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Abstract. A real Lie algebra with a compatible Hilbert space struc-
ture (in the sense that the scalar product is invariant) is called a Hilbert–Lie
algebra. Such Lie algebras are natural infinite-dimensional analogues of the
compact Lie algebras; in particular, any infinite-dimensional simple Hilbert–
Lie algebra k is of one of the four classical types AJ , BJ , CJ or DJ for some
infinite set J . Imitating the construction of affine Kac–Moody algebras, one
can then consider affinisations of k, that is, double extensions of (twisted) loop
algebras over k. Such an affinisation g of k possesses a root space decomposition
with respect to some Cartan subalgebra h, whose corresponding root system
yields one of the seven locally affine root systems (LARS) of type A

(1)
J , B

(1)
J ,

C
(1)
J , D

(1)
J , B

(2)
J , C

(2)
J or BC

(2)
J .

Let D ∈ der(g) with h ⊆ kerD (a diagonal derivation of g). Then every
highest weight representation (ρλ, L(λ)) of g with highest weight λ can be
extended to a representation ρ̃λ of the semi-direct product g � RD. In this
paper, we characterise all pairs (λ, D) for which the representation ρ̃λ is of
positive energy, namely, for which the spectrum of the operator −iρ̃λ(D) is
bounded from below.

1. Introduction.

Let G be a Lie group with Lie algebra g, and let α : R → Aut(G) : t �→ αt define
a continuous R-action on G. Consider a unitary representation π : G� → U(H) of the
topological group G� := G �α R on some Hilbert space H, and let

dπ : g�RD → u(H∞)

denote the corresponding derived representation, where D := d/dt|t=0L(αt) ∈ der(g) is
the infinitesimal generator of α and where

H∞ := {v ∈ H | G� → H, g �→ π(g)v is smooth}

is the space of π-smooth vectors. The representation (π, H) is said to be of positive
energy if the spectrum of the Hamiltonian H := −idπ(D) is bounded from below.

It is a challenging natural problem to determine the irreducible positive energy rep-
resentations (π, H) of G�. As a consequence of the Borchers–Arveson Theorem ([BR87,
Theorem 3.2.46]), for any such representation, the restriction ρ := π|G is irreducible
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(see [Nee14a, Theorem 2.5]), and the Hamiltonian H of the extension of ρ to G� is
determined by α, up to an additive constant. The set of irreducible positive energy rep-
resentations of G� may thus be viewed as a subset Ĝα of the set Ĝ of equivalence classes
of irreducible unitary representations of G, and one would like to describe this subset as
explicitly as possible. Note that this problem is essentially equivalent to determining for
a Lie group G and d ∈ g all unitary representations (π, H) for which −idπ(d) is bounded
from below. Such questions are largely motivated by representations arising naturally
in quantum physics, where the spectrum of the Hamiltonian (representing the energy)
should be non-negative ([BR87]). For the class of semibounded unitary representations
such elements exist in a stable fashion, and this recently lead to a powerful general theory
because C∗-techniques are now fully available. See [Nee16] for a recent survey on the
results and methods.

A prominent class of unitary representations which will be studied in this paper is
provided by the subset Ĝhw ⊆ Ĝ of irreducible unitary “highest weight representations”
of G. In [MN16], an explicit description of the positive energy representations in Ĝhw

was obtained for a central extension of a Hilbert–Lie group G (that is, such that the Lie
algebra of G is a Hilbert–Lie algebra), when α is given by conjugation with diagonal
operators. In this paper, we push this study further by considering double extensions of
Hilbert loop groups, that is, double extensions of loop groups over a Hilbert–Lie group.
Since the positive energy condition is expressed in terms of the derived representation
dπ : g � RD → u(H∞), we will formulate our results at the level of the corresponding
Lie algebras, namely, for double extensions of Hilbert loop algebras (respectively, locally
affine Lie algebras). For the construction of highest weight representations of double
extensions of Hilbert loop groups, we refer to [Nee14b].

From the algebraic perspective, the complexifications of the Lie algebras considered
in this paper are completions of so-called locally extended affine Lie algebras (LEALA)
(see [MY06]). An LEALA L possesses a root space decomposition L = H ⊕

⊕
α∈Δ Lα

with respect to some ad-diagonalisable subalgebra H, whose corresponding root system
Δ ⊆ H∗ is a locally extended affine root system (LEARS) (see [Yos10]). An important
class of LEALAs are the locally affine Lie algebras (LALA), in which case Δ is a locally
affine root system (LARS) ([Nee10], [MY15]). LALAs can be obtained as direct limits
of affine Kac–Moody algebras ([Nee10, Section 3]), and they possess highest weight
representations L(λ) for suitable highest weights λ ∈ H∗ ([Nee10, Theorem 4.10]). One
may thus investigate the positive energy condition for these representations. On the
other hand, the explicit construction of Kac–Moody algebras as double extensions of
loop algebras over a (finite-dimensional) simple Lie algebra G can be generalised to the
LALA L, by replacing G with a locally finite split simple Lie algebra (see [Stu99]).

Since the main motivation for the study of positive energy representations comes
from the group level (in our setting, double extensions of Hilbert loop groups), it will be
more appropriate to shift from the algebraic to the analytic perspective, which can be
done as follows. We consider the locally finite split simple Lie algebra G over K = C. By
[Stu99, Section VIII], there is an antilinear involutive anti-automorphism X �→ X∗ such
that GR := {X ∈ G | X∗ = −X} is a compact real form of G, namely, a direct limit of
(finite-dimensional) compact Lie algebras. As a subspace of the space gl(J,C) of J × J

matrices with finitely many nonzero entries (for some suitable set J), G inherits a scalar
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product 〈X, Y 〉 = tr(XY ∗), whose restriction to GR is invariant: 〈[X, Y ], Z〉 = 〈X, [Y, Z]〉
for all X, Y, Z ∈ GR. The Hilbert space completion k of GR is a so-called Hilbert–Lie
algebra. One can then construct (double extensions of) an “analytic” loop algebra over k
by replacing Fourier polynomials with smooth functions. The resulting “affinisation” g of
k contains the (doubly extended) “algebraic” loop algebra L over G as a dense subalgebra.
The highest weight module L(λ) over L is unitary (under suitable assumptions on λ, see
[Nee10, Theorem 4.11]), and hence possesses an invariant scalar product. In particular,
its completion L̂(λ) becomes the highest weight module over g: this will be our setting
for our investigation of the positive energy condition.

We now present in more detail the main result of this paper. For a more thorough
account of the concepts presented below, we refer to [MN17, Sections 2 and 3] and the
references therein.

A Hilbert–Lie algebra is a real Lie algebra k admitting a real Hilbert space structure
with invariant scalar product. Any simple infinite-dimensional Hilbert–Lie algebra k

possesses a root space decomposition with respect to some maximal abelian subalgebra t

(a Cartan subalgebra), whose corresponding root system Δ = Δ(k, t) ⊆ it∗ is a so-called
locally finite root system, of one of the types AJ , BJ , CJ or DJ for some infinite set J

(see [NS01] and [LN04]). Here and in the sequel, t∗ denotes the algebraic dual of t (as
opposed to its topological dual t′).

Let ϕ ∈ Aut(k) be an automorphism of the simple Hilbert–Lie algebra k of finite
order N , and let t0 be a maximal abelian subalgebra of kϕ := {x ∈ k | ϕ(x) = x}. Then
k also possesses a root space decomposition kC = (t0)C ⊕

⊕̂
α∈Δϕ

kα
C
with respect to t0,

with corresponding root system Δϕ = Δ(k, t0).
The (ϕ-twisted) Hilbert loop algebra over k is the Lie algebra

Lϕ(k) :=
{

ξ ∈ C∞(R, k)
∣∣∣∣ ξ

(
t + 2π

N

)
= ϕ−1(ξ(t)) ∀t ∈ R

}
.

We equip its complexification Lϕ(k)C with the invariant positive definite hermitian form
〈·, ·〉 defined by 〈ξ, η〉 = (1/2π)

∫ 2π

0 〈ξ(t), η(t)〉dt.
Let der0(Lϕ(k), 〈·, ·〉) denote the space of skew-symmetric derivations D of Lϕ(k)

that are diagonal, in the sense that D(eint ⊗ kα
C
) ⊆ eint ⊗ kα

C
for all n ∈ Z and α ∈ Δϕ.

Define D0 ∈ der0(Lϕ(k), 〈·, ·〉) by D0(ξ) = ξ′. For any weight ν ∈ it∗0, let also Dν be the
derivation of kC defined by

Dν(xα) := iν(α�)xα for all xα ∈ kα
C, α ∈ Δϕ,

where α� is the unique element of it0 such that 〈h, α�〉 = α(h) for all h ∈ t0. Then
Dν restricts to a skew-symmetric derivation of k, which we extend to a derivation in
der0(Lϕ(k), 〈·, ·〉) by setting Dν(ξ)(t) := Dν(ξ(t)) for all ξ ∈ Lϕ(k) and t ∈ R. The space
der0(Lϕ(k), 〈·, ·〉) is then spanned by D0 and all such Dν (see [MY15, Theorem 7.2 and
Lemma 8.6]), and we set

Dν := D0 + Dν ∈ der0(Lϕ(k), 〈·, ·〉).

The derivation Dν defines a 2-cocycle ωDν
(x, y) := 〈Dν(x), y〉 on Lϕ(k), and extends to
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a derivation D̃ν(z, x) := (0, Dν(x)) of the corresponding central extension R⊕ωDν
Lϕ(k).

We call the resulting double extension

g = L̂ν
ϕ(k) := (R ⊕ωDν

Lϕ(k))�D̃ν
R

the ν-slanted and ϕ-twisted affinisation of the Hilbert–Lie algebra k. The Lie algebra g

admits a root space decomposition gC = (te0)C ⊕
⊕̂

α∈Δ̂ϕ
gα with respect to its maximal

abelian subalgebra te0 := R ⊕ t0 ⊕ R, with corresponding root system

Δ̂ϕ = Δ(g, te0) ⊆ {0} × it∗0 × Z ⊆ i(te0)∗.

Note that

galg
C

:= Cc + spanC{α� | α ∈ Δ̂ϕ} + Cd ⊕
⊕

α∈Δ̂ϕ

gα

is a LALA, where c := (i, 0, 0) ∈ ite0 ⊆ gC and d := (0, 0, −i) ∈ ite0 ⊆ gC ([Nee14b,
Example 2.5]). The set

(Δ̂ϕ)c := {(0, α, n) ∈ Δ̂ϕ | α �= 0} ⊆ {0} × Δϕ × Z

of compact roots is then a LARS. The LARS were classified in [Yos10], and those of
infinite rank fall into 7 distinct families of isomorphism classes, parametrised by the types
X

(1)
J and Y

(2)
J for X ∈ {A, B, C, D} and Y ∈ {B, C, BC}, for some infinite set J . The

type X
(1)
J can be realised as the root system of the unslanted and untwisted affinisation

L̂0
id(k) of some Hilbert–Lie algebra k with root system of type XJ . The type Y

(2)
J can

similarly be realised as the root system of some unslanted and ψY -twisted affinisation of
a suitable Hilbert–Lie algebra k, for some automorphism ψY of order 2 whose description
can be found in [Nee14b, Section 2.2] (see also [MN17, Section 6]). We call the three
automorphisms ψY , as well as the 7 affinisations of a Hilbert–Lie algebra described above
standard.

Let λ ∈ i(te0)∗, which we write as λ = (λc, λ0, λd) where

λc := λ(c) ∈ R, λ0 := λ|it0 ∈ it∗0 and λd := λ(d) ∈ R.

Assume that λc �= 0 and that λ is integral, in the sense that λ only takes integer values on
the coroots α̌, α ∈ Δ̂ϕ (see Section 2.1 below). Then g admits an irreducible integrable
unitary highest weight representation

ρλ : g → End(L̂(λ))

with highest weight λ, whose set of weights is given by Pλ = Conv(Ŵν
ϕ.λ)∩ (λ+Z[Δ̂ϕ]),

where Ŵν
ϕ = W(g, te0) denotes the Weyl group of g with respect to te0 (see [Nee10,

Theorems 4.10 and 4.11]).
Let ν′ ∈ it∗0, and extend the derivation Dν′ of Lϕ(k) to a skew-symmetric derivation

of g by Dν′(te0) := {0}. Then Dν′ is encoded by the character
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χ = χν′ : Z[Δ̂ϕ] → R, (0, α, n) �→ n + ν′(α�)

satisfying Dν′(xα) = iχ(α)xα for all xα ∈ gα, α ∈ Δ̂ϕ. One can now extend ρλ to a
representation

ρ̃λ,χ : g�RDν′ → End(L̂(λ))

of the semi-direct product g�RDν′ , where ρ̃λ,χ(Dν′)vγ = iχ(γ − λ)vγ for all γ ∈ Pλ and
vγ ∈ L̂(λ) of weight γ. The representation ρ̃λ,χ is thus of positive energy if and only if

Mg,ν′ := inf Spec(Hν′) = inf χ
(
Pλ − λ

)
= inf χ

(
Ŵν

ϕ.λ − λ
)

> −∞,

where Hν′ := −iρ̃λ,χ(Dν′) is the corresponding Hamiltonian.
We first characterise the positive energy highest weight representations of g when

g is standard. In this case, there is an orthonormal basis {ej | j ∈ J} of it0 such that
the linearly independent system {εj | j ∈ J} ⊆ it∗0 defined by 〈εj , ek〉 = δjk contains the
root system Δϕ in its Z-span (see Section 2.1 below). Write a character χ : i(te0)∗ → R

as χ = (χc, χ0, χd) where

χc := χ((1, 0, 0)) ∈ R, χ0 := χ|it∗
0

and χd := χ((0, 0, 1)) ∈ R.

We call χ = (χc, χ0, χd) summable if χc = χd = 0 and χ0 ∈ �1(J), that is,∑
j∈J

|χ0(εj)| < ∞.

Theorem A. Let (g, te0) be a standard affinisation of a simple Hilbert–Lie algebra,
with Weyl group Ŵ = W(g, te0). Let λ = (λc, λ0, λd) ∈ i(te0)∗ be an integral weight with
λc �= 0. Then for any character χ = (χc, χ0, χd) : i(te0)∗ → R with λcχd > 0, the following
are equivalent:

(1) inf
(
χ
(
Ŵ.λ − λ

))
> −∞.

(2) χ = χmin + χsum for some minimal energy character χmin, satisfying
inf
(
χmin

(
Ŵ.λ − λ

))
= 0, and some summable character χsum.

In addition, we give an explicit description of the set of characters χ of minimal
energy (see Section 6). An alternative description of this set is given in [HN14, Theo-
rem 3.5]. Note that the assumption λcχd > 0 in Theorem A is only necessary to avoid
degenerate cases, which are dealt with in Section 3.1. The proof of Theorem A relies on
the earlier work [MN16], which provides a similar characterisation of the positive energy
condition for highest weight representations of Hilbert–Lie algebras.

To characterise the positive energy highest weight representations of g = L̂ν
ϕ(k)

arbitrary, we use the main results of [MN17], which allows to reduce the problem to the
“standard” case.

Corollary B. The statement of Theorem A holds for arbitrary affinisations g =
L̂ν

ϕ(k) of a simple Hilbert–Lie algebra k.
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A more precise statement of Corollary B is given in Theorem 7.1 below: the key
point here is that the explicit form of the isomorphism from g to one of the (slanted)
standard affinisations of k provided by [MN17, Theorem A] also allows for an explicit
description of the minimal energy sets in this more general setting.

2. Preliminaries.

Notation. In this paper, we denote by N = {1, 2, . . . } the set of positive natural
numbers.

2.1. Locally affine root systems.
The general reference for this paragraph is [MN17, Section 2.3 and Section 3.5]

(and the references therein).
Let J be an infinite set. Let Vfin := R(J) ⊆ V := RJ be the free vector space over

J , with canonical basis {ej | j ∈ J} and standard scalar product given by 〈ej , ek〉 = δjk.
Note that we may extend 〈·, ·〉 to a bilinear form on Vfin×V . In the dual space (Vfin)∗ ∼= RJ

of Vfin, we consider the linearly independent system {εj | j ∈ J} defined by εj(ek) = δjk,
and we denote by (·, ·) the standard scalar product on

V �
fin := spanR{εj | j ∈ J} ⊆ (Vfin)∗

for which (εj , εk) = δjk for all j, k ∈ J .
Any infinite irreducible locally finite root system Δ can be realised inside (V �

fin, (·, ·))
for some suitable set J , and is of one of the following types:

AJ := {εj − εk | j, k ∈ J, j �= k},

BJ := {±εj , ±(εj ± εk) | j, k ∈ J, j �= k},

CJ := {±2εj , ±(εj ± εk) | j, k ∈ J, j �= k},

DJ := {±(εj ± εk) | j, k ∈ J, j �= k},

BCJ := {±εj , ±2εj , ±(εj ± εk) | j, k ∈ J, j �= k}.

Set

V̂ := R×V ×R, V̂fin := R×Vfin ×R, V̂ � := R×(Vfin)∗ ×R and V̂ �
fin := R×V �

fin ×R,

where we identify V̂ � with the dual of V̂fin by setting

λ(z, h, t) := λcz + λ0(h) + λdt for all λ = (λc, λ0, λd) ∈ V̂ � and (z, h, t) ∈ V̂fin.

In other words, the superscript � (resp. its absence) indicates that we are considering
triples (z, h, t) with h of the form h =

∑
j∈J hjεj (resp. h =

∑
j∈J hjej) for some hj ∈ R,

and the subscript fin indicates that we in addition assume that only finitely many hj are
nonzero.

Any infinite irreducible reduced locally affine root system can be realised inside

V �
fin × Z ≈ {0} × V �

fin × Z ⊆ V̂ �
fin
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for some suitable set J , and is of one of the following types:

X
(1)
J := XJ × Z for X ∈ {A, B, C, D},

B
(2)
J := (BJ × 2Z) ∪

(
{±εj | j ∈ J} × (2Z+ 1)

)
,

C
(2)
J := (CJ × 2Z) ∪

(
DJ × (2Z+ 1)

)
,

BC
(2)
J := (BJ × 2Z) ∪

(
BCJ × (2Z+ 1)

)
.

Let Δ̂ ⊆ V̂ �
fin be one of the above locally affine root systems X

(1)
J or X

(2)
J , where Δ ⊆ V �

fin
is the corresponding locally finite root system of type XJ . Thus Δ̂ ⊆ {0} × Δ × Z. We
set

Δ0 = {α ∈ Δ | (0, α, 0) ∈ Δ̂}.

Then Δ0 = Δ, unless Δ̂ is of type BC
(2)
J , in which case Δ0 is a root subsystem of Δ of

type BJ .
The assignment εj �→ ej , j ∈ J , induces an R-linear map � : (Vfin)∗ → V : μ �→ μ�

(which is the identity if one identifies (Vfin)∗ with RJ). For any α ∈ Δ, we let

α̌ := 2
(α, α)α� ∈ Vfin

denote the coroot of α. We will also view α as a linear functional on V (and not just on
Vfin) by setting

α(h) := 〈α�, h〉 for all h ∈ V .

Finally, denoting by κ : V̂fin × V̂ → R the bilinear form defined by

κ((z1, h1, t1), (z2, h2, t2)) = 〈h1, h2〉 − z1t2 − z2t1,

we can extend the map � : (Vfin)∗ → V to an R-linear map

� : V̂ � → V̂ , μ = (μc, μ0, μd) �→ μ� = (−μd, (μ0)�, −μc)

characterised by the property that

μ((z, h, t)) = κ((z, h, t), μ�) for all (z, h, t) ∈ V̂fin.

The coroot of (α, n) ∈ Δ̂ is given by

(α, n)∨ = 2
(α, α) (0, α, n)� =

(
−2n

(α, α) , α̌, 0
)

.

Remark 2.1. As announced in the introduction, we will use the main results of
[MN17] to characterise the positive energy highest weight representations of arbitrary
affinisations of simple Hilbert–Lie algebras. We wish to attract the attention of the
reader to the fact that the choices of parametrisation of these affinisations that we made
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in the present paper slightly differ from the choices made in [MN17], and this in two
respects (these choices being better suited for each of the papers). We now explain these
differences in more detail and relate the notation introduced so far to the context of
affinisations of simple Hilbert–Lie algebras.

Consider, as in [MN17, Section 3.1], a simple Hilbert–Lie algebra k, an automor-
phism ϕ ∈ Aut(k) of finite order Nϕ, and a maximal abelian subalgebra t0 of kϕ. For
N ∈ N, we denote by

Lϕ,N (k) :=
{

ξ ∈ C∞(R, k)
∣∣∣∣ ξ

(
t + 2π

N

)
= ϕ−1(ξ(t)) ∀t ∈ R

}

the ϕ-twisted loop algebra over k, whose elements are periodic smooth functions of period
2πNϕ/N . In the present paper, we made the choice N = Nϕ, that is, we consider 2π-
periodic functions. This is the first difference with [MN17], where the choice N = 1 is
made. However, these two choices yield isomorphic objects: explicit isomorphisms were
provided in [MN17, Remark 4.3].

Let now N ∈ {1, Nϕ}, and let D0(ξ) = ξ′ be the standard derivation of Lϕ,N (k).
Assume that the corresponding affinisation

g = gN = (R ⊕ωD0
Lϕ,N (k))�

D̃0
R

of k is standard, with set of compact roots Δ̂ = Δ(g, te0)c ⊆ i(te0)∗ with respect to the
Cartan subalgebra

te0 = R ⊕ t0 ⊕ R

of one of the types A
(1)
J , B

(1)
J , C

(1)
J , D

(1)
J , B

(2)
J , C

(2)
J and BC

(2)
J described above (see

[MN17, Section 3.4 and Section 3.5]). Set c = (i, 0, 0) ∈ ite0 and d = (0, 0, −i) ∈ ite0.
The second difference is purely notational, and concerns the identification of the

Cartan subalgebra te0 of g (or rather, of ite0 ⊆ gC) with the space of triples R × it0 × R:
the description of Δ̂ inside spanZ{εj | j ∈ J} × Z (which is the same in both papers)
yields identifications

V
(2)

fin ≈ it0 and V̂
(2)

fin
∼→ ite0, (z, h, t) �→ zc + h + td, (2.1)

where V
(2)

fin denotes the Hilbert space completion of Vfin and V̂
(2)

fin := R × V
(2)

fin × R.
The R-linear map � : (Vfin)∗ → V then coincides with the map � : it∗0 → it̂0 defined in
[MN17, Section 2.3 and Section 3.1], while its extension � : V̂ � → V̂ coincides with the
map � : i(te0)∗ → it̂e0 defined in [MN17, Section 7.2]. Similarly, the bilinear form κ on
V̂fin (or rather, its extension to V̂

(2)
fin ) coincides with the restriction to ite0 of the hermitian

extension of the bilinear form κ defined in [MN17, Section 3.4]. Finally, note that,
following [MN17, Section 3.4], the root (α, n) ∈ Δ̂ of the affinisation g1 of k satisfies

(α, n)(h) = α(h) for h ∈ it0, (α, n)(c) = 0 and (α, n)(d) = n/Nϕ.

Hence the reparametrisation provided by [MN17, Remark 4.3] of (α, n) as a root of gNϕ
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yields that

(α, n)(z, h, t) = (0, α, n)(z, h, t) = α(h) + nt for all (z, h, t) ∈ V̂fin,

in accordance with our identification of V̂ � with the dual of V̂fin.

2.2. The Weyl group of Δ̂.
Let SJ denote the set of bijections of J , which we view as a subgroup of GL(V ) with

w ∈ SJ acting as w(ej) := ew(j). The support of a permutation w ∈ SJ with fixed-point
set I ⊆ J is the set J \ I. We denote by S(J) ⊆ SJ the subgroup of permutations of SJ

with finite support, and we view it as a subgroup of either GL(V ) or GL(Vfin).
We also let {±1}J ⊆ RJ act linearly on V = RJ by componentwise left mul-

tiplication: σ(ej) = σjej for σ = (σj)j∈J ∈ {±1}J . The support of an element
σ = (σj)j∈J ∈ {±1}J is the set {j ∈ J | σj = −1}. We denote by {±1}(J) (resp.
{±1}(J)

2 ) the set of elements of {±1}J with finite (resp. finite and even) support, and we
again view {±1}(J) and {±1}(J)

2 as subgroups of either GL(V ) or GL(Vfin).
We recall from [MN16, Section 2.2] that for X ∈ {A, B, C, D, BC}, the Weyl group

W(XJ) of type XJ admits the following description:

W(AJ) = S(J),

W(BJ) = W(CJ) = W(BCJ) = {±1}(J) � S(J),

W(DJ) = {±1}(J)
2 � S(J).

We denote by W = W(Δ0) the Weyl group corresponding to Δ0, viewed as a
subgroup of either GL(V ) or GL(Vfin). Thus W = W(XJ) if Δ̂ is of type X

(1)
J or X

(2)
J

(see Section 2.1). Similarly, we denote by Ŵ = Ŵ(X) the Weyl group corresponding to
Δ̂, where X = X

(1)
J or X

(2)
J is the type of Δ̂, and we view Ŵ as a subgroup of either

GL(V̂ ) or GL(V̂fin).
The group Ŵ is generated by the set of reflections

{
r(α,n) | (α, n) ∈ Δ̂, α �= 0

}
,

where

r(α,n)(z, h, t) = (z, h, t) − (α(h) + nt)
(

−2n

(α, α) , α̌, 0
)

for all (z, h, t) ∈ V̂ . (2.2)

We view W as a subgroup of Ŵ, using the identification

W ∼= 〈r(α,0) | α ∈ Δ0〉 ⊆ Ŵ.

For each x ∈ Vfin, we define the linear automorphism τx = τ(x) of V̂ (resp. of V̂fin) by

τx(z, h, t) =
(

z + 〈x, h〉 + t〈x, x〉
2 , h + tx, t

)
for all (z, h, t) ∈ V̂ . (2.3)

Then τx1τx2 = τx1+x2 for all x1, x2 ∈ Vfin. Moreover, r(α,0)r(α,n) = τnα̌ for all α ∈ Δ and
n ∈ Z. Since for any α ∈ Δ there exists some β ∈ Δ0 such that r(α,0) = r(β,0) (as can be
seen from a quick inspection of the locally affine root systems), we thus get a semi-direct
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decomposition

Ŵ = τ(T )� W ⊆ GL(V ),

where T is the additive subgroup of Vfin generated by
{

nα̌ | (α, n) ∈ Δ̂
}
(see [HN14,

Section 3.4] or else [MN17, Section 3.6]). Set Q :=
⊕

j∈J Zej ⊆ Vfin. For Ŵ = Ŵ(X)
of type X, one can then describe the corresponding lattice T = T (X) ⊆ Q of type X as
follows (see [HN14, Proposition 3.12]):

T (A(1)
J ) =

{∑
j∈J

njej ∈ Q
∣∣∣ ∑

j∈J

nj = 0
}

,

T (B(1)
J ) = T (D(1)

J ) = T (C(2)
J ) =

{∑
j∈J

njej ∈ Q
∣∣∣ ∑

j∈J

nj ∈ 2Z
}

,

T (B(2)
J ) =

{∑
j∈J

njej ∈ Q
∣∣∣ nj ∈ 2Z ∀j ∈ J

}
,

T (C(1)
J ) = T (BC

(2)
J ) = Q = Z(J).

Thus any element ŵ ∈ Ŵ can be uniquely written as a product ŵ = τxσw for some
x ∈ T , some σ ∈ {±1}(J) and some w ∈ S(J). For x =

∑
j∈J njej ∈ T , we call the subset

{j ∈ J | nj �= 0} of J the support of x.

Remark 2.2. The Weyl group Ŵ may also be viewed, as in the introduction, as a
subgroup of GL(V̂ �) using the bijection � : V̂ � → V̂ , or in other words, by requiring that

(ŵ.μ)� = ŵ.μ� for all ŵ ∈ Ŵ and μ ∈ V̂ �.

2.3. The positive energy condition.
In the sequel, we fix some

λ = (λc, λ0, λd) ∈ R × RJ × R ≈ V̂ � and χ = (χc, χ0, χd) ∈ R × RJ × R = V̂ ,

and we write

λ0 = (λj)j∈J =
∑
j∈J

λjεj ∈ RJ ≈ (Vfin)∗ and χ0 = (dj)j∈J =
∑
j∈J

djej ∈ RJ = V.

Definition 2.3. We say that the triple (J, λ, χ) satisfies the positive energy con-
dition (PEC) for Ŵ if the set λ(Ŵ.χ − χ) is bounded from below. We moreover say that
(J, λ, χ) is of minimal energy for Ŵ if inf

(
λ
(
Ŵ.χ − χ

))
= 0, that is, if λ(ŵ.χ − χ) ≥ 0

for all ŵ ∈ Ŵ.
Note that ŵ.χ − χ ∈ V̂fin for any ŵ ∈ Ŵ, so that λ(ŵ.χ − χ) is defined. Indeed,

writing ŵ = τxw for some x ∈ T and w ∈ W, we have

ŵ.χ − χ = τxw.(χc,χ0,χd)− (χc,χ0,χd)
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= τx

(
χc,
∑
j∈J

djw(ej),χd

)
−
(

χc,
∑
j∈J

djej ,χd

)

=
(

χc +
∑
j∈J

dj〈w(ej),x〉+ χd〈x,x〉
2 ,

∑
j∈J

djw(ej)+χdx,χd

)
−
(

χc,
∑
j∈J

djej ,χd

)

=
(∑

j∈J

dj〈w(ej),x〉+ χd〈x,x〉
2 ,

∑
j∈J

dj(w(ej)− ej)+χdx,0
)

∈ V̂fin. (2.4)

Remark 2.4. Any character χ : Z[Δ̂] → R can be identified with an element of V̂

by requiring that

χ(μ) = κ(μ�, χ) for all μ ∈ Z[Δ̂].

With this identification, and since the Weyl group Ŵ preserves the bilinear form κ (see
[MN17, Section 3.6]), we deduce for all ŵ ∈ Ŵ that

χ(ŵ.λ − λ) = κ(ŵ.λ� − λ�, χ) = κ(ŵ−1.χ − χ, λ�) = λ(ŵ−1.χ − χ).

In particular, the conditions inf
(
χ
(
Ŵ.λ−λ

))
> −∞ and inf

(
χ
(
Ŵ.λ−λ

))
= 0 are respec-

tively equivalent to the conditions inf
(
λ
(
Ŵ.χ − χ

))
> −∞ and inf

(
λ
(
Ŵ.χ − χ

))
= 0.

Thus the notions of positive energy and minimal energy introduced in Definition 2.3
indeed coincide with the corresponding notions from the introduction.

Let ŵ ∈ Ŵ. Write ŵ = τxσw−1 for some x =
∑

j∈J njej ∈ T , some σ = (σj)j∈J ∈
{±1}(J) and some w ∈ S(J) (see Section 2.2). It then follows from (2.4) that

λ(ŵ.χ−χ)=λ(τxσw−1.χ−χ)

=λ

(∑
j∈J

dj〈σw−1(j)ew−1(j),x〉+ χd〈x,x〉
2 ,

∑
j∈J

dj(σw−1(j)ew−1(j) −ej)+χdx,0
)

= λcχd

2 〈x,x〉+λc

∑
j∈J

σjdw(j)〈ej ,x〉+χdλ0(x)+
∑
j∈J

dw(j)λ
0(σjej −ew(j))

= λcχd

2
∑
j∈J

n2
j +λc

∑
j∈J

njσjdw(j)+χd

∑
j∈J

njλj +
∑
j∈J

λj(σjdw(j) −dj). (2.5)

2.4. PEC for locally finite root systems.
The concept of PEC for a triple (J, λ, χ) extends the concept of PEC for the triple

(J, λ0, χ0) introduced in [MN16, Section 2.3]. We recall that the triple (J, λ0, χ0) is
said to satisfy the PEC for W if λ0(W.χ0 − χ0) is bounded from below. A complete
characterisation of such triples (with some suitable finiteness assumption on λ0), ana-
loguous to the one we give in this paper, was provided in [MN16]. We now briefly review
this characterisation, as it will be the starting point of our study of the PEC for triples
(J, λ, χ): if (J, λ, χ) satisfies the PEC for Ŵ, then (J, λ0, χ0) satisfies the PEC for W.

Let λ, χ be as in Section 2.3. We first recall some notation and terminology from
[MN16, Section 3]. Define the functions
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D : J → R, j �→ dj and Λ: J → R, j �→ λj ,

as well as the sets Jn := Λ−1(n) for each n ∈ R. For r ∈ R, we also set

J>r
n := {j ∈ Jn | dj > r} and J<r

n := {j ∈ Jn | dj < r}.

Definition 2.5. We call λ0 finite if the subset Λ(J) of R is finite.

Definition 2.6. Let r, n ∈ R. A subset I ⊆ J of the form J>r
n or J<r

n is said to
be summable if

∑
j∈I |dj − r| < ∞.

Definition 2.7. Let I ⊆ J . We call r ∈ R an accumulation point for I if either r

is an accumulation point for D(I), or if D(I ′) = {r} for some infinite subset I ′ ⊆ I.

Definition 2.8 ([MN16, Definition 5.2]). For a set J and a tuple λ0 = (λj)j∈J ∈
RJ , we define the following cones in RJ :

Cmin(λ0, AJ) = {(dj)j∈J ∈ RJ | ∀i, j ∈ J : λi < λj =⇒ di ≥ dj},

Cmin(λ0, BJ) = {(dj)j∈J ∈ RJ | ∀j ∈ J : λjdj ≤ 0
and ∀i, j ∈ J : |λi| < |λj | =⇒ |di| ≤ |dj |}.

We also define the vector subspace �1(J) := {(dj)j∈J ∈ RJ |
∑

j∈J |dj | < ∞} of RJ .

We next recall the characterisation of triples (J, λ0, χ0) of minimal energy.

Proposition 2.9 ([MN16, Proposition 5.3]). Let X ∈ {A, B} and set W =
W(XJ). For a triple (J, λ0, χ0), the following assertions are equivalent:

(1) inf λ0(W.χ0 − χ0) = 0.

(2) χ0 ∈ Cmin(λ0, XJ).

Note that for X ∈ {C, D, BC}, if we denote by Cmin(λ0, XJ) the set of tuples
χ0 ∈ RJ for which inf

(
λ0(W(XJ).χ0 − χ0)

)
= 0, then the inclusions

W(AJ) ⊆ W(DJ) ⊆ W(BJ) = W(CJ) = W(BCJ)

of Weyl groups imply that

Cmin(λ0, BCJ) = Cmin(λ0, CJ) = Cmin(λ0, BJ) ⊆ Cmin(λ0, DJ) ⊆ Cmin(λ0, AJ).

Finally, we recall the characterisation of triples (J, λ0, χ0) of positive energy.

Theorem 2.10 ([MN16, Theorems 5.10 and 5.12]). Let J be a set, and let λ0 =
(λj)j∈J and χ0 = (dj)j∈J be elements of RJ . Assume that λ0 is finite. Then for X ∈
{A, B}, the following assertions are equivalent:

(1) (J, λ0, χ0) satisfies the PEC for W(XJ).

(2) χ0 ∈ Cmin(λ0, XJ) + �1(J).
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Lemma 2.11 ([MN16, Lemma 5.8]). Let X ∈ {B, C, D, BC}, and assume that λ0

is finite. Then (J, λ0, χ0) satisfies the PEC for W(XJ) if and only if it satisfies the PEC
for W(BJ).

3. Reduction steps.

For the rest of this paper, λ = (λc, λ0, λd) and χ = (χc, χ0, χd) will always denote
elements of R × RJ × R as in Section 2.3. In order to characterise the PEC for (J, λ, χ),
we will need to make some finiteness assumption on λ.

Definition 3.1. We say that λ is Z-discrete if λc �= 0 and if the set of cosets{
(λj/λc) + Z | j ∈ J

}
is finite.

A more illuminating formulation of this Z-discreteness assumption will be given in
Section 3.3 below (see Remark 3.10). Note that the case λc = 0 can be easily dealt with
(see Section 3.1 below). On the other hand, if we want λ to correspond to some highest
weight of an integrable highest weight module as in Theorem A, then we need λ to be
integral with respect to Δ̂, in the sense that λ((α, n)∨) ∈ Z for all (α, n) ∈ Δ̂. The
following lemma then shows that, for representation theoretic purposes, we may safely
assume λ to be Z-discrete.

Lemma 3.2. Assume that λc �= 0 and that λ is integral with respect to Δ̂. Then λ

is Z-discrete.

Proof. Let i, j ∈ J with i �= j, and for each n ∈ Z, set γn := (0, εi − εj , n) ∈ V̂ �
fin.

Then γn ∈ Δ̂ for infinitely many values of n ∈ Z. Since γ∨
n = (−n, ei − ej , 0), the

integrality condition on λ implies that

λ(γ∨
n ) = −nλc + λi − λj ∈ Z

for at least two distinct values of n ∈ Z, so that λc ∈ Q. Write λc = m/p for some
nonzero m, p ∈ Z. Then

λi

λc
− λj

λc
∈ Z+ 1

λc
Z ⊆ Z+ 1

m
Z ⊆ 1

m
Z for all i, j ∈ J .

Fixing some i0 ∈ J , we deduce that

λj

λc
+ Z ∈

{
λi0

λc
+ s

m
+ Z

∣∣∣∣ s = 0, 1, . . . , m − 1
}

for all j ∈ J .

Hence the set of cosets
{

λj/λc +Z
∣∣ j ∈ J

}
is finite, so that λ is Z-discrete, as desired.

�

We begin our study of the PEC for the triple (J, λ, χ) by some reduction steps.

3.1. The case λcχd = 0.
In this paragraph, we investigate the PEC for the triple (J, λ, χ) in case λcχd = 0.
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Lemma 3.3. Assume that λc = χd = 0. Then (J, λ, χ) satisfies the PEC for Ŵ if
and only if (J, λ0, χ0) satisfies the PEC for W.

Proof. This readily follows from (2.5) in Section 2.3. �

Lemma 3.4. Assume that λc = 0 but χd �= 0. Then (J, λ, χ) satisfies the PEC for
Ŵ if and only if one of the following holds:

(1) Ŵ = Ŵ(A(1)
J ) and λ0 is constant.

(2) Ŵ �= Ŵ(A(1)
J ) and λ0 = 0.

Proof. Assume that (J, λ, χ) satisfies the PEC for Ŵ, and set σ = w = 1 in (2.5).
Then {

χd

∑
j∈J

njλj

∣∣ ∑
j∈J

njej ∈ T
}

must be bounded from below. This is easily seen to imply (1) or (2), depending on the
type of Ŵ. The converse is an easy consequence of (2.5). �

Lemma 3.5. Assume that χd = 0 but λc �= 0. Then (J, λ, χ) satisfies the PEC for
Ŵ if and only if one of the following holds:

(1) Ŵ = Ŵ(A(1)
J ) and χ0 is constant.

(2) Ŵ �= Ŵ(A(1)
J ) and χ0 = 0.

Proof. Assume that (J, λ, χ) satisfies the PEC for Ŵ, and set σ = w = 1 in (2.5).
Then {

λc

∑
j∈J

njdj

∣∣ ∑
j∈J

njej ∈ T
}

must be bounded from below. This is easily seen to imply (1) or (2), depending on the
type of Ŵ. The converse is an easy consequence of (2.5). �

3.2. The case λcχd �= 0.
In view of Section 3.1, we may now assume that λcχd �= 0. We begin with two

simple observations.

Lemma 3.6. Assume that (J, λ, χ) satisfies the PEC for Ŵ and that λcχd �= 0.
Then λcχd > 0.

Proof. Fix some i, j ∈ J with i �= j, and for each n ∈ N, consider the element
xn = 2n(ei − ej) ∈ T . Setting σ = w = 1 and x = xn in (2.5), the PEC then implies
that

{4λcχdn2 + 2λc(di − dj)n + 2χd(λi − λj)n | n ∈ N}
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must be bounded from below, yielding the claim. �

Lemma 3.7. Assume that λcχd > 0. Then the following are equivalent:

(1) (J, λ, χ) satisfies the PEC for Ŵ.

(2) (J, λst, χst) := (J, (1, λ0/λc, 0), (0, χ0/χd, 1)) satisfies the PEC for Ŵ.

More precisely, inf λ
(
Ŵ.χ − χ

)
= λcχd · inf λst

(
Ŵ.χst − χst

)
.

Proof. This readily follows from (2.5). �

Thus, in order to investigate the PEC for (J, λ, χ), we may safely make the following
normalisation.

Convention 3.8. From now on, unless otherwise stated, we assume that λc =
χd = 1 and that λd = χc = 0, so that

λ = (1, λ0, 0) and χ = (0, χ0, 1).

Given ŵ ∈ Ŵ, which we write as ŵ = τxσw−1 for some x =
∑

j∈J njej ∈ T , some
w ∈ S(J) and some σ = (σj)j∈J ∈ {±1}(J), we can now rewrite (2.5) as

λ(ŵ.χ − χ) = 1
2
∑
j∈J

n2
j +
∑
j∈J

njσjdw(j) +
∑
j∈J

njλj +
∑
j∈J

λj(σjdw(j) − dj)

= 1
2
∑
j∈J

(
(nj + λj + σjdw(j))2 − (λj + dj)2

)
. (3.1)

3.3. Translation invariance.
We introduce the following notation. Given x ∈ R, we set

[x] :=
⌊

x + 1
2

⌋
and 〈x〉 := x − [x] ∈

[
−1
2 ,

1
2

)
.

In other words, [x] is the closest integer to x, with the choice [x] = �x� if x ∈ 1/2 + Z.
Given a tuple m = (mj)j∈J ∈ RJ , we then define the tuples

[m] := ([mj ])j∈J ∈ ZJ ⊆ RJ and 〈m〉 := (〈mj〉)j∈J ∈
[
−1
2 ,

1
2

)J

⊆ RJ .

We also set

λm := (1, λ0 − m, 0) and χm := (0, χ0 + m, 1).

Lemma 3.9. Let m = (mj)j∈J ∈ ZJ . If Δ̂ is of type B
(2)
J , we moreover assume

that mj ∈ 2Z for all j ∈ J . Then inf λ
(
Ŵ.χ − χ

)
= inf λm

(
Ŵ.χm − χm

)
. In particular,

the following are equivalent:

(1) (J, λ, χ) satisfies the PEC for Ŵ.
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(2) (J, λm, χm) satisfies the PEC for Ŵ.

Proof. Given σ ∈ {±1}(J) and w ∈ S(J) such that σw−1 ∈ W, we will prove that

inf
x∈T

λ(τxσw−1.χ − χ) = inf
x∈T

λm(τxσw−1.χm − χm),

yielding the claim. Let σ = (σj)j∈J ∈ {±1}(J) and w ∈ S(J) be as above, and let
x =

∑
j∈J njej ∈ T . Set

x′ = x +
∑
j∈J

(σw(j)mw(j) − mj)ej .

One easily checks that x′ ∈ T . Moreover, (3.1) implies that

λm(τxσw−1.χm − χm) = 1
2
∑
j∈J

(
(nj − mj +σw(j)mw(j) +λj +σw(j)dw(j))2 − (λj + dj)2

)
= λ(τx′σw−1.χ − χ).

We deduce that

inf
x∈T

λm(τxσw−1.χm − χm) ≥ inf
x∈T

λ(τxσw−1.χ − χ).

The same argument with (J, λ, χ) replaced by (J, λm, χm) and m replaced by −m yields
the inequality in the other direction, as desired. �

Remark 3.10. Note that for m = [λ0] ∈ ZJ , the passage from (J, λ, χ) to
(J, λm, χm) amounts to replace λ0 by λ0 − [λ0] = 〈λ0〉 and χ0 by χ0 + [λ0]. On the
other hand, if λ0 = 〈λ0〉, then λ is Z-discrete if and only if λ0 is finite.

4. Consequences of the PEC for Ŵ(A
(1)
J ) and Ŵ(C

(1)
J ).

Proposition 4.1. Assume that λ is Z-discrete and that λ0 = 〈λ0〉. Assume more-
over that (J, λ, χ) satisfies the PEC for Ŵ(A(1)

J ). Then the following hold:

(1) D(J) is bounded.

(2) If rmin and rmax respectively denote the minimal and maximal accumulation points
of J , then

rmax − rmin ≤ 1.

(3) If rmax − rmin = 1, then∑
j∈J+

(dj − rmax) < ∞ and
∑

j∈J−

(rmin − dj) < ∞,

where J+ := {j ∈ J | dj > rmax} and J− := {j ∈ J | dj < rmin}.
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Proof. (1) Note first that, by assumption, Λ(J) is finite and contained in
[−1/2, 1/2 ). In particular, to prove that D(J) is bounded, it is sufficient to prove
that D(Jm) is bounded for each m ∈ R, where Jm := Λ−1(m). If Jm is finite, there
is nothing to prove. Assume now that Jm is infinite, and write it as a disjoint union
Jm = I−1 ∪ I0 ∪ I1 of three infinite subsets. Define the tuple m = (mj)j∈J ∈ ZJ by

mj =
{

k if j ∈ Ik (k = −1, 0, 1),
0 otherwise.

Since (J, λm, χm) satisfies the PEC for Ŵ(A(1)
J ) by Lemma 3.9, we know that the triple

(J, λ0−m, χ0+m) satisfies the PEC for W(AJ). In particular, since m is not an extremal
value of the set {λj − mj | j ∈ J} and since λj − mj = m for all j ∈ I0, we deduce from
[MN16, Lemma 4.4] that D(I0) is bounded. Repeating this argument with I0 and I±1
permuted yields that each of the three sets D(Ik), k = −1, 0, 1, is bounded, and hence
that D(Jm) is bounded, as desired. This proves (1).

(2) Since D(J) is bounded, the minimal and maximal accumulation points rmin and
rmax of J indeed exist. Moreover, since Λ(J) is finite, there exist some m, n ∈ R such
that rmax is an accumulation point for Jm and rmin is an accumulation point for Jn. In
particular, m, n ∈ Λ(J), so that

−1
2 ≤ m, n <

1
2 .

For short, we set rm := rmax and rn := rmin. Fix some ε > 0, and choose some (disjoint)
infinite countable subsets Im = {i1, i2, . . . } ⊆ Jm and In = {j1, j2, . . . } ⊆ Jn such that∑

s∈N

|rm − dis
| < ε and

∑
s∈N

|rn − djs
| < ε.

For each k ∈ N, let wk ∈ S(J) be the product of the transpositions τs, s = 1, . . . , k,
exchanging is and js. We also set

xk =
k∑

s=1
(eis

− ejs
) ∈ T (A(1)

J ).

We deduce from (3.1) that for each k ∈ N,

λ(τxk
w−1

k .χ − χ) = k +
k∑

s=1
(djs

− dis
)+

k∑
s=1

(λis
− λjs

)+
k∑

s=1
(λis

− λjs
)(djs

− dis
)

=
k∑

s=1
(1+λis

− λjs
)(1+ djs

− dis
) =

k∑
s=1

(1+m − n)(1+ djs
− dis

)

= k(1+m − n)(1+ rn − rm)+ (1+m − n)
k∑

s=1

(
(djs

− rn)− (dis
− rm)

)
≤ k(1+m − n)(1+ rn − rm)+ 2ε(1+m − n).
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Since k ∈ N was arbitrary, the PEC for Ŵ(A(1)
J ) then implies that

(1 + m − n)(1 + rn − rm) ≥ 0.

Since 1 + m − n > 0 by assumption, we deduce that rm − rn ≤ 1, yielding (2).
(3) Finally, assume that rmax − rmin = 1. We prove that

∑
j∈J+

(dj − rmax) < ∞,
the proof for J− being similar. If J+ is finite, there is nothing to prove. Assume now
that J+ is infinite. Let I+ = {i1, i2, . . . } be an arbitrary infinite countable subset of J+,
so that

dis − rmax > 0 for all s ∈ N.

Let ε > 0 be such that

|λi − λj | < 1 − ε for all i, j ∈ J ,

and choose some infinite countable subset I− = {j1, j2, . . . } ⊆ J \ I+ such that∑
s∈N

|rmin − djs | < ε.

Defining the elements xk, wk for k ∈ N as above, we deduce from rmax − rmin = 1 that

λ(τxk
w−1

k .χ − χ) =
k∑

s=1
(1 + λis − λjs)(1 + djs − dis)

=
k∑

s=1
(1 + λis − λjs)(djs − rmin) +

k∑
s=1

(1 + λis − λjs)(rmax − dis)

≤ 2
k∑

s=1
|rmin − djs | −

k∑
s=1

(1 + λis − λjs) · |dis − rmax|

≤ 2ε − ε

k∑
s=1

|dis − rmax|.

Since k ∈ N was arbitrary, we deduce that∑
j∈I+

(dj − rmax) < 2 − ε−1 inf λ
(
Ŵ(A(1)

J ).χ − χ
)

for any infinite countable subset I+ of J+, yielding the corresponding assertion for I+
replaced by J+. This concludes the proof of (3). �

For a tuple ν = (νj)j∈J ∈ RJ , we set

|ν| := (|νj |)j∈J ∈ RJ .

Proposition 4.2. Assume that λ0 = 〈λ0〉 and that (J, λ, χ) satisfies the PEC for
Ŵ(C(1)

J ). Let m ∈ R. Then the following hold:
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(1) If |m| < 1/2, then J
>1/2
m and J

<−1/2
m are summable.

(2) If |m| = 1/2, then J>1
m and J<−1

m are summable.

(3) (J, −|λ0|, |〈χ0〉|) satisfies the PEC for W(AJ).

(4)
∑

j∈J+
|λjdj | < ∞, where J+ := {j ∈ J | λjdj > 0}.

Proof. (1) Assume that |m| < 1/2. Fix some ε > 0 such that |m| < 1/2 − ε.
Let I be any finite subset of J

>1/2
m (resp. J

<−1/2
m ), so that |dj | > 1/2 for all j ∈ I. Let

σ = (σj)j∈J ∈ {±1}(J) with support in I be such that mσj〈dj〉 ≤ 0 for all j ∈ I. Then,
for all i ∈ I,〈

m + σjdj

〉2 =
〈
m + σj〈dj〉

〉2 =
〈
|m| − |〈dj〉|

〉2 =
(
|m| − |〈dj〉|

)2
.

Consider also the element x =
∑

j∈I njej ∈ T (C(1)
J ) defined by nj = −[m + σjdj ] for all

j ∈ I. We then deduce from (3.1) that

λ(τxσ.χ − χ) = 1
2
∑
j∈I

(
(nj + m + σjdj)2 − (m + dj)2

)

= 1
2
∑
j∈I

(〈
m + σjdj

〉2 − (m + dj)2
)

≤ 1
2
∑
j∈I

(
(|m| − |〈dj〉|)2 − (|m| − |dj |)2

)

= −1
2
∑
j∈I

(
|dj | − |〈dj〉|

)(
|dj | + |〈dj〉| − 2|m|

)
.

Note that |dj | + |〈dj〉| ≥ 1 for all j ∈ I, and hence |dj | + |〈dj〉| − 2|m| > 2ε for all j ∈ I.
Since moreover

|dj | − |〈dj〉| = (|dj | − 1/2) + (1/2 − |〈dj〉|) > 0 for all j ∈ I,

we deduce that

λ(τxσ.χ − χ) ≤ −ε
∑
j∈I

(
|dj | − |〈dj〉|

)
≤ −ε

∑
j∈I

(|dj | − 1/2). (4.1)

Since the finite subset I of J
>1/2
m (resp. J

<−1/2
m ) was arbitrary, the PEC for Ŵ(C(1)

J )
implies that J

>1/2
m (resp. J

<−1/2
m ) is summable, proving (1).

(2) Assume next that |m| = 1/2. Let I be any finite subset of J>1
m (resp. J<−1

m ), so
that |dj | > 1 for all j ∈ I. Defining σ and x as above, we again get that

λ(τxσ.χ − χ) ≤ −1
2
∑
j∈I

(
|dj | − |〈dj〉|

)(
|dj | + |〈dj〉| − 2|m|

)
.

Since |dj | − |〈dj〉| > 1/2 and |dj | + |〈dj〉| − 2|m| = |dj | + |〈dj〉| − 1 > 0 for all j ∈ I, we
deduce that
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λ(τxσ.χ − χ) ≤ −1
4
∑
j∈I

(
|dj | + |〈dj〉| − 1

)
≤ −1

4
∑
j∈I

(|dj | − 1). (4.2)

Since the finite subset I of J>1
m (resp. J<−1

m ) was arbitrary, the PEC for Ŵ(C(1)
J ) implies

that J>1
m (resp. J<−1

m ) is summable, proving (2).
(3) We now prove that (J, −|λ0|, |〈χ0〉|) satisfies the PEC for W(AJ). Let w ∈ S(J),

and let I be a finite subset of J containing the support of w. Let σ = (σj)j∈J ∈ {±1}(J)

with support in I be such that λjσj〈dw(j)〉 ≤ 0 for all j ∈ I. Consider also the element
x =

∑
j∈I njej ∈ T (C(1)

J ) defined by nj = −[λj + σjdw(j)] for all j ∈ I. As before, we
deduce from (3.1) that

λ(τxσw−1.χ − χ) = 1
2
∑
j∈I

(
(nj + λj + σjdw(j))2 − (λj + dj)2

)

= 1
2
∑
j∈I

(〈
λj + σjdw(j)

〉2 − (λj + dj)2
)

≤ 1
2
∑
j∈I

(
(|λj | − |〈dw(j)〉|)2 − (|λj | − |dj |)2

)

=
∑
j∈I

|λj | · (|〈dj〉| − |〈dw(j)〉|)

+ 1
2
∑
j∈I

(
|〈dj〉| − |dj |

)(
|dj | + |〈dj〉| − 2|λj |

)
.

Since |〈dj〉| − |dj | = 0 for |dj | ≤ 1/2, while |dj | + |〈dj〉| − 2|λj | ≥ 0 for |dj | ≥ 1/2, we
deduce that (

|〈dj〉| − |dj |
)(

|dj | + |〈dj〉| − 2|λj |
)

≤ 0 for all j ∈ I,

and hence

λ(τxσw−1.χ − χ) ≤
∑
j∈I

|λj | · (|〈dj〉| − |〈dw(j)〉|) = −|λ0|
(
w−1.|〈χ0〉| − |〈χ0〉|

)
. (4.3)

As w ∈ S(J) = W(AJ) was arbitrary, this proves that (J, −|λ0|, |〈χ0〉|) satisfies the PEC
for W(AJ), yielding (3).

(4) Finally, let I be an arbitrary finite subset of J+, and consider the element
σ = (σj)j∈J ∈ {±1}(J) with support I. Then

λ(σ.χ − χ) =
∑
j∈J

λj(σjdj − dj) = −2
∑
j∈I

λjdj = −2
∑
j∈I

|λjdj |.

Hence
∑

j∈I |λjdj | ≤ −1/2 · inf λ(W(CJ).χ − χ) for any finite subset I ⊆ J+, proving
(4). This concludes the proof of the proposition. �



Positive energy representations of Hilbert loop algebras 1505

5. Minimal energy sets.

We first characterise the triples (J, λ, χ) of minimal energy for Ŵ, where as before
λ = (1, λ0, 0) and χ = (0, χ0, 1) for some tuples λ0, χ0 ∈ RJ . Although, for the purpose
of proving Theorem A, we will only need to describe such triples for the types A

(1)
J and

C
(1)
J , we also provide, for the sake of completeness, explicit descriptions for the other

types.

Definition 5.1. For a tuple λ0 = (λj)j∈J ∈ RJ with λ0 = 〈λ0〉, we define the
following convex subsets of RJ . We set

Cmin(λ0,A
(1)
J )

=R · 1+
{
(dj)j∈J ∈ RJ | ∀j ∈ J : |dj | ≤ 1

2 and ∀i, j ∈ J : λi < λj =⇒ di ≥ dj

}
,

where 1 ∈ RJ is the constant function 1. We also let Cmin(λ0, C
(1)
J ) denote the set of

(dj)j∈J ∈ RJ satisfying the following four conditions:

(C1) ∀j ∈ J : |λj | < 1/2 =⇒ |dj | ≤ 1/2.

(C2) ∀j ∈ J : |λj | = 1/2 =⇒ |dj | ≤ 1.

(C3) ∀j ∈ J : λjdj ≤ 0.

(C4) ∀i, j ∈ J : |λi| < |λj | =⇒ |〈di〉| ≤ |〈dj〉|.

The following lemma, which contains some observations that will be used in the
sequel, is an easy exercise.

Lemma 5.2. Let a, b, x ∈ R.

(1) If −1/2 ≤ a, b ≤ 1/2, then 〈a ± b〉2 ≥ (|a| − |b|)2.

(2) If |x| ≤ 1/2, then |x| = |〈x〉|.

(3) If 1/2 ≤ |x| ≤ 1, then |x| + |〈x〉| = 1.

(4) If |x| ≥ 1, then |x| − |〈x〉| ≥ 1.

Proposition 5.3. Assume that λ0 = 〈λ0〉. Then the following are equivalent:

(1) inf λ
(
Ŵ(C(1)

J ).χ − χ
)
= 0.

(2) χ0 ∈ Cmin(λ0, C
(1)
J ).

Proof. (1)⇒(2): Assume first that inf λ
(
Ŵ(C(1)

J ).χ − χ
)
= 0. We have to prove

that χ0 = (dj)j∈J satisfies the four conditions (C1)–(C4) from Definition 5.1. Since
W(BJ) ⊆ Ŵ(C(1)

J ), it follows from Proposition 2.9 that χ0 ∈ Cmin(λ0, BJ), so that
(C3) is satisfied. To check (C1), let j ∈ J be such that |λj | < 1/2 and assume for a
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contradiction that |dj | > 1/2. Fix some ε > 0 such that |λj | < 1/2 − ε. It then follows
from (4.1) that

λ(τxσ.χ − χ) ≤ −ε(|dj | − 1/2) < 0

for some suitable σ ∈ {±1}(J) and x ∈ T (C(1)
J ) with support in I := {j}, contradicting

(1). Similarly, to check (C2), let j ∈ J be such that |λj | = 1/2 and assume for a
contradiction that |dj | > 1. It then follows from (4.2) that

λ(τxσ.χ − χ) ≤ −1
4(|dj | − 1) < 0

for some suitable σ ∈ {±1}(J) and x ∈ T (C(1)
J ) with support in I := {j}, again con-

tradicting (1). Finally, to check (C4), let i, j ∈ J with i �= j and let w ∈ S(J) be the
transposition exchanging i and j. It then follows from (4.3) that

λ(τxσw−1.χ − χ) ≤ |λi| · (|〈di〉| − |〈dw(i)〉|) + |λj | · (|〈dj〉| − |〈dw(j)〉|)
= (|λi| − |λj |)(|〈di〉| − |〈dj〉|)

for some suitable σ ∈ {±1}(J) and x ∈ T (C(1)
J ) with support in I := {i, j}, yielding the

claim.
(2)⇒(1): Assume next that χ0 ∈ Cmin(λ0, C

(1)
J ). Let ŵ = τxσw−1 ∈ Ŵ(C(1)

J ), for
some w ∈ S(J), some σ = (σj)j∈J ∈ {±1}(J) and some x =

∑
j∈J njej ∈ T (C(1)

J ). Let I

be some finite subset of J containing the supports of x, σ and w. It follows from (3.1)
that

λ(ŵ.χ − χ) = 1
2
∑
j∈I

(
(nj + λj + σjdw(j))2 − (λj + dj)2

)

≥ 1
2
∑
j∈I

(
〈λj + σjdw(j)〉2 − (λj + dj)2

)

= 1
2
∑
j∈I

(
〈λj + σj〈dw(j)〉〉2 − (λj + dj)2

)

≥ 1
2
∑
j∈I

((∣∣λj

∣∣− ∣∣〈dw(j)〉
∣∣)2 − (λj + dj)2

)
(Lemma 5.2(1))

= 1
2
∑
j∈I

((∣∣λj

∣∣− ∣∣〈dw(j)〉
∣∣)2 − (|λj | − |dj |)2

)
by (C3).

On the other hand, the rearrangement inequality (see [MN16, Lemma 2.2]) and (C4)
imply that ∑

j∈I

|λj | ·
(

−
∣∣〈dw(j)〉

∣∣+ ∣∣〈dj〉
∣∣) ≥ 0.

Hence
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λ(ŵ.χ − χ) ≥ 1
2
∑
j∈I

((∣∣λj

∣∣− ∣∣〈dw(j)〉
∣∣)2 − (|λj | − |dj |)2

)

= 1
2
∑
j∈I

(∣∣〈dj〉
∣∣2 −

∣∣dj

∣∣2)+∑
j∈I

|λj | ·
(

−
∣∣〈dw(j)〉

∣∣+ ∣∣dj

∣∣)

≥ 1
2
∑
j∈I

(∣∣〈dj〉
∣∣2 −

∣∣dj

∣∣2)+∑
j∈I

|λj | ·
(∣∣dj

∣∣− ∣∣〈dj〉
∣∣)

= 1
2
∑
j∈I

(∣∣〈dj〉
∣∣− ∣∣dj

∣∣)(∣∣〈dj〉
∣∣+ ∣∣dj

∣∣− 2|λj |
)
.

Let now j ∈ I. If |λj | < 1/2, then |dj | ≤ 1/2 by (C1). On the other hand, if |λj | = 1/2,
then |dj | ≤ 1 by (C2). Hence either |dj | ≤ 1/2, in which case

∣∣〈dj〉
∣∣ −
∣∣dj

∣∣ = 0, or else
1/2 < |dj | ≤ 1 and |λj | = 1/2, in which case∣∣〈dj〉

∣∣+ ∣∣dj

∣∣− 2|λj | =
∣∣〈dj〉

∣∣+ ∣∣dj

∣∣− 1 = 0.

Thus
(∣∣〈dj〉

∣∣− ∣∣dj

∣∣)(∣∣〈dj〉
∣∣+ ∣∣dj

∣∣− 2|λj |
)
= 0 for all j ∈ I, so that

λ(ŵ.χ − χ) ≥ 0.

Since ŵ ∈ Ŵ(C(1)
J ) was arbitrary, this concludes the proof of the proposition. �

To describe the triples (J, λ, χ) of minimal energy for Ŵ(A(1)
J ), we could proceed as

in the proof of Proposition 5.3. However, it will be easier to start from the description
provided by [HN14], which we now recall.

By [HN14, Theorem 3.5(i)], the set Ŵ.λ − λ is contained in the cone −Cλ, where

Cλ := cone{γ ∈ Δ̂ | λ(γ̌) > 0}.

Conversely, if γ ∈ Δ̂ ∩ Cλ, then −γ ∈ R+(rγ(λ) − λ) ⊆ cone{Ŵ.λ − λ} because rγ(λ) =
λ − λ(γ̌)γ. This shows that cone{Ŵ.λ − λ} = −Cλ. In particular, the triple (J, λ, χ) is
of minimal energy for Ŵ if and only if

λ(γ̌) > 0 =⇒ γ(χ) ≤ 0 for all γ ∈ Δ̂. (5.1)

Proposition 5.4. Assume that λ0 = 〈λ0〉. Then the following are equivalent:

(1) inf λ
(
Ŵ(A(1)

J ).χ − χ
)
= 0.

(2) χ0 ∈ Cmin(λ0, A
(1)
J ).

Proof. Set Ŵ = Ŵ(A(1)
J ) and let Δ̂ be the corresponding root system of type

A
(1)
J . Note that the coroot of (0, εj − εk, n) ∈ Δ̂ is given by (−n, ej − ek, 0). By (5.1),

the first statement of the proposition is thus equivalent to the condition

λj − λk > n =⇒ dj − dk ≤ −n for all distinct j, k ∈ J and n ∈ Z. (5.2)
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Since −1/2 ≤ λj < 1/2 for all j ∈ J by assumption, condition (5.2) is empty for n ≥ 1.
For n = 0, we get

λj > λk =⇒ dj ≤ dk for all distinct j, k ∈ J . (5.3)

Similarly, for n ≤ −1, we get

dj − dk ≤ 1 for all distinct j, k ∈ J . (5.4)

In turn, the conditions (5.3) and (5.4) are satisfied if and only if χ0 ∈ Cmin(λ0, A
(1)
J ), as

desired. �

We now describe the minimal energy sets for the other types.

Definition 5.5. Let λ0 ∈ RJ with λ0 = 〈λ0〉. For X ∈ {B
(1)
J , D

(1)
J , B

(2)
J , C

(2)
J ,

BC
(2)
J }, we denote by Cmin(λ0, X) the set of tuples χ0 ∈ RJ such that inf λ

(
Ŵ(X).χ−χ

)
= 0, where λ = (1, λ0, 0) and χ = (0, χ0, 1). Note that, in view of Propositions 5.3 and
5.4, this definition is coherent with the corresponding notation for X ∈ {A

(1)
J , C

(1)
J }.

Lemma 5.6. Assume that λ0 = 〈λ0〉. Then χ0 ∈ Cmin(λ0, D
(1)
J ) if and only if

χ0 ∈ Cmin(λ0, DJ) and the following conditions hold:

(D1) For all distinct j, k ∈ J : −1 ≤ dj − dk ≤ 1.

(D2) For all distinct j, k ∈ J : −1 ≤ dj + dk ≤ 2.

(D3) For all distinct j, k ∈ J : dj + dk ≤ 1 or λj = λk = −1/2.

Proof. The condition (5.1) for the roots of the form γ = (0, ±(εj + εk), n) with
j �= k can be rewritten as

±(λj + λk) > n =⇒ ±(dj + dk) ≤ −n for all distinct j, k ∈ J and n ∈ Z, (5.5)

so that Cmin(λ0, D
(1)
J ) is characterised by the conditions (5.2) and (5.5). For n = 0, the

conditions (5.2) and (5.5) amount to χ0 ∈ Cmin(λ0, DJ). Since −1/2 ≤ λj < 1/2 for all
j ∈ J by assumption, the condition (5.5) is empty for n ≥ 1, and equivalent to (D2) and
(D3) for n ≤ −1. Finally, the condition (5.2) for n �= 0 amounts to (D1). This concludes
the proof of the lemma. �

For an explicit description of the set Cmin(λ0, DJ), we refer to [MN16, Remark 5.9].

Lemma 5.7. Assume that λ0 = 〈λ0〉. Then χ0 ∈ Cmin(λ0, B
(1)
J ) if and only if one

of the following holds:

(1) λj = −1/2 and 0 ≤ dj ≤ 1 for all j ∈ J .

(2) There is some i ∈ J with λi �= −1/2, χ0 ∈ Cmin(λ0, BJ), and (D1)–(D3) hold.

Proof. The condition (5.1) for the roots of the form γ = (0, ±εj , n) is equivalent
to
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±λj > n =⇒ ±dj ≤ −n for all j ∈ J and n ∈ Z, (5.6)

so that Cmin(λ0, B
(1)
J ) is characterised by the conditions (5.2), (5.5) and (5.6). For

n = 0, these three conditions amount to χ0 ∈ Cmin(λ0, BJ). As we saw in the proof
of Lemma 5.6, the conditions (5.2) and (5.5) for n �= 0 are equivalent to the conditions
(D1)–(D3). Finally, since −1/2 ≤ λj < 1/2 for all j ∈ J by assumption, the condition
(5.6) is empty for n ≥ 1, and, for n ≤ −1, it is equivalent to

|dj | ≤ 1 for all j ∈ J. (5.7)

Assume first that there is some i ∈ J such that λi �= −1/2. Then for any j ∈ J the
conditions (D1)–(D3) imply that −1 ≤ dj ± di ≤ 1 and hence that −2 ≤ 2dj ≤ 2, so
that (5.7) holds. Thus, in that case, χ0 ∈ Cmin(λ0, B

(1)
J ) if and only if (2) holds. Assume

next that λj = −1/2 for all j ∈ J . Then χ0 ∈ Cmin(λ0, BJ) implies that dj ≥ 0 for all
j ∈ J , while (5.7) implies that dj ≤ 1 for all j ∈ J . Conversely, if (1) holds, then it is
easy to check that χ0 ∈ Cmin(λ0, BJ) and that the conditions (D1)–(D3) and (5.7) hold,
as desired. �

Lemma 5.8. Assume that λ0 = 〈λ0〉. Then

Cmin(λ0, BC
(2)
J ) = Cmin(λ0, C

(1)
J ) and Cmin(λ0, C

(2)
J ) = Cmin(λ0, B

(1)
J ).

Proof. This readily follows from the fact that Ŵ(BC
(2)
J ) = Ŵ(C(1)

J ) and
Ŵ(B(1)

J ) = Ŵ(C(2)
J ). �

Lemma 5.9. Let λ = (1, λ0, 0) and χ = (0, χ0, 1), and set λ2 := (1, λ0/2, 0) and
χ2 := (0, χ0/2, 1). Then

inf λ
(
Ŵ(B(2)

J ).χ − χ
)
= 4 · inf λ2

(
Ŵ(C(1)

J ).χ2 − χ2
)
.

In particular, if λ0 = 〈λ0〉, then Cmin(λ0, B
(2)
J ) = 2 · Cmin(λ0/2, C

(1)
J ).

Proof. Let W = S(J) � {±1}(J), so that Ŵ(C(1)
J ) = W � τ(Q) and Ŵ(B(2)

J ) =
W � τ(2Q). Then for any x =

∑
j∈J njej ∈ Q, any w ∈ S(J) and any σ = (σj)j∈J ∈

{±1}(J), we get from (3.1) that

λ(τ2xσw−1.χ − χ) = 1
2
∑
j∈J

(
(2nj + λj + σjdw(j))2 − (λj + dj)2

)

= 2
∑
j∈J

((
nj +

λj

2 + σj

dw(j)

2

)2
−
(λj

2 + dj

2

)2
)

= 4 · λ2(τxσw−1.χ2 − χ2),

yielding the claim. �

Using Lemmas 3.6, 3.7 and 3.9, we can now restate the results of this section for
general λ = (λc, λ0, λd) and χ = (χc, χ0, χd) with λcχd �= 0.
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Definition 5.10. Let λ = (λc, λ0, λd) ∈ R × RJ × R with λc �= 0. For X = X
(1)
J

or X
(2)
J , one of the seven standard types from Section 2.1, we set

Cmin(λ,X)

:=
{

χ = (χc,χ0,χd) ∈ R×RJ ×R

∣∣∣∣ λcχd > 0 and χ0

χd
+
[

λ0

λc

]
∈ Cmin

(〈
λ0

λc

〉
,X

)}
.

Theorem 5.11. Let λ = (λc, λ0, λd) ∈ R×RJ ×R with λc �= 0, and let X = X
(1)
J or

X
(2)
J be one of the seven standard types from Section 2.1. Then for any χ = (χc, χ0, χd) ∈

R × RJ × R with χd �= 0, the following assertions are equivalent:

(1) inf λ
(
Ŵ(X).χ − χ

)
= 0.

(2) χ ∈ Cmin(λ, X).

6. Characterisation of the PEC when λ is Z-discrete.

We are now in a position to prove an analogue of Theorem 2.10 for triples (J, λ, χ).

Lemma 6.1. Let X ∈
{

A
(1)
J , C

(1)
J

}
. Let λ0, χ0 ∈ RJ and (χ0)′ ∈ �1(J). Set

λ = (1, λ0, 0), χ = (0, χ0, 1) and χ′ = (0, (χ0)′, 0). Then (J, λ, χ) satisfies the PEC for
Ŵ(X) if and only if (J, λ, χ + χ′) satisfies the PEC for Ŵ(X).

Proof. Set Ŵ = Ŵ(X), and assume that (J, λ, χ) satisfies the PEC for Ŵ. Since

inf λ
(
Ŵ.(χ + χ′) − (χ + χ′)

)
≥ inf λ

(
Ŵ.χ − χ) + inf λ

(
Ŵ.χ′ − χ′),

the triple (J, λ, χ + χ′) then satisfies the PEC for Ŵ by Lemma 3.3 and [MN16,
Lemma 5.4]. Replacing χ0 by χ0 + (χ0)′ and (χ0)′ by −(χ0)′, the converse follows. �

Theorem 6.2. Assume that λ is Z-discrete and that −1/2 ≤ λj < 1/2 for all
j ∈ J . Then the following are equivalent:

(1) (J, λ, χ) satisfies the PEC for Ŵ(A(1)
J ).

(2) χ0 ∈ Cmin(λ0, A
(1)
J ) + �1(J).

Proof. (2) ⇒ (1): If χ0 ∈ Cmin(λ0, A
(1)
J )+ �1(J), then (J, λ, χ) satisfies the PEC

for Ŵ(A(1)
J ) by Proposition 5.4 and Lemma 6.1.

(1) ⇒ (2): Assume now that (J, λ, χ) satisfies the PEC for Ŵ(A(1)
J ), and let us prove

that, up to substracting from χ0 some element of �1(J), one has χ0 ∈ Cmin(λ0, A
(1)
J ).

Note that, by Lemma 6.1, replacing χ0 by χ0 − (χ0)′ for some (χ0)′ ∈ �1(J) does not
affect the fact that (J, λ, χ) satisfies the PEC for Ŵ(A(1)

J ).
Since (J, λ0, χ0) satisfies the PEC for W(AJ), it follows from Theorem 2.10 that, up

to substracting from χ0 some element of �1(J), we may assume that χ0 ∈ Cmin(λ0, AJ).
By Proposition 4.1, the set D(J) is bounded, and if rmin and rmax respectively denote
the minimal and maximal accumulation points of J , then rmax − rmin ≤ 1. Set
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r := rmin + rmax
2 ∈ R.

Then, up to replacing χ0 by χ0 − r · 1 ∈ Cmin(λ0, AJ), we may moreover assume that
r = 0, so that

[rmin, rmax] ⊆
[
−1
2 ,

1
2

]
.

Set J+ :={j ∈J | dj >1/2} and J− :={j ∈J | dj <−1/2}. Then either |rmin|, |rmax|<1/2,
in which case J+ and J− are both finite, or else rmax − rmin = 1, in which case

∑
j∈J+

(
dj − 1

2

)
=
∑

j∈J+

(dj − rmax) < ∞ and
∑

j∈J−

(
−1
2 − dj

)
=
∑

j∈J−

(rmin − dj) < ∞

by Proposition 4.1(3). In all cases, the tuple (χ0)′ = (d′
j)j∈J defined by

d′
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dj − 1
2 if dj >

1
2 ,

dj +
1
2 if dj < −1

2 ,

0 otherwise

belongs to �1(J). Note that χ0 − (χ0)′ ∈ Cmin(λ0, AJ). Indeed, this follows from the fact
that for all i, j ∈ J :

di ≤ dj =⇒ di − d′
i ≤ dj − d′

j .

Hence, up to replacing χ0 by χ0 − (χ0)′, we may assume that

χ0 ∈
[
−1
2 ,

1
2

]J

∩ Cmin(λ0, AJ) ⊆ Cmin(λ0, A
(1)
J ).

This concludes the proof of the theorem. �

Theorem 6.3. Assume that λ is Z-discrete and that λ0 = 〈λ0〉. Then the following
are equivalent:

(1) (J, λ, χ) satisfies the PEC for Ŵ(C(1)
J ).

(2) χ0 ∈ Cmin(λ0, C
(1)
J ) + �1(J).

Proof. (2) ⇒ (1): If χ0 ∈ Cmin(λ0, C
(1)
J )+ �1(J), then (J, λ, χ) satisfies the PEC

for Ŵ(C(1)
J ) by Proposition 5.3 and Lemma 6.1.

(1) ⇒ (2): Assume now that (J, λ, χ) satisfies the PEC for Ŵ(C(1)
J ), and let us

prove that, up to substracting from χ0 some element of �1(J), the four conditions (C1)–
(C4) from Definition 5.1 are satisfied by χ0. Note that, by Lemma 6.1, replacing χ0 by
χ0 − (χ0)′ for some (χ0)′ ∈ �1(J) does not affect the fact that (J, λ, χ) satisfies the PEC
for Ŵ(C(1)

J ).
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Since (J, −|λ0|, |〈χ0〉|) satisfies the PEC for W(AJ) by Proposition 4.2(3), it follows
from Theorem 2.10 that, up to substracting from χ0 some element of �1(J), we may
assume that |〈χ0〉| ∈ Cmin(−|λ0|, AJ). In other words, we may assume that

∀i, j ∈ J : |λi| < |λj | =⇒ |〈di〉| ≤ |〈dj〉|,

hence that (C4) is satisfied.
We next claim that the tuple (χ0)′ = (d′

j)j∈J defined by

d′
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dj − |〈dj〉| if |λj | <
1
2 and dj >

1
2 ,

dj + |〈dj〉| if |λj | <
1
2 and dj < −1

2 ,

0 otherwise

belongs to �1(J). Indeed, this follows from Proposition 4.2(1) and the fact that for
dj > 1/2, one has

∣∣dj − |〈dj〉|
∣∣ = dj − |〈dj〉| =

(
dj − 1

2

)
+
(
1
2 − |〈dj〉|

)
≤ 2
(

dj − 1
2

)
,

while for dj < −1/2, one has

∣∣dj + |〈dj〉|
∣∣ = −dj − |〈dj〉| =

(
−dj − 1

2

)
+
(
1
2 − |〈dj〉|

)
≤ 2
(

−dj − 1
2

)
.

Note moreover that

|〈dj − d′
j〉| = |〈dj〉| for all j ∈ J,

so that χ0 − (χ0)′ still satisfies (C4). Hence, up to replacing χ0 by χ0 − (χ0)′, we may
assume that χ0 satisfies (C1) and (C4).

Similarly, we claim that the tuple (χ0)′ = (d′
j)j∈J defined by

d′
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dj + |〈dj〉| − 1 if |λj | = 1
2 and dj > 1,

dj − |〈dj〉| + 1 if |λj | = 1
2 and dj < −1,

0 otherwise

belongs to �1(J). Indeed, this follows from Proposition 4.2(2) and the fact that for dj > 1,
one has ∣∣dj + |〈dj〉| − 1

∣∣ = dj − 1 + |〈dj〉| ≤ 2(dj − 1),

while for dj < −1, one has∣∣dj − |〈dj〉| + 1
∣∣ = −dj − 1 + |〈dj〉| ≤ 2(−dj − 1).
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Since moreover

|〈dj − d′
j〉| = |〈dj〉| for all j ∈ J,

χ0 − (χ0)′ still satisfies (C4). Since clearly χ0 − (χ0)′ also still satisfies (C1), we may
thus assume, up to replacing χ0 by χ0 − (χ0)′, that χ0 satisfies (C1), (C2) and (C4).

Finally, it follows from Proposition 4.2(4) and the fact that Λ(J) is finite that∑
j∈J+

|dj | < ∞,

where J+ := {j ∈ J | λjdj > 0}. Hence the tuple (χ0)′ = (d′
j)j∈J defined by

d′
j =
{
2dj if λjdj > 0,
0 otherwise

belongs to �1(J). Again, as

|〈dj − d′
j〉| = |〈dj〉| for all j ∈ J,

χ0 − (χ0)′ still satisfies (C4). Since clearly χ0 − (χ0)′ also still satisfies (C1) and (C2),
we may then assume, up to replacing χ0 by χ0 − (χ0)′, that χ0 satisfies (C1), (C2), (C3)
and (C4), and hence that χ0 ∈ Cmin(λ0, C

(1)
J ). This concludes the proof of the theorem.

�

Proposition 6.4. Let X be one of the types B
(1)
J , D

(1)
J , C

(2)
J , and BC

(2)
J . Assume

that λ is Z-discrete. Then (J, λ, χ) satisfies the PEC for Ŵ(X) if and only if it satisfies
the PEC for Ŵ(C(1)

J ).

Proof. From Section 2.2, we deduce the following inclusions:

Ŵ(A(1)
J ) ⊆ Ŵ(D(1)

J ) ⊆ Ŵ(B(1)
J ) = Ŵ(C(2)

J ) ⊆ Ŵ(BC
(2)
J ) = Ŵ(C(1)

J ). (6.1)

It is thus sufficient to prove that the PEC for Ŵ(D(1)
J ) implies the PEC for Ŵ(C(1)

J ).
Let us thus assume that (J, λ, χ) satisfies the PEC for Ŵ(D(1)

J ). In order to prove
that it also satisfies the PEC for Ŵ(C(1)

J ), we may assume by Lemma 3.9 that λ0 = 〈λ0〉.
Moreover, the above inclusions show that (J, λ, χ) satisfies the PEC for Ŵ(A(1)

J ). In
particular, D(J) is bounded by Proposition 4.1(1). Set C = supj∈J |dj |.

Let ŵ ∈ Ŵ(C(1)
J ), which we write as ŵ = τxσw−1 for some x =

∑
j∈J njej ∈ Q,

some w ∈ S(J) and some σ = (σj)j∈J ∈ {±1}(J). Let I ⊆ J be the reunion of the
supports of x, w and σ. Pick any i0 ∈ J \ I, and let σi0 denote the element of {±1}(J)

with support {i0}. Then one may choose x′ ∈ {0, ei0} ⊆ Q and σ′ ∈ {1, σi0} ⊆ {±1}(J)

such that

ŵ′ := τx+x′σσ′w−1 ∈ Ŵ(D(1)
J ).

Moreover, (3.1) yields that
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λ(ŵ.χ − χ) = 1
2
∑
j∈I

(
(nj + λj + σjdw(j))2 − (λj + dj)2

)

≥ λ(ŵ′.χ − χ) − 1
2

(
(1 + |λi0 | + |di0 |)2 + (|λi0 | + |di0 |)2

)
≥ λ(ŵ′.χ − χ) − (3/2 + C)2.

Hence (J, λ, χ) satisfies the PEC for Ŵ(C(1)
J ), as desired. �

Proposition 6.5. Let λ = (1, λ0, 0) and χ = (0, χ0, 1), and set λ2 := (1, λ0/2, 0)
and χ2 := (0, χ0/2, 1). Then (J, λ, χ) satisfies the PEC for Ŵ(B(2)

J ) if and only if
(J, λ2, χ2) satisfies the PEC for Ŵ(C(1)

J ).

Proof. This readily follows from Lemma 5.9. �

Using Lemmas 3.6, 3.7 and 3.9, we can now restate the results of this section for
general λ = (λc, λ0, λd) and χ = (χc, χ0, χd) with λcχd �= 0. Recall the definition of the
cone Cmin(λ, X) in this setting (Definition 5.10). We denote again by �1(J) the set of
(χc, χ0, χd) ∈ R × RJ × R with χc = χd = 0 and χ0 ∈ �1(J).

Theorem 6.6. Let λ = (λc, λ0, λd) ∈ R × RJ × R with λc �= 0 be Z-discrete, and
let X = X

(1)
J or X

(2)
J be one of the seven standard types from Section 2.1. Then for any

χ = (χc, χ0, χd) ∈ R × RJ × R with χd �= 0, the following assertions are equivalent:

(1) (J, λ, χ) satisfies the PEC for Ŵ(X).

(2) λcχd > 0 and χ ∈ Cmin(λ, X) + �1(J).

Proof. For X = A
(1)
J , this follows from Theorem 6.2. For X = C

(1)
J , this follows

from Theorem 6.3. For X ∈ {B
(1)
J , D

(1)
J , C

(2)
J , BC

(2)
J }, the implication (1)⇒(2) follows

from Theorem 6.3 and Proposition 6.4, together with the fact that Cmin(λ, C
(1)
J ) ⊆

Cmin(λ, X) as Ŵ(X) ⊆ Ŵ(C(1)
J ). Conversely, (2)⇒(1) follows from Lemma 6.1. Sim-

ilarly, for X = B
(2)
J , the implication (1)⇒(2) follows from Theorem 6.3 and Proposi-

tion 6.5, together with Lemma 5.9. Conversely, (2)⇒(1) follows from Lemma 6.1. �

Proof of Theorem A. Since λ is Z-discrete by Lemma 3.2, this follows from
Theorem 6.6.

7. Positive energy representations of double extensions of Hilbert loop
algebras.

We conclude this paper with a more precise statement of Corollary B. As announced
in the introduction, Corollary B can be deduced from Theorem A by using the main
results of [MN17]. However, as noted in Remark 2.1, the definition of loop algebras
in this paper and in the paper [MN17] slightly differ, and we now do the extra work
required to pass from one convention to the other.

Let k be a simple Hilbert–Lie algebra and ϕ ∈ Aut(k) be an automorphism of k of
finite order Nϕ. For N ∈ N we set, as in Remark 2.1,
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Lϕ,N (k) :=
{

ξ ∈ C∞(R, k)
∣∣∣∣ ξ

(
t + 2π

N

)
= ϕ−1(ξ(t)) ∀t ∈ R

}
.

The convention in the present paper is thus to take N = Nϕ, while the convention in
[MN17] is to take N = 1. Let t0 be a maximal abelian subalgebra of kϕ, and for a weight
ν ∈ it∗0, consider as in the introduction the double extension

L̂ν
ϕ,N (k) := (R ⊕ωDν

Lϕ,N (k))�
D̃ν

R

of Lϕ,N (k), with Cartan subalgebra te0 := R ⊕ t0 ⊕ R. We respectively denote by Ŵν
ϕ ⊆

GL(i(te0)∗) and Δ̂ϕ ⊆ i(te0)∗ the Weyl group and root system of

g := L̂ν
ϕ,Nϕ

(k)

with respect to te0.
Let c = (i, 0, 0) ∈ ite0 and d = (0, 0, −i) ∈ ite0. Recall from Remark 2.1 the identifi-

cation

V̂
(2)

fin
∼→ ite0, (z, h, t) �→ zc + h + td,

as well as its extension V̂
∼→ it̂e0. Since we are now working in it̂e0 instead of V̂ , we

will write to avoid any confusion χ = [χc, χ0, χd] for the element χcc + χ0 + χdd =
(iχc, χ0, −iχd) of it̂e0 and λ = [λc, λ0, λd] for the weight λ ∈ i(te0)∗ with λ(c) = λc,
λ|it0 = λ0 and λ(d) = λd.

Let ν ∈ it∗0. By [MN17, Theorem A], one can choose the Cartan subalgebra t0
such that there exists a weight μ ∈ it∗0 and an isomorphism L̂ν

ϕ,1(k)
∼→ L̂μ+ν

ψ,1 (k) from
L̂ν

ϕ,1(k) to one of the seven (slanted) standard affinisations of k fixing the common Cartan
subalgebra te0 pointwise. To distinguish between these Cartan subalgebras, we will also
write te0(ϕ) = te0 (resp. te0(ψ) = te0) when te0 is viewed as a subalgebra of L̂ν

ϕ,1(k) (resp.
L̂μ+ν

ψ,1 (k)).
On the other hand, by [MN17, Remark 4.3], there is for each N ∈ N and φ ∈

{ϕ, ψ} an isomorphism L̂ ν/N
φ,1 (k) ∼→ L̂ν

φ,N (k) whose C-linear extension to the corresponding
complexifications restricts to the isomorphism

ite0
∼→ ite0, [z, h, t] �→

[
Nz, h,

t

N

]
.

Here we use the same notation for the Cartan subalgebras of L̂ ν/N
φ,1 (k) and L̂ν

φ,N (k).
Let Nψ ∈ {1, 2} denote the order of ψ, and set Q := Nψ/Nϕ. Composing the above

isomorphisms yields an isomorphism

g = L̂ν
ϕ,Nϕ

(k) ∼→ L̂ Qν+Nψμ
ψ,Nψ

(k) (7.1)

whose C-linear extension to the corresponding complexifications restricts to the isomor-
phism
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Φ: ite0(ϕ)
∼→ ite0(ψ), [z, h, t] �→

[
Qz, h,

t

Q

]
. (7.2)

Note that

Ŵν
ϕ = Φ−1Ŵ Qν+Nψμ

ψ Φ ⊆ GL(ite0(ϕ)). (7.3)

Let now λϕ = [λc, λ0, λd] ∈ ite0(ϕ)∗ be an integral weight for g with λc �= 0. Let
also ν′ ∈ ite0(ϕ), and consider as in the introduction the corresponding highest weight
representation

ρ̃ = ρ̃λϕ,χϕ
: g�RDν′ → End(L̂(λϕ)),

where

χϕ : Z[Δ̂ϕ] → R, (α, n) �→ n + ν′(α�).

As in Remark 2.4, we view the character χϕ as an element of it̂e0: by [MN17, Section
7.2 Equation (7.7)] we then get

χϕ = [0, (ν′)� − ν�, 1].

We recall that the representation ρ̃ is of positive energy if and only if the set

E := λϕ

(
Ŵν

ϕ.χϕ − χϕ

)
is bounded from below. By (7.3), we can rewrite this set as

E = λψ

(
Ŵm

ψ .χψ − χψ

)
where

m:=Qν+Nψμ, λψ :=λϕ◦Φ−1=
[

λc

Q
,λ0,Qλd

]
and χψ :=Φ(χϕ)=

[
0,(ν′)�−ν�,

1
Q

]
.

Set

λ :=
[
1, Q

λ0

λc
, 0
]

, and χ :=
[
0, Q((ν′)� − ν�), 1

]
.

In view of Lemma 3.7 and [MN17, Proposition 7.4], we have in turn that

E = λc

Q2 λ
(
Ŵm

ψ .χ − χ
)
= λc

Q2 λm
(
Ŵ0

ψ.χm − χm
)
, (7.4)

where Ŵ0
ψ is the (standard) Weyl group of L̂0

ψ,Nψ
(k), hence one of the 7 Weyl groups

Ŵ(X) for X = X
(1)
J or X = X

(2)
J described in Section 2.2. Note that

λm =
[
1, Q

λ0

λc
− m, 0

]
=
[
1, Q

(
λ0

λc
− ν − Nψμ

)
, 0
]
= Q

λc
·
[

λc

Q
, λ0 − λc(ν + Nϕμ), 0

]
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and

χm =
[
0, Q((ν′)� − ν�) + m, 1

]
=
[
0, Q((ν′)� + Nϕμ�), 1

]
= Q ·

[
0, (ν′)� + Nϕμ�,

1
Q

]
.

The following theorem summarises the above discussion.

Theorem 7.1. Let g = L̂ν
ϕ,Nϕ

(k) be an arbitrary affinisation of a simple Hilbert–
Lie algebra k. Let t0 be a Cartan subalgebra of kϕ such that there is some μ ∈ it∗0 and
some standard (or trivial) automorphism ψ ∈ Aut(k) for which (7.1) and (7.2) hold. Let
X = X

(1)
J or X

(2)
J be the type of the root system of the standard affinisation L̂0

ψ,Nψ
(k) of

k and set Q := Nψ/Nϕ. Finally, let λϕ = [λc, λ0, λd] ∈ i(te0)∗ be an integral weight for g

with λc �= 0 and let ν′ ∈ i(te0)∗. Set χϕ := [0, (ν′)� − ν�, 1]. Then the following assertions
are equivalent:
(1) The highest weight representation ρ̃λϕ,χϕ

: g � RDν′ → End(L̂(λϕ)) is of positive
energy.

(2) The set E := λϕ

(
Ŵν

ϕ.χϕ − χϕ

)
is bounded from below.

(3) The triple
(
J,
[
λc/Q, λ0 −λc(ν+Nϕμ), 0

]
,
[
0, (ν′)�+Nϕμ�, 1/Q

])
satisfies the PEC

for Ŵ(X).

(4) χϕ = χmin
ϕ + χsum

ϕ for some minimal energy character χmin
ϕ , satisfying

inf λϕ

(
Ŵν

ϕ.χmin
ϕ − χmin

ϕ

)
= {0}, and some summable character χsum

ϕ ∈ �1(J).
Moreover, inf E = 0 if and only if the triple(

J,

[
λc

Q
, λ0 − λc(ν + Nϕμ), 0

]
,

[
0, (ν′)� + Nϕμ�,

1
Q

])

is of minimal energy for Ŵ(X).

Proof. The equivalence of (1), (2) and (3), as well as the last statement of the
theorem readily follow from the above discussion. The equivalence of (3) and (4) follows
from Theorem 6.6 and (7.4). Note that [λc/Q, λ0 − λc(ν +Nϕμ), 0] is indeed Z-discrete:
this can be seen as in the proof of Lemma 3.2. More precisely, set λ0 = (λj)j∈J , ν =
(νj)j∈J and μ = (μj)j∈J . The integrality condition on λϕ implies that

λϕ((0, εi − εj , n)∨) = λϕ((−n − (νi − νj), ei − ej , 0)) = −(n + νi − νj)λc + λi − λj ∈ Z

for infinitely many values of n ∈ Z (see [MN17, Section 3.4]). Hence λc is rational, say
λc = m/p for some nonzero integers m, p. Then(

λi

λc
− νi

)
−
(

λj

λc
− νj

)
∈ Z+ 1

m
Z

for all i, j ∈ J , and hence {
λj

λc
− νj + Z

∣∣∣∣ j ∈ J

}
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is finite. This implies in turn that{
Q

(
λj

λc
− νj − Nϕμj

)
+ Z

∣∣∣∣ j ∈ J

}

is finite because Q is rational and {μj | j ∈ J} is a finite subset of Q (in fact, μj is of
the form μj = −nj/N for some N ∈ {Nϕ, 2Nϕ} and some nj ∈ {0, 1, . . . , N − 1}, see
[MN17, Section 6]). This yields the claim. �
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