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Abstract. The purpose of this paper is to explicitly compute the Se-
shadri constants of all ample line bundles on fake projective planes. The proof
relies on the theory of the Toledo invariant, and more precisely on its charac-
terization of C-Fuchsian curves in complex hyperbolic spaces.

1. Introduction and Preliminaries.

Seshadri constants measure the local positivity of an ample line bundle on a pro-

jective variety. They were introduced by Demailly in his study of Fujita’s conjecture

through the theory of positive currents and singular Hermitian metrics, see [Dem90].

Given a nef line bundle L and a point x ∈ X, let us define

ε(L, x) = inf
C⊃x

L · C
multx(C)

,

to be the Seshadri constant of L at x, where C ⊂ X is an irreducible holomorphic curve

and multx(C) is the multiplicity of such a curve at x. The global Seshadri constant of L

is then given by

ε(L) = inf
x∈X

ε(L, x),

where by the Seshadri criterion for ampleness, there is an ε > 0 such that ε(L) > ε if and

only if L is ample, see for example Theorem 1.4.13 in [Laz04]. For more on this circle

of ideas we refer to the survey [Bauer et al. 09].

Despite being very easy to define, the Seshadri constants are in practice hard to

compute or even estimate. In recent years, there has been a growing interest in the

study of Seshadri constants on locally symmetric spaces via geometric and analytic tech-

niques. For example, Hwang and To in [HT99] were able to estimate from below the

Seshadri constants, at any given point, of the canonical line bundle of a compact complex

hyperbolic space, in terms of the radius of largest geodesic ball centered at that point

with respect to the locally symmetric Bergman metric. For many more results in this

direction, we refer to [Bauer et al. 09] and the bibliography therein.

2010 Mathematics Subject Classification. Primary 32Q45; Secondary 14J29.
Key Words and Phrases. Toledo Invariant, Seshadri constants, fake projective planes.
This paper is based upon work supported by a Grant of the Max Planck Society: “Complex Hyper-

bolic Geometry and Toroidal Compactifications”.

http://dx.doi.org/10.2969/jmsj/06941601


1602 L. F. Di Cerbo

The purpose of this paper is to compute the Seshadri constants of all ample line

bundles on fake projective planes. Let us recall their definition:

Definition 1.1. A fake projective plane is a surface of general type X with c2 = 3

and pg = H0(X;KX) = 0.

These surfaces are commonly referred as “fake projective planes”, since it can be

easily shown they must have the same rational homology groups as P2. Fake projective

planes are particular compact complex hyperbolic surfaces, see Section 1.1 for more

details. It turns out that, given any ample line bundle L on a fake projective plane X,

the pointwise Seshadri constants are independent of the point, so that ε(L, x) = ε(L)

for any x ∈ X. This fact is particularly interesting as fake projective planes are not

homogeneous, even if they are clearly locally symmetric. In fact, roughly half of all fake

projective planes indeed have trivial automorphism group. Finally, we also explicitly

compute ε(L) for all ample line bundles. For the precise numerical values, we refer to

Theorem 3.2 in Section 3.

The paper is organized as follows. Section 1.1 starts with the definition of a fake

projective plane and collects some of the basic properties of these surfaces. More precisely,

we recall some important features of their fundamental group and homology which follow

from the Prasad–Yeung and Cartwright–Steger classification. In Section 1.2, we recall

the basic theory of the Toledo invariant. We use this invariant to study curves on fake

projective planes, and in particular to understand their singularities. Then, in Section 3

we prove Theorem 3.2 which computes exactly the Seshadri constants of a fake projective

plane.

Acknowledgments. I would like to thank the Max Planck Institute for Mathe-

matics for the great working environment while this project was conceived and completed.

I would also like to thank Matthew Stover for introducing me to the beautiful ideas of

Toledo.

1.1. Fake projective planes.

In this section, we recall some of the general properties of the so-called fake projective

planes. For the basic complex surface theory and complex hyperbolic geometry, we refer

to the books [BHPV04], [Bea96] and [Gol99].

The formula of Noether for the holomorphic Euler characteristic of a smooth surface

gives

χO = 1− q + pg =
c21 + c2
12

,

where q = h1,0 is the irregularity of the surface. Since χO > 0 for any surface of

general type, we conclude that a fake projective plane must have vanishing first Betti

number, i.e., q = 0 which is equivalent to H1(X;Q) = 0. Thus, the fact c2 = 3 implies

that h1,1 = 1, so that the Picard number of any such space is always one. Moreover,

let us observe that any fake projective plane achieves the equality sign in the so-called

Bogomolov–Miyaoka–Yau inequality
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c21 ≤ 3c2,

so that, because of Yau’s solution of Calabi conjecture [Yau77], it is a compact complex

hyperbolic 2-manifold. Thus, any fake projective plane X is given as the quotient of

the complex hyperbolic 2-space H2
C
by a torsion free co-compact lattice Γ ∈ PU(2, 1).

Furthermore, Klingler [Kli03] and Yeung [Yeu04] proved that any such Γ is always an

arithmetic subgroup of PU(2, 1). This important result is crucial for the classification

of Prasad–Yeung [PY07] and Cartwright–Steger [CS10] of all fake projective planes.

More precisely, there are 100 isomorphism classes of fake projective planes and 50 explicit

subgroups in PU(2, 1) which arise as fundamental groups of fake projective planes. For

any fake projective plane X with π1(X) = Γ, we then have that

H1(X;Z) = Γ/[Γ,Γ]

is a finite abelian group which is never zero, see again [PY07] and also the addendum

[PY10]. Moreover, since H1(X;O) = 0 we have that Pic(X) = H2(X;Z), and by

the universal coefficient theorem Tor(H2(X;Z)) = H1(X;Z) �= 0. Thus, on any fake

projective plane we always have torsion line bundles. Nevertheless, by Poincaré duality

Pic(X)/Tor(H2(X;Z)) is one dimensional unimodular lattice and we therefore have the

existence of an ample line bundle L such that c1(L)
2 = 1, which generates the torsion

free part of the Picard group. This fact motivates the following definition.

Definition 1.2. For a fake projective plane X, we denote by L1 any ample gen-

erator of the torsion free part of Pic(X).

Let us remark that the choice of L1 is not unique. In fact, as we discussed above the

different choices are parametrized by H1(X;Z). Nevertheless, this lack of non-uniqueness

does not play an important role for us. This is because the Seshadri constants of an ample

line bundle depend only on its numerical equivalence class. In other words, if we denote

numerical equivalence by ≡, given any two line bundles L and L′ such that L ≡ L′, we
then have ε(L, x) = ε(L′, x) for any point x. Next, given any ample line bundle L with

self-intersection k2 let us observe that

L ≡ kL1,

where L1 is any ample generator of the torsion free part of Pic(X). Thus, for our

purposes, it is natural to give the following definition.

Definition 1.3. For a fake projective plane X, we denote by Lk any ample line

bundle L such that c21(L) = k2.

1.2. Toledo invariant and C-Fuchsian curves in ball quotients.

Let C be a closed hyperbolic Riemann surface and let

ρ : π1(C) → PU(2, 1)
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be a representation of its fundamental group into the group of holomorphic isometries

of the complex hyperbolic 2-space. The representation ρ determines a flat H2
C
bundle

over C. The complex hyperbolic 2-space can be thought as the unit ball in C2 which is

contractible. Thus, this bundle has a section and then there exists a ρ-equivariant map

f : H → H2
C

where H is the universal cover of C. Let us denote by ω1 the Bergman metric on H2
C

with constant negative holomorphic sectional curvature normalized to be −1. Since f∗ω1

is invariant under the action of π1(C) on H, we define the number

T (ρ) =
1

2π

∫
C

f∗ω1

to be the Toledo invariant of the representation ρ. Note that the Toledo invariant id

independent of the map f .

Theorem 1.4 (Toledo, [Tol89]). Let ρ : π1(C) → PU(2, 1) be a representation

with C is a closed hyperbolic Riemann surface. We then have

|T (ρ)| ≤ 2g(C)− 2

with equality if and only if ρ is C-Fuchsian.

Recall that ρ : π1(C) → PU(2, 1) is said to be C-Fuchsian if the ρ-equivariant map f

is a holomorphic totally geodesic embedding of the complex hyperbolic 1-space H1
C
into

H2
C
.

For more on this circle of ideas, we refer the interested reader to the paper of

Goldman–Kapovich–Leeb [GKL01] and to the recent survey of Stover [Sto15] and the

bibliography therein.

2. Curves on ball quotient surfaces and fake projective planes.

In this section, we derive a bound on the genus of the normalization of a holomorphic

curve in a ball quotient surfaces. This bound follows from the bound on the Toledo

invariant presented in Section 1.2. Moreover, we use this bound to study the geometry

of curves on fake projective planes.

To this aim, let (X,ω1) be smooth complex hyperbolic surface equipped with its

locally symmetric Bergman metric ω1. Moreover, let us normalize the holomorphic sec-

tional curvature of ω1 to be −1. Given a holomorphic curve C ⊂ X, let us consider

the normalization map i : C → X. Recall that this map is simply the resolution of the

singularities of C, so that C is a smooth curve and the map i is generically the identity.

Moreover, the holomorphic map i is the identity if and only if the curve C is smooth.

Since X is hyperbolic, we must have g(C) ≥ 2 for any curve C ⊂ X. If otherwise,

we would have a non trivial holomorphic map h : C → X. The existence of such map

contradicts the hyperbolicity of X.
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Thus given any C ⊂ X, let us consider the normalization map i : C → X. Since

g(C) ≥ 2, we can consider the Toledo invariant associated to the normalization map:

T (i) =
1

2π

∫
C

i∗ω1.

In this case it is clear that T (i) > 0, so that by Theorem 1.4 we have

0 < T (i) ≤ 2g(C)− 2

with equality if and only if i lifts to a holomorphic totally geodesic embedding of H1
C
into

H2
C
. In other words, the equality sign is achieved if and only if C is a totally geodesic

immersed curve in X.

Next, let us observe the following. Since (X,ω1) is Einstein and the holomorphic

sectional curvature is normalized to be −1, we have

c1(KX) =
3

4π
ω1,

where by c1(KX) we denote the first Chern class of the canonical line bundle KX . Thus,

given any curve C ⊂ X and denoting by C∗ its smooth locus, we compute

KX · C =

∫
C∗

3

4π
ω1 =

3

4π

∫
C

i∗ω1 =
3

2
T (i).

We can then use the bound on the Toledo invariant of the map i : C → X to derive the

following upper bound for the intersection of KX with C.

Proposition 2.1. Let X be a complex hyperbolic surface. Given a reduced irre-

ducible curve C ∈ X, let us denote by C its normalization. We then have

KX · C ≤ 3(g(C)− 1)

with equality if and only if C is an immersed totally geodesic curve.

Next, we want to refine this proposition when X is a fake projective plane. Let us

start with a well known lemma. We sketch the proof for the convenience of the reader.

Lemma 2.2. There are no immersed totally geodesic curves in a fake projective

plane.

Proof. The main theorem in [PY07] combined with [CS10] tells us that any fake

projective plane is an arithmetic ball quotient of the second type. These particular ball

quotients are known not to carry any immersed totally geodesic curve, see for example

page 901 in [MT15]. The proof is then complete. �

Thus, let C be any reduced irreducible curve in a fake projective plane X. Any

such C is numerically equivalent to kL1 for some integer k ≥ 1, where L1 is any ample

generator of the torsion free part of Pic(X), see Section 1.1. In particular, we always
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have that C ≡ Lk for some k ≥ 1.

Proposition 2.3. Let C be a reduced irreducible curve in a fake projective plane

X numerically equivalent to Lk for some k ≥ 1. Let C be its normalization. We then

have g(C) > 1 + k.

Proof. Given any fake projective plane X, recall that c21(X) = K2
X = 9. Thus,

KX is numerically equivalent to 3L1. Since C is assumed to be numerically equivalent

to Lk, by using Proposition 1.4 we compute that

KX · C = 3k ≤ 3(g(C)− 1) ⇒ g(C) ≥ 1 + k.

Now the equality sign can be achieved if and only if C is an immersed totally geodesic

curve. By Lemma 2.2, we know that such curves cannot exist on a fake projective plane.

We then conclude that

g(C) > 1 + k,

as claimed. �

It is interesting to explicitly state a corollary of Proposition 2.3 for curves of fake

projective planes numerically equivalent to L1.

Corollary 2.4. Let C be a curve on a fake projective plane X numerically equiv-

alent to L1. We then have that C is necessarily a smooth genus three curve.

Proof. By Proposition 2.3, we know that C has to be smooth. Finally, we com-

pute that

g(C) = pa(C) = 1 +
KX · C + C2

2
= 3

where pa(C) is the arithmetic genus of C. �

Let us point out that curves of low degree on fake projective planes are quite mys-

terious objects. In particular, it seems currently unknown weather or not there exist

curves linearly equivalent to Li, for i = 1, 2, on any of the 50 fake projective planes. In

any case, if curves numerically equivalent to L1 exist on some fake projective plane, they

necessarily must be smooth.

Next, we want to apply a similar argument derive an upper bound for the multiplicity

of a singular point of a reduced, irreducible curve C ⊂ X, which satisfies C ≡ Lk for some

k ≥ 2. This upper bound is the key fact for the computation of the Seshadri constants

of any line bundle Lk, on any fake projective plane X.

Proposition 2.5. Let C be a reduced, irreducible singular curve in a fake projective

plane X. Let C be numerically equivalent to Lk for some k ≥ 2. For any singular point

p ∈ C, we have 2 ≤ mp ≤ k, where mp denotes the multiplicity of p.
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Proof. Given a singular point p ∈ C, let us define the integer mp(C) = mp to

be its multiplicity. Thus mp ≥ 2, and let us consider the normalization map i : C → C.

The local genus drop at the point p is defined to be

δp = dimC(i∗OC/OC)p

where by construction we have g(C) = pa(C) − ∑
i δpi , with the sum taken over all

the singular points, say {pi}, of C. For any singular point p ∈ C we have that δp ≥
mp(mp − 1)/2. Thus, we conclude

pa(C)− mp(mp − 1)

2
≥ pa(C)−

∑
i

mpi(mpi − 1)

2
≥ g(C).

Since C is numerically equivalent to Lk, we have that

pa(C) = 1 +
3k + k2

2

so that using the bound given in Proposition 2.3, we obtain

3k + k2 −mp(mp − 1) > 2k ⇒ m2
p −mp − k − k2 < 0.

In other words, for any singular point p ∈ C, we proved that

2 ≤ mp < 1 + k,

which concludes the proof. �

3. Seshadri constants of fake projective planes.

In this section, we finally compute the Seshadri of all line bundles Lk on any of the

fake projective planes. Let us start with a proposition which is a consequence of a general

result of Ein–Lazarsfeld [EL93] for Seshadri constants on smooth surfaces. The main

result of this section, Theorem 3.2 below, is sharp generalization of this proposition.

Proposition 3.1. Let X be a fake projective plane. Let Lk be an ample line bundle

with self-intersection k2. We then have ε(Lk, x) = k for all except at most countably many

points x ∈ X.

Proof. Given Lk recall that Lk ≡ kL1. Now L1 is an ample line bundle with

L2
1 = 1. By a result of Ein–Lazarsfeld [EL93], we have that ε(L1;x) = 1 for all except

possibly countably many points in X. Since ε(Lk;x) = kε(L1;x), the proof is complete.

�

We can now prove the main theorem.

Theorem 3.2. Let X be a fake projective plane. Let Lk be an ample line bundle

with self-intersection k2. Given any point x ∈ X, we have ε(Lk, x) = ε(Lk) = k.



1608 L. F. Di Cerbo

Proof. Let C be a curve in X numerically equivalent to L1. By Corollary 2.4,

any such curve is smooth so that

Lk · C
multp(C)

= k

for any point p ∈ C. Next, let C be a curve in X numerically equivalent Ll for some

l ≥ 2. By Proposition 2.5, if p ∈ C is a point with multiplicity mp ≥ 2 we have the

bound mp ≤ l. Thus, we then compute

Lk · C
multp(C)

≥ l · k
l

= k.

In conclusion, for any point x ∈ X, we have the inequality ε(Lk;x) ≥ k. In order to finish

the proof, we need to show that ε(Lk;x) ≤ k for any x ∈ X. To this aim, let f : Y → X

be the blow up map at x ∈ X and let us denote by E the exceptional divisor in Y . Let

us observe that the Seshadri constant of Lk at x can be equivalently defined as follows

[Laz04]:

ε(Lk, x) = sup{λ > 0 : f∗Lk − λE is nef on Y }.

For any x ∈ X we then have

ε(Lk, x) ≤
√
L2
k = k.

The proof is complete. �

In particular, we can explicitly compute the Seshadri constants of the canonical line

bundle of a fake projective plane.

Corollary 3.3. Let X be a fake projective plane. Given any point x ∈ X, we

have ε(KX , x) = ε(KX) = 3.

Proof. By Theorem 3.2, it suffices to observe that KX ≡ L3. �

It would be interesting to compare the estimates given by Hwang and To in [HT99]

for ε(KX), with the exact result given in Corollary 3.3. This comparison would require the

computation of the injectivity radii of fake projective planes, which seems an interesting

problem on its own.

Let us conclude this section by proving a result on the 3-canonical map of a fake

projective plane. More precisely, we show that the map associated to the linear system

|3KX | gives an embedding. The result is a direct consequence Corollary 3.3.

Corollary 3.4. Let X be a fake projective plane. The 3-canonical map

ϕ|3KX | : X → P27

is an embedding.
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Proof. By Corollary 3.3, we have ε(2KX) = 6 > 2 · dimC(X) = 4. Thus, us-

ing Proposition 6.8 in [Dem90] we know that the map associated to the linear system

|KX + 2KX | gives an embedding into some projective space. It remains to compute the

dimension of H0(X; 3KX). Using the vanishing theorem of Kodaira and the Riemann–

Roch formula, we obtain h0(X; 3KX) = 28. �

Let us remark that Corollary 3.4 can alternatively be proved by using Reider’s

theorem, see for example page 176 in [BHPV04]. This fact was already observed in

Section 10 of [PY07]. Nevertheless, it seems of interest to present a self-contained

Seshadri constants proof based on the exact result given in Corollary 3.3.
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