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Abstract. We investigate the time-periodic Stokes equations with non-
homogeneous divergence data in the whole space, the half space, bent half
spaces and bounded domains. The solutions decompose into a well-studied
stationary part and a purely periodic part, for which we establish Lp esti-
mates. For the whole space and the half space case we use a reduction of
the Stokes equations to (n − 1) heat equations. Perturbation and localisa-
tion methods yield the result on bent half spaces and bounded domains. A
one-to-one correspondence between maximal regularity for the initial value
problem and time periodic maximal regularity is proven, providing a short
proof for the maximal regularity of the Stokes operator avoiding the notion of
R-boundedness. The results are applied to a quasilinear model governing the
flow of nematic liquid crystals.

1. Introduction.

For n ≥ 2 and a domain Ω ⊂ Rn we consider the time-periodic Stokes system⎧⎪⎪⎨⎪⎪⎩
∂tu−Δu+∇p= f in R× Ω,

divu= g in R× Ω,

u= 0 on R× ∂Ω,

u(t+ T, ·) = u(t, ·).
(1)

Here, T > 0 is the length of one period, and the forcing term f and the function g are

also assumed to fulfill the periodicity condition. We are interested in the following types

of domains Ω ⊂ Rn:

• the whole space Rn,

• the (upper) half space Rn
+ := {x = (x′, xn) ∈ Rn : xn > 0},

• a bent half space Rn
ω := {x = (x′, xn) ∈ Rn : xn > ω(x′)}, where the ω : Rn−1 → R

is a Lipschitz function in W2,1
loc(R

n−1) such that the gradient ∇′ω is bounded in

Rn−1, or

• a bounded domain with boundary of class C1,1.
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Our aim is to establish maximal Lp-Lq-regularity estimates for solutions to (1), where

p, q ∈ (1,∞). For the Cauchy problem the maximal Lp regularity estimates have been

studied by many researchers. For example, for the Stokes operator, such estimates are

established by Solonnikov [30] using potential theory, by Giga and Sohr [20] using Dore

and Venni’s theory [11], and by Shibata and Shimizu [29] based on Weis’ theorem [32].

As for maximal Lp regularity estimates in the case of nonzero divergence as in (1), the

reader is referred to the results of Farwig and Sohr [16], Filonov and Shilkin [17] and

Abels [1]. On the other hand, Kyed [22] recently established maximal Lp regularity

estimates for the time-periodic problem on Ω = Rn. In this paper we generalize the

previous results in the following points:

• the results of [1], [17] are extended to the time-periodic problem, and

• the result of [22] is extended to more general domains Ω.

In order to wove in the periodicity condition already on a functional analytic level, we

consider the locally compact abelian group G := T×Rn := R/TZ×Rn. We will fix the

Haar measure μ defined on G by choosing∫
G

f dμ :=
1

T

∫ T

0

∫
Rn

f dx dt, f ∈ C0(G).

Note that the topology and the differentiable structure on G is inherited from R × Rn,

see [22] for details. In particular, we may speak about function spaces like the space of

compactly supported smooth functions C∞0 (G), the Schwartz–Bruhat space S(G) and the

space of tempered distributions S ′(G) [5], [28]. Introducing the time-periodic domains

ΩT := T× Ω

as open subsets of G, we can formulate (1) equivalently as⎧⎨⎩
∂tu−Δu+∇p= f in ΩT ,

divu= g in ΩT ,

u= 0 on ∂ΩT ,

(2)

where we have used the notation ∂ΩT := T × ∂Ω for the spatial boundary of ΩT. One

main advantage of the notion of G is the possibility to introduce a Fourier transform FG,

which constitutes a homeomorphism from S ′(G) to S ′(Ĝ), where Ĝ is the Pontryagin

dual of G.

In analyzing the time-periodic problem it is useful to introduce a time averaging

projection, as is discussed by Galdi and Kyed [19], [22]:

Pf :=
1

T

∫ T

0

f(t, ·) dt = 1T ∗ f, f ∈ C∞0 (ΩT),

where ∗ denotes the convolution on the torus group T and 1T is the constant function 1.

By Young’s inequality we have ‖Pf‖Lp(ΩT) ≤ ‖f‖Lp(ΩT). Here, L
p(ΩT) is the anisotropic

Lebesgue space with exponents p = (p, q) in time and space, respectively; see Section
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2 for details. Clearly, Pf is independent of time and it holds P2 = P. Therefore,

P : Lp(ΩT) → Lp(ΩT) and P⊥ := id − P are continuous projections and thus induce a

decomposition

Lp(ΩT) = Lq(Ω)⊕ Lp
⊥(ΩT),

where Lp
⊥(ΩT) := P⊥Lp(ΩT) and where we have used that Pf is independent of time in

order to identify PLp(ΩT) with Lq(Ω) in virtue of the isometry ‖Pf‖Lq(Ω) = ‖Pf‖Lp(ΩT).

It should be noted that estimating derivatives of Pf and P⊥f in a similar way, we obtain

likewise a decomposition of higher order Sobolev spaces and of solenoidal spaces.

As in [22], we will solve problem (2) by decomposing it into a stationary problem

and a time-dependent problem. That is, by applying P and P⊥ to (2), respectively, the

Stokes problem is decomposed into to the following two problems.

(I) Stationary problem in Lq(Ω)n:⎧⎨⎩
−Δu+∇p= Pf in Ω ,

divu= Pg in Ω ,

u= 0 on ∂Ω .

(3)

The estimates for solutions in the Lq framework are well known; see e.g. [14], [15].

For the convenience of the reader the results are summarized in Section 3. Our major

assumption on Pf here is Pf ∈ Lq(Ω)n for some q ∈ (1,∞). However, in unbounded

domains, the condition Pf ∈ Lq(Ω)n is in general too weak to ensure that the solution

u satisfies div u = Pg even when Pg = 0. Therefore, we often need to replace the

divergence condition by ∇divu = ∇Pg, that is,⎧⎨⎩
−Δu+∇p= Pf in Ω ,

∇divu= ∇Pg in Ω ,

u= 0 on ∂Ω .

(4)

The equation (4) can be solved under mild conditions on given data such as Pf ∈ Lq(Ω)n

and Pg ∈ Ŵ1,q(Ω), q ∈ (1,∞). On the other hand, for example in the application to a

Navier–Stokes type system as is discussed in Section 6, it is sometimes crucial to solve

(3) exactly rather than (4). Therefore, additional conditions on Pf and Pg have to be

imposed in these cases.

(II) Time-dependent problem in Lp
⊥(ΩT)

n:⎧⎨⎩
∂tu−Δu+∇p= P⊥f in ΩT ,

divu= P⊥g in ΩT ,

u= 0 on ∂ΩT .

(5)

The analysis of (5) is the main subject of this paper, and is discussed in Section 4. The

main results are stated in three theorems depending on the type of domains: For the

whole and the half space, this is Theorem 4.6, for bent half spaces Theorem 4.8, for

bounded domains Theorem 4.11.
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As for the time-dependent (periodic) problem (5), we can expect the existence of

solutions which decay at spatial infinity under the mere assumption P⊥f ∈ Lp
⊥(ΩT)

n

even for unbounded domains. This remarkable feature also has an impact on the corre-

sponding initial value problem: it allows us to give a fast and straightforward proof of

the maximal Lp regularity for the Stokes operator on Lq(Ω) without using the notion of

R-boundedness. We discuss this subject in Section 5. In fact, it follows directly from the

abstract theory on the equivalence between maximal Lp regularity (for Cauchy problems)

and time-periodic maximal Lp regularity, to which we contribute also in Section 5. This

abstract theory was firstly established by Arendt and Bu [3] for generators of semigroups

which are invertible. In Theorem 5.1 of this paper we extend their result to possibly

non-invertible generators.

This paper is organized as follows: In Section 2, we introduce basic notation and

definitions. We devote Section 3 to collecting the known results concerning problems

(3) and (4). The treatment of problem (5) is carried out in Section 4. This section is

further divided into Section 4.1, where we introduce a reduction of the Stokes system

to n − 1 heat equations, and Sections 4.2 – 4.4, where we treat the whole space, the

half space, the bent half space and bounded domains, respectively. In Section 5 the

relation between maximal Lp regularity for abstract Cauchy problems and time-periodic

maximal Lp regularity is discussed. Finally, we give an application to the nonlinear

simplified Ericksen–Leslie model governing the dynamics of nematic liquid crystal flows

in Section 6.

2. Preliminaries.

Throughout the paper, T > 0 denotes the time period and T := R/TZ the corre-

sponding torus. The locally compact abelian group G := T×Rn is called periodic whole

space. For a domain Ω ⊂ Rn we introduce ΩT := T× Ω and denote by Cm(ΩT), k ∈ N0,

the space of m-times differentiable functions and by C∞0 (ΩT) the space of smooth and

compactly supported functions in time and space. Furthermore, we introduce the notion

C∞0 (ΩT) := {u|ΩT
| u ∈ C∞0 (G)}. Here, the differentiable structure on ΩT is inherited

from R× Ω.

Let p := (p, q) ∈ (1,∞)2. Then we introduce the anisotropic Lebesgue spaces

Lp(ΩT) := Lp(T; Lq(Ω)) with norm

‖u‖Lp(ΩT) :=

(
1

T

∫ T

0

‖u(t)‖pLq(Ω) dt

)1/p

.

Since the topology and differentiable structure of G is inherited from Rt ×Rn
x and since

we deal with sufficiently smooth domains only, we can also define the anisotropic mixed-

derivative Sobolev spaces

W1,2,p(ΩT) := C∞0 (ΩT)
‖·‖W1,2,p(Ω

T
)
,

‖u‖W1,2,p(ΩT) :=
∑

|α|≤1,|β|≤2

‖∂α
t u‖Lp(ΩT) + ‖∂β

xu‖Lp(ΩT) .
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Note that for domains Ω satisfying the segment condition we have

W1,2,p(ΩT) = {f ∈ Lp(ΩT) | ‖f‖W1,2,p(ΩT) <∞},

where the derivatives which appear in the norm ‖f‖W1,2,p(ΩT) are to be understood

in the sense of distributions. In the context of Stokes and Navier–Stokes equations

on unbounded domains, the concept of homogeneous (mixed-derivative) Sobolev spaces

Ŵ0,1,p(ΩT) appears naturally. Such spaces are defined as

Ŵ0,1,p(ΩT) := C∞0 (ΩT)
‖∇·‖Lp(Ω

T
)

.

The dual space of Ŵ0,1,p′(ΩT), where p′ := (p′, q′) and p′, q′ are the respective Hölder

conjugates, will be denoted by Ŵ0,−1,p(ΩT) := [Ŵ0,1,p′(ΩT)]
∗ and is endowed with the

norm

‖g‖
̂W0,−1,p(ΩT)

:= sup
0 	=ϕ∈C∞0 (ΩT)

[g, ϕ]

‖∇ϕ‖Lp′ (ΩT)

.

A subscript ⊥ always denotes the projected part with respect to the complement projec-

tion P⊥ defined in Section 1. In all cases, we use corresponding notations for function

spaces defined on Ω rather than ΩT, i.e., for function spaces corresponding only to the

space variable x. In particular, we denote homogeneous Sobolev spaces by

Ŵ1,q(Ω) := C∞0 (Ω)
‖∇·‖Lq(Ω)

, and Ŵ2,q(Ω) := C∞0 (Ω)
‖∇2·‖Lq(Ω)

.

We denote the closure of C∞0,σ(Ω) := {u ∈ C∞0 (Ω)n | div u = 0} in the topology of Lq(Ω)n

by Lq
σ(Ω). It is well known that

Lq
σ(Ω) = {u ∈ Lq(Ω)n | div u = 0, n · u|∂Ω = 0}

for sufficiently smooth domains, see e.g. [18, Theorem III.2.3]. Furthermore, we intro-

duce the space Lp
σ(ΩT) := Lp(T; Lq

σ(Ω)).

Fourier variables of time-periodic functions will be denoted by k ∈ (2π/T )Z, where

T > 0 is the time period. Note that with this notation, k is not an integer in general.

Moreover, we introduce the notation (2π/T )Z∗ = (2π/T )Z \ {0}.
Concerning the boundary of the bent half spaces, we have to make certain regularity

and smallness assumptions. Therefore, we give the following definition.

Definition 2.1. Let K > 0. We say that ω ∈ C0,1(Rn−1)∩W2,1
loc(R

n−1) is of type

K1, or K2, respectively, if ‖∇′ω‖∞ < K and if

(K1) n ≥ 2 and ‖∇′2ω‖∞ < K, or

(K2) n ≥ 3 and ‖∇′2ω‖Ln−1,∞(Rn−1) < K.

Remark 2.2. If K > 0 and n ≥ 3, then the condition K2 is fulfilled whenever

‖| · |∇′2ω‖L∞(Rn−1) < K or ‖∇′2ω‖Ln−1(Rn−1) < K.
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3. The stationary problem.

The stationary problem (4) has been solved in [14], [15]. The results can be sum-

marized as follows.

Proposition 3.1. Let n ≥ 2, q ∈ (1,∞) and let Ω = Rn or Ω = Rn
+. Then for

every Pf ∈ Lq(Ω)n, Pg ∈ Ŵ1,q(Ω), there exists a unique solution (u, p) ∈ Ŵ2,q(Ω)n ×
Ŵ1,q(Ω) to (4) satisfying

‖∇2u‖Lq(Ω) + ‖∇p‖Lq(Ω) ≤ c
(‖Pf‖Lq(Ω) + ‖∇Pg‖Lq(Ω)

)
(6)

with c = c(n, q) > 0.

Proposition 3.2. Let n ≥ 3, q ∈ (1, n − 1) and assume furthermore that

ω ∈ C0,1(Rn−1) ∩W2,1
loc(R

n−1) is such that for simplicity ω(0′) = 0. Then there exists

a constant K = K(n, q) > 0 such that if ω is of type K2, then for all Pf ∈ Lq(Rn
ω)

n

and Pg ∈ Ŵ1,q(Rn
ω) there exists a unique solution (u, p) ∈ Ŵ2,q(Rn

ω)
n× Ŵ1,q(Rn

ω) to (4)

satisfying the estimate

‖∇2u‖Lq(Rn
ω) + ‖∇p‖Lq(Rn

ω) ≤ c
(‖Pf‖Lq(Rn

ω) + ‖∇Pg‖Lq(Rn
ω)

)
(7)

with a constant c = c(n, q, ω) > 0.

Remark 3.3. 1. The uniqueness assertions in Proposition 3.1 and Proposition

3.2 are to be understood in the respective homogeneous Sobolev spaces, i.e., only

up to a constant for the pressure p and up to a linear polynomial a + Ax, where

a ∈ Cn and A ∈ Cn,n, for the velocity field u. However, in the half space and in

bent half spaces, more information can be obtained due to the boundary condition.

To be more precise, the velocity field u is

• unique up to a linear term bxn, where b ∈ Cn, if Ω = Rn
+, or, more generally,

• unique up to a linear term Ax, where A ∈ Cn,n and A(x′, ω(x′)) = 0, if

Ω = Rn
ω. In particular, if ω is nonlinear, the velocity field u is unique. If

however ω is a linear transformation, say, ω(x′) = d′T · x′ with d′ ∈ Rn−1,

then u is unique up to a vector field of the form Ax where A = an⊗ (−d′T , 1)
with a column vector an ∈ Cn.

Moreover, for any of the domains, we can employ the Sobolev embedding to solve

(3) exactly if q ∈ (1, n) by singling out a special divergence data with Pg ∈ Lq∗(Ω)

and a special solution with ∇u ∈ Lq∗(Ω), where q∗ := nq/(n− q) is the Sobolev

index corresponding to q.

2. In [14], Proposition 3.2 is not stated with condition K2, but with the conditions

from Remark 2.2. However, revising the proof, a simple calculation as in (26) below

shows that is suffices to assume K2.

Note that we assume condition K2 in Proposition 3.2. In particular we are restricted to

n ≥ 3 and q ∈ (1, n− 1). However, the problem
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λu−Δu+∇p= Pf in Rn

ω ,

divu= Pg in Rn
ω ,

u= 0 on ∂Rn
ω ,

(8)

has been solved by [15] for large resolvent parameters |λ| under the assumption K1, and

therefore they could prove the following on bounded domains, see also [6] in the case

n = 3 and [31] in the case n = 2, 3.

Proposition 3.4. Let n ≥ 2, q ∈ (1,∞) and let Ω be a bounded domain with

a C1,1-boundary. Then for every Pf ∈ Lq(Ω)n, Pg ∈ Ŵ1,q(Ω), there exists a unique

solution (u, p) ∈W2,q(Ω)n × Ŵ1,q(Ω) to (3) satisfying

‖u‖W2,q(Ω) + ‖∇p‖Lq(Ω) ≤ c
(‖Pf‖Lq(Ω) + ‖∇Pg‖Lq(Ω)

)
(9)

with c = c(n, q,Ω) > 0.

4. The time-periodic problem.

4.1. Reduction of the Stokes system.

In this section we recall the result of [27], which provides a reduction for the Stokes

system based on the isomorphism to the space of solenoidal vector fields when the fluid

domain is the whole space or has a graph boundary. Here, let us assume that Ω = Rn or

Ω = Rn
+ and introduce the linear operators W : Lq(Ω)n → Lq(Ω)n−1 and V = (V ′, Vn) :

Lq(Ω)n−1 → Lq(Ω)n as

Wu = u′ + Sun ,

V ′w = w + SUS · w , Vnw = −US · w ,
(10)

with

Sf = ∇′(−Δ′)−1/2f ,

Ug = (−Δ′)1/2
∫ xn

−∞
e−(xn−yn)(−Δ′)1/2g(x′, yn) dyn ,

(11)

where we extend g by zero to the whole space in the case Ω = Rn
+. Since S is a singular

integral operator it is classical that S is bounded in Lq for q ∈ (1,∞) and hence:

‖Sf‖Lq(Rn−1) ≤ C‖f‖Lq(Rn−1). (12)

Moreover, we rewrite Ug = F−1
Rn mFRng with the homogeneous multiplier m(ξ) :=

cn(|ξ′|/(iξn + |ξ′|)), and obtain by standard Fourier multiplier theory the estimate

‖Ug‖Lq(Rn) ≤ C‖g‖Lq(Rn). In the half space case it holds

‖Ug‖Lq(Rn
+) ≤ C‖g‖Lq(Rn

+) , (13)

since Ug vanishes on the lower half space if g vanishes on the lower half space. In

particular, (12) and (13) imply the boundedness ofW and V in Lq(Ω). The key properties
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of W and V are stated as follows.

Lemma 4.1 ([27]). Let Ω = Rn or Ω = Rn
+. Then the following statements hold.

(i) The operator W satisfies

{∇p ∈ Lq(Ω)n | p ∈ Lq
loc(Ω) , Δp = 0 in Ω} ⊂ KerLq (W ) ,

where KerLq (W ) = {f ∈ Lq(Ω)n | Wf = 0}.
(ii) RanLq (V ) = Lq

σ(Ω).

(iii) WV = I on Lq(Ω)n−1 and VW = I on Lq
σ(Ω). In particular, the restriction

W |Lq
σ
: Lq

σ(Ω)→ Lq(Ω)n−1 is an isomorphism and its inverse is given by V . Moreover,

for any m ∈ N the map W |Lq
σ
: Wm,q(Ω)n ∩ Lq

σ(Ω) → Wm,q(Ω)n−1 is an isomorphism

with its inverse V , and there are positive constants C and C ′ such that

C ′‖∇mWu‖Lq(Ω) ≤ ‖∇mu‖Lq(Ω) ≤ C‖∇mWu‖Lq(Ω) (14)

for any u ∈Wm,q(Ω)n ∩ Lq
σ(Ω).

Remark 4.2. Although the properties of W in the solenoidal Sobolev space

Wm,q(Ω)n ∩ Lq
σ(Ω) and (14) are not explicitly stated in [27], these are easily obtained

from the results in Lq
σ(Ω) and the definitions in (10) and (11).

Moreover, it is clear that the results transfer to the time-dependent case, if we replace

Lq(Ω) by Lp(ΩT) and similarly for Sobolev and solenoidal spaces.

4.2. The whole space and the half space.

In this section we consider (5) in ΩT = G or ΩT = T × Rn
+. We start with two

preparational lemmata, dealing with the problems{
Δug = g in ΩT ,

∂nug = 0 on ∂ΩT ,
(15)

and {
∂tw −Δw= h in ΩT ,

w= 0 on ∂ΩT .
(16)

It should be understood that the boundary conditions are omitted in the whole space

case ΩT = G.

Lemma 4.3. Let p ∈ (1,∞)2 and assume g ∈ Ŵ0,−1,p
⊥ (ΩT). Then there is a unique

ug ∈ Ŵ0,1,p
⊥ (ΩT) solving (15) in a weak sense, and there is c > 0 such that

‖∇ug‖Lp(ΩT) ≤ c‖g‖
̂W0,−1,p(ΩT)

. (17)

Moreover, if m ∈ {0, 1} and g ∈W0,m,p
⊥ (ΩT) in addition, then ∇ug ∈W0,1+m,p

⊥ (ΩT) and

‖∇2+mug‖Lp(ΩT) ≤ C‖∇mg‖Lp(ΩT) . (18)
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Proof. By [15], there is for almost all times t ∈ T a unique solution ug(t, ·) ∈
Ŵ1,q(Rn) in the weak sense to

Δug(t, ·) = g(t, ·) in Rn ,

with a corresponding a priori estimate. Integrating over time yields the result for ΩT =

G. In the half space case, the result follows easily via a reflection argument. The

additional regularity follows by the uniqueness assertion when solving (15) with ug and

g replaced by ∂iug and ∂ig, respectively. �

Lemma 4.4. Let p ∈ (1,∞)2 and h ∈ Lp
⊥(ΩT)

n. Then there exists a unique

solution w ∈W1,2,p
⊥ (ΩT)

n to (16), and the following estimate holds :

‖w, ∂tw,∇2w‖Lp(ΩT) ≤ c‖h‖Lp(ΩT) . (19)

If additionally h ∈ Ls
⊥(ΩT)

n for some s ∈ (1,∞)2, then w ∈W1,2,s
⊥ (ΩT)

n.

Proof. Assume first ΩT = G. Note that it suffices to assume h ∈ P⊥S(G).

Therefore, an application of the Fourier transform yields the representation formula w :=

F−1
G mFGh ∈ P⊥S ′(G), where

m(k, ξ) :=

⎧⎨⎩0, if k = 0,
1

ik + |ξ|2 , k ∈ 2π

T
Z∗.

In [22], the symbols m, ik ·m and (iξ)α ·m, |α| ≤ 2, have been shown to be Lp multipliers

for p = (p, p). However, since the proof in [22] rests on the Marcinkiewicz multiplier

theorem, it follows by the work of Besov [4] that the general case p ∈ (1,∞)2 is covered

as well. Consequently w ∈W1,2,p
⊥ (G) and

‖w, ∂tw,∇2w‖Lp(Rn) ≤ c‖h‖Lp(G).

Since we have an explicit representation formula for w in terms of an everywhere defined

multiplier, we obtain uniqueness on the level of tempered distributions. This observation

also implies the additional regularity assertion.

In the case ΩT = T × Rn
+, the reflection principle immediately yields existence and

the a priori estimate. For the uniqueness, let w ∈W1,2,p
⊥ (ΩT) be a solution to (16) with

data f = 0 and let h ∈ Lp′
⊥ (ΩT) be arbitrary. Then due to the existence part we find

v ∈W1,2,p′
⊥ (ΩT) such that ∂tv −Δv = h and v|∂Rn

+
= 0. Defining ṽ(t, x) := v(−t, x), we

conclude

〈w, h〉L2(ΩT) = −〈w, ∂tṽ +Δṽ〉L2(ΩT) = 〈∂tw −Δw, ṽ〉L2(ΩT) = 0,

and hence w = 0. The regularity assertion follows now by the reflection principle and

the uniqueness in the whole space. The proof is complete. �

In order to formulate our main theorem of this section, we introduce the space
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Y p
⊥ (ΩT) := {(f, g) ∈ Lp

⊥(ΩT)
n × Ŵ0,1,p

⊥ (ΩT) | ∂tg ∈ Ŵ0,−1,p
⊥ (ΩT)},

‖(f, g)‖Y p
⊥ (ΩT) := ‖f‖Lp(ΩT) + ‖∇g‖Lp(ΩT) + ‖∂tg‖̂W0,−1,p(ΩT)

.
(20)

Remark 4.5. The assumption ∂tg ∈ Ŵ0,−1,p
⊥ (ΩT) and the Poincaré inequality

with respect to the time variable imply that g ∈ Ŵ0,−1,p
⊥ (ΩT). Hence, together with the

condition ∇g ∈ Lp
⊥(ΩT)

n we have g ∈ Lp
⊥(ΩT).

Theorem 4.6. Let p ∈ (1,∞)2 and (P⊥f,P⊥g) ∈ Y p
⊥ (ΩT). Then there exists

a unique solution (u, p) ∈ W1,2,p
⊥ (ΩT)

n × Ŵ0,1,p
⊥ (ΩT) to (5) on ΩT, and the following

estimate holds.

‖u, ∂tu,∇2u,∇p‖Lp(ΩT) ≤ c‖(P⊥f,P⊥g)‖Y p
⊥ (ΩT) . (21)

If additionally (P⊥f,P⊥g) ∈ Y s
⊥(ΩT)

n for some s ∈ (1,∞)2, then (u, p) ∈W1,2,s
⊥ (ΩT)

n×
Ŵ0,1,s
⊥ (ΩT).

Proof. Let ug be the solution to (15) obtained in Lemma 4.3. From the as-

sumptions on P⊥g we can infer ∇′ug ∈ W1,2,p
⊥ (ΩT)

n−1, where we have written ∇′
for the gradient with respect to the first n − 1 space variables. Set v = V w̃. Here,

V : Lp(Ω)n−1 → Lp
σ(Ω) is the isomorphism in Lemma 4.1 and w̃ := (w −∇′ug) with w

being the solution to (16) with right-hand side h = WPP⊥f +(∂t−Δ)∇′ug ∈ Lp(Ω)n−1,

where P : Lq(Ω)n → Lq
σ(Ω) is the Helmholtz projection. Note that for ΩT = G, w̃ is

simply the solution to (16) with right-hand side h = WPP⊥f , while in the half space

case this is not true due to possibly non-trivial boundary values of ∇′ug.

Let ∇pv be the pressure field defined as ∇pv = QΔv with Q := id − P. Then,

arguing as in [27], we can check that (v,∇pv) solves⎧⎨⎩
∂tv −Δv +∇pv = PP⊥f in ΩT ,

div v = 0 in ΩT ,

v = −∇ug on ∂ΩT .

(22)

For the convenience of the reader we give a sketch of the proof here.

Clearly w ∈ W1,2,p
⊥ (ΩT)

n−1 by Lemma 4.4, whence w̃ ∈ W1,2,p
⊥ (ΩT)

n−1 and so

v = V w̃ ∈ W1,2,p
σ,⊥ (ΩT) as well as w̃ = Wv by Lemma 4.1. Moreover, since w solves

∂tw−Δw = WPP⊥f+(∂t−Δ)∇′ug in ΩT we see that v solves ∂tv−VΔWv = VWPP⊥f
in ΩT, while

VΔWv = VWΔv = VWPΔv,

for W commutes with Δ by its definition and QΔv is the harmonic pressure and therefore

WQΔv = 0 by Lemma 4.1. Since VW = id on Lp
σ(Ω) we finally observe that ∂tv−Δv+

∇pv = PP⊥f in ΩT for ∇pv = QΔv. It is straightforward from the definition of V

that v′ = w̃ on ∂Ω, which yields v′ = −∇′ug on ∂Ω by the Dirichlet condition of w.

Moreover, on the one hand ∂nug = 0 on ∂Ω, since ug solves (15), and on the other hand

vn = v · n = 0 on ∂Ω since v ∈ Lp
σ(ΩT). Therefore v = −∇ug on ∂Ω. That is, (v,∇pv)

solves indeed (22).
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Furthermore, we have the estimates ‖∇pv‖Lp(ΩT) ≤ c‖∇2v‖Lp(ΩT) and

‖v, ∂tv,∇2v‖Lp(ΩT) ≤ c‖w̃, ∂tw̃,∇2w̃‖Lp(ΩT)

≤ c‖WPP⊥f + (∂t −Δ)∇′ug‖Lp(ΩT)

≤ v
(‖P⊥f‖Lp(ΩT) + ‖∇′P⊥g‖Lp(ΩT) + ‖∂tP⊥g‖̂W0,−1,p(ΩT)

)
.

Here we have used Lemma 4.1 and Lemma 4.4. Now we define (u,∇p) as

u = ∇ug + v ,

∇p = ∇pv +QP⊥f +∇∂tug −∇P⊥g ,

which satisfies (5) on ΩT with the a priori estimate (21).

Next we show the uniqueness. Let (u, p) ∈W 1,2,p
⊥ (ΩT)

n × Ŵ0,1,p
⊥ (ΩT) be a solution

with homogeneous data (P⊥f,P⊥g) = (0, 0). Then in particular u ∈ Lp
σ(ΩT) and by

applying the Helmholtz projection, we conclude that Wu = WPu ∈ W 1,2,p
⊥ (ΩT)

n−1

solves (16) with homogeneous data. Hence, Wu = 0 by Lemma 4.4. Since VW = id on

Lp
σ(ΩT) by Lemma 4.1, it follows u = VWu = 0 and consequently also p = 0.

Similarly, the regularity assertion of Theorem 4.6 follows from the regularity asser-

tion of Lemma 4.4. The proof is complete. �

4.3. The bent half space.

We consider bent periodic half spaces Gω := T×Rn
ω that are merely small perturba-

tions of the half space G+, i.e., if ω is close to the zero function in a certain sense. Given a

Lipschitz continuous function ω : Rn−1 → R, we define the transformation φω : Gω → G+

defined via

φω(t, x) := (t, x̃) := (t, x′, xn − ω(x′)).

For a function u defined on Gω we introduce a function ũ defined on G+ by setting

ũ(t, x̃) := u(φ−1
ω (t, x̃)).

Proposition 4.7. Let p ∈ (1,∞)2, ω ∈ C0,1(Rn−1) ∩W2,1
loc(R

n−1) and K > 0.

For m ∈ {0, 1, 2}, the mapping u �→ ũ is an isomorphism between W0,m,p(Gω) and

W0,m,p(G+) as well as between Ŵ0,1,p(Gω) and Ŵ0,1,p(G+) and between Ŵ0,−1,p(Gω)

and Ŵ0,−1,p(G+), if ω is either of type K1 or of type K2 when q ∈ (1, n− 1).

Proof. It is readily seen that φω : Gω → G+ is a bijection with Jacobian equal to

1. If we denote by ∂̃i, ∇̃ and similar expressions the corresponding differential operators

with respect to the variable x̃ ∈ G+, then using ∂nω = 0 we see

∂iu(x) =
(
∂̃i − (∂iω)∂̃n

)
ũ(x̃),

∂i∂ju(x) =
(
∂̃i∂̃j − (∂iω)∂̃j ∂̃n − (∂jω)∂̃i∂̃n − (∂i∂jω)∂̃n

+ (∂iω)(∂jω)∂̃
2
n

)
ũ(x̃).

(23)

Hence, there is C = C(n) > 0 such that
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‖u‖Lp(Gω) = ‖ũ‖Lp(G+) ,

‖∇u‖Lp(Gω) ≤ C(1 + ‖∇′ω‖∞)‖∇̃ũ‖Lp(G+) ,
(24)

and

‖∇2u‖Lp(Gω) ≤ C(1 + ‖∇′ω‖∞)2‖∇̃2ũ‖Lp(G+)

+ C‖(∇′2ω)∂̃nũ‖Lp(G+) . (25)

From (24) it follows immediately that the mapping u → ũ is an isomorphism be-

tween W0,m,p(Gω) and W0,m,p(G+) for m ∈ {0, 1} as well as between Ŵ0,1,p(Gω) and

Ŵ0,1,p(G+).

In order to deal with the second derivatives, assume first that we are in the case K2.

Then the estimate of the term ‖(∇′2ω)∂̃nũ‖Lp(G+) becomes non-trivial. Assume for now

that ∂nũ is smooth and compactly supported and write ∂nũ(t, ·) = ϕ ∈ C∞0 (Rn
+) for a

fixed but arbitrary t ∈ T. By the generalized Sobolev embedding theorem there exists a

constant c > 0, such that for all x̃n > 0

‖ϕ(·, x̃n)‖Ls,q(Rn−1) ≤ c‖∇̃′ϕ(·, x̃n)‖Lq(Rn−1),

where s > q is defined via 1/(n− 1)+1/s = 1/q. Therefore, we obtain by the generalized

Hölder inequality

‖(∇′2ω)ϕ‖qLq(Rn
+) ≤ c

∫ ∞

0

∫
Rn−1

|∇′2ω|q|ϕ(·, x̃n)|q dx′ dx̃n

≤ c‖∇′2ω‖qLn−1,∞(Rn−1)

∫ ∞

0

‖ϕ(·, x̃n)‖qLs,q(Rn−1) dx̃n

≤ cKq‖∇̃′ϕ‖qLq(Rn
+). (26)

Hence, integrating over time, we obtain

‖(∇′2ω)∂nũ‖Lp(G+) ≤ cK‖∇̃′∂nũ‖Lp(G+) ≤ cK‖∇2ũ‖Lp(G+). (27)

If ω is of type K1, we can immediately estimate

‖(∇′2ω)∂nũ‖Lp(G+) ≤ K‖∇ũ‖Lp(G+) ≤ K‖ũ‖W0,2,p(G+). (28)

Collecting (24), (27) and (28), the mapping u → ũ is also an isomorphism between

W 0,2,p(Gω) and W 0,2,p(G+).

Moreover, let F ∈ Ŵ0,−1,p(Gω) and define F̃ via [F̃ , ϕ̃] := [F,ϕ] for all ϕ̃ ∈
Ŵ0,1,p(G+). Then using (24), we get

c−1‖F̃‖
̂W−1,p(G+)

= c−1 sup
0 	=ϕ̃∈̂W1,p(G+)

|[F̃ , ϕ̃]|
‖∇ϕ̃‖Lp(G+)

≤ sup
0	=ϕ∈̂W1,p(Gω)

|[F,ϕ]|
‖∇ϕ‖Lp(Gω)

= ‖F‖
̂W−1,p(Gω)

, (29)
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where c = c(n, ω) > 0. �

We can now give the main theorem of this section, namely that there is a unique

solution to the Stokes resolvent problem on the bent periodic half space, given that the

bending is small in some sense. The space Y p
⊥ (Gω) has been introduced in (20).

Theorem 4.8. Let p ∈ (1,∞)2 and ω ∈ C0,1(Rn−1)∩W2,1
loc(R

n−1). Then there is

a constant K = K(n, q) > 0 with the following property :

If

• ω is either of type K1 or of type K2 when q ∈ (1, n− 1), and if

• (P⊥f,P⊥g) ∈ Y p
⊥ (Gω),

then there exists a unique solution (u, p) ∈W1,2,p
⊥ (Gω)

n×Ŵ0,1,p
⊥ (Gω) to the problem (5)

on Gω. This solution satisfies the a priori estimate

‖u, ∂tu,∇2u,∇p‖Lp(Gω) ≤ c‖(P⊥f,P⊥g)‖Y p
⊥ (Gω), (30)

where c = c(n,p, ω) > 0 is a constant. If additionally (P⊥f,P⊥g) ∈ Y s
⊥(Gω) for some

s ∈ (1,∞)2 and if K ≤ min{K(n, q),K(n, s)}, then (u, p) ∈W1,2,s
⊥ (Gω)

n × Ŵ0,1,s
⊥ (Gω).

Proof. Our perturbation argument will be carried out on certain suitable Banach

spaces. Namely, for ΩT = G+ and ΩT = Gω we introduce

Xp
⊥(ΩT) :=

(
W 1,2,p
⊥ (ΩT) ∩W 0,1,p

0,⊥ (ΩT)
)n

× Ŵ0,1,p
⊥ (ΩT), (31)

and equip them with the norms

‖u, p‖Xp
⊥(ΩT) := ‖u, ∂tu,∇2u,∇p‖Lp(ΩT).

Define operators Sp : Xp
⊥(Gω)→ Y p

⊥ (Gω) and S̃p : X̃p
⊥(G+)→ Ỹ p

⊥ (G+) via

Sp(u, p) :=

(
∂tu−Δu+∇p

−div u
)
, (32)

and a similar expression for S̃p. Observe that S̃q : X̃p
⊥(G+)→ Ỹ p

⊥ (G+) is an isomorphism

due to Theorem 4.6. In virtue of (23) we obtain

Sp(u, p) ◦ φ−1
ω = S̃p(ũ, p̃) + R̃p(ũ, p̃), (33)

where the remainder R̃p is given by

R̃p(ũ, p̃) :=

(−|∇′ω|2∂̃2
nũ+ 2(0,∇′ω) · ∇̃∂̃nũ+ (Δ′ω)∂̃nũ− (0,∇′ω)∂̃np̃

(0,∇′ω) · ∂̃nũ
)
.

It is our goal to show that R̃p : X̃p
⊥(G+) → Ỹ p

⊥ (G+) is relatively small with respect to

S̃p in the operator norm. Note that we can estimate the Ỹ p
⊥ -norm of R̃p(ũ, p̃) by
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‖R̃p(ũ, p̃)‖Ỹ p
⊥ (G+) ≤ 4K(1 +K)‖∇̃2ũ‖Lp(G+) +K‖∂̃np̃‖Lp(G+)

+ ‖(Δ′2ω)∂̃nũ‖Lp(G+) +K‖∂t∂̃nũ‖̂W0,−1,p(G+)
. (34)

The third term is estimated by ‖(Δ′2ω)∂̃nũ‖Lp(G+) ≤ cK‖ũ‖W0,2,p(G+) in virtue of (27).

Taking into account the trivial estimate

‖∂t∂̃nũ‖̂W0,−1,p(G+)
≤ ‖∂tũ‖Lp(G+), (35)

it finally follows from (34), (35) and Ehrling’s lemma

‖R̃p(ũ, p̃)‖Ỹ p
⊥ (G+) ≤ CK(1 +K)‖ũ, ∂tũ, ∇̃2ũ, ∇̃p̃‖Lp(G+)

≤ CK(1 +K)|||S̃−1
p |||‖S̃p(ũ, p̃)‖Ỹ p

⊥ (G+),

where C = C(n,p, ω) > 0. Hence, if we choose K > 0 sufficiently small, then S̃p + R̃p :

X̃p
⊥(G+) → Ỹ p

⊥ (G+) is an isomorphism and so is Sp : Xp
⊥(Gω) → Y p

⊥ (Gω) by (33) and

Proposition 4.7. In particular, we have the a priori estimate (30). As for the regularity

assertion, it suffices to apply the above argument to the spaces Xp
⊥ ∩Xs

⊥ and Y p
⊥ ∩ Y s

⊥
instead of Xp

⊥ and Y p
⊥ , which gives the existence of the solution (us, ps) in Xp

⊥ ∩ Xs
⊥.

Then the uniqueness in Xp
⊥ implies (u, p) = (us, ps). The proof is complete. �

4.4. Bounded domains.

For the study of bounded domains ΩT = T × Ω, we consider again the operator

Sp : Xp
⊥(ΩT)→ Y p

⊥ (ΩT) given by (32), where Xp
⊥(ΩT) and Y p

⊥ (ΩT) are defined as in (31)

and (20), respectively.

Lemma 4.9. Let Ω ⊂ Rn be a bounded domain with boundary of class C1,1 and

p ∈ (1,∞)2. The operator Sp : Xp
⊥(ΩT) → Y p

⊥ (ΩT) is injective and has a dense range.

Moreover, there exists a constant c = c(n,p,Ω) > 0 such that for (u, p) ∈ Xp
⊥(ΩT) and

(f,−g) := Sp(u, p) it holds the estimate

‖u, ∂tu,∇2u,∇p‖Lp(ΩT)

≤ c(‖(f, g)‖Y p
⊥ (ΩT) + ‖u‖Lp(ΩT) + ‖∂tu‖[W0,1,p′ (ΩT)]′). (36)

Proof. For k ∈ (2π/T )Z∗, we denote by f̂(k) the k-th Fourier mode of a T -time-

periodic function f with respect to the time variable, i.e.,

f̂(k) =
1

T

∫ T

0

f(t)e−ikt dt . (37)

If (u, p) ∈ Xp
⊥(ΩT) satisfies Sp(u, p) = (0, 0) then (û(k), p̂(k)) ∈ (

W2,q(Ω)∩W1,q
0 (Ω)

)n×
Ŵ1,q(Ω) solves ⎧⎨⎩

ikû(k)−Δû(k) +∇p̂(k) = f̂(k) in Ω ,

div û(k) = ĝ(k) in Ω ,

û(k) = 0 on ∂Ω ,

(38)
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with (f̂(k), ĝ(k)) = (0, 0). By [15, Theorem 1.2] we have (û(k), p̂(k)) = (0, 0). Since

k ∈ (2π/T )Z∗ was arbitrary and since (û(0), p̂(0)) = (0, 0) by the assumption (u, p) ∈
Xp
⊥(ΩT), it follows (u, p) = (0, 0). Therefore, Sp is injective.

Next we show that the range of Sp is dense in Y p
⊥ (ΩT). To this end introduce the

notation

fm(t) = Fm ∗ f(t) , (39)

where Fm is the m-th Fejér kernel with period T . By the vector valued Fejér theorem,

see e.g. [2, Theorem 4.2.19], the trigonometric polynomials (fm, gm) converge to (f, g) in

Y p
⊥ (ΩT) for any (f, g) ∈ Y p

⊥ (ΩT). On the other hand, it is known [15, Theorem 1.2] that

(38) is uniquely solvable in
(
W2,q(Ω) ∩W1,q

0 (Ω)
)n × Ŵ1,q(Ω) for a given (f̂(k), ĝ(k)) ∈

Lq(Ω)n × (
Ŵ1,q(Ω) ∩ Ŵ−1,q(Ω)

)
. Hence, trigonometric polynomials belong to the range

of Sp, which implies that the range of Sp is dense in Y p
⊥ (ΩT).

Finally let us prove (36). The proof follows a well-known localisation method. We

choose finitely many balls Bj ⊂ Rn, j ∈ {1, . . . ,m}, where (after a possible rotation and

translation that we will suppress in the following) each j ∈ {1 . . . ,m} is of one of the two
types:

• type Rn: if Bj ⊂ Ω,

• type Rn
ωj
: if Bj ∩ ∂Ω �= ∅.

Moreover, we choose corresponding smooth cut-off functions ψj ∈ C∞0 (Rn) with

suppψj ⊂ Bj and
∑m

j=1 ψj = 1 in Ω. Note that we can choose the balls in such a

way that the boundary graphs ωj fulfill the regularity and smallness assumption in The-

orem 4.8, see [14], [15] for details.

Since (f,−g) = Sp(u, p), we obtain for j ∈ {1, . . . ,m}
∂t(ψju)−Δ(ψju) +∇(ψjp) = fj ,

div (ψju) = gj ,
(40)

where

fj := ψjf − 2(∇ψj)∇u− (Δψj)u+ (∇ψj)p,

gj := ψjg + (∇ψj) · u. (41)

Depending on whether j ∈ {1, . . . ,m} is of type Rn or Rn
ωj
, we interpret these equations

as problems in G or Gωj , respectively.

Assume j ∈ {1, . . . ,m} is of type Rn
ωj
. We can apply Theorem 4.8 to problem (40)

to obtain

‖(ψju, ψj∂tu,∇2(ψju),∇(ψjp)‖Lp(Gωj
) ≤ c‖(fj , gj)‖Y p

⊥ (Gωj
).

By the Poincaré inequality, the definition of fj and gj yields

‖fj‖Lp(ΩT) ≤ C(ψj)(‖f‖Lp(Gωj
) + ‖u‖W0,1,p(Gωj

) + ‖p‖Lp(Gωj
)),

‖∇gj‖Lp(ΩT) ≤ C(ψj)(‖∇g‖Lp(Gωj
) + ‖u‖W0,1,p(Gωj

)).
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We still need to estimate the term ‖∂tgj‖̂W0,−1,p(Gωj
)
. Let v ∈ C∞0 (Gωj ) and define

v0 := v − 1/|B| ∫
B
v dx, where B ⊂ Rn is a ball containing supp∇ψj ∩ Rn

ωj
. As v0 has

vanishing mean in B, the Poincaré inequality yields constants c1, c2 > 0 such that

‖∇(ψjv0)‖Lp′ (ΩT)
≤ c1‖∇v‖Lp′ (Gωj

) ,

‖(∇ψj)v0‖W0,1,p′ (ΩT)
≤ c2‖∇v‖Lp′ (Gωj

) .

Note that

[∂tgj , v] = −[div (ψju), ∂tv] = −[∂tu,∇(ψjv0)] + [∂tu, (∇ψj)v0].

Therefore, we can calculate

‖∂tgj‖̂W0,−1,p(Gωj
)
≤ sup

0	=v∈C∞0 (Gωj
)

|[∂tgj , v]|
‖∇v‖Lp′ (Gωj

)

≤ c1 sup
0	=v∈̂W0,1,p′ (ΩT)

|[∂tu,∇v]|
‖∇v‖Lp′ (ΩT)

+ c2‖∂tu‖[W0,1,p′ (Ω)]′

= c1‖∂tg‖̂W0,−1,p(ΩT)
+ c2‖∂tu‖[W0,1,p′ (Ω)]′ . (42)

Finally, if j ∈ {1, . . . ,m} is of type G, the same calculations can be performed

using the periodic whole space result in Theorem 4.6 instead of the bent periodic half

space result in Theorem 4.8. Summing up the finitely many inequalities obtained for

j ∈ {1, . . . ,m} yields estimate (36) with the additional terms ‖p‖Lp(ΩT) and ‖∇u‖Lp(ΩT)

on the right-hand side. However, since the pressure is defined only up to a constant, we

can assume that the mean of p vanishes. In virtue of the Poincaré inequality and the

existence of the Helmholtz projection we thus have

‖p‖Lp(ΩT) ≤ c‖∇p‖Lp(ΩT) ≤ c‖(f, g)‖Y p
⊥ (ΩT). (43)

Moreover, the term ‖∇u‖Lp(ΩT) can be absorbed by a standard interpolation argument.

The proof is complete. �

Next we show that the last three terms in (36) can be omitted for the case p ∈
[2,∞)2. This will show that Sp : Xp

⊥(ΩT) → Y p
⊥ (ΩT) yields an isomorphism at least

when p ∈ [2,∞)2. The general case p ∈ (1,∞)2 will be proved later in Theorem 4.11 by

a duality argument.

Lemma 4.10. Let p ∈ [2,∞)2. Then, under the assumptions of Lemma 4.9 the

following estimate holds.

‖u, ∂tu,∇2u,∇p‖Lp(ΩT) ≤ c‖(f, g)‖Y p
⊥ (ΩT) . (44)

Proof. Firstly we consider the case p = (2, 2). By [15, Theorem 1.2] the solution

(û(k), p̂(k)) ∈ (
W2,2(Ω) ∩W1,2

0 (Ω)
)n × Ŵ1,2(Ω) to (38) satisfies the estimate

|k|‖û(k)‖L2(Ω) + ‖∇2û(k)‖L2(Ω) + ‖∇p̂(k)‖L2(Ω)
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≤ C
(‖f̂(k)‖L2(Ω) + ‖∇ĝ(k)‖L2(Ω) + |k|‖ĝ(k)‖̂W−1,2(Ω)

)
.

By the Plancherel theorem we obtain (44). Next we consider the case p = (p, q) ∈ [2,∞)2.

First we note that with ∂tu = f +Δu−∇p and (43) it holds for α ∈ (0, 1/2q)

‖∂tu‖[W0,1,p′ (ΩT)]′ ≤ c(‖(f,∇g)‖Y p
⊥ (ΩT) + ‖−Δu‖[W0,1,p′ (ΩT)]′)

≤ c(‖(f,∇g)‖Y p
⊥ (ΩT) + ‖(−Δ)1−αu‖Lp(ΩT)),

and thus we have from (36) by a standard fractional powers argument

‖u, ∂tu,∇2u,∇p‖Lp(ΩT) ≤ c
(‖(f,∇g)‖Y p

⊥ (ΩT) + ‖u‖Lp(ΩT)

)
.

Now we will show (44) by a contradiction argument. If (44) does not hold then we

would find sequences (u�, p�) ⊂ Xp
⊥(ΩT), � ∈ N, such that

‖u�, ∂tu�,∇2u�,∇p�‖Lp(ΩT) = 1, for all � ∈ N,

‖(f�, g�)‖Y p
⊥ (ΩT) → 0 as �→∞,

where (f�,−g�) := Sp(u�, p�). Suppressing the notion of subsequences, we thus have the

weak convergence

u� ⇀ u in W1,2,p
⊥ (ΩT)

n ∩W0,1,p
0 (ΩT).

From (43) we immediately obtain ‖∇p�‖Lp(ΩT) → 0. Using the convergence of f� and g�
we deduce that (u, 0) ∈ Xp

⊥(ΩT) solves⎧⎨⎩
∂tu−Δu= 0 in ΩT ,

∇div u= 0 in ΩT ,

u= 0 on ∂Ω .

By the boundary condition we conclude that even div u = 0 and consequently Sp(u, 0) =

(0, 0). By Lemma 4.9, Sp is injective and consequently u = 0. Since we are on a bounded

domain, the embedding W1,2,p(ΩT) ↪→W1,1,p(ΩT) ↪→↪→ Lp(ΩT) is compact, which yields

the contradiction

1 = lim
�→∞

‖u�, ∂tu�,∇2u�,∇p�‖Lp(ΩT)

≤ lim
�→∞

c(‖(f�, g�)‖Y p
⊥ (ΩT) + ‖u�‖Lp(ΩT)) = 0.

Consequently, estimate (44) has to hold. �

We are now in the position to state the main result for the case of bounded domains.

Theorem 4.11. Let p ∈ (1,∞)2 and (P⊥f,P⊥g) ∈ Y p
⊥ (ΩT). Then there exists

a unique solution (u, p) ∈ W1,2,p
⊥ (ΩT)

n × Ŵ0,1,p
⊥ (ΩT) to (5) on ΩT, and the following

estimate holds.

‖u, ∂tu,∇2u,∇p‖Lp(ΩT) ≤ c‖(P⊥f,P⊥g)‖Y p
⊥ (ΩT). (45)
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If additionally (P⊥f,P⊥g) ∈ Y s
⊥(ΩT) for some s ∈ (1,∞)2, then (u, p) ∈ W 1,2,s

⊥ (ΩT)
n ×

Ŵ0,1,s
⊥ (ΩT).

Proof. Firstly we consider the case p ∈ [2,∞)2. By Lemma 4.9, the operator

Sp : Xp
⊥(ΩT)→ Y p

⊥ (ΩT) is injective and possesses a dense range in Y p
⊥ (ΩT). Lemma 4.10

shows that the range is closed. Hence, Sp is even surjective and therefore an isomorphism.

This completes the proof for p ∈ [2,∞)2.

Next we consider the case p ∈ (1, 2]2. It suffices to show the a priori estimate of the

form (45), for the assertion is then shown by the same argument as in the case p ∈ [2,∞)2.

Let (u, p) ∈ Xp
⊥(ΩT) and set (f,−g) = Sp(u, p). By taking the truncation operator (39)

if necessary, we may assume that all data are smooth in the time variable. We use a

duality argument. For any ϕ ∈ Lp′
⊥ (ΩT) set ϕ̃(t) = ϕ(−t) and set (v, r) = S−1

p′ (−ϕ̃, 0),
which is well-defined since p′ ∈ [2,∞)2. Then ṽ(t) = v(−t) and r̃(t) = r(−t) satisfy

∂tṽ +Δṽ −∇r̃ = ϕ , div ṽ = 0 in ΩT ,

and ṽ(t) = 0 on ∂Ω. By the integration by parts we have

〈∂tu, ϕ〉L2(ΩT) = 〈∂tu, ∂tṽ +Δṽ −∇r̃〉L2(ΩT)

= 〈∂tu−Δu, ∂tṽ〉L2(ΩT) + 〈∂tg, r̃〉L2(ΩT)

= 〈f −∇p, ∂tṽ〉L2(ΩT) + 〈∂tg, r̃〉L2(ΩT)

= 〈f, ∂tṽ〉L2(ΩT) + 〈∂tg, r̃〉L2(ΩT).

The result for the case p′ ∈ [2,∞)2 yields

|〈f, ∂tṽ〉L2(ΩT)| ≤ ‖f‖Lp(ΩT)‖∂tṽ‖Lp′ (ΩT)

≤ c‖f‖Lp(ΩT)‖ϕ‖Lp′ (ΩT)
,

and

|〈∂tg, r̃〉L2(ΩT)| ≤ ‖∂tg‖̂W0,−1,p(ΩT)
‖∇r̃‖Lp′ (ΩT)

≤ c‖∂tg‖̂W0,−1,p(ΩT)
‖ϕ‖Lp′ (ΩT)

.

Hence we have

‖∂tu‖Lp(ΩT) ≤ c(‖f‖Lp(ΩT) + ‖∂tg‖̂W0,−1,p(ΩT)
) . (46)

Then we rewrite the equations Sp(u, p) = (f,−g) as⎧⎨⎩
−Δu(t) +∇p(t) = f(t)− ∂tu(t) in Ω ,

div u(t) = g(t) in Ω ,

u(t) = 0 on ∂Ω

for each t ∈ T. By [15, Theorem 1.2] again, we have

‖u(t),∇2u(t),∇p(t)‖Lq(Ω) ≤ c(‖f(t)‖Lq(Ω) + ‖∂tu(t)‖Lq(Ω) + ‖∇g(t)‖Lq(Ω))
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for each t, which implies (45) by taking the Lp norm in the time variable and taking into

account estimate (46).

The general result for p ∈ (1,∞)2 follows by interpolation of Ls and Lr with s =

(s, 2) and r = (2, r) for suitable s, r ∈ (1,∞).

Since ΩT is bounded, the regularity assertion follows from the existence result for

p = (p, q) and s = (s, t) and the uniqueness result for the exponent r = (r, r) with

r := min{p, q, s, t}. The proof is complete. �

5. The initial-value problem.

In this section, we demonstrate the impact of the time-periodic problem on the initial

value problem by giving a short and direct argument which shows that the Stokes operator

Aq admits maximal Lp regularity on Lq
σ(Ω) for Ω = Rn, Ω = Rn

+ and sufficiently smooth

bounded domains Ω ⊂ Rn. Recall that a generator −A of a C0 semigroup on a Banach

space X is said to admit maximal Lp regularity on (0, T ), if for every f ∈ Lp(0, T ;X)

the unique solution to the abstract Cauchy problem ∂tu + Au = f , u(0) = 0 satisfies

u ∈ Lp(0, T ;D(A))∩W1,p(0, T ;X) := ET (A). Weis’ theorem [32] states that maximal Lp

regularity is equivalent to R-boundedness of the resolvent family {t(it + A)−1 | t ∈ R}.
This characterization has been used extensively to show maximal regularity of various

differential operators, in particular for the Stokes operator Aq : D(Aq) ⊂ Lq
σ(Ω)→ Lq

σ(Ω),

where Aq := −PΔ and D(Aq) := W2,q(Ω)n ∩W1,q
0 (Ω)n ∩ Lq

σ(Ω).

We shall show that the notion of R-boundedness can be avoided completely in the

case of the Stokes operator, by extending the abstract result of Arendt and Bu [3]. For

convenience let us introduce the notion of the abstract maximal Lpregularity for the time-

periodic problem as follows. We say that A admits time-periodic maximal Lp regularity

on (0, T ), if for every f ∈ Lp(0, T ;X) with
∫ T

0
f dt = 0 the abstract time-periodic

problem

∂tu+Au = f in (0, T ) , u(0) = u(T ) (47)

is uniquely solvable in Lp(0, T ;D(A)/KerA)∩W1,p(0, T ;X). We note that, in the above

definition, the condition
∫ T

0
f dt = 0 is added in order to cover the case when A is not

invertible.

Recall the notation i(2π/T )Z∗ := i(2π/T )Z \ {0}. Then we have the following ab-

stract result on the equivalence between maximal Lp regularity and time-periodic maxi-

mal Lp regularity.

Theorem 5.1. Let −A be a generator of C0-semigroup on a Banach space X.

Then the following assertions are equivalent.

(i) The operator A admits maximal Lp regularity on (0, T ) for all T > 0.

(ii) For any T > 0 satisfying i(2π/T )Z∗ ∩ σ(A) = ∅ the operator A admits time-periodic

maximal Lp regularity on (0, T ).

(iii) The operator A admits time-periodic maximal Lp regularity on (0, T1) for some

T1 > 0.

Remark 5.2. The above equivalence is proved in [3, Theorem 5.1] in the case



1422 Y. Maekawa and J. Sauer

of an invertible generator −A. Theorem 5.1 of the present paper seems to be new for

generators which are not necessarily invertible. This case is important for applications

since elliptic operators such as the Laplace operator and the Stokes operators are not

invertible in general if the domain is unbounded.

Proof of Theorem 5.1. We may assume that −A generates a C0-analytic semi-

group on X. In fact, it is well-known that maximal Lp regularity implies the analyticity

of the semigroup, see e.g. [10]. On the other hand, if A admits time-periodic maximal Lp

regularity, then identifying Lp(0, T ;X) with Lp(T;X) and performing a Fourier transform

on the torus T, we obtain ‖F−1
T

ik(ik + A)−1FTf‖Lp(T;X) = ‖∂tu‖Lp(T;X) ≤ c‖f‖Lp(T;X).

Thus, m : (2π/T )Z→ L(X) defined by m(k) = ik(ik + A)−1 is an (operator-valued) Lp

multiplier and hence bounded. In other words, {ik(ik+A)−1 | k ∈ (2π/T )Z∗} is bounded
in L(X), yielding again the analyticity of the semigroup. The assertion (ii) → (iii) is

easy, for −A is the generator of C0-analytic semigroup, and thus, i(2π/T1)Z
∗ ∩σ(A) = ∅

holds for sufficiently small T1 > 0. The result (iii) → (i) follows from [23, Remark 3.2],

where it is applied to the Dirichlet Laplacian. For the convenience of the reader, we give

a proof here. Recall that for analytic semi-groups e−tA on a Banach space X, we have

the following characterization of the trace space at t = 0:

(X,D(A))1−1/p,p =
{
x ∈ X | Ae−tAx ∈ Lp(0, T ;X)

}
=

{
u(0) | u ∈ ET (A)

}
,

see [26, Corollary 1.14, Proposition 6.2]. Let now f ∈ Lp(0, T1;X) and write f =

Pf +P⊥f ∈ X ⊕ Lp
⊥(0, T1;X). By assumption, there is a solution v ∈ ET1(A) on (0, T1)

to ∂tv + Av = P⊥f . The characterization of the trace space shows e−tAv(0) ∈ ET1(A).

Define w ∈ Lp(0, T1;X) via w(t) :=
∫ t

0
e−(t−s)APf ds. Since Pf ∈ X does not depend

on time, it follows that w ∈ ET1
(A). Thus,

u := v + w − e−tAv(0) ∈ ET1
(A)

is a solution to ∂tu + Au = f , u(0) = 0, on (0, T1). Therefore, A admits maximal Lp

regularity on (0, T1), and thus, by [10], on (0, T ) for any T > 0.

Finally we prove (i) → (ii). Let T > 0 be such that i(2π/T )Z∗ ∩ σ(A) = ∅. We note

that there is λ > 0 such that A+ λ+ iμ is invertible on X for any μ ∈ R. In particular

1 ∈ ρ(e−T (A+λ)), see e.g. [12, Corollary IV.3.12]. Therefore [3, Theorem 5.1] implies

that A + λ admits time-periodic maximal Lp regularity on (0, T ). Let f ∈ Lp(0, T ;X)

with
∫ T

0
f dt = 0. By the choice of T , for any k ∈ (2π/T )Z∗, there exist unique solutions

û(k), v̂(k) ∈ D(A) to the problems(
ik +A

)
û(k) = f̂(k) ,

(
ik +A+ λ

)
v̂(k) = f̂(k) ,

respectively. Here, the Fourier modes f̂(k) are defined as in (37), and we will set

û(0) := v̂(0) := 0. Then the Fourier inverses u and v are well-defined at least as X-

valued tempered distributions. By the time-periodic maximal Lp regularity of A+ λ we

immediately obtain v ∈ ET (A). Hence, vm := Fm ∗ v → v in ET (A) by [2, Theorem

4.2.19], where Fm is the m-th Fejér kernel with period T . Using this fact, we shall show

that also um := Fm ∗ u converges in ET (A). For this purpose we observe that
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um(t) = vm(t) + Fm ∗ (u− v)(t)

= vm +
1

m+ 1

m∑
j=1

∑
k∈Mj

(
(ik +A)−1 − (ik +A+ λ)−1

)
f̂(k)eikt

= vm(t)− λ

m+ 1

m∑
j=1

∑
k∈Mj

(ik +A+ λ)−1(ik +A)−1f̂(k)eikt ,

where Mj := {k ∈ (2π/T )Z∗ | |k| ≤ 2πj/T}. Since −A generates an analytic semigroup,

we have the estimate

‖(ik +A+ λ)−1(ik +A)−1f̂(k)‖X ≤ C

|λ+ ik| · |k| ‖f̂(k)‖X

≤ C

k2
‖f‖Lp(0,T ;X) , k ∈ 2π

T
Z∗ .

Therefore, the Fourier series of u − v converges in BC([0, T ];X), and its limit is u − v.

Consequently, the same is true for its arithmetic mean Fm ∗ (u − v). In conclusion,

um = vm + Fm ∗ (u− v)→ u in BC([0, T ];X) as m→∞. Since the problem

∂tw + (A+ λ)w = λu in (0, T ) , w(0) = w(T )

is uniquely solvable in ET (A), and since each Fourier mode of w − (u − v) vanishes,

we finally obtain u := v + w ∈ ET (A). Thus, the function u is a solution to (47) as

desired. If u′ ∈ ET (A) is another solution to (47), then v̂(k) := û(k) − û′(k) solves

(ik + A)v̂(k) = 0 for all k ∈ (2π/T )Z. Hence v̂(0) ∈ KerA and v̂(k) = 0 for k �= 0 due

to i(2π/T )Z∗ ∩ σ(A) = ∅. This shows u = u′ in Lp(0, T ;D(A)/KerA). The proof is

complete. �

In view of the preceding sections, Theorem 5.1 implies the maximal Lp regularity

of the Stokes operator on the whole space, the half space and on sufficiently smooth

bounded domains. We emphasize again that while the result itself is well-known, it is

the simplicity of its proof that is striking.

Corollary 5.3. Let p, q ∈ (1,∞), T > 0 and assume that Ω = Rn, Ω = Rn
+ or

Ω ⊂ Rn is a bounded domain with a C1,1-smooth boundary. Then the Stokes operator Aq

on Lq
σ(Ω) admits maximal Lp regularity on (0, T ).

Proof. It is well-known that −Aq generates an analytic semi-group. By Theorem

4.6 and Theorem 4.11, respectively, Aq admits time-periodic maximal Lp regularity.

Hence, Theorem 5.1 applies. �

6. Nematic liquid crystal flow.

In this section, we apply the linear theory to a time-periodic nonlinear model. Given

an exterior force f = (fu, fd) ∈ Lp(ΩT)
2n, consider the time-periodic problem
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∂tu− νΔu+ u · ∇u+∇p = fu − κ div([∇d]T [∇d]) in ΩT ,

∂td− σΔd+ u · ∇d = fd + σ|∇d|2(d+ d0) in ΩT ,

divu = 0 in ΩT ,

(u, d) = 0 on ∂ΩT ,

(LCD)

where ν, σ, κ > 0, d0 ∈ Rn with |d0| = 1. The domain Ω is assumed to be the whole

space Rn, the half space Rn
+ or a bounded domain of class C1,1. System (LCD) is a

modified version of the so-called simplified Ericksen–Leslie model describing a nematic

liquid crystal flow. Here, the function u denotes the velocity of the flow, p the pressure

and d the deviation of the macroscopic molecular orientation d0. The constants ν, σ and

κ represent viscosity, the competition between kinetic energy and potential energy and

the microscopic elastic relaxation time for the molecular orientation field, respectively.

Note that one usually includes the condition that the molecular orientation is a vector

field of constant norm 1. Since we will allow for general, small time-periodic forces

f ∈ Lp(ΩT)
2n, one cannot expect such a condition to be fulfilled in our case. However,

due to the smallness of the forcing terms, it is always guaranteed that the solution stays in

a neighbourhood of d0. The model itself bases on the continuum theory of liquid crystals

developed by Ericksen and Leslie, see for example the survey article [13], and has been

considered for the first time by [24] and [25]. Studying this model in a time-periodic

setup is of particular physical interest, since most of the forces that drive the system in

real life applications are triggered periodically, be it a mechanical pumping of the fluid

as a whole or an electromagnetic pulsing in order to control the molecular orientation;

see [7] for a comprehensive study of the physics of liquid crystals. In [21], the simplified

Ericksen–Leslie model was treated on bounded domains in a non-periodic setup using

quasilinear theory based upon the maximal Lp-regularity of the Stokes operator. In a

similar manner, with the linear theory developed in the previous sections, we shall prove

the following result in the time-periodic case.

Theorem 6.1. Let n ≥ 2 and suppose that Ω ⊂ Rn is a bounded domain of class

C1,1. Suppose T > 0 and let p = (p, q) ∈ (1,∞)2 satisfy 2/p+ n/q < 1. Then there is

ε > 0 such that for all f = (fu, fd) ∈ Lp(ΩT)
2n with ‖f‖Lp(ΩT) < ε the problem (LCD)

admits a solution

(u, d, p) ∈W1,2,p(ΩT)
2n ×W0,1,p(ΩT).

Moreover, the molecular orientation (d+ d0)/|d+ d0| is well-defined on ΩT.

A particular problem arises in the case of the unbounded domains, where we will

be restricted to dimensions n ≥ 4 due to the regularity loss in the steady-state part.

In order to deal with unbounded domains at all, we use again the projection P to split

Lp(ΩT) = Lq(Ω) ⊕ Lp
⊥(ΩT). Then, we introduce for q ∈ (1,∞) and r ∈ (1, n/2) the

domains

D(Ar,q) := Ŵ2,q(Ω)n ∩ Ŵ2,r(Ω)n ∩ Ŵ
1,nr/(n−r)
0 (Ω)n ∩ Lnr/(n−2r)

σ (Ω) ,

D(Δr,q) := Ŵ2,q(Ω)n ∩ Ŵ2,r(Ω)n ∩ Ŵ
1,nr/(n−r)
0 (Ω)n ∩ Lnr/(n−2r)(Ω)n ,
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Dr,q(Ω) := D(Ar,q)×D(Δr,q) .

Moreover, for s,p ∈ (1,∞)2 we introduce the intersection spaces

Ls,p(ΩT) := Ls(ΩT) ∩ Lp(ΩT),

W1,2,s,p(ΩT) := W1,2,s(ΩT) ∩W1,2,p(ΩT).

Theorem 6.2. Let T > 0 and let s = (s, r), p = (p, q) satisfy s, r ∈ (1,∞),

p, q ∈ (1,∞). Assume furthermore r ≤ n/3 and 2/p+n/q < 1. Then there is ε > 0 such

that for all f = (fu, fd) ∈ Ls,p(ΩT)
2n with ‖f‖Ls,p(ΩT) < ε the problem (LCD) admits a

solution (u, d, p) ∈ L1
loc(ΩT) with ∇p ∈ Ls,p(ΩT)

n and(
u

d

)
= P

(
u

d

)
+ P⊥

(
u

d

)
∈
[
Dr,q(Ω)⊕W1,2,s,p

⊥ (ΩT)
2n
]
.

Moreover, the molecular orientation (d+ d0)/|d+ d0| is well-defined on ΩT.

We need some preparations for the proof. We will use the notation

E := Dr,q(Ω)⊕
⎧⎨⎩
[
W1,2,s,p
⊥ (ΩT)

n ∩W0,1,p
0 (ΩT)

n ∩ Lp
σ(ΩT)

]
×
[
W1,2,s,p
⊥ (ΩT)

n ∩W0,1,p
0 (ΩT)

n
] ⎫⎬⎭ .

Moreover, let us write z := (u, d) ∈ E and

L :=

(
νAr,q 0

0 −σΔr,q

)
.

By Proposition 3.1 and Theorem 4.6 (or Proposition 3.4 and Theorem 4.11 in the case

of a bounded domain) there is a unique solution z̄ = (ū, d̄) ∈ E to the problem

∂tz̄ + Lz̄ =

(
Pfu
fd

)
(48)

with ‖z̄‖E ≤ CM‖f‖Ls,p(ΩT) < CMε. Consider now F : E→ Ls,p(ΩT)
2n defined via

F (z) :=

(
P(u · ∇u+ κdiv ([∇d]T [∇d]))

u · ∇d− σ|∇d|2(d+ d0)

)
.

We shall show that indeed F (E) ⊂ Ls,p(ΩT)
2n.

Lemma 6.3. Under the assumptions of Theorem 6.2 let z = Pz + P⊥z ∈ E. Then

for all α ∈ [nr/(n− 2r),∞] and β ∈ [nr/(n− r),∞] we have

‖Pz‖Lα(Ω) + ‖∇Pz‖Lβ(Ω) ≤ c‖Pz‖Dr,q(Ω), (49)

‖P⊥z‖W0,1,∞(ΩT) ≤ c‖P⊥z‖W1,2,p(ΩT). (50)

Proof. Recall the estimate for Ω = Rn and Ω = Rn
+
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‖v‖L∞(Ω) ≤ c(‖∇v‖Lq(Ω) + ‖v‖Lγ(Ω)), (51)

which holds true if γ ∈ (1,∞) and q ∈ (n,∞), see [18, II.9.7]. Setting v := ∇Pz,
γ := nr/(n− r) and using interpolation, we obtain

‖∇Pz‖Lβ(Ω) ≤ c‖Pz‖Dr,q(Ω), β ∈
[

nr

n− r
,∞

]
. (52)

Another application of (51) with v := Pz and γ := nr/(n− 2r) yields the full estimate

(49). Estimate (50) is well known, see e.g. [9, Lemma 4.4]. �

Lemma 6.4. Under the assumptions of Theorem 6.2 it holds the inclusion F (E) ⊂
Ls,p(ΩT)

2n and there is CL > 0 such that for z ∈ E with ‖z‖E < ρ, ρ ∈ (0, 1] we have

‖F (z)‖Ls,p(ΩT) ≤ CLρ
2. (53)

Proof. We shall show a more precise statement. Assume zi = (ui, di) ∈ E,

i ∈ {1, 2}. Then
‖Pu1 · ∇Pu2‖r ≤ ‖Pu1‖nr/(n−2r)‖∇Pu2‖n/2 ≤ c‖z1‖E‖z2‖E,
‖Pu1 · ∇Pu2‖q ≤ ‖Pu1‖∞‖∇Pu2‖q ≤ c‖z1‖E‖z2‖E,

‖P⊥u1 · ∇Pu2‖s,p ≤ ‖P⊥u1‖s,p‖∇Pu2‖∞ ≤ c‖z1‖E‖z2‖E,
‖Pu1 · ∇P⊥u2‖s,p ≤ ‖Pu1‖∞‖∇P⊥u2‖s,p ≤ c‖z1‖E‖z2‖E,
‖P⊥u1 · ∇P⊥u2‖s,p ≤ ‖P⊥u1‖∞‖∇P⊥u2‖s,p ≤ c‖z1‖E‖z2‖E.

(54)

This shows u ·∇u ∈ Ls,p(ΩT)
n, and similarly u ·∇d ∈ Ls,p(ΩT)

n. For the term |∇d|2(d+
d0) we notice 2q > 2r > nr/(n− r), and hence with (49)

‖|∇d1|2(d2 + d0)‖s,p
≤ (‖∇Pd1‖2r + ‖∇Pd1‖2q + ‖∇P⊥d1‖2s,2p)2(‖z2‖∞ + 1)

≤ c(‖Pz1‖Dr,q(Ω) + ‖∇P⊥d1‖s,p + ‖∇P⊥d1‖∞)2(‖z2‖∞ + 1),

≤ c‖z1‖2E(‖z2‖E + 1).

Finally,

‖div ([∇d1]
T [∇d2])‖Ls,p(ΩT) ≤ ‖∇d1‖L∞(ΩT)‖∇2d2‖Ls,p(ΩT)

+ ‖∇d2‖L∞(ΩT)‖∇2d1‖Ls,p(ΩT)

≤ c‖z1‖E‖z2‖E.

Since all estimates are at least quadratic, this concludes the proof. �

We are now in the position to prove Theorems 6.1 and 6.2.

Proof of Theorems 6.1 and 6.2. Let us concentrate on Theorem 6.2, since the

proof of Theorem 6.1 is similar and in fact easier. We will apply the contraction mapping

principle on the set Bρ ⊂ E,
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Bρ := {z ∈ E : ‖z − z̄‖E ≤ ρ} ,

to the mapping S : E→ E which assigns to y ∈ E the unique solution z = Sy ∈ E to the

problem

∂tz + Lz =

(
Pfu
fd

)
− F (y).

By the linear theory, ‖z − z̄‖E ≤ CM‖F (z)‖Ls,p(ΩT). Due to estimate (53) it holds

S(Bρ) ⊂ Bρ for ρ ∈ (0, [CMCL]
−1).

Similarly, for yi = (ui, di) ∈ Bρ, i ∈ {1, 2}, the term ‖Sy1 − Sy2‖E can be estimated

by four summands. With (54) we can calculate

‖u1 · ∇u1 − u2 · ∇u2‖Ls,p(ΩT) ≤ ‖u1 · ∇(u1 − u2) + (u1 − u2) · ∇u2‖Ls,p(ΩT)

≤ c(‖y1‖E + ‖y2‖E)‖y1 − y2‖E ≤ c(ρ+ ε)‖y1 − y2‖E,

and

‖|∇d1|2d1 − |∇d2|2d2 + (|∇d1|2 − |∇d2|2)d0‖Ls,p(ΩT)

= ‖|∇d1|2(d1 − d2) + (|∇d1|2 − |∇d2|2)(d2 + d0)‖Ls,p(ΩT)

≤ c(‖y1‖2E‖y1 − y2‖E + ‖y1 − y2‖E(‖y1‖E + ‖y2‖E)(‖y2‖E + 1))

≤ c(ρ+ ε)(ρ+ ε+ 1)‖y1 − y2‖E,

as well as

‖div ([∇d1]
T [∇d1])− div ([∇d2]

T [∇d2])‖Ls,p(ΩT)

≤ c(‖y1‖E + ‖y2‖E)‖y1 − y2‖E ≤ c(ρ+ ε)‖y1 − y2‖E.

This yields ‖Sy1 − Sy2‖E ≤ 1/2‖y1 − y2‖E for sufficiently small ρ, ε > 0. Therefore,

the contraction mapping principle yields a unique fixed point z = (u, d) ∈ Bρ such that

S(z) = z.

If we additionally assume ρ, ε > 0 to be sufficiently small such that

‖d‖∞ ≤ c‖z‖E ≤ c(ρ+ ε) < 1,

then also d+ d0 �= 0 on ΩT. �
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