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Abstract. We define a moduli space of stable regular singular parabolic
connections with given spectral type on smooth projective curves and show
the smoothness of the moduli space and give a relative symplectic structure on

the moduli space. Moreover, we define the isomonodromic deformation on this
moduli space and prove the geometric Painlevé property of the isomonodromic
deformation.

Introduction.

Let T be a smooth covering of the moduli stack of n-pointed smooth projective

curves of genus g. Take a universal family (C, t̃) over T . In the paper [4], the first author

constructed the relative moduli space

Mα
C/T (t̃, r, d) −→ T × Λ(n)

r (d)

of regular singular α-stable parabolic connections of rank r and degree d on C/T . Here

α = (α
(i)
j )1≤i≤n

1≤j≤r are rational numbers such that 0 < α
(i)
1 < · · · < α

(i)
r < 1 and that

α
(i)
j ̸= α

(i′)
j′ for any (i, j) ̸= (i′, j′). Λ

(n)
r (d) is given by

Λ(n)
r (d) :=

(λ
(i)
j )1≤i≤n

0≤j≤r−1 ∈ Cnr

∣∣∣∣∣∣d+
n∑

i=1

r−1∑
j=0

λ
(i)
j = 0

 .

Then for any point (x,λ) ∈ T×Λ(n)
r (d), the fiberMα

C/T (t̃, r, d)(x,λ) is smooth of dimension

2r2(g − 1) + nr(r − 1) + 2. He also constructed the algebraic splitting

D : π∗(ΘT ) −→ ΘMα
C/T

(t̃,r,d)

of the canonical surjection ΘMα
C/T

(t̃,r,d) → π∗(ΘT ), where π : Mα
C/T (t̃, r, d) → T is the

structure morphism. The subbundle D(π∗(ΘT )) ⊂ ΘMα
C/T

(t̃,r,d) satisfies the integrability

condition and the associated foliation FMα
C/T

(t̃,r,d) is nothing but the isomonodromic
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deformation. One of the important results in [4] is that the isomonodromic deformation

determined by D(π∗(ΘT )) has the geometric Painlevé property.

There is a locus Y in Mα
C/T (t̃, r, d) such that (E,∇, {l(i)j }) ∈ Mα

C/T (t̃, r, d) lies in Y

if and only if the residue matrix of ∇ at ti is given by

(†)


µ
(i)
1 Irsi−1 ∗ ∗ ∗

0 µ
(i)
2 Irsi−2 ∗ ∗

...
...

. . .
...

0 0 · · · µ(i)
si Ir0

 .

We can easily see that the locus Y is preserved by the isomonodromic deformation.

However, the dimension of Y is too big because it parameterizes the parabolic structure

{l(i)j }. So we contract Y by forgetting the data {l(i)j } and obtain a moduli space Y .

We say Y the moduli space of regular singular parabolic connections of spectral type

(†). By construction, Y is preserved by the isomonodromic deformation. So we obtain

a low dimensional phase space arising from the isomonodromic deformation. Such low

dimensional phase spaces get an attention from the viewpoint of the theory of integrable

systems.

Oshima studied in [9] the isomonodromic deformation of the Fuchsian system of

spectral types in detail. In particular, he studied additive Deligne–Simpson problem

on Fuchsian systems on trivial bundles on P1 and a combinatorial structure of middle

convolutions and their relation to a Kac–Mooody root system discovered by Crawley-

Boevey [1].

Let us fix a smooth projective curve C of genus g and a set of n-distinct points

t = (t1, · · · , tn) on C. Spectral types are given by tuples (r
(i)
j )1≤i≤n

0≤j≤si−1 of partitions

of integers, where r is a fixed rank of vector bundles and at each singular point ti,

r
(i)
j are positive integers such that

∑si−1
j=0 r

(i)
j = r. Fixing a degree d and a spectral type

(r
(i)
j )1≤i≤n

0≤j≤si−1, let us take any local exponents ν ∈ N(d, (r
(i)
j )1≤i≤n) (see Section 4). Then

we can define the moduli space Mα(C, t,ν, d, (r
(i)
j )) of α-stable ν-parabolic connections

on (C, t) of spectral type (r
(i)
j ). In Section 1, we show that Mα(C, t,ν, d, (r

(i)
j )) is a

smooth quasi-projective scheme of dimension (see Theorem 1.3)

dimMα(C, t,ν, d, (r
(i)
j )) = 2r2(g − 1) + 2 + 2

n∑
i=1

si−1∑
j=0

∑
j′>j

r
(i)
j r

(i)
j′ . (1)

If we set

N = r2(g − 1) + 1 + n
r(r − 1)

2
(2)

one can rewrite as

dimMα(C, t,ν, d, (r
(i)
j )) = 2

N −
n∑

i=1

si−1∑
j=0

r
(i)
j (r

(i)
j − 1)

2

 . (3)



881(3)

Moduli of regular singular parabolic connections 881

The moduli space of α-stable parabolic connections of spectral types (r
(i)
j ) is a deforma-

tion of the moduli space of α-stable parabolic Higgs bundles on (C, t) of spectral types

(r
(i)
j ). Then the genus of spectral curves of parabolic Higgs bundles should be the half of

dimension of the moduli spaces. The formula suggests that the genus of spectral curves

equal to N −
∑n

i=1

∑si−1
j=0 r

(i)
j (r

(i)
j − 1)/2 where N is the genus of spectral curve with

trivial spectral types r
(i)
j = 1. It will be interesting to see the explicit geometry of the

moduli space of parabolic connections and parabolic Higgs bundles. An approach by

using the apparent singularities and their duals will be treated in [10].

For example, if we consider the case g = 0, n = 4, r = 2, d = −1 and r
(i)
j = 1 for

all i, j, then the spectral type will be denoted as (11, 11, 11, 11). The corresponding

moduli spaces M are nothing but the fiber of the phase space, or Okamoto’s space of

initial conditions of Painlevé VI equations and dimM = 2.

Yamakawa constructed in [13] the moduli space of stable filtered local systems and it

is analytically isomorphic to the moduli space Mα(C, t,ν, d, (r
(i)
j )) under the Riemann–

Hilbert morphism.

Sakai studied in [11] the Fuchsian system of spectral type which gives 4-dimensional

isomonodromic deformation equations. Here the 4-dimensional means that the dimen-

sion of the moduli space of parabolic connection of spectral type is 4. The interest-

ing point of [11] is that a Fuji–Suzuki system ([2], [3]) and a Sasano system ([12])

can be obtained from the isomonodromic deformations of the Fuchsian system of cer-

tain spectral types. Including them, there exists only 4-types of 4-dimensional isomon-

odromic deformation equations of Fuchsian systems of spectral types over P1. They

are corresponding to the spectral types r = 2, n = 5, (11, 11, 11, 11, 11) (Garnier),

r = 3, n = 4, (21, 21, 111, 111) (the Fuji–Suzuki), r = 4, n = 4, (31, 22, 22, 1111) (Sasano)

and r = 4, n = 4, (22, 22, 22, 211) (the sixth matrix Painlevé).

The main results in this paper are the smoothness and a symplectic structure of

the moduli space of stable regular singular parabolic connections of any spectral type on

smooth projective curves over C. (Cf. Theorem 1.2 and Theorem 3.1). Moreover, the

more important result (cf. Theorem 4.1) is that the isomonodromic deformation defined

on the moduli space of regular singular parabolic connections of spectral type has the

geometric Painlevé property. So we can say that the moduli space of stable regular

singular parabolic connections with given spectral type is the space of initial conditions

for the isomonodromic deformations.

Here the definition of the geometric Painlevé property is given in [6] and the geo-

metric Painlevé property implies the usual Painlevé property.

As a corollary, 4-dimensional isomonodromic deformation considered by Sakai in

[11] has the Painlevé property.

It will be also interesting to consider similar problems for parabolic connections

with irregular singularities of fixing spectral types. Classifications of spectral types of

dimension 4 cases are treated in [7] and [8].
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1. Definition and properties of the moduli space of regular singular par-

abolic connections with given spectral type.

Let C be a smooth projective irreducible curve over C of genus g. We set

Tn := {t = (t1, . . . , tn) ∈ C × · · · × C|ti ̸= tj for i ̸= j} .

Let r, d be integers with r > 0. For each i with 1 ≤ i ≤ n, take positive integers

r
(i)
0 , . . . , r

(i)
si−1 such that r =

∑si−1
j=0 r

(i)
j for any i. Set

N(d, (r
(i)
j )) :=

{
(ν

(i)
j )1≤i≤n

0≤j≤si−1

∣∣∣∣∣ν(i)j ∈ C for any i, j and

d+
∑n

i=1

∑si−1
j=0 r

(i)
j ν

(i)
j = 0

}
. (4)

Definition 1.1. Take t ∈ Tn and ν = (ν
(i)
j ) ∈ N(d, (r

(i)
j )). We say (E,∇, {l(i)j })

is a regular singular (t,ν)-parabolic connection of spectral type (r
(i)
j )1≤i≤n

0≤j≤si−1 if

(1) E is an algebraic vector bundle on C of rank r and degree d,

(2) ∇ : E −→ E ⊗ Ω1
C(t1 + · · ·+ tn) is a connection,

(3) for each i, E|ti = l
(i)
0 ⊃ l

(i)
1 ⊃ · · · ⊃ l

(i)
si−1 ⊃ l

(i)
si = 0 is a filtration such that

dimC(l
(i)
j /l

(i)
j+1) = r

(i)
j and

(4) (resti(∇)− ν
(i)
j id)(l

(i)
j ) ⊂ l

(i)
j+1 for any i, j.

Take rational numbers α = (α
(i)
j )1≤i≤n

1≤j≤si
such that 0 < α

(i)
1 < α

(i)
2 < · · · < α

(i)
si < 1

for any i, j and α
(i)
j ̸= α

(i′)
j′ for (i, j) ̸= (i′, j′).

Definition 1.2. A regular singular (t,ν)-parabolic connection (E,∇, {l(i)j }) of

spectral type (r
(i)
j ) is said to be α-stable (resp. α-semistable) if

degF +
∑n

i=1

∑si
j=1 α

(i)
j dimC((F |ti ∩ l

(i)
j−1)/(F |ti ∩ l

(i)
j ))

rankF

<

(resp. ≤)
degE +

∑n
i=1

∑si
j=1 α

(i)
j dimC(l

(i)
j−1/l

(i)
j )

rankE

for any subbundle 0 ̸= F ⊊ E with ∇(F ) ⊂ F ⊗ Ω1
C(t1 + · · ·+ tn).

Let T be a smooth algebraic scheme which is a smooth covering of the moduli

stack of n-pointed smooth projective irreducible curves of genus g over C and (C, t̃) be

the universal family over T (t̃ = (t̃1, . . . , t̃n), where each t̃i is a section of C → T and

t̃i ∩ t̃j = ∅ for any i ̸= j).

Theorem 1.1. There exists a relative coarse moduli scheme π : Mα
C/T (d, (r

(i)
j ))→

T ×N(d, (r
(i)
j )) of α-stable regular singular parabolic connections of spectral type (r

(i)
j ).

Moreover π is a quasi-projective morphism.
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Proof. Proof is the same as that of [4, Theorem 2.1], which essentially uses [5,

Theorem 5.1] and we omit the proof here. □

Theorem 1.2. The relative moduli space π : Mα
C/T (d, (r

(i)
j ))→ T ×N(d, (r

(i)
j )) is

smooth.

Proof. Let MC/T (d, (1)) be the moduli space of pairs (L,∇L) of a line bundle L

on Cx and a connection ∇L : L→ L⊗Ω1
C/T (t̃1+ · · ·+ t̃n). Then MC/T (d, (1)) is an affine

space bundle over PicdC/T ×N(d, (1)), where

N(d, (1)) :=

{
(ν(i)) ∈ Cn

∣∣∣∣∣d+
n∑

i=1

ν(i) = 0

}
.

Since PicdC/T is smooth over T , MC/T (d, (1)) is smooth over T ×N(d, (1)). Consider the

morphism

det : Mα
C/T (d, (r

(i)
j )) −→MC/T (d, (1))×N(d,(1)) N(d, (r

(i)
j ));

(E,∇, {l(i)j }) 7→ ((det(E), det(∇)), π(E,∇, {l(i)j })).

It is sufficient to show that the morphism det is smooth. Let A be an Artinian local

ring over MC/T (d, (1))×N(d,(1))N(d, (r
(i)
j )) with the maximal ideal m and I be an ideal of

A such that mI = 0. Let (L,∇L) ∈MC/T (d, (1))(A) and ν = (ν
(i)
j ) ∈ N(d, (r

(i)
j ))(A) be

the elements corresponding to the morphism SpecA→MC/T (d, (1))×N(d,(1))N(d, (r
(i)
j )).

Take any member (E,∇, {l(i)j }) ∈ Mα
C/T (d, (r

(i)
j ))(A/I) such that (rest̃i×A/I(∇) −

ν
(i)
j id)(l

(i)
j ) ⊂ l

(i)
j+1 for any i, j and that det(E,∇, {l(i)j }) ∼= ((L,∇L),ν) ⊗ A/I. It is

sufficient to show that (E,∇, {l(i)j }) can be lifted to a flat family (Ẽ, ∇̃, {l̃(i)j }) over A

such that det(Ẽ, ∇̃, {l̃(i)j }) ∼= ((L,∇L),ν). We define a complex F•
0 by

F 0
0 :=

{
a ∈ End(E ⊗A/m)

∣∣∣Tr(a) = 0 and a|t̃i×A/m((l
(i)
j )A/m) ⊂ (l

(i)
j )A/m for any i, j

}
F1

0 :=

b ∈ End(E ⊗A/m)⊗ Ω1
C/T (t̃1 + · · ·+ t̃n)

∣∣∣∣∣∣∣
Tr(b) = 0 and

rest̃i⊗A/m(b)((l
(i)
j )A/m) ⊂ (l

(i)
j+1)A/m

for any i, j


∇† : F 0

0 ∋ a 7→ ∇ ◦ a− a ◦ ∇ ∈ F1
0 .

Let CA =
∪

α Uα be an affine open covering such that E|Uα⊗A/I
∼= O⊕r

Uα⊗A/I ,

♯
{
(t̃i)A|(t̃i)A ∈ Uα

}
≤ 1 for any α and ♯

{
α|(t̃i)A ∈ Uα

}
= 1 for any i. Take a free

OUα-module Eα of rank r with isomorphisms φα : det(Eα)
∼→ L|Uα and ϕα : Eα⊗A/I

∼→
E|Uα⊗A/I such that

φα ⊗A/I = det(ϕα) : det(Eα)
∼−→ det(E)|Uα⊗A/I = (L⊗A/I)|Uα⊗A/I .

If (t̃i)A ∈ Uα, we may assume that the parabolic structure {l(i)j } is given by
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l
(i)
j = ⟨e1|(t̃i)A/I

, . . . , e
r
(i)
j +···+r

(i)
si−1
|(t̃i)A/I

⟩,

where e1, . . . , er is the standard basis of Eα. We define a parabolic structure {(lα)(i)j } on
Eα by

(lα)
(i)
j := ⟨e1|(t̃i)A , . . . , er(i)j +···+r

(i)
si−1
|(t̃i)A⟩.

The connection ϕ−1
α ◦ (∇|Uα) ◦ ϕα : Eα ⊗A/I → Eα ⊗Ω1

C/T (t̃1 + · · ·+ t̃n)⊗A/I is given

by a connection matrix Bα ∈ H0(E∨
α ⊗Eα ⊗ Ω1

C/T (t̃1 + · · ·+ t̃n)⊗A/I). Then we have

res(t̃i)A/I
(Bα) =


(ν

(i)
si−1 ⊗A/I)I

r
(i)
si−1

∗ · · · ∗

0 (ν
(i)
si−2 ⊗A/I)I

r
(i)
si−2
· · · ∗

...
...

. . .
...

0 0 · · · (ν(i)0 ⊗A/I)I
r
(i)
0

 ,

where I
r
(i)
j

is the identity r
(i)
j × r

(i)
j matrix. We can take a lift Bα ∈ H0(E∨

α ⊗ Eα ⊗
Ω1

C/T (t̃1 + · · ·+ t̃n)) of Bα such that

res(t̃i)A(Bα) =


ν
(i)
si−1Ir(i)si−1

∗ · · · ∗

0 ν
(i)
si−2Ir(i)si−2

· · · ∗
...

...
. . .

...

0 0 · · · ν(i)0 I
r
(i)
0


and that Tr(Bα)(e1 ∧ · · · ∧ er) = (φα ⊗ id)−1(∇L|Uα

(φα(e1 ∧ · · · ∧ er))). Consider the

connection ∇α : Eα → Eα ⊗ Ω1
C/T (t̃1 + · · ·+ t̃n) defined by

∇

f1
...

fr

 =

df1
...

dfr

+Bα

f1
...

fr



f1

...

fr

 ∈ Eα

 .

Then we obtain a local parabolic connection (Eα,∇α, {(lα)(i)j }) on Uα. If (t̃i)A /∈ Uα for

any i, then we can easily obtain a local parabolic connection (Eα,∇α, {(lα)(i)j }) on Uα

(in this case, a parabolic structure {(lα)(i)j } is nothing). We put Uαβ := Uα ∩ Uβ and

Uαβγ := Uα ∩ Uβ ∩ Uγ . Take an isomorphism

θβα : Eα|Uαβ

∼−→ Eβ |Uαβ

such that θβα ⊗A/I = ϕ−1
β ◦ ϕα and that φβ ◦ det(θβα) = φα. We put

uαβγ := ϕα ◦
(
θ−1
γα |Uαβγ

◦ θγβ |Uαβγ
◦ θβα|Uαβγ

− idEα|Uαβγ

)
◦ ϕ−1

α



885(7)

Moduli of regular singular parabolic connections 885

and

vαβ := ϕα ◦
(
∇α|Uαβ

− θ−1
βα ◦ ∇β |Uαβ

◦ θβα
)
◦ ϕ−1

α .

Then we have {uαβγ} ∈ C2({Uα},F 0
0 ⊗ I) and {vαβ} ∈ C1({Uα},F1

0 ⊗ I). We can easily

see that

d{uαβγ} = 0 and ∇†{uαβγ} = −d{vαβ}.

So we can define an element

ω(E,∇, {l(i)j }) := [{uαβγ}, {vαβ}] ∈ H2(F•
0 )⊗ I.

We can check that ω(E,∇, {l(i)j }) = 0 if and only if (E,∇, {l(i)j }) can be lifted to a flat

family (Ẽ, ∇̃, {l̃(i)j }) over A such that det(Ẽ, ∇̃, {l̃(i)j }) ∼= ((L,∇L),ν). From the spectral

sequence Hq(Fp
0 )⇒ Hp+q(F•

0 ), there is an isomorphism

H2(F•
0 )
∼= coker

(
H1(F 0

0 )
H1(∇†)−−−−−→ H1(F1

0 )

)
.

Since (F 0
0 )

∨ ⊗ Ω1
C/T
∼= F1

0 and (F1
0 )

∨ ⊗ Ω1
C/T
∼= F 0

0 , we have

H2(F•
0 )
∼= coker

(
H1(F 0

0 )
H1(∇†)−−−−−→ H1(F1

0 )

)
∼= ker

(
H1(F1

0 )
∨ H1(∇†)−−−−−→ H1(F 0

0 )
∨
)∨

∼= ker

(
H0((F1

0 )
∨ ⊗ Ω1

C/T )
−H0(∇†)−−−−−−→ H0((F 0

0 )
∨ ⊗ Ω1

C/T )

)∨

∼= ker

(
H0(F 0

0 )
−H0(∇†)−−−−−−→ H0(F1

0 )

)∨

.

Take any element a ∈ ker

(
H0(F 0

0 )
−H0(∇†)−−−−−−→ H0(F1

0 )

)
. Then we have a ∈

End((E,∇, {l(i)j })⊗A/m). Since (E,∇, {l(i)j })⊗A/m is α-stable, we have a = c·idE⊗A/m

for some c ∈ A/m. So we have a = 0, because Tr(a) = 0. Thus we have

ker

(
H0(F 0

0 )
−H0(∇†)−−−−−−→ H0(F1

0 )

)
= 0 and so we haveH2(F•) = 0. In particular, we have

ω(E,∇, {l(i)j }) = 0. Thus (E,∇, {l(i)j }) can be lifted to a flat family (Ẽ, ∇̃, {l̃(i)j }) over A
such that (Ẽ, ∇̃, {l̃(i)j }) ⊗ A/I ∼= (E,∇, {l(i)j }) and that det(Ẽ, ∇̃, {l̃(i)j }) = ((L,∇L),ν).

Hence det is a smooth morphism. □

Theorem 1.3. For any (x,ν) ∈ T ×N(d, (r
(i)
j )), the fiber Mα

C/T (d, (r
(i)
j ))(x,ν) :=

π−1(x,ν) is of equidimension
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2r2(g− 1)+ 2+ 2

n∑
i=1

si−1∑
j=0

∑
j′>j

r
(i)
j r

(i)
j′ = 2r2(g− 1) + 2+ nr(r− 1)−

n∑
i=1

si−1∑
j=0

r
(i)
j (r

(i)
j − 1)

if Mα
C/T (d, (r

(i)
j ))(x,ν) ̸= ∅.

Proof. Since Mα
C/T (d, (r

(i)
j ))(x,ν) is smooth, it is sufficient to show that the tan-

gent space Θ
Mα

C/T
(d,(r

(i)
j ))(x,ν)

(y) of Mα
C/T (d, (r

(i)
j ))(x,ν) at any point y = (E,∇, {l(i)j }) ∈

Mα
C/T (d, (r

(i)
j ))(x,ν) is of dimension

2r2(g − 1) + 2 + 2
n∑

i=1

si−1∑
j=1

∑
j′>j

r
(i)
j r

(i)
j′ .

Set

F 0 :=
{
a ∈ End(E)

∣∣∣a|(t̃i)x(l(i)j ) ⊂ l
(i)
j for any i, j

}
F1 :=

{
b ∈ End(E)⊗ Ω1

C/T (t̃1 + · · ·+ t̃n)
∣∣∣res(t̃i)x(b)(l(i)j ) ⊂ l

(i)
j+1 for any i, j

}
∇† : F 0 ∋ a 7→ ∇ ◦ a− a ◦ ∇ ∈ F1.

Note that we have an isomorphism

Θ
Mα

C/T
(d,(r

(i)
j ))/T×N(d,(r

(i)
j ))

(y) ∼= H1(F•),

where Θ
Mα

C/T
(d,(r

(i)
j ))/T×N(d,(r

(i)
j ))

is the algebraic relative tangent bundle of

Mα
C/T (d, (r

(i)
j )) over T ×N(d, (r

(i)
j )). From the spectral sequence Hq(Fp)⇒ Hp+q(F•),

we obtain an exact sequence

0 −→ C −→ H0(F 0) −→ H0(F1) −→ H1(F•) −→ H1(F 0) −→ H1(F1) −→ C −→ 0.

So we have

dimH1(F•) = dimH0(F1) + dimH1(F 0)− dimH0(F 0)− dimH1(F1) + 2 dimC C

= dimH0((F 0)∨ ⊗ Ω1
C/T ) + dimH1(F 0)− dimH0(F 0)

− dimH1((F 0)∨ ⊗ Ω1
C/T ) + 2

= dimH1(F 0)∨ + dimH1(F 0)− dimH0(F 0)− dimH0(F 0)∨ + 2

= 2− 2χ(F 0).

Here we used the isomorphism F1 ∼= (F 0)∨ ⊗ Ω1
C/T and Serre duality. We define a

subsheaf E1 ⊂ End(E) by the exact sequence

0 −→ E1 −→ End(E) −→
n⊕

i=1

Hom(l
(i)
1 , l

(i)
0 /l

(i)
1 ) −→ 0.
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Inductively we define a subsheaf Ek ⊂ End(E) by the exact sequence

0 −→ Ek −→ Ek−1 −→
n⊕

i=1

Hom(l
(i)
k , l

(i)
k−1/l

(i)
k ) −→ 0.

Then we have Emaxi{si−1} = F 0 and

χ(F 0) = χ(End(E))−
n∑

i=1

si−1∑
j=1

dimHom(l
(i)
j , l

(i)
j−1/l

(i)
j )

= r2(1− g)−
n∑

i=1

si−1∑
j=1

∑
j′>j−1

r
(i)
j−1r

(i)
j′ .

So we have

dimH1(F•) = 2− χ(F 0) = 2r2(g − 1) + 2 + 2
n∑

i=1

si−1∑
j=0

∑
j′>j

r
(i)
j r

(i)
j′ . □

2. Riemann–Hilbert correspondence.

Let T , C and t̃ = (t̃1, . . . , t̃n) be as in Section 1. Take a point x ∈ T . Then Cx is a

smooth projective curve of genus g over C and (t̃1)x, . . . , (t̃n)x are distinct points of Cx.
Consider the categorical quotient

RPr(Cx, t̃x) := Hom
(
π1(Cx \ {(t̃1)x, . . . , (t̃n)x}, ∗), GLr(C)

)
//GLr(C)

by the adjoint action. We set

B :=

b := (b
(i)
j )1≤i≤n

0≤j≤si−1

∣∣∣∣∣∣b(i)j ∈ C for each i, j and
n∏

i=1

si−1∏
j=0

(b
(i)
j )r

(i)
j = 1

 .

For b ∈ B and x ∈ T , we denote by RPr(Cx, t̃x, b) the categorical quotient of
ρ ∈ Hom

(
π1(Cx \ {(t̃1)x, . . . , (t̃n)x, ∗), GLr(C)

)
∣∣∣∣∣∣∣∣∣∣∣

for each i, there is a filtration

Cr = W
(i)
0 ⊃W

(i)
1 ⊃ · · · ⊃W

(i)
si−1

⊃W
(i)
si = 0

such that (ρ(γi)− b
(i)
j id)(W

(i)
j )

⊂W
(i)
j+1 for any i, j


by the adjoint action of GLr(C), where γi is a loop around (t̃i)x. Then we have a

canonical closed immersion

RPr(Cx, t̃x, b) ↪→ RPr(Cx, t̃x).
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For ν ∈ N(d, (r
(i)
j )), consider the moduli space Mα

C/T (d, (r
(i)
j ))(x,ν). We define b =

(b
(i)
j ) = rh(ν) by

b
(i)
j = exp(−2π

√
−1ν(i)j )

for any i, j. For (E,∇, {l(i)j }) ∈ Mα
C/T (d, (r

(i)
j ))(x,ν), ker∇an|Cx\{(t̃1)x,...,(t̃n)x} becomes

a local system and corresponds to a representation ρ : π1(Cx \ {(t̃1)x, . . . , (t̃n)x}, ∗) →
GLr(C). Then we put RH(E,∇, {l(i)j }) := [ρ] ∈ RPr(Cx, t̃x, b). So we can define a

morphism

RH : Mα
C/T (d, (r

(i)
j ))(x,ν) −→ RPr(Cx, t̃x, b).

Consider the scheme

p : M̃α
C/T (d, (r

(i)
j )) −→Mα

C/T (d, (r
(i)
j ))

such that for an affine scheme U overMα
C/T (d, (r

(i)
j )),

M̃α
C/T (d, (r

(i)
j ))(U) =

(V
(i)
j,k )

∣∣∣∣∣∣∣∣
l
(i)
j /l

(i)
j+1 = V

(i)
j,0 ⊃ V

(i)
j,1 ⊃ · · · ⊃ V

(i)

j,r
(i)
j −1

⊃ V
(i)

j,r
(i)
j

= 0

is a filtration such that V
(i)
j,k /V

(i)
j,k+1 is a line bundle

on t̃i × U

 ,

where Mα
C/T (d, (r

(i)
j )) is the moduli functor of α-stable regular singular parabolic

connections of spectral type (r
(i)
j ) and (E,∇, {l(i)j }) is the member corresponding to

U →Mα
C/T (d, (r

(i)
j )). Then M̃α

C/T (d, (r
(i)
j )) is a flag scheme over Mα

C/T (d, (r
(i)
j )) and so p

is a smooth projective surjective morphism. A point of M̃α
C/T (d, (r

(i)
j )) corresponds to a

regular singular parabolic connection considered in [4]. Assume that we can choose α so

that α-stable ⇔ α-semistable. If we choose α′ = ((α′)
(i)
k )1≤i≤n

1≤k≤r suitably, any parabolic

connection (E,∇, {l(i)j }, {V
(i)
j,k }) in M̃α

C/T (d, (r
(i)
j )) is automatically α′-stable. So we can

define an inclusion

ι : M̃α
C/T (d, (r

(i)
j )) ↪→Mα′

C/T (t̃, r, d),

whereMα′

C/T (t̃, r, d) is the moduli space of α′-stable regular singular parabolic connections

defined in [4, Theorem 2.1]. If we take α′ suitably, ι becomes a closed immersion.

For ν = (ν
(i)
j ) ∈ N(d, (r

(i)
j )), we define ν ′ = ((ν′)

(i)
q )1≤i≤n

0≤q≤r−1 by (ν′)
(i)
q = ν

(i)
j if

q = m +
∑

j′<j r
(i)
j′ with 0 ≤ m ≤ r

(i)
j − 1. Now assume that rn − 2r − 2 > 0 if g = 0,

n > 1 if g = 1 and n ≥ 1 if g = 2. Since the Riemann–Hilbert morphism

RH : Mα′

C/T (t̃, r, d)(x,ν′) −→ RPr(C, t̃)rh(ν′)

is a proper surjective morphism by [4], the restriction
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RH |
M̃α

C/T
(d,(r

(i)
j ))(x,ν)

: M̃α
C/T (d, (r

(i)
j ))(x,ν) −→ RPr(Cx, t̃x, b)

is also proper. We have a commutative diagram

M̃α
C/T (d, (r

(i)
j ))(x,ν)

p−→ Mα
C/T (d, (r

(i)
j ))(x,ν)

RH |
M̃α

C/T
(d,(r

(i)
j

))(x,ν)

↘ ↙RH

RPr(Cx, t̃x, b).

Since p is surjective, the morphism

RH : Mα
C/T (d, (r

(i)
j ))(x,ν) −→ RPr(Cx, t̃x, b)

becomes a proper morphism.

Remark 2.1. Yamakawa gives in [13, 4.3, 4.4], the Riemann–Hilbert isomorphism

from the moduli space Mα
C/T (d, (r

(i)
j ))(x,ν) to the moduli space of stable filtered local

systems which is constructed as a quiver variety. The properness of the morphism

RH : Mα
C/T (d, (r

(i)
j ))(x,ν) −→ RPr(Cx, t̃x, b) can be obtained also from this Yamakawa’s

precise result.

Remark 2.2. It is somewhat a complicated problem whether the morphism RH :

Mα
C/T (d, (r

(i)
j ))(x,ν) → RPr(Cx, t̃x, b) defined above is surjective. For example, it happens

that for g = 0 and for small n, the moduli space Mα
C/T (d, (r

(i)
j ))(x,ν) becomes empty but

the moduli space RPr(Cx, t̃x, b) is not empty.

3. Relative symplectic form on the moduli space.

Theorem 3.1. Assume that we can take α so that α-stable ⇔ α-semistable.

Then there exists a relative symplectic form

ω ∈ H0

(
Mα

C/T (d, (r
(i)
j )),Ω2

Mα
C/T

(d,(r
(i)
j ))/T×N(d,(r

(i)
j ))

)
.

Remark 3.1. We need some assumption on (r
(i)
j ) for the existence of such α. For

example, if some r
(i)
j is coprime to r, then we can take such α.

Proof. There are an affine scheme U and an étale surjective morphism τ : U →
Mα

C/T (d, (r
(i)
j )), which factors through the moduli functorMα

C/T (d, (r
(i)
j )), namely there

is a universal family (Ẽ, ∇̃, {l̃(i)j }) on C ×T U . We define a complex F• on C ×T U by

F 0 :=
{
a ∈ End(Ẽ)

∣∣∣a|(t̃i)U (l̃(i)j ) ⊂ l̃
(i)
j for any i, j

}
F1 :=

{
b ∈ End(Ẽ)⊗ Ω1

C/T (t̃1 + · · ·+ t̃n)
∣∣∣res(t̃i)U (b)(l̃(i)j ) ⊂ l̃

(i)
j+1 for any i, j

}
∇† : F 0 ∋ a 7→ ∇̃ ◦ a− a ◦ ∇̃ ∈ F1.
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Let πU : C ×T U → U be the projection. Then we have

Θ
U/T×N(d,(r

(i)
j ))
∼= τ∗(Θ

Mα
C/T

(d,(r
(i)
j ))/T×N(d,(r

(i)
j ))

) ∼= R1(πU )∗(F•).

Take an affine open covering C×T U =
∪

α Uα and a member v ∈ H0(U,R1(πU )∗(F•)) =

H1(C ×T U,F•). v is given by [({uαβ}, {vα})], where {uαβ} ∈ C1({Uα},F 0), {vα} ∈
C0({Uα},F1) and

d{uαβ} = {uβγ − uαγ + uαβ} = 0, ∇†({uαβ}) = {vβ − vα} = d{vα}.

We define a pairing

ωU : H1(C ×T U,F•)×H1(C ×T U,F•) −→ H2(C ×T U,Ω•
C×TU/U )

∼= H0(U,OU )

by

ωU ([({uαβ}, {vα})], [({u′
αβ}, {v′α})]) := [({Tr(uαβ◦u′

βγ)},−{Tr(uαβ◦v′β)−Tr(vα◦u′
αβ)})].

By definition, we can easily see that ωU descends to a pairing

ω : Θ
Mα

C/T
(d,(r

(i)
j ))/T×N(d,(r

(i)
j ))
×Θ

Mα
C/T

(d,(r
(i)
j ))/T×N(d,(r

(i)
j ))
−→ O

Mα
C/T

(d,(r
(i)
j ))

.

Take any C-valued point y = (E,∇, {l(i)j }) ∈ Mα
C/T (d, (r

(i)
j ))(C) over (x,ν) ∈ T ×

N(d, (r
(i)
j )). Then a tangent vector v ∈ Θ

Mα
C/T

(d,(r
(i)
j ))/T×N(d,(r

(i)
j ))

(y) corresponds to

a C[t]/(t2)-valued point (Ev,∇v, {(lv)(i)j }) ∈ Mα
C/T (d, (r

(i)
j ))(x,ν)(C[t]/(t2)) such that

(Ev,∇v, {(lv)(i)j }) ⊗ C[t]/(t) ∼= (E,∇, {l(i)j }). We can check that ω(v, v) is nothing but

the obstruction class for the lifting of (Ev,∇v, {(lv)(i)j }) to a member of

Mα
C/T (d, (r

(i)
j ))(x,ν)(C[t]/(t3)).

Since Mα
C/T (d, (r

(i)
j ))(x,ν) is smooth, we have ω(v, v) = 0. Thus ω is skew symmetric.

Let

ξ : Θ
Mα

C/T
(d,(r

(i)
j ))/T×N(d,(r

(i)
j ))
−→ Θ∨

Mα
C/T

(d,(r
(i)
j ))/T×N(d,(r

(i)
j ))

be the homomorphism induced by ω. For any C-valued point y ∈Mα
C/T (d, (r

(i)
j ))(C)

ξ(y) : H1(F•(y)) = Θ
Mα

C/T
(d,(r

(i)
j ))/T×N(d,(r

(i)
j ))

(y) −→ Θ∨
Mα

C/T
(d,(r

(i)
j ))/T×N(d,(r

(i)
j ))

(y)

= H1(F•(y))∨

induces an exact commutative diagram
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H0(F 0(y)) −−→ H0(F1(y)) −−→ H1(F•(y)) −−→ H1(F 0(y)) −−→ H1(F1(y))

b1

y b2

y ξ(y)

y b3

y b4

y
H1(F1(y))∨ −−→ H1(F 0(y))∨ −−→ H1(F•(y))∨ −−→ H0(F1(y))∨ −−→ H0(F 0(y))∨,

where b1, b2, b3, b4 are isomorphisms induced by F 0(y) ∼= F1(y)∨ ⊗ Ω1
Cy
, F1(y) ∼=

F 0(y)∨ ⊗Ω1
Cy

and Serre duality. Thus ξ(y) becomes an isomorphism by the five lemma.

Now we will prove that ω is d-closed. As is explained in Section 2, we have

a smooth projective surjective morphism p : M̃α
C/T (d, (r

(i)
j ))(x,ν) → Mα

C/T (d, (r
(i)
j ))(x,ν)

and a closed immersion ι : M̃α
C/T (d, (r

(i)
j ))(x,ν) ↪→ Mα′

C/T (t̃, r, d)(x,ν′). Take any closed

point y ∈ Mα
C/T (d, (r

(i)
j ))(x,ν). Then there is a subscheme U ⊂ M̃α

C/T (d, (r
(i)
j ))(x,ν)

such that p|U : U → Mα
C/T (d, (r

(i)
j ))(x,ν) is étale and y ∈ p(U). We can take a closed

point y′ ∈ U such that p(y′) = y. Then y corresponds to a member (E,∇, {l(i)j }) ∈
Mα

C/T (d, (r
(i)
j ))(x,ν) and y′ corresponds to a member (E,∇, {l(i)j }, {V

(i)
j,k }). Take tangent

vectors v, w ∈ ΘU (y
′). Since ΘU (y

′) ∼= Θ
Mα

C/T
(d,(r

(i)
j ))(x,ν)

(y), we can regard v, w as

elements of H1(F•(y)). Put

F̃ 0 :=

a ∈ End(E)

∣∣∣∣∣∣∣
a|(t̃i)x(l

(i)
j ) ⊂ l

(i)
j for any i, j and

for the induced morphism a
(i)
j : l

(i)
j /l

(i)
j+1 → l

(i)
j /l

(i)
j+1

we have (a
(i)
j ⊗ id)(V

(i)
j,k ) ⊂ V

(i)
j,k for any i, j, k

 ,

F̃1 :=

b ∈ End(E)⊗ Ω1
C(D)

∣∣∣∣∣∣∣
res(t̃i)x(b)(l

(i)
j ) ⊂ l

(i)
j for any i, j and

for the induced morphism b
(i)
j : l

(i)
j /l

(i)
j+1 → l

(i)
j /l

(i)
j+1

we have b
(i)
j (V

(i)
j,k ) ⊂ V

(i)
j,k+1 for any i, j, k

 ,

∇̃† : F̃ 0 ∋ a 7→ ∇ ◦ a− a ◦ ∇ ∈ F̃1.

We have a canonical commutative diagram

F 0(y) ←−−−− F̃ 0

∇†

y y∇̃†

F1(y) −−−−→ F̃1.

Then we have

ΘU (y
′) ∼= H1(F•(y)),

Θ
M̃α

C/T
(d,(r

(i)
j ))(x,ν)

(y′) ∼= H1(F̃ 0 → F1(y)),

ΘMα′
C/T

(t̃,r,d)(x,ν′)
(y′) ∼= H1(F̃ 0 → F̃1),

and canonical homomorphisms

ΘMα′
C/T

(t̃,r,d)(x,ν′)
(y′) ∼= H1(F̃ 0 → F̃1)←↩ H1(F̃ 0 → F1(y′))

p∗−→ H1(F•(y′))

∼= Θ
Mα

C (d,(r
(i)
j ))ν

(y).
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There is a canonical symplectic form ω̃ on Mα′

C/T (t̃, r, d)(x,ν′). There exists a split-

ting s : H1(F•(y′)) ↪→ H1(F̃ 0 → F1(y′)) of the surjection p∗ : H
1(F̃ 0 → F1(y′)) →

H1(F•(y′)) determined by U . Take an affine open covering Cx =
∪

α Uα. The tan-

gent vectors v, w can be represented by ({aαβ}, {bα}) and ({a′αβ}, {b′α}), respectively,
where {aαβ}, {a′αβ} ∈ C1({Uα},F 0(y′)) and {bα}, {b′α} ∈ C0({Uα},F1(y′)). Replacing

aαβ , a
′
αβ , bα, b

′
α, we may have that s(v) and s(w) can be represented by ({aαβ}, {bα})

and ({a′αβ}, {b′α}), respectively with {aαβ}, {a′αβ} ∈ C1({Uα}, F̃ 0). Then we have

ω̃(ι∗(s(v)), ι∗(s(w))) = [({Tr(aαβ ◦ a′βγ)},−{Tr(aαβ ◦ b′β)− Tr(bα ◦ a′αβ)})] = ω(v, w),

which means that ω̃|U = (p|U )∗(ω). Since ω̃ is d-closed by [4, Proposition 7.3], (p|U )∗(ω)
is also d-closed. Thus ω is d-closed, because p|U : U →Mα

C/T (d, (r
(i)
j ))(x,ν) is étale. □

4. Isomonodromic deformation.

Let T be an algebraic scheme over C, which is a smooth covering of the moduli stack

of n-pointed smooth projective curves of genus g. Take a universal family (C, t̃) over T .
For the spectral type (r

(i)
j ), assume that we can take a parabolic weight α such that

α-stable ⇔ α-semistable. We choose α′ as in Section 2. As is stated in [4, Propostion

8.1], there is an algebraic splitting

D : π∗(ΘT ) −→ ΘMα′
C/T

(t̃,r,d)

of the canonical surjection π∗ : ΘMα′
C/T

(t̃,r,d) → π∗(ΘT ), where π : Mα′

C/T (t̃, r, d) →
T is the structure morphism. By the construction of D in [4, Proposition 8.1],

we can see that the image of D|
M̃α

C/T
(d,(r

(i)
j ))

is contained in Θ
M̃α

C/T
(d,(r

(i)
j ))

⊂
ΘMα′

C/T
(t̃,r,d)|M̃α

C/T
(d,(r

(i)
j ))

. Since D(π∗(ΘT )) ⊂ ΘMα′
C/T

(t̃,r,d) satisfies the integrability con-

dition, D|
M̃α

C/T
(d,(r

(i)
j ))

((π|
M̃α

C/T
(d,(r

(i)
j ))

)∗(ΘT )) ⊂ Θ
M̃α

C/T
(d,(r

(i)
j ))

also satisfies the integra-

bility condition. Consider the projective surjective morphism

p : M̃α
C/T (d, (r

(i)
j )) −→Mα

C/T (d, (r
(i)
j ))

as in Section 2. Note that the geometric fibers of p are irreducible. Then we obtain a

composition of homomorphisms

D′ : (π′)∗(ΘT )
∼−→ p∗(π

∗(ΘT ))

p∗(D|
M̃α

C/T
(d,(r

(i)
j

))
)

−−−−−−−−−−−−−→ p∗(ΘM̃α
C/T

(d,(r
(i)
j ))

)

−→ p∗(p
∗(Θ

Mα
C/T

(d,(r
(i)
j ))

))
∼−→ Θ

Mα
C/T

(d,(r
(i)
j ))

and D′ is an algebraic splitting of the canonical surjective homomorphism

π′
∗ : ΘMα

C/T
(d,(r

(i)
j ))

→ (π′)∗(ΘT ), where π′ : Mα
C/T (d, (r

(i)
j )) → T is the structure mor-

phism. Since D|
M̃α

C/T
(d,(r

(i)
j ))

((π|
M̃α

C/T
(d,(r

(i)
j ))

)∗(ΘT )) ⊂ Θ
M̃α

C/T
(d,(r

(i)
j ))

satisfies the inte-

grability condition, D′((π′)∗(ΘT )) ⊂ Θ
Mα

C/T
(d,(r

(i)
j ))

also satisfies the integrability con-
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dition. The corresponding foliation F
Mα

C/T
(d,(r

(i)
j ))

is nothing but the isomonodromic

deformation.

Theorem 4.1. Assume that rn− 2r − 2 > 0 if g = 0, n > 1 if g = 1 and n > 0 if

g ≥ 2. Moreover, assume that we can take α so that α-stable ⇔ α-semistable. Then the

isomonodromic foliation F
Mα

C/T
(d,(r

(i)
j ))

determined by D′ satisfies the geometric Painlevé

property, namely for any path γ : [0, 1] → T and for any point x ∈ Mα
C/T (d, (r

(i)
j )) with

π′(x) = γ(0), there is a unique path γ̃ : [0, 1] → Mα
C/T (d, (r

(i)
j )) which lies in a leaf of

F
Mα

C/T
(d,(r

(i)
j ))

such that π′ ◦ γ̃ = γ and that γ̃(0) = x.

Proof. Take any path γ : [0, 1] → T and a point x ∈ Mα
C/T (d, (r

(i)
j )) such that

π′(x) = γ(0). Since p : M̃α
C/T (d, (r

(i)
j )) → Mα

C/T (d, (r
(i)
j )) is surjective, there is a point

x̃ ∈ M̃α
C/T (d, (r

(i)
j )) such that p(x̃) = x. By the geometric Painlevé property stated in

[4, Theorem 2.3], there is a unique path γ′ : [0, 1] → Mα′

C/T (t̃, r, d) such that γ′(0) =

x̃, π(x̃) = γ(0) and that the image of γ′ lies in a leaf of the foliation determined by

D(π∗(ΘT )) ⊂ ΘMα′
C/T

(t̃,r,d). By construction, the image of γ′ in fact lies in M̃α
C/T (d, (r

(i)
j )).

So the path p ◦ γ′ satisfies the desired condition. □

Remark 4.1. As in Remark 2.1, there is an analytic isomorphism from the moduli

space of stable parabolic connections with given spectral type to the moduli space of

stable filtered local systems given by Yamakawa. By extending this Riemann–Hilbert

analytic isomorphism to the isomorphism between the relative moduli spaces over T , we

can also obtain the geometric Painlevé property.
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and microlocal analysis, RIMS Kôkyûroku Bessatsu, B37, Res. Inst. Math. Sci. (RIMS), Kyoto,

2013, arXiv:0811.2916v2, 163–192.

[10] M.-H. Saito and S. Szabo, Apparent singularities and canonical coordinates for moduli of parabolic

connections and parabolic Higgs bundles, in preparation.

[11] H. Sakai, Isomonodromic deformation and 4-dimensional Painlevé type equations, preprint, Uni-
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[12] Y. Sasano, Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of

type D
(1)
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