up to a rotation in the target

(R2, 0)) we write the mapping π at a as

(u, v) → (αul, ulϕ(u) + βumv), (4.1)

where l ≤ m are positive integer numbers and the function ϕ is analytic and α, β ∈
{−1,+1}.
Note that l = l +m− 1.

(ii) For any corner point a of the normal crossing divisor E, there exists (u, v) local

adapted coordinates to E at a such that (E, a) = {u = 0} such that Iπ,a = (ulvm)

and Jπ,a = (ulvm) with l ≥ 2l − 1 and m ≥ 2m − 1. Moreover, (and up to a

rotation in the target (R2, 0)), locally the mapping π is written at a as

(u, v) → (αulvm, ϕ(ulvm) + βunvp) (4.2)
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where l ≤ n and m ≤ p are positive integer numbers such that the plane vectors

(l,m) and (n, p) are not co-linear ((l,m)∧(n, p) ̸= 0), the function ϕ : t→ t·h(t1/e)
for a real analytic function h and a positive integer e, and α, β ∈ {−1,+1}.
We also see that l = l + n− 1 and m = m+ p− 1.

Proof. By induction on the number of blowings-up. The induction step is true

when (M,E) = ((R2, 0), ∅). It is thus sufficient to show that properties (i) and (ii) are

preserved under point blowings-up.

Let p be any point of the exceptional curve E. Let γ : (M1, E1) → (M,E) be the

corresponding blowing-down mapping. Let D := γ−1(p) be the new component of the

normal crossing curve E1, and we keep denoting E for the strict transform of E by γ.

First. Assume that the center p is a regular point of E. Suppose we are given

coordinates (u, v) centered at p such that point (i) holds true.

In the chart (x, y) → (x, xy), the exceptional curve D has equation {x = 0}. We

just write the mapping π ◦ γ as

(x, y) → (αxa, xaϕ(x) + βxcxy) = (αxa, xaϕ(x) + βxc+1y), (4.3)

thus in the form of point (i).

In the chart (x, y) → (xy, y), the exceptional curve D has equation {y = 0}. The

mapping π is written as

(x, y) → (αxaya, xayaϕ(xy) + βxcyc+1). (4.4)

At the point D ∩ E, we find x = 0. Thus we obtain a local expression of π of type (ii).

At a point p of D \ E we have x = A ̸= 0. We assume for simplicity A = 1 (in order to

avoid discussing on the parity of a and c). The cases A positive and A negative are dealt

with in a very similar way. Let x := 1 + w and y = (1 + w)−1z. This an isomorphism

in a neighborhood of the point p. Note that (D,p) = {z = 0}. The mapping π ◦ γ is

written as:

(w, z) → (αza, zaϕ(z) + β(1 + w)−1zc+1). (4.5)

For |w| < 1, writing (1+w)−1 = 1+w′, we see that (w′, z) are also coordinates centered

at p. We deduce that the mapping π ◦ γ can be written as:

(w′, z) → (αza, zaθ(z) + βzc+1w′), (4.6)

where the function θ is real analytic.

The case of blowing-up a regular point of E has thus been dealt with.

Second. Assume that center p of the blowing-up is a corner point of E. We use the

same notations as in the non corner case. There exist adapted coordinates centered at p

such that the mapping π in coordinates is:

(u, v) → (αuavb, ϕ(uavb) + βucvd). (4.7)

In the chart (x, y) → (x, xy) the composed mapping π ◦ γ becomes:
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(x, y) → (αxa+byb, ϕ(xa+byb) + βxd+dyd). (4.8)

We observe that the plane vectors (a+ b, b) and (m+n, n) are still linearly independent.

At the point D ∩ E, property (ii) is already satisfied as can be seen in Equation (4.8).

At a point of D \ E, we know that y = A ̸= 0. And we proceed as in the second part of

the first case above.

The proof of the Lemma ends just saying that the blowing-up mapping of the origin

gives rise to a blowing-down mapping with local expression of the form (x, y) → (x, xy)

or (x, y) → (xy, y), that is of type (i). □

Remark 4.2. 1) The result is clearly true in the complex case as well.

2) The pair of integers (l,m) at a regular point of E is constant along the component

of E containing the point, since they are obtained via Iπ and Jπ both principal and

monomial in E.

At a corner point the numbers l,m, n, p are just from the pairs (l, n) and (n, p)

coming from each component through the corner point.

In points (i) and (ii) of Lemma 4.1, the local coordinates (u, v) at a are called Hsiang

and Pati coordinates at a (see [12], [9], [2], [8]). Following Remark 4.2 we introduce the

following.

Definition 4.3. Let H be a component of E. The pair of integers (l,m) appearing

in the local expression of π at (regular) points of H is called the Hsiang and Pati local

data of π along H (Hsiang and Pati local data for short). The union of all the Hsiang

and Pati local data is called Hsiang and Pati data of π (Hsiang and Pati data for short).

Hsiang and Pati data allows to describe, up to local quasi-isometry (see also [12],

[9], [2]) the local form at any point point of the exceptional locus E of the pull-back of

the Euclidean metric by the “resolution mapping π”.

Corollary 4.4. Let h : (R2, 0) → (R2, 0) be a cascade blow-analytic homeomor-

phism

(M,E)
π′

−→ (R2, 0)

Φ ↓ h ↓
(M ′, E′)

π−→ (R2, 0)

We find Φ∗Iπ = Iπ′ and Φ∗Jπ = Jπ′ .

In particular, the Hsiang and Pati local data of π along any component H of E and

the Hsiang and Pati local data of π′ along Φ(H) are equal.

Proof. It is straightforward from the definitions of cascade blow-analytic home-

omorphisms and of Iπ, Jπ, Iπ′ and Jπ′ . □

The next result is a consequence of Corollary 4.4 and presents some metric properties

of germs of blow-analytic homeomorphisms of the plane.
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Proposition 4.5 (see also [14]). Let h : (R2, 0) → (R2, 0) be a germ of blow-

analytic homeomorphism.

(1) The order of contact between half-branches is preserved by h.

(2) There exist constants 0 < A < B such that for r positive and small enough

A|x| ≤ |h(x)| ≤ B|x|, once |x| ≤ r.

Proof. The Hsiang and Pati local data of π is used to compute explicitly orders

of contact.

• Point 1). Let γ1 and γ2 be two disjoint arcs at the origin of R2. Let Γi be the strict

transform (of the image) of γi by π.

Claim i). Assume that Γ1 and Γ2 intersect a same component H of E at two

distinct points, a1 and a2. Let (l,m) be the Hsiang and Pati local data of π along H.

The order of contact between Γ1 and Γ2 is m/l.

Proof of Claim i). Let b1, . . . , bs be all the corner points of E lying in H indexed

in such a way, after having chosen an orientation on H, that bi is the successor of bi−1

for i = 2, . . . , s. Let Ii be the “open interval” ]bi, bi+1[.

Assume that a1, a2 ∈ Ii for some i. Let (u, v) be local coordinates adapted to H.

We can parameterize the half-branches Γi as ci : u→ (u, vi+Vi(u)) where Vi is a Puiseux

series vanishing at u = 0 and v1 ̸= v2. We find

π(ci(u)) = (αul, ulϕ(u) + βum(vi + Vi(u))

= (αt, tg(t) + βt
m
l (vi +Wi(t))

where Wi is a Puiseux series vanishing at t = 0. Thus the order of contact between Γ1

and Γ2 is l/m.

Assume now that a1 = bi and a2,∈ Ii−1 ∪ Ii. Let (u, v) be local coordinates at

bi such that a2 also lies in the domain of the chart. Let ci : u → (u, vi + Vi(u)) be a

local parameterization of Γ1 and Γ2 where Vi is a Puiseux series vanishing at u = 0 and

v1 = 0 ̸= v2. We see

π(ci(u)) = (αul(vi + Vi)
b, ul(vi + Vi)

mg(u, v) + βun(vi + Vi)
p)

= (αt, tg(t) + βtn/l(vi + Vi)
p−(mn/l)).

Thus the order of contact is again m/l.

If a1 ∈ [bi, bi+1] and a2 ∈ [bj , bj+1] with |i − j| ≥ 2, the proof is deduced from the

cases above using intermediary real analytic arcs Ck with Ck∩H = ak ∈ Ik for i < k < j

(or j < k < i) to get the order of contact between Γ1 and Γ2.

Claim ii). Assume that Γ1 ∩ E = {a1} ∈ H1 and Γ2 ∩ E = {a2} ∈ H2 such that

a1 ̸= a2 and H1 ∩H2 = {a}. Let (l, n) and (m, p) be the Hsiang and Pati local data of π

along H1 and respectively along H2. The order of contact of Γ1 and Γ2 is min(n/l, p/m).
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Proof of Claim ii). We can assume that Γ1 and Γ2 are contained in a chart

centered at the corner point a. Let C be a real analytic half-branch at the origin 0 of R2

such that its strict transform C ′ by π intersects with E at a. The contact between Γ1

and Γ2 is the minimum of the orders of contact between Γ1 and C ′ and between Γ2 and

C ′. In other words, using part i) it is min(n/l, p/m).

Claim iii). Suppose Γ1 ∩ E = Γ2 ∩ E = {a}.

- If a is not a corner point there are local coordinates (u, v) at a such that (E, a) =

{u = 0}. Let ci : u → (u, ueiAi) be parameterizations of the strict transforms of

Γi with ei ∈ Q>0 and Ai is an invertible Puiseux series if not identically 0, for

i = 1, 2. Let ue1A1 − ue2A2 = ueA for an invertible Puiseux unit A. The order of

contact between Γ1 and Γ2 is (m+ e)/l.

- If a is a corner point, there are local coordinates (u, v) such that (E, a) = {uv = 0}.
Let ci : u → (u, ueiAi) be parameterizations of the strict transforms of Γi with

ei ∈ Q>0 and Ai is an invertible Puiseux series if not identically 0, for i = 1, 2.

Let ue1A1 − ue2A2 = ueA for an invertible Puiseux unit A. The order of contact

between Γ1 and Γ2 is

n+ p ·min(e1, e2) + e−min(e1, e2)

l +m ·min(e1, e2)
.

Proof of Claim iii). Assume that a is a corner point and that e1 ≤ e2. For

simplicity we assume A1 and A2 are positive. The other cases are dealt with exactly in

the same way, just in keeping track of the sign. Then

π(c1(u)) = (αul+me1Am
1 (u), ul+me1Am

1 (u)g(ul+me1Am
1 (u)) + βun+pe1Ap

1(u))

= (αt, th(t) + βt(n+pe1)/(l+me1)A
(pl−mn)/(l+me1)
1 (U1(t)))

π(c2(u)) = (αul+me2Am
2 (u), ul+me2Am

2 (u)g(ul+me2Am
2 (u)) + βun+pe1Ap

2(u))

= (αt, th(t) + βt(n+pe2)/(l+me2)A
(pl−mn)/(l+me2)
2 (U2(t))),

where Ui(t)
l+meiAm

i (Ui(t)) = t.

If e > e1 = e2 then ue2A2 = ue1A1 + ueA = ue1 [A1 + ue−e1A], so that

π(c1(t))− π(c2(t)| = t(n+pe1)/(l+me1)|A(pl−nm)/(l+me1)
1 (U1(t))−A

(pl−nm)/(l+me1)
2 (U2(t))|.

Since

U2(t) = U1(t)[1 + t(e−e1)/(l+me1)B(t)]

for a Puiseux unit B1, we get that the contact between Γ1 and Γ2 is

(n+ pe1 + e− e1)/(l +me1). If e = e1, a similar but simpler computation gives that

the contact is (n+ pe)/(l +me).

Assume a is not a corner point. Let ue1A1 − ue2A2 = ueA with e ∈ Q>0 and A is

an invertible Puiseux series. We find, as above,
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π(ci(u)) = (αul, ulg(u) + βum · ueiAi(u)) = (αt, tg(t) + βt(m+ei)/lBi(t))

where B1 and B2 are invertible Puiseux series. Thus the contact is (m+ e)/l.

Claim iv). Suppose that Γ1∩E = a1 ∈ H1 and Γ2∩E = a2 ∈ H2 with H1∩H2 = ∅.
There is a unique chain D0, . . . , Ds of distinct components of E such that D0 := H1,

Ds := H2 and Di ∩Dj = ∅ if 0 ≤ i ≤ j− 2 ≤ s and Di ∩Di+1 consists in a single corner

point. Let (li,mi) be the Hsiang and Pati local data of π along Di. The contact between

Γ1 and Γ2 is

min
i=0,...,s

mi

li
.

Proof of Claim iv). This is similar to the case ii).

Following Corollary 4.4 and the expressions of the order of contact given above, the

order of contact between two half branches C1 and C2 is equal to the order of contact of

the half-branches h(C1) and h(C2).

• Point 2). Let C be a half-branch at the origin 0. Let a ∈ E be the intersection point

of the strict transform C ′ of C by π with E. Let (u, v) be local coordinates at a adapted

to E so that {u = 0} ⊂ (E, a) ⊂ {u · v = 0}.
If a is a regular point of E, let (l,m) be the Hsiang and Pati local data of π at a, so

that |π(u, v)| = |u|l ·A(u, v) with A(0, 0) > 0.

If it is a corner point, the Hsiang and Pati local data of π at a consists of two pairs

(l, n) and (m, p) and we get |π(u, v)| = |u|l|v|m ·A(u, v) with A(0, 0) > 0.

Suppose a is a corner point. Up to permuting u and v, let c : t→ (±t, trϕ(t)), with
t ∈ R≥0, be a Puiseux parameterization of C ′ such that ϕ is an invertible Puiseux series

and r ∈ Q≥1. Thus

|π(c(t))| = tl+mrA(t) for a Puiseux series A with A(0) > 0,

and

|π′(Φ(c(t)))| = tl+mrB(t) for a Puiseux series B with B(0) > 0.

Similar but simpler computations occur at a non corner point.

The above computation says that L|x| ≤ |h(x)| ≤ K|x| in the image of the considered

coordinates chart (u, v), which is a finite union of Hölder triangles and 0 < L < K. By

compactness, the exceptional curve E is covered by finitely many such charts. Positive

constants K, L can be found such that an inequality of the desired type holds true in a

neighborhood of the origin. □

Remark 4.6. Point 1) implies than any blow-analytic image of a Hölder triangle

is a Hölder triangle with equal exponent.

5. Proof of the main result.

This section is devoted to proof the main result of this note, namely
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Theorem 5.1. Blow-analytic equivalent real analytic plane function germs are

sub-analytically bi-Lipschitz contact equivalent.

Let f, g ∈ O2 two blow-analytic equivalent function germs. What we exactly show

in this section is the following result which, when combined with the results of [4] about

abstract pizzas, will yield Theorem 5.1.

Proposition 5.2. Let h be the blow-analytic isomorphism between f and g, say

f = g ◦ h. Thus the homeomorphism h maps any pizza of f onto an equivalent pizza of

g (although h may never realize any equivalence between any two pizzas).

A non constant function germ f ∈ O2 is said resolved or monomialized if there

exists a finite composition of points blowings-up π : (M,E) → (R2,0) such that (see

[11], [5], [6])

- the co-support of the pull-back If := π∗((f)) ⊂ Iπ of the ideal (f) is a normal

crossing divisor E ∪ F , where F is the strict transform of f−1(0);

- the ideal If is principal and monomial in E ∪ F .

Let f ∈ O2 and let πf : (Mf , Ef , Ef ) → (M,f−1(0), 0) be a (minimal) resolution of

f . Since the ideal If = π∗
f ((f)) is principal and monomial in the normal crossing divisor

Ef . Let a ∈ Ef and let (u, v) be local coordinates at a adapted to Ef and Ef , that is

{u = 0} ⊂ (Ef , a) ⊂ (Ef , a) ⊂ {u · v = 0}.

If a is a regular point of Ef , we get If,a = (ur) for r ∈ N≥mf
.

If a is a corner point of Ef , we have If,a = (urvs) for r, s ∈ N≥mf
.

The number r depends only on the component of Ef through the point a, while the

number s depends only on the component of Ef through a.

Definition 5.3. The multiplicity(ies) r (r, s) is (are) called the local resolution

data of f at a ∈ Ef . The (finite) collection of all these integer numbers is called the

resolution data of f .

Let f, g ∈ O2 be two blow-analytic equivalent function germs. Let h be the cor-

responding blow-analytic homeomorphism obtained from the following cascade blow-

analytic commutative diagram:

(Mf , Ef := π−1
f (F ), Ef )

πf−→ (R2, F := f−1(0), 0)

Φ ↓ h ↓
(Mg, Eg := π−1

g (G), Eg)
πg−→ (R2, G := g−1(0), 0)

where Ef := {f ◦ πf = 0} and Eg := {g ◦ πg = 0}. Having f = g ◦ h is equivalent to have

f ◦ πf = g ◦ πg ◦ Φ, so that Φ∗(π∗
g((g))) = π∗

f ((f)).

Any point blowing-up τ : (M̃, Ẽ) → (Mf , Ef ) with center p in Mf leads to a point

blowing-up τ ′ : (M̃ ′, Ẽ′) → (Mg, Eg) with center Φ(p), so that we can extend τ∗Φ as

an analytic isomorphism (M̃, Ẽ) → (M̃ ′, Ẽ′). This allows to further assume that πf
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is a (minimal) resolution of f which (equivalently) implies that πg is also a (minimal)

resolution of g. Under this additional property Ef and Eg are both normal crossing

divisor.

The proof of the main result starts with the following

Lemma 5.4. Let γ be a real analytic arc along which f does not vanish identically.

Let Γ be the strict transform of (the image of ) γ which intersects with Ef at a. Let (u, v)

be local coordinates at a adapted to Ef and Ef .
The normalized order νf (γ) of f along γ is a fraction whose numerator is affine

with coefficients in the local resolution data of f at a, the denominator is affine with

coefficients in the Hsiang and Pati local data of πf at a, and the variable is p as in the

parameterization t→ (±t, tpθ(t)) of Γ, with p ∈ Q>0 and where θ is an invertible Puiseux

series.

Proof. We find below in all possible situations the explicit expression of νf (γ).

Let γf : t→ (±t, tpθ(u)) be a Puiseux parameterization of (Γ, a).

• Assume that {a} = Γ ∩ Ef is a regular point of Ef with a /∈ clos(Ef \ Ef ). Since

Iπf ,a = (ul) and If,a = (ur), the normalized order of f along γ is

νf (γ) =
r

l
.

In this case, we find that

f ◦ γf (t) = trA(t)

for an invertible Puiseux series A. Since |πf ◦γf (t)| = |t|lB(t) for a positive Puiseux

series B, we get the results.

• Assume that a is a corner point of Ef but a regular point of Ef . Thus Iπf ,a = (ul)

and If,a = (urvs). The normalized order of f along γ is

νf (γ) =
r + sp

l
.

We find

f ◦ γf (t) = tr+psA(t) and |πf ◦ γf (u)| = |t|lB(t)

for invertible Puiseux series A, B. So we deduce the normalized order.

• Assume that {a} = Γ ∩ Ef is a corner point of Ef , so that Iπf ,a = (ulvm) and

If,a = (urvs). The normalized order of f along γ is

νf (γ) =
r + sp

l +mp
=
rq + s

lq +m
.

This last situation yields

f ◦ γf (t) = tr+psA(t) and |πf ◦ γf (t)| = |t|l+pmB(t)
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for invertible Puiseux series A, B. The case of a parameterization of the form

τ → (τ qµ(τ),±τ) works similarly. □

A key to our proof consequence of Lemma 5.4 is the following

Proposition 5.5. Let γ be an arc and let h∗γ be the arc corresponding to the

image h ◦ γ. We find

νf (γ) = νg(h∗γ). (5.1)

Proof. The function f vanishes identically along γ if and only if g vanishes iden-

tically along h∗γ.

Assume that γ is not contained in f−1(0), thus h∗γ is not contained in g−1(0) either.

Following Section 4, such as Corollary 4.4, all the integers linked to πf , f and Γ

used to compute the normalized order of f along the arc γ in Lemma 5.4 are inherited

by πg, g and Φ(Γ) via the analytic isomorphism Φ. □

Combining the fact that, any blow-analytic image of a Hölder triangle is a Hölder tri-

angle of equal exponent, with Proposition 5.5 the proof of our main result is, in principle,

already “done”. We are now ready to go into the

Proof of Proposition 5.2. From Lemma 5.4 and Proposition 5.5 we deduce

that the equivalent criterion of sub-analytic bi-Lipschitz contact equivalence presented

as Proposition 3.7 is satisfied, concluding the proof. □

6. Appendix: a sketch of the existence of Pizzas.

We present here a sketch of the existence of pizza (in the case of a plane real analytic

function germ).

The paper [4] uses a general Preparation Theorem for the functions considered

there (more general than continuous sub-analytic plane function germs), which, roughly

speaking, states that the function behaves like a monomial in some Hölder-like triangle,

so that we can find finitely many of them to cover a neighborhood of the considered

point. In the case of plane real analytic function germs, and in relation with blow-

analytic equivalence we are going to use here the resolution of singularities of the given

function in order to provide explicit, in the combinatorial data (function and resolution

mapping), expressions for the width.

Let f ∈ O2 be given and let π : (Mf , Ef , Ef ) → (E, f−1(0), 0) be the (minimal)

resolution of f .

Let a be a point of Ef and let (u, v) local coordinates at a adapted to Ef and Ef so

that

{u = 0} ⊂ (Ef , a) ⊂ (Ef , a) ⊂ {u · v = 0}.

We also know that

Iπ,a = (ulvm) and Jπ,a = (ulvm) and If,a = (urvs).
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With certainty we know that l ≥ 2l − 1 ≥ 1, and m ≥ 2m − 1 ≥ 1 and r ≥ mf · l. We

can assume that we are working in a (semi-analytic) box Ba :=]− ua, ua[×]− va, va[ for

positive real number ua and va.

The image π(clos(Ba)) is a finite union of (one, two, or four) Hölder triangle(s) (with

equal exponent) which can be calculated by the Hsiang and Pati local data of π at a.

We can check that f is monotonic on each such Hölder triangle, and with computa-

tions similar (but longer) to those done in the proofs of Proposition 4.5 and of Lemma

5.4 we can explicitly find the expression of the (non directed) width ωT
f in terms of the

exponents l, m, l, m, r, s.

Since Ef is compact we can cover it with finitely many closure of (semi-analytic)

boxes of the type Ba above in such a way the intersection of the closures of two such boxes

has always empty interior. This partition provides the triangulation of a neighborhood

of the origin by finitely many Hölder triangles (the images by the resolution mapping π

of the closures of all the boxes) thus and pizza adding the (directed) width and the signs

of the function within the interior of these Hölder triangles.

Let us make a final comment:

Remark 6.1. Either way (Preparation Theorem or minimal resolution) picked to

cook-up a pizza of a plane real analytic function germ, the combinatorial data to handle

to describe the width functions may be huge. Thus, when the function has a simpler

combinatorial data (such as a non-degenerate Newton diagram) it should be possible to

describe, by means of this simpler combinatorial data, pizzas attached to f .
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