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Abstract. A real Lie algebra with a compatible Hilbert space struc-
ture (in the sense that the scalar product is invariant) is called a Hilbert—Lie
algebra. Such Lie algebras are natural infinite-dimensional analogues of the
compact Lie algebras; in particular, any infinite-dimensional simple Hilbert—
Lie algebra ¢ is of one of the four classical types Ay, By, Cj or D for some
infinite set J. Imitating the construction of affine Kac—Moody algebras, one
can then consider affinisations of ¢, that is, double extensions of (twisted) loop
algebras over €. Such an affinisation g of € possesses a root space decomposition
with respect to some Cartan subalgebra h, whose corresponding root system

yields one of the seven locally affine root systems (LARS) of type ASI), Bgl),
oD, DM, 5P, P o e,

Let D € der(g) with h C kerD (a diagonal derivation of g). Then every
highest weight representation (px, L(A)) of g with highest weight A can be
extended to a representation ;A of the semi-direct product g x RD. In this
paper, we characterise all pairs (A, D) for which the representation Py is of
positive energy, namely, for which the spectrum of the operator fi;A (D) is
bounded from below.

1. Introduction.

Let G be a Lie group with Lie algebra g, and let a: R — Aut(G) : t — «; define
a continuous R-action on G. Consider a unitary representation 7: G* — U(H) of the
topological group G* := G x4 R on some Hilbert space #, and let

dr: g xRD — u(H™)

denote the corresponding derived representation, where D := d/dt|;—oL(c:) € der(g) is
the infinitesimal generator of o and where

H>® :={veH| G = H, g n(g)v is smooth}

is the space of m-smooth vectors. The representation (w,H) is said to be of positive
energy if the spectrum of the Hamiltonian H := —idn(D) is bounded from below.

It is a challenging natural problem to determine the irreducible positive energy rep-
resentations (m,H) of G*. As a consequence of the Borchers-Arveson Theorem ([BR87,
Theorem 3.2.46]), for any such representation, the restriction p := 7wl is irreducible
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(see [Neelda, Theorem 2.5]), and the Hamiltonian H of the extension of p to G¥ is
determined by «, up to an additive constant. The set of irreducible positive energy rep-
resentations of G* may thus be viewed as a subset CA?(, of the set G of equivalence classes
of irreducible unitary representations of GG, and one would like to describe this subset as
explicitly as possible. Note that this problem is essentially equivalent to determining for
a Lie group G and d € g all unitary representations (, H) for which —idn(d) is bounded
from below. Such questions are largely motivated by representations arising naturally
in quantum physics, where the spectrum of the Hamiltonian (representing the energy)
should be non-negative ([BR87]). For the class of semibounded unitary representations
such elements exist in a stable fashion, and this recently lead to a powerful general theory
because C*-techniques are now fully available. See [Neel6] for a recent survey on the
results and methods.

A prominent class of unitary representations which will be studied in this paper is
provided by the subset (A?hw - G of irreducible unitary “highest weight representations”
of G. In [MIN16], an explicit description of the positive energy representations in @hw
was obtained for a central extension of a Hilbert-Lie group G (that is, such that the Lie
algebra of G is a Hilbert-Lie algebra), when « is given by conjugation with diagonal
operators. In this paper, we push this study further by considering double extensions of
Hilbert loop groups, that is, double extensions of loop groups over a Hilbert—Lie group.
Since the positive energy condition is expressed in terms of the derived representation
drm: g x RD — u(H>), we will formulate our results at the level of the corresponding
Lie algebras, namely, for double extensions of Hilbert loop algebras (respectively, locally
affine Lie algebras). For the construction of highest weight representations of double
extensions of Hilbert loop groups, we refer to [Neel4b].

From the algebraic perspective, the complexifications of the Lie algebras considered
in this paper are completions of so-called locally extended affine Lie algebras (LEALA)
(see [MY06]). An LEALA L possesses a root space decomposition £ =H © P, cn La
with respect to some ad-diagonalisable subalgebra H, whose corresponding root system
A C H* is a locally extended affine oot system (LEARS) (see [Yos10]). An important
class of LEALAs are the locally affine Lie algebras (LALA), in which case A is a locally
affine root system (LARS) ([Neel0], [MY15]). LALAs can be obtained as direct limits
of affine Kac-Moody algebras ([NeelO, Section 3]), and they possess highest weight
representations L(A) for suitable highest weights A € H* ([NeelO, Theorem 4.10]). One
may thus investigate the positive energy condition for these representations. On the
other hand, the explicit construction of Kac-Moody algebras as double extensions of
loop algebras over a (finite-dimensional) simple Lie algebra G can be generalised to the
LALA L, by replacing G with a locally finite split simple Lie algebra (see [Stu99]).

Since the main motivation for the study of positive energy representations comes
from the group level (in our setting, double extensions of Hilbert loop groups), it will be
more appropriate to shift from the algebraic to the analytic perspective, which can be
done as follows. We consider the locally finite split simple Lie algebra G over K = C. By
[Stu99, Section VIII], there is an antilinear involutive anti-automorphism X — X* such
that Gg := {X € G | X* = —X} is a compact real form of G, namely, a direct limit of
(finite-dimensional) compact Lie algebras. As a subspace of the space gl(J,C) of J x J
matrices with finitely many nonzero entries (for some suitable set .J), G inherits a scalar
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product (X, Y) = tr(XY™*), whose restriction to Gg is invariant: ((X,Y], Z) = (X, [Y, Z])
for all X,Y,Z € Gg. The Hilbert space completion £ of Gg is a so-called Hilbert—Lie
algebra. One can then construct (double extensions of) an “analytic” loop algebra over £
by replacing Fourier polynomials with smooth functions. The resulting “affinisation” g of
€ contains the (doubly extended) “algebraic” loop algebra £ over G as a dense subalgebra.
The highest weight module L(\) over £ is unitary (under suitable assumptions on \, see
[Neel0, Theorem 4.11]), and hence possesses an invariant scalar product. In particular,
its completion Z()\) becomes the highest weight module over g: this will be our setting
for our investigation of the positive energy condition.

We now present in more detail the main result of this paper. For a more thorough
account of the concepts presented below, we refer to [MIN17, Sections 2 and 3] and the
references therein.

A Hilbert-Lie algebra is a real Lie algebra £ admitting a real Hilbert space structure
with invariant scalar product. Any simple infinite-dimensional Hilbert—Lie algebra ¢
possesses a root space decomposition with respect to some maximal abelian subalgebra t
(a Cartan subalgebra), whose corresponding root system A = A(€,t) C it* is a so-called
locally finite root system, of one of the types Ay, By, Cy or D for some infinite set J
(see [NSO01] and [LNO4]). Here and in the sequel, t* denotes the algebraic dual of t (as
opposed to its topological dual t').

Let ¢ € Aut(¢) be an automorphism of the simple Hilbert—Lie algebra ¢ of finite
order N, and let to be a maximal abelian subalgebra of €7 := {z €t | p(z) = z}. Then

€ also possesses a root space decomposition tc = (tg)c © P €2 with respect to to,

acl,
with corresponding root system A, = A(¥, t).

The (p-twisted) Hilbert loop algebra over ¢ is the Lie algebra

L,(8) = {5 € C=(R, ¥) ‘ ¢ (t + 33) = (E(t) Yt € R}.

We equip its complexification L, (€)c with the invariant positive definite hermitian form
() defined by (&,m) = (1/2m) [§7 (£(£), n(t))dt.

Let derg(L,(£), (-,-)) denote the space of skew-symmetric derivations D of L, ()
that are diagonal, in the sense that D(e™ @ £2) C e @ £ for all n € Z and a € A,,.
Define Dy € dero(L,(8), (-,-)) by Do(§) = £ For any weight v € it§, let also D, be the
derivation of ¢ defined by

D, (z4) :=iv(af)z, for all 2, € £, a € A,

where of is the unique element of ity such that (h,a?) = «a(h) for all h € ;. Then
D, restricts to a skew-symmetric derivation of €, which we extend to a derivation in
dero(L,(8), (-,-)) by setting D, (£)(t) := D, (&(t)) for all £ € L,(€) and ¢ € R. The space
dero(L,(€), (,-)) is then spanned by Dy and all such D,, (see [MY15, Theorem 7.2 and
Lemma 8.6]), and we set

D, .= Dy -‘rﬁy € dero([,(p({?), <~, >)

The derivation D, defines a 2-cocycle wp, (z,y) := (D, (z),y) on L,(£), and extends to
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a derivation D, (z,z) := (0, D,(z)) of the corresponding central extension R Gup, Lo(E).
We call the resulting double extension

8= L5() == (R, Lo(8) x5, R

the v-slanted and p-twisted affinisation of the Hilbert—Lie algebra €. The Lie algebra g

admits a root space decomposition gc = (§)c © €,z 8o with respect to its maximal
®

abelian subalgebra t§ := R @ ty @ R, with corresponding root system

o~

Ay = A(g, t5) € {0} x ity x Z Ci(t5)™.
Note that

g% == Cc + spanc{af | a € A} +Cde ED Oa

aEA,

is a LALA, where ¢ := (4,0,0) € it§ C gc and d := (0,0, —i) € it§ C gc ([Neeldb,
Example 2.5]). The set

(Ap)e :={(0,0,n) € Ay | a#0} C {0} x Ay, X Z

of compact roots is then a LARS. The LARS were classified in [Yos10], and those of
infinite rank fall into 7 distinct families of isomorphism classes, parametrised by the types
Xsl) and YJ(Q) for X € {A,B,C,D} and Y € {B,C, BC}, for some infinite set J. The
type X !(,1) can be realised as the root system of the unslanted and untwisted affinisation
E?d(é) of some Hilbert—Lie algebra ¢ with root system of type X ;. The type YJ(Z) can
similarly be realised as the root system of some unslanted and ¥y -twisted affinisation of
a suitable Hilbert—Lie algebra €, for some automorphism )y of order 2 whose description
can be found in [Neeldb, Section 2.2] (see also [MIN17, Section 6]). We call the three
automorphisms 1y, as well as the 7 affinisations of a Hilbert—Lie algebra described above

standard.
Let A € i(t5)*, which we write as A = (A, A, \y) where

Ae:=Ac) €R, A=)\, €it] and N\g:=A(d) €R.

Assume that A, # 0 and that A is integral, in the sense that A only takes integer values on
the coroots &, a € A, (see Section 2.1 below). Then g admits an irreducible integrable
unitary highest weight representation

o~

px: g — End(L()N))
with highest weight A, whose set of weights is given by P, = Conv(w\;.)\) N(A+ Z[ﬁw]),
where )7\/\; = W(g,t5) denotes the Weyl group of g with respect to t§ (see [NeelO,
Theorems 4.10 and 4.11}).

Let v/ € it§, and extend the derivation D, of L () to a skew-symmetric derivation
of g by D, (t§) := {0}. Then D, is encoded by the character
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X=Xv: Z[A,] = R, (0,a,n) —n+ V'(ozﬁ)

satisfying D, (zo) = ix(a)z, for all z, € go, o € ﬁg,. One can now extend py to a
representation

Pax: §XRD, — End(L()\))

of the semi-direct product g x RD,, where px (D, )vy = ix(y— A)v, for all v € Py and
vy € L(A) of weight . The representation py , is thus of positive energy if and only if

Mg, := inf Spec(H,/) = inf x(Pr — A) = infx(Wf;./\ —A) > —oo0,

where H,» := —ipy ,(D,/) is the corresponding Hamiltonian.

We first characterise the positive energy highest weight representations of g when
g is standard. In this case, there is an orthonormal basis {e; | j € J} of ity such that
the linearly independent system {e¢; | j € J} C it defined by (e;, ex) = d;; contains the
root system A, in its Z-span (see Section 2.1 below). Write a character x: i(t§)* — R
as X = (Xe, X°, xa) where

Ye = x((1,0,0)) € R, x%:=x

i and  xa = x((0,0,1)) € R.

We call x = (xe, X0, xa) summable if x. = xq = 0 and x° € £1(J), that is,

> X ()] < oo

jeJ

THEOREM A. Let (g,t5) be a standard affinisation of a simple Hilbert-Lie algebra,
with Weyl group W= W(g,t5). Let A = (A, A% N\g) € i(t5)* be an integral weight with
Ae # 0. Then for any character x = (xe, X%, Xa): 1(t§)* — R with Ac.xa > 0, the following
are equivalent:

(1) inf (X(W.)\ —A)) > —o0.

(2) X = Xmin + Xsum Jor some minimal energy character Xmin, Satisfying
inf (Xmin (W.)\ - )\)) =0, and some summable character Xsum.

In addition, we give an explicit description of the set of characters y of minimal
energy (see Section 6). An alternative description of this set is given in [HN14, Theo-
rem 3.5]. Note that the assumption A.xq > 0 in Theorem A is only necessary to avoid
degenerate cases, which are dealt with in Section 3.1. The proof of Theorem A relies on
the earlier work [MIN16], which provides a similar characterisation of the positive energy
condition for highest weight representations of Hilbert—Lie algebras.

To characterise the positive energy highest weight representations of g = E;(E)
arbitrary, we use the main results of [MIN17], which allows to reduce the problem to the
“standard” case.

COROLLARY B.  The statement of Theorem A holds for arbitrary affinisations g =
LY (€) of a simple Hilbert-Lie algebra t.
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A more precise statement of Corollary B is given in Theorem 7.1 below: the key
point here is that the explicit form of the isomorphism from g to one of the (slanted)
standard affinisations of ¢ provided by [MN17, Theorem A] also allows for an explicit
description of the minimal energy sets in this more general setting.

2. Preliminaries.

NoTATION. In this paper, we denote by N = {1,2,...} the set of positive natural
numbers.

2.1. Locally affine root systems.

The general reference for this paragraph is [MIN17, Section 2.3 and Section 3.5]
(and the references therein).

Let J be an infinite set. Let Vg := R(Y) C V := R be the free vector space over
J, with canonical basis {e; | j € J} and standard scalar product given by (e;, ex) = d;.
Note that we may extend (-, -) to a bilinear form on Vg, x V. In the dual space (Vg,)* = R
of Vin, we consider the linearly independent system {e; | j € J} defined by €;(er) = i,
and we denote by (-, -) the standard scalar product on

Vi, = spang{e; | j € J} C (Vin)®

for which (¢;,€x) = d;5, for all 5, k € J.
Any infinite irreducible locally finite root system A can be realised inside (V& (-, )
for some suitable set .J, and is of one of the following types:

Ayi={ej—er | j ke J, j#k},
By :={xe;,x(¢j L) | j,k € J, j#k},
Cy:={£2¢,£(¢; ) | j, k€ J, j#k},
Dy :={%(ejxex) | jkeJ, j#k},
BCy = {+£ej,£2¢j, (¢, £ ex) | 1,k € J, j #k}.

Set
Vi=RxVxR, Vip:=RxVinxR, V*:=Rx(Van)*xR and Vg, :=RxVg, xR,
where we identify V* with the dual of Vﬁn by setting

Az, hot) == Aoz + A2(h) + Mgt for all A= (A, A%, \g) € V* and (z,h,t) € Van.

In other words, the superscript * (resp. its absence) indicates that we are considering
triples (2, h,t) with h of the form h =}, ; hje; (vesp. h = 3. ; hje;) for some h; € R,
and the subscript fin indicates that we in addition assume that only finitely many h; are
nonzero.

Any infinite irreducible reduced locally affine root system can be realised inside

Vi, X Zo~ {0} x Vi, X Z C Vg,
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for some suitable set J, and is of one of the following types:
XM= X, xZ for X € {4, B,C, D},
BY = (By x 2Z) U ({+¢; | j € J} x 2Z + 1)),
c? = (C; x22)U (Dy x (2Z + 1)),
BCY = (By x 2Z) U (BC; x (2Z + 1)).

Let A C 17ﬁ*n be one of the above locally affine root systems X 51) or X 52), where A C Vi,

is the corresponding locally finite root system of type X ;. Thus A C{0} x AXZ. We
set

Ao ={a €A (0,a,0) €A}

Then Ag = A, unless A is of type BC§2), in which case Ay is a root subsystem of A of
type Bj.

The assignment €; — e;, j € J, induces an R-linear map §: (Van)* = V : p+— b
(which is the identity if one identifies (Vg,)* with R”). For any a € A, we let

2
&= 70% € Vin
(a, )

denote the coroot of ae. We will also view « as a linear functional on V' (and not just on
Vian) by setting

a(h) == (a*,h) forallheV.

Finally, denoting by x: ‘A/ﬁn x V — R the bilinear form defined by

k((21, h1,t1), (22, ha, t2)) = (b1, ha) — 21ta — 20t1,
we can extend the map #: (Va,)* — V to an R-linear map

8 V=V, = (e, 1 ) = 1t = (=g, (1), —pe)

characterised by the property that

w((z,h,t)) = K((z, h,t), ut)  for all (2, h,t) € Vin.
The coroot of (a,n) € Ais given by

(a,n)¥ = —2—(0,a,n)t = <2" & o) .

(Oé, 04) (a, a) o
REMARK 2.1. As announced in the introduction, we will use the main results of
[MIN17] to characterise the positive energy highest weight representations of arbitrary
affinisations of simple Hilbert—Lie algebras. We wish to attract the attention of the
reader to the fact that the choices of parametrisation of these affinisations that we made
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in the present paper slightly differ from the choices made in [MIN17], and this in two
respects (these choices being better suited for each of the papers). We now explain these
differences in more detail and relate the notation introduced so far to the context of
affinisations of simple Hilbert-Lie algebras.

Consider, as in [MIN17, Section 3.1], a simple Hilbert-Lie algebra £, an automor-
phism ¢ € Aut(€) of finite order N, and a maximal abelian subalgebra t, of £¥. For
N € N, we denote by

Lon(®)i={€ € C=(®Y \ e(145) = o e e v}

the p-twisted loop algebra over £, whose elements are periodic smooth functions of period
27N,/N. In the present paper, we made the choice N = N,,, that is, we consider 27-
periodic functions. This is the first difference with [MIN17], where the choice N = 1 is
made. However, these two choices yield isomorphic objects: explicit isomorphisms were
provided in [MIN17, Remark 4.3].

Let now N € {1,N,}, and let Dy(§) = & be the standard derivation of L, n(£).
Assume that the corresponding affinisation

0= 0n = (R, Lon(E) 55 R

of £ is standard, with set of compact roots A = A(g, t§). C i(t5)* with respect to the
Cartan subalgebra

tt=Raot®R

of one of the types A(Jl), B(Jl), CSI), D(Jl)7 Bgz), 052) and BC’&z) described above (see
[MIN17, Section 3.4 and Section 3.5]). Set ¢ = (7,0,0) € it§ and d = (0,0, —i) € 5.

The second difference is purely notational, and concerns the identification of the
Cartan subalgebra t§ of g (or rather, of it C gc¢) with the space of triples R x ity x R:
the description of A inside spang{e; | j € J} x Z (which is the same in both papers)
yields identifications

Vi ~ity and VP 36, (2,h,t) > zc + b+ td, (2.1)

where Vﬁ(i) denotes the Hilbert space completion of Vg, and Vﬁ(i) = R X Vﬁ(? x R.
The R-linear map #: (Van)* — V then coincides with the map f: it — z'tAo defined in
[MIN17, Section 2.3 and Section 3.1], while its extension f: V* — V coincides with the
map f#: i(t§)* — it5 defined in [MIN17, Section 7.2]. Similarly, the bilinear form & on
Vi (or rather, its extension to ‘A/ﬁ(i)) coincides with the restriction to it§ of the hermitian
extension of the bilinear form x defined in [MIN17, Section 3.4]. Finally, note that,
following [MIN17, Section 3.4], the root («,n) € A of the affinisation g1 of ¢ satisfies

(a,n)(h) = a(h) for heity, (a,n)(c)=0 and (a,n)(d)=n/N,.

Hence the reparametrisation provided by [MN17, Remark 4.3] of (o, n) as a root of gy,
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yields that
(a,n)(z,h,t) = (0,a,n)(z, h,t) = a(h) + nt for all (z,h,t) € ‘7ﬁn,
in accordance with our identification of V* with the dual of ‘A/ﬁn.

2.2. The Weyl group of A.

Let S; denote the set of bijections of .J, which we view as a subgroup of GL(V') with
w € Sy acting as w(e;) := e, (;). The support of a permutation w € S; with fixed-point
set I C J is the set J \ I. We denote by S(;) € S the subgroup of permutations of S
with finite support, and we view it as a subgroup of either GL(V) or GL(Vjy).

We also let {1}/ C R’ act linearly on V = R’ by componentwise left mul-
tiplication: o(e;) = oje; for 0 = (0j)jes € {£1}’. The support of an element
o = (0j)jes € {1} is the set {j € J | 0;j = —1}. We denote by {£1}(/) (resp.
{:l:l}é‘])) the set of elements of {£1}” with finite (resp. finite and even) support, and we
again view {+1}/) and {il}é‘]) as subgroups of either GL(V') or GL(Vay).

We recall from [MIN16, Section 2.2] that for X € {A, B, C, D, BC'}, the Weyl group
W(X ;) of type X ; admits the following description:

W(As) =S,
W(Bj) = W(Cy) = W(BC,) = {£1}) % S,
W(D,) = {1} % 5.

We denote by W = W(Ag) the Weyl group correbponding to Ap, viewed as a
subgroup of either GL(V) or GL(Vay). ThUb W =W(X,) if A is of type XS ) or X(z)
(see Section 2.1). Similarly, we denote by W = W( ) the Weyl group corresponding to
A where X = X(l) or X( ) is the type of A and we view W as a subgroup of either
GL(V ) or GL(Vﬁn)

The group W is generated by the set of reflections {ram | (a,n) € A, a# 0},
where

—2n

(@, )

T(an) (2, hyt) = (2, h,t) — (a(h) + nt) ( ,&,O) for all (z,h,t) € V. (2.2)

We view W as a subgroup of 17\/\, using the identification
W= <7“(a’0) ‘ a € A0> Cw.

For each x € Vg, we define the linear automorphism 7, = 7(z) of Vv (resp. of ‘7ﬁn) by

T2(2,h,t) = (z + (z,h) + Kz, o) 5 z) Jh+tx t) for all (z,h,t) € V. (2.3)
Then 7,7, = Ty, 42, for all 1,22 € Van. Moreover, r(4,0)7(a,n) = Tna for all @ € A and
n € Z. Since for any o € A there exists some € Ag such that r¢, 0y = 7(3,0) (as can be
seen from a quick inspection of the locally affine root systems), we thus get a semi-direct
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decomposition

o~

W=7(T)xW C GL(V),
where 7 is the additive subgroup of Vg, generated by {nd | (a,m) € &} (see [HN14,
Section 3.4] or else [MIN17, Section 3.6]). Set Q := @ ;c;Zej C Vin. For W = W(X)

of type X, one can then describe the corresponding lattice 7 = 7 (X) C @ of type X as
follows (see [HIN14, Proposition 3.12]):

:{anejEQ Z?’Lj:()}7
Jjed jeJ
T(BfIl)):T(Dgl)):T(Cf,?)):{anej cQ| Ym ezz},
jedJ jeJ
T(B?) {anej €Q|nje2z vjej},
jeJ

T(C)=T(BCY)=Q =2,

Thus any element w € W can be uniquely written as a product @ = 7,ow for some
z €T, some o € {£1}(V) and some w € S( ). For x = > jesnjej € T, we call the subset
{j € J | nj #0} of J the support of x.

REMARK 2.2.  The Weyl group w may also be viewed, as in the introduction, as a
subgroup of GL(V™*) using the bijection ff: V* — V, or in other words, by requiring that

(@.p)* = @.pf for all @ € W and € V*.

2.3. The positive energy condition.
In the sequel, we fix some

A=, A% 0) ERXRY xRaV* and ¥ = (xe, X%, xa) ERXR/ x R=V,
and we write
N0 = ()\j)je] = Z)\jﬁj eR/ ~ (Vﬁn)* and XO = (dj)jej = Zdjej eR/=V.
JjeJ JjeJ

DEFINITION 2.3.  We say that the triple (J, A, x) satisfies the positive energy con-
dition (PEC) for W if the set )\(17\/\.)( —x) is bounded from below. We moreover say that
(J, A\, x) is of minimal energy for W if inf ()\()7\/\.)( —x)) =0, that is, if A(@W.x —x) >0
for all @ € W.

Note that w.x — x € Vi for any w € V/\Z so that A(w.x — x) is defined. Indeed,
writing @ = 7,w for some x € T and w € W, we have

{U\X —X= wa‘(Xcv X07 Xd) - (Xcvxov Xd)
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. (xc,zdjw(ej)’xd) - (szdjejaXd)

jeJ jeJ
Xa{z,
= (XC+Zd]<'lU(€]),$>+ d<2 >7Zdjw(ej)+xdx7xd> - (XC?Zdjej7Xd>
jeJ jeJ jeJ
= (Zdj<w e w(ej) —ej) + x4z, 0> € Vﬁn (2.4)
JjE€J jEJ

REMARK 2.4. Any character x: Z[B] — R can be identified with an element of V
by requiring that

X(1) = w(uf, x)  for all € Z[A].

With this identification, and since the Weyl group w preserves the bilinear form x (see
[MIN17, Section 3.6]), we deduce for all w € W that

XWX —=N) = &(@N =M ) = k(D x —x, \) = M@ Ly — x).

In particular, the conditions inf (X (W.)\—)\)) > —oo and inf (X(l//\)\.)\—)\)) = 0 are respec-
tively equivalent to the conditions inf ()\ (WX — X)) > —oo and inf ()\ (WX — X)) =0.
Thus the notions of positive energy and minimal energy introduced in Definition 2.3
indeed coincide with the corresponding notions from the introduction.

Let @ € W. Write @ = r,ow™" for some z = > jesnje; € T, some o = (0))jecs €
{£1}) and some w € S(;) (see Section 2.2). It then follows from (2.4) that

M@ .x = x) =A(mow™" X —x)
Xa(T,x)
:)\(Zdj<aw—1(j)e,w_1(j),x>—|— B 7Zdj(0w—1(j)ew—1(j)—ej)—i—xdx,O)

JjeJ jeJ

)\ch
— )+ e > 0idui (e m)+xaA (@) + Y duwi (0565 — ews))

jeJ jeJ
)‘ch
= DoAY nodug) tXa ) A+ ) Ai(idugy —d)- (25)
JjeJ jedJ jeJ jeJ

2.4. PEC for locally finite root systems.

The concept of PEC for a triple (J, A, x) extends the concept of PEC for the triple
(J,2%,xY) introduced in [MIN16, Section 2.3]. We recall that the triple (J,\%, x?) is
said to satisfy the PEC for W if \°(W.x? — x°) is bounded from below. A complete
characterisation of such triples (with some suitable finiteness assumption on \°), ana-
loguous to the one we give in this paper, was provided in [MN16]. We now briefly review
this characterisation, as it will be the starting point of our study of the PEC for triples
(J, A, x): if (J, A, x) satisfies the PEC for W, then (J, A% x0) satisfies the PEC for W.

Let A, x be as in Section 2.3. We first recall some notation and terminology from
[MIN16, Section 3|. Define the functions
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D:J—=R, j—=d; and A: J =R, j—= A,
as well as the sets .J,, := A~!(n) for each n € R. For r € R, we also set
JoT={j€Jy|d;>r} and JIT:={j€J,|d; <r}
DEFINITION 2.5.  We call A\° finite if the subset A(J) of R is finite.

DEFINITION 2.6. Let r,n € R. A subset I C J of the form J;" or J " is said to
be summable if 3, |dj — | < oo.

DEFINITION 2.7.  Let I C J. We call » € R an accumulation point for I if either r
is an accumulation point for D(I), or if D(I’) = {r} for some infinite subset I’ C I.

DEFINITION 2.8 ([MN16, Definition 5.2]). For a set J and a tuple A’ = (\;) ey €
R”, we define the following cones in R”:

Cmin()\O7AJ) = {(dj)jej S RJ | V’L,j eJ: < )\j — dl > dj},
Cuin(A’, By) = {(d;)jes €R? | Vje J: Njd; <0
and VZ,] e J: |)\1| < |)\]| — |d1| < ‘d]|}
We also define the vector subspace ¢1(.J) := {(d;)jcs € R’ | > jesldj| < oo} of R7.

We next recall the characterisation of triples (J, A%, x") of minimal energy.

PRrROPOSITION 2.9 ([MN16, Proposition 5.3]). Let X € {A,B} and set W =
W(X ). For a triple (J,\° x°), the following assertions are equivalent:

(1) inf A°W.x° —x%) = 0.
(2) XO S Omin()\o,XJ).

Note that for X € {C,D,BC}, if we denote by Cumin(\°, X ;) the set of tuples
x" € RY for which inf (A°’(W(X;).x" — x")) = 0, then the inclusions

W(A;) CW(Dy) CW(By) =W(C;) =W(BCy)
of Weyl groups imply that
Cinin(A\?, BCy) = Cryin(\°, C7) = Cinin(A?, By) € Conin(A”, D) C Cinin (A%, A ).
Finally, we recall the characterisation of triples (J, A\, x°) of positive energy.

THEOREM 2.10 ([MIN16, Theorems 5.10 and 5.12]).  Let J be a set, and let \° =
(Aj)jes and X° = (d;)jcs be elements of R7. Assume that \° is finite. Then for X €
{4, B}, the following assertions are equivalent:

(1) (J, A% X%) satisfies the PEC for W(X ).

(2) X% € Cuin(A\°, X ) + £1(J).
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LEMMA 2.11 ([MN16, Lemma 5.8]). Let X € {B,C, D, BC}, and assume that \°
is finite. Then (J,\°,x°) satisfies the PEC for W(X ;) if and only if it satisfies the PEC
for W(By).

3. Reduction steps.

For the rest of this paper, A = (A, A%, A\g) and x = (xe, X°, xa) will always denote
elements of R x R’ x R as in Section 2.3. In order to characterise the PEC for (J, ), x),
we will need to make some finiteness assumption on .

DErFINITION 3.1.  We say that A is Z-discrete if \. # 0 and if the set of cosets
{(X\j/Ae) +Z | j € J} is finite.

A more illuminating formulation of this Z-discreteness assumption will be given in
Section 3.3 below (see Remark 3.10). Note that the case A\, = 0 can be easily dealt with
(see Section 3.1 below). On the other hand, if we want A to correspond to some highest
weight of an integrable highest weight module as in Theorem A, then we need A to be
integral with respect to A, in the sense that AM(a,n)Y) € Z for all (a,n) € A. The
following lemma then shows that, for representation theoretic purposes, we may safely
assume A to be Z-discrete.

LEMMA 3.2.  Assume that A, # 0 and that X is integral with respect to A. Then \
is Z-discrete.

PROOF. Let i,j € J with i # j, and for each n € Z, set 7, := (0,¢; —€j,n) € ‘A/f;‘n
Then 7, € A for infinitely many values of n € Z. Since 7,/ = (—n,e; — €;,0), the
integrality condition on A implies that

)‘(77\{) = —nX.+\; 7)\]‘ €7

for at least two distinct values of n € Z, so that A, € Q. Write A, = m/p for some
nonzero m,p € Z. Then
Aj

; ; 1 1 1
ﬁ——'EZ—i——ZQZ—&——ZQ—Z for all i,j € J.
)\c >\c )\c m m

Fixing some iy € J, we deduce that

)\j )\z S
p'a 7, o — 7,
T E{Ac+m+

s:O,l,...,m—l} for all j € J.

Hence the set of cosets {)\j/)\c +7Z ‘ jE J} is finite, so that A is Z-discrete, as desired.
O

We begin our study of the PEC for the triple (J, A, x) by some reduction steps.

3.1. The case A:.xq = 0.
In this paragraph, we investigate the PEC for the triple (J, A, x) in case A.xq = 0.
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LEMMA 3.3.  Assume that A\. = xq = 0. Then (J,\, x) satisfies the PEC for w if
and only if (J,\°,x°) satisfies the PEC for W.
PRrROOF. This readily follows from (2.5) in Section 2.3. O

LEMMA 3.4.  Assume that Ao = 0 but xq # 0. Then (J,\, x) satisfies the PEC for
W if and only if one of the following holds:

(1) W= W(Agl)) and \° is constant.
2) W#W(AY) and X° = 0.

PROOF.  Assume that (J, \, ) satisfies the PEC for W, and set o = w = 1 in (2.5).
Then

{Xdznj)\j ’ anej S T}

jed jeJ

must be bounded from below. This is easily seen to imply (1) or (2), depending on the
type of W. The converse is an easy consequence of (2.5). O

LEMMA 3.5.  Assume that xq = 0 but Ao # 0. Then (J, A, x) satisfies the PEC for
W if and only if one of the following holds:

(1) W = W(AE,U) and X is constant.
2) W#W(AW) and x° = 0.

PROOF.  Assume that (J, A, ) satisfies the PEC for W, and set ¢ = w = 1 in (2.5).
Then

{)\Candj | anej S T}
JjeJ jeJ

must be bounded from below. This is easily seen to imply (1) or (2), depending on the
type of W. The converse is an easy consequence of (2.5). O

3.2. The case A:.xq # 0.
In view of Section 3.1, we may now assume that A\.xq # 0. We begin with two
simple observations.

LEMMA 3.6.  Assume that (J,\,x) satisfies the PEC for W and that Aexa # O.
Then Aexq > 0.

Proor. Fix some i,j € J with i # j, and for each n € N, consider the element
z, = 2n(e; —e;) € T. Setting 0 = w =1 and z = x,, in (2.5), the PEC then implies
that

{4 exan® + 2Xc(d; — dj)n + 2xa(Ni — A\j)n | n € N}
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must be bounded from below, yielding the claim. O
LEMMA 3.7.  Assume that Aoxq > 0. Then the following are equivalent:
(1) (J, A\, x) satisfies the PEC for W.
(2) (J, At Xst) = (J, (1, A%/ Ac, 0), (0, X°/xa, 1)) satisfies the PEC for W.
More precisely, inf )\(W.X - X) = AeXq - Inf Mg (W-Xst — Xst)-
Proor. This readily follows from (2.5). O

Thus, in order to investigate the PEC for (J; A, x), we may safely make the following
normalisation.

CONVENTION 3.8. From now on, unless otherwise stated, we assume that A\, =
x4 = 1 and that Ay = x. = 0, so that

Given @ € W, which we write as @ = r,ow™~! for some z = 3.

jesnje; € T, some

w € S(y) and some o = (0)jes € {£1}Y), we can now rewrite (2.5) as

R 1
Mwx=x) =5 Y ond 4> nioiduiy + Y ndi+ > N(0idug) — dj)

JjeJ jed jed JjeJ
1
= 5 Z ((n] + /\j + O’jdw(j))Z — (/\j + dj)Q). (3_1)
jeJ

3.3. Translation invariance.
We introduce the following notation. Given x € R, we set

(2] := {x—F;J and (2) =2 —[z] € {-éi)

In other words, [z] is the closest integer to x, with the choice [z] = [z] if z € 1/2 + Z.
Given a tuple m = (m;);c; € R7, we then define the tuples

= (n)ses €27 SRV and(m) = ((mi)es € 5.5 ) R

We also set
Am = (1LA° —m,0) and  ym = (0,x° +m, 1).

LEMMA 3.9. Let m = (m;)jes € Z7. If A is of type B§2), We MOTEOVET asSSume
that m; € 27 for all j € J. Then inf /\(W.X — X) = inf \j, (W~Xm — Xm)- In particular,
the following are equivalent:

(1) (J, A\, x) satisfies the PEC for W.
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(2) (J, Am, Xm) salisfies the PEC for W.

Proor. Giveno € {il}(‘]) and w € S(y) such that ocw™! € W, we will prove that

ggfl_A(Tmo'w_1~X - X) = igg_)‘m(Tmaw_l-Xm - Xm)a

yielding the claim. Let o = (0)jes € {£1}) and w € S(yy be as above, and let
z=73 e nje; €T. Set
v = Z (@w(j) M) = m;)e;.
jeJ
One easily checks that ' € 7. Moreover, (3.1) implies that
1

Mﬂﬂﬂw_yMn_Xm%:52:(mj_WU+UMﬁWM@j+Aj+UMﬂdMﬂy_%Af+%y)
jeJ

= Mrwow ™ x —x).
We deduce that
Iigg_)\m(rxawfl.xm — Xm) > zigg_)\(mowfl.x - X)-

The same argument with (J; A, x) replaced by (J, Am, xm) and m replaced by —m yields
the inequality in the other direction, as desired. O

REMARK 3.10. Note that for m = [\°] € Z7, the passage from (J,\,x) to
(J, Am, Xm) amounts to replace A’ by A\ — [X\°] = (%) and x° by x° + [A\°]. On the
other hand, if A\’ = (\%), then ) is Z-discrete if and only if A\° is finite.

4. Consequences of the PEC for W\(Af,l)) and W\(CSI)).

PROPOSITION 4.1.  Assume that X is Z-discrete and that \° = (\°). Assume more-
over that (J, A\, x) satisfies the PEC for W(Afjl)). Then the following hold:

(1) D(J) is bounded.

(2) If rmin and rmax respectively denote the minimal and mazimal accumulation points
of J, then

Tmax — Tmin S 1.
(3) If rmax — "min = 1, then

Z (dj — Tmax) <00 and Z (Tmin — d;) < 00,

jegy jeJ_

where Jy :={j € J | dj > rmax} and J_ :={j € J | dj < "min}-
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Proor. (1) Note first that, by assumption, A(J) is finite and contained in
[-1/2,1/2). In particular, to prove that D(J) is bounded, it is sufficient to prove
that D(J,,) is bounded for each m € R, where J,,, := A~Y(m). If J,, is finite, there
is nothing to prove. Assume now that .J,, is infinite, and write it as a disjoint union
Jm = I_1 U Iy UL of three infinite subsets. Define the tuple m = (m;);c; € Z7 by

[k ifj el (k=-1,0,1),
7710  otherwise.

Since (J, Am, Xm) satisfies the PEC for W(Af,l)) by Lemma 3.9, we know that the triple
(J, \° —m, x°+m) satisfies the PEC for W(A ;). In particular, since m is not an extremal
value of the set {\; —m,; | j € J} and since A\; —m; = m for all j € Iy, we deduce from
[MN16, Lemma 4.4] that D(Iy) is bounded. Repeating this argument with Iy and I
permuted yields that each of the three sets D(Iy), k = —1,0,1, is bounded, and hence
that D(.J,,) is bounded, as desired. This proves (1).

(2) Since D(J) is bounded, the minimal and maximal accumulation points 7y, and
Tmax Of J indeed exist. Moreover, since A(J) is finite, there exist some m,n € R such
that 7.5 is an accumulation point for .J,, and ry;, is an accumulation point for J,. In
particular, m,n € A(J), so that

_1 < m,n < 1
2~ 2
For short, we set 7y, := Tmax and 7, := ryin. Fix some € > 0, and choose some (disjoint)
infinite countable subsets I,, = {i1,i2,...} C Jp, and I,, = {41, 42, ...} C J, such that

Z‘Tm_dis < e and Z|rn— e

seN seN

< €.

For each k € N, let wy € S(;) be the product of the transpositions 7, s = 1,...,k,
exchanging i and js. We also set

k

we= (e, —ej,) € T(AD).

s=1

We deduce from (3.1) that for each k € N,

k k k
ATy ' x = x) =k+ Y (dj, —di)+ > (i, = A)+ D> (i, = \)(dy, —di,)
s=1 s=1 s=1
k k
=Y (4N, —N)A+dy, —di) =Y (1+m—n)(1+d;, —d;,)
s=1 s=1

k
=k(l+m—n)(1+r,—ry)+(1+m-— n)z ((djs — 1) — (d;, —rm))
s=1

<k(l4+m—n)(1+r, —ry)+2e1+m—n).
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Since k € N was arbitrary, the PEC for )//V\(Agl)) then implies that
(1+m—-—n)1+r, —ry,)>0.

Since 1 +m — n > 0 by assumption, we deduce that r,, — r, < 1, yielding (2).

(3) Finally, assume that ryax — rmin = 1. We prove that ZjeJJr (dj — rmax) < 00,
the proof for J_ being similar. If J, is finite, there is nothing to prove. Assume now
that J; is infinite. Let I; = {i1,i2,... } be an arbitrary infinite countable subset of .J,
so that

di, — Tmax >0 for all s € N.
Let € > 0 be such that
|INi —Aj| <1—e forallijelJ,

and choose some infinite countable subset I_ = {j1,j2,...} € J \ I+ such that
Z|7"min _djs| < €.
seN

Defining the elements xy, wy for k£ € N as above, we deduce from 7yax — mmin = 1 that

M=

Mrowi ' x —=x) =Y (1T+ X, =X\ +d;, —d;,)

s=1

= |l

k
= (T4 Xi, = A5)(dj, — Tmin) + Z (I + A, = A5,) (rmax — di,)
s=1 s=1
k k

S 22 |rmin - d]b| - Z (1 + >‘i5 - A_75) . ‘dis - Trnax'

s=1 s=1

k
< 2e— ez |di, — "max]|-
s=1

Since k € N was arbitrary, we deduce that

Z (dj — Tmax) <2—¢€ ! inf)\(W(A(Jl)).X -X)

Jely

for any infinite countable subset I, of J,, yielding the corresponding assertion for I
replaced by J;. This concludes the proof of (3). O

For a tuple v = (v;)jes € R, we set
v = (lvj])jes € RY.

PROPOSITION 4.2.  Assume that \° = (\°) and that (J, \, x) satisfies the PEC for
W(Cgl)). Let m € R. Then the following hold:
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1) If Im| < 1/2, then M2 and T Y% are summable.

3

(1)

(2) If |/m| = 1/2, then J' and J5~1 are summable.
(3) (J, =\, [{(x®)]) satisfies the PEC for W(Ay).
(4)

4) >ies, 1Nid;j| < oo, where Jy :={j € J | Ajd; > 0}.

PrROOF. (1) Assume that |m| < 1/2. Fix some ¢ > 0 such that |m| < 1/2 —e.
Let I be any finite subset of J;,"/? (resp. Jyfflﬂ), so that |d;| > 1/2 for all j € I. Let
o= (0))jes € {£1}Y) with support in I be such that ma;(d;) <0 for all j € I. Then,
forall i € I,

(m+0;d;) = (m+0;(d;))° = (Jm| = [(d;)])* = (|m] - |{d;)])*.

Consider also the element z =}, nje; € T(C.(Jl)) defined by n; = —[m + o;d;] for all
j € I. We then deduce from (3.1) that

Mrzox — x) = % Z ((nj +m+ojd;)? — (m+ dj)2)
jel

= ;]ze; (<m+ ajdj>2 —(m+ dj)2>

< ;Z (<|m| ~ )2 = (| = |4,1)?)
:_72 \d;| = 1¢d;)) (Id;] + [(d;)] — 2|m]).
jel

Note that |d;| + [(d;)| > 1 for all j € I, and hence |d;| + |(d;)| — 2|m| > 2¢ for all j € I.
Since moreover

dl = (d3)] = (1d;] = 1/2) + (1/2 = [(d)]) > 0 for all j € I,

we deduce that

Mroox =x) < —e Y (1] = [{dy)]) < =€) (1] = 1/2). (4.1)

jel jerl
Since the finite subset I of J>1/2 (resp. Jm 1/2 ) was arbitrary, the PEC for V/\;(Cy))
implies that T2 (resp. Jom ) is summable, proving (1).

(2) Assume next that |m| = 1/2. Let I be any finite subset of J_>! (resp. J 1), so
that |d;| > 1 for all j € I. Defining ¢ and z as above, we again get that

Nrx =) < =5 3 (5] = 1)) (s + 14)] — 2lml).
jeI

Since |d;| — [{d;)| > 1/2 and |d;| + |(d;)| — 2|m| = |d;| + |(d;)| —1 > 0 for all j € I, we
deduce that
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Mraox = x) < —3 3 (sl + ()| = 1) < =5 3 (1| = 1), (12)
jel jel

Since the finite subset I of J>! (resp. J5~1) was arbitrary, the PEC for V/\;(Cgl)) implies

that J>! (vesp. J5 1) is summable, proving (2).

(3) We now prove that (J, —|A°],[(x")]) satisfies the PEC for W(A;). Let w € S,
and let I be a finite subset of J containing the support of w. Let o = (0;)jc; € {£1}(/)
with support in I be such that A;o;(d,;)) <0 for all j € I. Consider also the element
T =3 crnje; € T(Cgl)) defined by n; = —[\j 4 0;d, ;)] for all j € I. As before, we
deduce from (3.1) that

_ 1
)\(Tzdw 1~X*X):52((”j+/\j+0jdw(j))2*(>‘j+dj)2)
jel

_ % > (</\j +05duis)” — (N + dj)Q)

> (W ~ ldwp 1) — (5] = ld51)?)

=D Il ()] = Hdwii))

jEI

+5 Z ) = 1ds]) (1ds] + [(dj)] = 21A51).

]GI

IN

Since [(d;)| — |d;| = 0 for |d;| < 1/2, while |d;| + [(d;)] — 2|\;| > 0 for |d;| > 1/2, we
deduce that

(Idj)] = 1d;]) (1ds] + [{dj)] = 2I1A;]) <0 forall j €1,
and hence

Mreow™ x =x) < Y Al (di)] = Kdwi)l) = =@ 0O = 16O (43)

jel

As w € Sy = W(A;) was arbitrary, this proves that (J, —|\°[,[(x?)|) satisfies the PEC
for W(A,), yielding (3).

(4) Finally, let I be an arbitrary finite subset of Jy, and consider the element
o= (0;)jes € {£1}Y) with support I. Then

Mox —x) =D Nlojds —dj) = =23 Ny = =2 |\;dy].
jed jEI jEI

Hence . r|\;dj| < —1/2-inf AOW(Cy).x — x) for any finite subset I C J4, proving
(4). This concludes the proof of the proposition. O
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5. Minimal energy sets.

We first characterise the triples (J, A, x) of minimal energy for W, where as before
A= (1,A°0) and x = (0,x", 1) for some tuples A\°, x° € R’. Although, for the purpose
of proving Theorem A, we will only need to describe such triples for the types ASI) and
051), we also provide, for the sake of completeness, explicit descriptions for the other
types.

DEFINITION 5.1.  For a tuple A’ = ()\;)je; € RY with A\° = (\%), we define the
following convex subsets of R7. We set

Crain(\%, A))

:R-1+{(dj)jeJeRJ |Yjed: |d g% and VijeJ: \ <) = dizdj},
where 1 € R” is the constant function 1. We also let Cmin()\O,C’Sl)) denote the set of
(dj)jes € RY satisfying the following four conditions:

(Cl)y Vjed: |\|<1/2 = |d;| <1/2.
(C2) Vjed: |N\|=1/2 = |d;| < 1.

(C3) VjeJ: \d; <O.

(C) Vij e T NI <INl = ()] < I{d).

The following lemma, which contains some observations that will be used in the
sequel, is an easy exercise.

LeEmMMA 5.2.  Let a,b,xz € R.
(1) If —=1/2 < a,b < 1/2, then (a £ b)*> > (|a] — |b])2.
(2) If x| <1/2, then |x| = |(z)|.
(3) If1/2 < |z| <1, then |z| + [{x)] = 1.
(4) If [z = 1, then |z| — [{z)[ > 1.
PROPOSITION 5.3.  Assume that \° = (\°). Then the following are equivalent:
(1) inf AW(CS).x — x) = 0.
(2) x° € Cain (A2, CH).

PROOF. (1)=(2): Assume first that inf A(W(CSI)).X — x) = 0. We have to prove
that x° = (d;);es satisfies the four conditions (C1)—(C4) from Definition 5.1. Since
W(By) C W(C&l)), it follows from Proposition 2.9 that X € Cwin(\°, By), so that
(C3) is satisfied. To check (C1), let j € J be such that |A;| < 1/2 and assume for a
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contradiction that |d;| > 1/2. Fix some € > 0 such that |\;| < 1/2 — €. It then follows
from (4.1) that

Arzo.x = x) < —e(ld;| = 1/2) <0

for some suitable o € {+1}(/) and x € T(CSI)) with support in I := {j}, contradicting
(1). Similarly, to check (C2), let j € J be such that [A\;] = 1/2 and assume for a
contradiction that |d;| > 1. It then follows from (4.2) that

1
AMrzox =x) < =7(Id;| = 1) <0

for some suitable o € {£1}(/) and = € T(C(Jl)) with support in I := {j}, again con-
tradicting (1). Finally, to check (C4), let 4,5 € J with i # j and let w € S be the
transposition exchanging 7 and j. It then follows from (4.3) that

Mreow™ x = x) < Il - ({da)| = Kdw@)]) + 1M1 (ds)| = Kdwz))
= (Ml = D {da) | = 1))

for some suitable o € {£1}(/) and = € T(C‘(,l)) with support in I := {i,j}, yielding the
claim.

(2)=-(1): Assume next that x° € Ciin(\°, C’Sl)). Let @ = T,ow™! € W(C(Jl)), for
some w € S(y), some o = (0;)je;s € {£1}(Y) and some z = djesnie; € T(C.(Jl)). Let
be some finite subset of J containing the supports of x, ¢ and w. It follows from (3.1)
that

A@X-X) =5 > (05 + X+ o3dhug)? = (O + ;)7
> ;jel (O + asdu)” = O + d5)?)
_ ;; (0 + a5tdui))* = O+ d,)?)
> ;; (2] = Kdwn ) = O +d:)?) (Lemma 5.2(1))
= 5 0 (0] = [KagD* =01 = 102) oy ().

On the other hand, the rearrangement inequality (see [MIN16, Lemma 2.2]) and (C4)
imply that

DNl (= [dwiy)| + [(dg)]) = 0.

jel

Hence
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Ay =) > & ;(M (du)])” = (N1 = 14,)?)
:]; —|a;[*) *;'” [{duwi)] + [ds1)
2,; — |d;|*) +]§E‘1|A| (Id;| = [<d;)])
:*; 3 = [d]) (i) + | — 2%

Let now j € I. If |\;| < 1/2, then |d;| < 1/2 by (C1). On the other hand, if |A\;| = 1/2,
then |d;| < 1 by (C2). Hence either |d;| < 1/2, in which case |(d;)| — |d;| = 0, or else
1/2 < |d;| <1 and |)j| = 1/2, in which case

)| + ] — 2] = [{d)] + [ds] 1= 0.
Thus (|(d;)| — |d;]) (|(d;)] + |d;| — 2|A;]) = 0 for all j € I, so that
A@.x —x) > 0.
Since @ € W(C'") was arbitrary, this concludes the proof of the proposition. O

To describe the triples (J, A, x) of minimal energy for W\(Asl)), we could proceed as
in the proof of Proposition 5.3. However, it will be easier to start from the description
provided by [HN14], which we now recall.

By [HN14, Theorem 3.5(i)], the set W.A — X is contained in the cone —C), where

Cy = cone{y € A | A(¥) > 0}.

Conversely, if v € AN Cy, then —y € Ry(ry(N) —A) C cone{w\.)\ — A} because r.,(\) =
A — A(%)y. This shows that cone{W.XA — A} = —C,. In particular, the triple (J, A, x) is
of minimal energy for W if and only if

AH) >0 = ~(x) <0 forallyeA. (5.1)
PROPOSITION 5.4.  Assume that \° = (\°). Then the following are equivalent:
(1) inf AW(AP).x = x) = 0.
(2) x° € Cinin(A0, A1),

PROOF. Set W = 17\/\(145,1)) and let A be the corresponding root system of type
Agl). Note that the coroot of (0,¢; — €x,n) € A is given by (—n,e; — e, 0). By (5.1),
the first statement of the proposition is thus equivalent to the condition

Aj— Ay >n = dj —d < —n  for all distinct j,k € J and n € Z. (5.2)
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Since —1/2 < A\; < 1/2 for all j € J by assumption, condition (5.2) is empty for n > 1.
For n = 0, we get

Aj > A, = dj <dj for all distinct j,k € J. (5.3)
Similarly, for n < —1, we get
d; —di <1 for all distinct j, k € J. (5.4)

In turn, the conditions (5.3) and (5.4) are satisfied if and only if x° € Cpin(\°, Asl)), as
desired. O

We now describe the minimal energy sets for the other types.

DEFINITION 5.5.  Let A° € RY with A’ = (\°). For X ¢ {Bgl),Dgl),Bgz),ng),
BCSQ)}, we denote by Ciin(A°, X) the set of tuples x° € R/ such that inf )\(W\(X).Xfx)
= 0, where A = (1,A°,0) and x = (0,x",1). Note that, in view of Propositions 5.3 and
5.4, this definition is coherent with the corresponding notation for X € {A(Jl)7 Cgl)}.

LEMMA 5.6.  Assume that \° = (\°). Then x" € Cmin(AO,Dgl)) if and only if
X% € Couin(A°, D) and the following conditions hold:

D1) For all distinct j,k € J: —1 <d; —d <1.

( Js J

D2) For all distinct j,k € J: —1 < d; + di < 2.

( J = Gy

D3) For all distinct j, k€ J : dj+dp <1 or \j =\, =—1/2.
J J

PrOOF. The condition (5.1) for the roots of the form v = (0, £(¢; + €x),n) with
Jj # k can be rewritten as

+(A\j+Ap) >n = £(d; +di) < —n for all distinct j,k € Jandn € Z,  (5.5)

so that Cyin(A°, Df,l)) is characterised by the conditions (5.2) and (5.5). For n = 0, the
conditions (5.2) and (5.5) amount to x* € Ciin(A%, D). Since —1/2 < \; < 1/2 for all
j € J by assumption, the condition (5.5) is empty for n > 1, and equivalent to (D2) and
(D3) for n < —1. Finally, the condition (5.2) for n # 0 amounts to (D1). This concludes
the proof of the lemma. O

For an explicit description of the set Ciyin(A°, D), we refer to [MIN16, Remark 5.9].

LEMMA 5.7.  Assume that \° = (\°). Then x° € Cruin(A\°, Bgl)) if and only if one
of the following holds:

(1) \j=—1/2 and 0 <d; <1 forall j € J.
(2) There is some i € J with \; # —1/2, x° € Cruin(A\°, By), and (D1)—(D3) hold.

PrOOF. The condition (5.1) for the roots of the form v = (0, £e;,n) is equivalent
to
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A\ >n = £d; < —n foralljeJandne€Z, (5.6)

so that Cmin(AO,Bgl)) is characterised by the conditions (5.2), (5.5) and (5.6). For
n = 0, these three conditions amount to x° € Cnin(\°, Bs). As we saw in the proof
of Lemma 5.6, the conditions (5.2) and (5.5) for n # 0 are equivalent to the conditions
(D1)~(D3). Finally, since —1/2 < A\; < 1/2 for all j € J by assumption, the condition
(5.6) is empty for n > 1, and, for n < —1, it is equivalent to

|dj] <1 forall jeJ. (5.7)

Assume first that there is some i € J such that \; # —1/2. Then for any j € J the
conditions (D1)—(D3) imply that —1 < d; +d; < 1 and hence that —2 < 2d; < 2, so
that (5.7) holds. Thus, in that case, X € Cppin(\°, B(Jl)) if and only if (2) holds. Assume
next that \; = —1/2 for all j € J. Then x° € Cyin(A\°, By) implies that d; > 0 for all
j € J, while (5.7) implies that d; < 1 for all j € J. Conversely, if (1) holds, then it is
easy to check that x° € Cpnin(\°, By) and that the conditions (D1)—-(D3) and (5.7) hold,
as desired. (]

LEMMA 5.8.  Assume that \° = (\°). Then
Conin(\%, BCY) = Coin(\0,C)  and  Conin(A0,C) = Crain(A%, BV,

Proor. This readily follows from the fact that W(BCSZ)) = W(Cgl)) and
W(BWY) =wc?). O

LEMMA 5.9. Let A = (1,A\°,0) and x = (0,x°,1), and set Ay := (1,A\/2,0) and
= (0,x°/2,1). Then

inf AGV(BS).x — x) = 4-inf Ao (W) xz — xa).
In particular, if \° = (%), then Cunin(A’, BY) = 2 Crin(A0/2,CTV).
PROOF. Let W = ;) x {£1}(/), s0 that W(C}") = W x 7(Q) and W(B) =

W x 7(2Q). Then for any x = > .., nje; € Q, any w € S(y) and any o = (0))jes €
{+1}) ] we get from (3.1) that

jeJ

_ 1
AMrawow™ x =x) =5 ) ((2%‘ + A+ 0jdug)” = (N + dj)2>
jeJ

2 (e o) - (3 4))

jeJ

=4 Aa(meow ™ X2 — x2),
yielding the claim. O

Using Lemmas 3.6, 3.7 and 3.9, we can now restate the results of this section for
general A = (A, A%, \g) and x = (x¢, X°, xa) with A.xa # 0.
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DEFINITION 5.10.  Let A = (Ao, A% Ag) € R x RY x R with A, # 0. For X = X"

or X&z), one of the seven standard types from Section 2.1, we set
C’min (Av X)

0 )\0 /\0
= {X:(XCaXO7Xd>ERXRJ x R )\ch>0 and %—‘r |:A:| Ecmin <<)\>7X>}

THEOREM 5.11.  Let A = (A, A% Ag) € RXRY xR with A # 0, and let X = X'V or
X§2) be one of the seven standard types from Section 2.1. Then for any x = (X, X°, Xa) €
R x R7 x R with xq # 0, the following assertions are equivalent:

(1) inf A\W(X).x — x) = 0.
(2) X € Crin (A, X).

6. Characterisation of the PEC when \ is Z-discrete.

We are now in a position to prove an analogue of Theorem 2.10 for triples (J, A, x).

LEMMA 6.1. Let X € {Agl),Cgl)}. Let X2, x° € RY and (x°)" € (1(J). Set
A= (1,X°0), x = (0,x°1) and X' = (0,(x°)’,0). Then (J,\,x) satisfies the PEC for
WI(X) if and only if (J,\, x + X') satisfies the PEC for W(X).

PROOF. Set W = W(X), and assume that (J, A, x) satisfies the PEC for W. Since
inf)\(W.(x +xX) - (x+x)) > inf)\(W.X - x) + inf)\(W.X’ -x),

the triple (J, A, x + Xx’) then satisfies the PEC for w by Lemma 3.3 and [MN16,
Lemma 5.4]. Replacing x° by x° + (x°)’ and (x°)" by —(x°)’, the converse follows. [

THEOREM 6.2. Assume that \ is Z-discrete and that —1/2 < \; < 1/2 for all
j € J. Then the following are equivalent:

(1) (J, A, x) satisfies the PEC for W(AM).
(2) X° € Cumin(A0, AV)) + 21 ().

PROOF.  (2) = (1): If X° € Crnin (A%, AD) + £1(J), then (J, A, ) satisfies the PEC
for W(Agl)) by Proposition 5.4 and Lemma 6.1.

(1) = (2): Assume now that (J, A, x) satisfies the PEC for W(Af,l)), and let us prove
that, up to substracting from x° some element of ¢*(J), one has x° € C’min()\o,A(Jl)).
Note that, by Lemma 6.1, replacing x° by x° — (x°)" for some (x°)" € ¢}(J) does not
affect the fact that (J, A, x) satisfies the PEC for W(ASI)).

Since (J, A%, x?) satisfies the PEC for W(Ay), it follows from Theorem 2.10 that, up
to substracting from x° some element of ¢1(.J), we may assume that x° € Ciyin(A%, A).
By Proposition 4.1, the set D(J) is bounded, and if 7y, and rya.x respectively denote
the minimal and maximal accumulation points of J, then ryp.x — rmin < 1. Set
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Tmin + T
ro= mm2 maxeR.

Then, up to replacing x° by X' —r -1 € Crnin(\°, A;), we may moreover assume that
r =0, so that

11
; [ ——
[Tmm;rmax] = |: 272:|

Set Jy:={jeJ |d;>1/2} and J_:={jeJ | dj <—1/2}. Then either |rmin|, |[Tmax| <1/2,
in which case Jy and J_ are both finite, or else Tyax — Tmin = 1, in which case

3 (dj_;) =Y (b rma) <00 and Y (_;_dj) = 3 (i —dy) < o0

jegy jegy jeJ_ jeJ_

by Proposition 4.1(3). In all cases, the tuple (x°) = (d});e. defined by

1 . 1
d. = 1. 1
J dj + 5 if dj < *5,
0 otherwise

belongs to ¢1(.J). Note that x — (x°)" € Cinin(AY, A). Indeed, this follows from the fact
that for all 4,5 € J:

di <dj = d;i —d; < dj —d.

Hence, up to replacing x° by x° — (x°)’, we may assume that

11717
X € {‘2» 2} M Cain(A%, A7) € Conin (A0, AD).

This concludes the proof of the theorem. O

THEOREM 6.3.  Assume that \ is Z-discrete and that \° = (\°). Then the following
are equivalent:

(1) (J, A\, x) satisfies the PEC for ]7\)\(051))‘
(2) X° € Cun(A, C5) + £1().

PrOOF. (2)= (1): If \° € Cmin(/\O,CL(Il)) +£%(J), then (J, ), x) satisfies the PEC
for W(Cﬁl)) by Proposition 5.3 and Lemma 6.1.

(1) = (2): Assume now that (J, A, x) satisfies the PEC for )7\/\(0.(,1))7 and let us
prove that, up to substracting from x° some element of £*(.J), the four conditions (C1)-
(C4) from Definition 5.1 are satisfied by x°. Note that, by Lemma 6.1, replacing x° by
XY — (x°) for some (x°)" € £(J) does not affect the fact that (J, A, x) satisfies the PEC
for TW(CD)
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Since (J, —|\°], [(x?)]) satisfies the PEC for W(A ) by Proposition 4.2(3), it follows
from Theorem 2.10 that, up to substracting from y° some element of ¢1(.J), we may
assume that [(x")| € Cmin(—|\°|, A). In other words, we may assume that

Vi,j € J [N < [N = [{di)| < [{d)l,

hence that (C4) is satisfied.
We next claim that the tuple (x°)" = (d});es defined by

1 1

dJ—|<dJ>| 1f|)\]\<§and dj>§,

r_ 1 1

45 =9 d; + |(d;)| if | \j] < 5 and d; < —,
0 otherwise

belongs to ¢*(J). Indeed, this follows from Proposition 4.2(1) and the fact that for
d; > 1/2, one has

5 = M = s = ] = (4= 3 ) + (5~ el <2 (a5 - 3.

while for d; < —1/2, one has

5+ 1l = =5 = ) = (== 5 ) + (5 - leal) <2 (=4, 5).

Note moreover that
(d; — )| = l{d;)] forall j € J,

so that x? — (x")’ still satisfies (C4). Hence, up to replacing x° by x° — (x°)’, we may
assume that y° satisfies (C1) and (C4).
Similarly, we claim that the tuple (x°) = (d})jes defined by

1

d: = . 1
J d; — [(d;)| +1 1f|)\j|:§and d; < —1,

0 otherwise

belongs to £!(.J). Indeed, this follows from Proposition 4.2(2) and the fact that for d; > 1,
one has

|dj + [{dj)] =1 = dj — 1+ [{d;)] < 2(d; — 1),
while for d; < —1, one has

|dj = dj)| +1| = =dj = 1+ [{d;)] < 2(=d; - 1).
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Since moreover
(dj — d)| = [(d;)| forall j € J,

X% — (x°)’ still satisfies (C4). Since clearly x° — (x°)’ also still satisfies (C1), we may
thus assume, up to replacing x° by x° — (x°)’, that x satisfies (C1), (C2) and (C4).
Finally, it follows from Proposition 4.2(4) and the fact that A(J) is finite that

> 1dj| < oo,

JeJ+
where Jy := {j € J | A\jd; > 0}. Hence the tuple (x°) = (d});e. defined by

J - 2d; if A\jd; >0,
J 0 otherwise

belongs to ¢1(.J). Again, as
d; — )| = ;)] for all j € J,

XY — (x°)’ still satisfies (C4). Since clearly x° — (x°)" also still satisfies (C1) and (C2),

we may then assume, up to replacing x° by x" — (x°)’, that x° satisfies (C1), (C2), (C3)

and (C4), and hence that x° € Cpin(\°, CSI)). This concludes the proof of the theorem.
0

PROPOSITION 6.4. Let X be one of the types Bgl), Dsl), 052), and BCS2). Assume
that A is Z-discrete. Then (J, A, x) satisfies the PEC for W(X) if and only if it satisfies
the PEC for W(C'V).

PrOOF. From Section 2.2, we deduce the following inclusions:
WD) c WD) cWBY) = W(eP) cwBe?) =weP).  (6.1)

It is thus sufficient to prove that the PEC for W(Dy)) implies the PEC for W(C&l)).

Let us thus assume that (J, A, x) satisfies the PEC for W(Dgl)). In order to prove
that it also satisfies the PEC for W(C’Sl)), we may assume by Lemma 3.9 that \° = (\°).
Moreover, the above inclusions show that (J, A, x) satisfies the PEC for W(A(Jl)). In
particular, D(J) is bounded by Proposition 4.1(1). Set C' = sup;¢ s |d;|.

Let w € W\(CSI)), which we write as @ = 7,0w™! for some z = >jesniej € Q,
some w € Sy and some o = (0;);c; € {£1}/). Let I C J be the reunion of the
supports of z, w and o. Pick any ig € J \ I, and let 0% denote the element of {:tl}(J)
with support {io}. Then one may choose 2’ € {0,¢;,} C Q and o’ € {1,0%} C {£1}(/)
such that

W = Tpppocwl € W(Dgl)).

Moreover, (3.1) yields that
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N 1
A@x=X) =52 ((nj + X + 0jdu)? — (N + dj)?
2
jel

N 1
> )‘(w/'X - X) - 5 ((1 + |)‘ZO| + |d20|)2 + (|)‘20| + |d10‘)2)
> \Nw'.x — x) — (3/2 4 C)2.
Hence (J, A, x) satisfies the PEC for )7\/\(61(,1))7 as desired. O

PROPOSITION 6.5. Let A = (1,A°,0) and x = (0,x", 1), and set Xy := (1,1°/2,0)
and x2 = (0,x°/2,1). Then (J,\,x) satisfies the PEC for W(BSQ)) if and only if
(J, A2, x2) satisfies the PEC for W(C‘(Il)).

Proor. This readily follows from Lemma 5.9. U

Using Lemmas 3.6, 3.7 and 3.9, we can now restate the results of this section for
general A = (A, A% \g) and x = (e, X°, xa) With Aexq # 0. Recall the definition of the
cone Cpin(X, X) in this setting (Definition 5.10). We denote again by ¢1(.J) the set of
(Xe» X%, xa) € R x RY x R with x. = xq = 0 and x° € £1(J).

THEOREM 6.6. Let A = (A, A%, \g) € R x RY x R with \. # 0 be Z-discrete, and
let X = Xf,n or X&Q) be one of the seven standard types from Section 2.1. Then for any
X = (Xes X%, xa) € R x R7 x R with xq # 0, the following assertions are equivalent:

(1) (J, A, x) satisfies the PEC' for W\(X)
(2) Aexa >0 and x € Cpin(\, X) + £1(J).

Proor. For X = Agl), this follows from Theorem 6.2. For X = CL(II), this follows
from Theorem 6.3. For X € {B(Jl),Dgl),CgQ),BCSQ)}, the implication (1)=-(2) follows
from Theorem 6.3 and Proposition 6.4, together with the fact that Cmin()\,CS})) -
Cmin(A, X) as V/V(X) C W(CL(,D). Conversely, (2)=(1) follows from Lemma 6.1. Sim-
ilarly, for X = Bgz)’ the implication (1)=(2) follows from Theorem 6.3 and Proposi-
tion 6.5, together with Lemma 5.9. Conversely, (2)=-(1) follows from Lemma 6.1. O

PrOOF OF THEOREM A. Since A is Z-discrete by Lemma 3.2, this follows from
Theorem 6.6. 0

7. Positive energy representations of double extensions of Hilbert loop
algebras.

We conclude this paper with a more precise statement of Corollary B. As announced
in the introduction, Corollary B can be deduced from Theorem A by using the main
results of [MIN17]. However, as noted in Remark 2.1, the definition of loop algebras
in this paper and in the paper [MIN17] slightly differ, and we now do the extra work
required to pass from one convention to the other.

Let ¢ be a simple Hilbert-Lie algebra and ¢ € Aut(€) be an automorphism of ¢ of
finite order N,. For N € N we set, as in Remark 2.1,
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Lo n(E) = {g € C*(R,¥) ’ 13 (t + 3\7;) = (&) Yt € R} .

The convention in the present paper is thus to take N = N, while the convention in
[MIN17] is to take N = 1. Let tg be a maximal abelian subalgebra of €7, and for a weight
v € i}, consider as in the introduction the double extension

LY (1) = (R @up, Lon(8) x5, R

of L, n(£), with Cartan subalgebra t§ := R & ty & R. We respectively denote by A C
GL(#(t§)*) and Ag, C i(t5)* the Weyl group and root system of

g =LYy, (t)

with respect to t§.
Let ¢ = (4,0,0) € it§ and d = (0,0, —i) € it§. Recall from Remark 2.1 the identifi-
cation

\A/ﬁ(i) Sats, (z,h,t) = ze+ h +td,

as well as its extension V =5 i’%. Since we are now working in i’% instead of ‘7, we
will write to avoid any confusion x = [xc, X", xa] for the element y.c + x" + xqd =
(ixe, X°, —ixa) of it§ and A = [\, A%, Ag] for the weight A € i(t§)* with A(c) = A,
Aity = A2 and A(d) = A4

Let v € itf. By [MIN17, Theorem A], one can choose the Cartan subalgebra tg
such that there exists a weight p € it§ and an isomorphism LA:;J(E) = EZT’(E) from
A;’l () to one of the seven (slanted) standard affinisations of £ fixing the common Cartan
subalgebra t§ pointwise. To distinguish between these Cartan subalgebras, we will also
write t§(p) = t§ (resp. t§(¢0) = t5) when t§ is viewed as a subalgebra of Eﬁ’p’l(?) (resp.
L (8)).

On the other hand, by [MN17, Remark 4.3], there is for each N € N and ¢ €
{¢, 1} an isomorphism C g/lN(E) = E(’; n (8) whose C-linear extension to the corresponding
complexifications restricts to the isomorphism

~ t
it — i, [z, h,t] — [Nz,h, N] .

Here we use the same notation for the Cartan subalgebras of E;QN(E) and Eg N ().
Let Ny € {1,2} denote the order of ¥, and set @ :== N, /N,. Composing the above
isomorphisms yields an isomorphism

v ~ ZQu+N,
0=L0 N, ()5 LI (7.1)

whose C-linear extension to the corresponding complexifications restricts to the isomor-
phism
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D1 it5(p) S i), [2ht] > [Qz,h, ;] . (7.2)
Note that
Wy = & W2 G C GL(it5 (). (7.3)

Let now A\, = [Ac, A\Y, A\g] € it§(p)* be an integral weight for g with A\, # 0. Let
also v/ € it§(y), and consider as in the introduction the corresponding highest weight
representation

p="Pr,x,: §XRD, — End(L ()\y,)),
where
Z[A,] = R, (a,n) = n+ 1/ (ah).

As in Remark 2.4, we view the character x,, as an element of i’%: by [MN17, Section
7.2 Equation (7.7)] we then get

Xo = [0, (V) — V4 1].
We recall that the representation p is of positive energy if and only if the set
=X (W;'Xso - Xs@)
is bounded from below. By (7.3), we can rewrite this set as
E =\ (W xw — xw)

where

m:=Qu+ Ny, )\w:)\@O‘I’1=[22C,)\O,Q)\d} and Xw:z@(xw):{0,(V’)ﬁ—yﬁ,é].

Set
)\O
A= {LQ)\,O] , and y:= [O,Q((l/')ti 7Vﬁ),1].

In view of Lemma 3.7 and [MIN17, Proposition 7.4], we have in turn that
Ac A0
Q? (Wdﬂ X X) Q2 (Ww~Xm - Xm)7 (7.4)

where V/\Z?) is the (standard) Weyl group of E% w, (8), hence one of the 7 Weyl groups
W(X) for X = X‘(,l) or X = X‘(,Q) described in Section 2.2. Note that

Am = [I,Qi\\o— ] [1 Q</\O—V—Nwﬂ) 0] )\Q {)5,)\0—/\0(1/—&—]\7@@),0



Positive energy representations of Hilbert loop algebras 1517

and

1
Xm = [Oa 62((Vl)ﬁ - Vﬁ) +m, 1] = [07 62((V/)Ii + N@Mu% 1] = Q 10, (V/)Ii + N@Mua a
The following theorem summarises the above discussion.

~

THEOREM 7.1. Letg = o.N, (&) be an arbitrary affinisation of a simple Hilbert—
Lie algebra €. Let ty be a Cartan subalgebra of €¥ such that there is some p € itf and
some standard (or trivial) automorphism ¢ € Aut(¥) for which (7.1) and (7.2) hold. Let
X = XSI) or XSQ) be the type of the root system of the standard affinisation E?p,Nw (t) of
t and set Q := Ny /N,. Finally, let A, = [\, A\, A\g] € i(t§)* be an integral weight for g
with A\c # 0 and let V' € i(t§)*. Set x, := [0, (V') —v*,1]. Then the following assertions
are equivalent:

(1) The highest weight representation px, y.: ¢ X RD,, — End(f()\w)) is of positive

energy.
(2) The set E =\, (WZ~X¢ — Xeo) s bounded from below.
(3) The triple (J, [Ac/Q, A\’ = Ac(v+ Nyp), 0], [0, (V') + Nop, 1/Q]) satisfies the PEC

@ X

for W(X).
4) xo = Xg‘in + xp™ for some minimal energy character Xg‘in, satisfying
inf A, (VV\;.X’;““ - Xg‘in) = {0}, and some summable character x3"™ € £'(.J).

Moreover, inf E = 0 if and only if the triple

<J, [22 A = \o(v + Nyp), o} , [o, (V) + N, é])

is of minimal energy for W(X)

PROOF. The equivalence of (1), (2) and (3), as well as the last statement of the
theorem readily follow from the above discussion. The equivalence of (3) and (4) follows
from Theorem 6.6 and (7.4). Note that [A\./Q, A\’ — A.(v + Nypu), 0] is indeed Z-discrete:
this can be seen as in the proof of Lemma 3.2. More precisely, set \0 = Nj)jes, v =
(v)jes and = (1;)es. The integrality condition on A, implies that

)\w((O,ei — ej,n)v) = Aw((—n — (Vi — Vj)76i - ej,O)) = —(’I’L + v — Vj))\c + A\ — )\j eZ

for infinitely many values of n € Z (see [MIN17, Section 3.4]). Hence \. is rational, say
Ae = m/p for some nonzero integers m, p. Then

i Aj 1
(AC_V’L) _()\C_VJ) EZ—’—EZ

A,
{)\Z—Vj—FZ‘jEJ}

for all 4, j € J, and hence
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is finite. This implies in turn that

)\.
{Q(/\j—uj—quj>+Z‘j€J}

is finite because @ is rational and {y; | j € J} is a finite subset of Q (in fact, p; is of
the form p; = —n;/N for some N € {N,,2N,} and some n; € {0,1,...,N — 1}, see
[MIN17, Section 6]). This yields the claim. O
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