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Abstract. We investigate the partial order (FIN)ω of infinite block se-
quences, ordered by almost condensation, from the forcing-theoretic point

of view. This order bears the same relationship to Hindman’s Theorem as

P(ω)/fin does to Ramsey’s Theorem. While (P(ω)/fin)2 completely embeds
into (FIN)ω , we show this is consistently false for higher powers of P(ω)/fin,

by proving that the distributivity number h3 of (P(ω)/fin)3 may be strictly

smaller than the distributivity number hFIN of (FIN)ω . We also investigate
infinite maximal antichains in (FIN)ω and show that the least cardinality aFIN

of such a maximal antichain is at least the smallest size of a nonmeager set of

reals. As a consequence, we obtain that aFIN is consistently larger than a, the
least cardinality of an infinite maximal antichain in P(ω)/fin.

Introduction.

The forcing notion P(ω)/fin of infinite subsets of the natural numbers ω modulo the

finite sets plays an important role in set theory of the reals. It is ordered by [A] ≤ [B]

if A ⊆∗ B where A,B ∈ [ω]ω are infinite subsets of ω and ⊆∗ denotes almost inclusion

as usual. P(ω)/fin is σ-closed (a straightforward diagonal argument) and thus does not

add new real numbers. It generically adjoins a Ramsey ultrafilter on ω [Ma]. Recall

that an ultrafilter U on ω is Ramsey if for all functions f : ω → ω there is U ∈ U such

that f�U is either one-to-one or constant or, equivalently, if witnesses for the conclusion

of Ramsey’s Theorem can be found within U ; that is, if for all partitions π : [ω]n → k,

n, k ∈ ω, there is U ∈ U such that π�[U ]n is constant.

In recent decades, a number of close relatives of P(ω)/fin have been investigated.

One way to obtain such relatives goes by replacing the ideal fin of finite sets by an analytic

ideal on ω. If I is an Fσ-ideal, then P(ω)/I is still σ-closed [JK] (and thus quite similar

to P(ω)/fin) while for non-Fσ-ideals the quotient may add real numbers. For example,

Farah [Fa] proved that P(ω)/Z is forcing equivalent to the product P(ω)/fin×Bc where
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Z is the density zero ideal and Bc is the measure algebra adding c random reals. Another

way to obtain relatives of P(ω)/fin goes by considering structures which are naturally

related to a Ramsey-theoretic statement in the same way P(ω)/fin is related to Ramsey’s

Theorem. For example, several authors (see, e.g., [CKMW], [Ha], [Sp2], [Br1]) have

considered the forcing notion related to the Carlson–Simpson Theorem [CS] (see also [To,

Theorem 5.70]), namely, the collection of partitions (ω)ω of ω into infinitely many blocks,

ordered by almost coarsening.

In this work, we study the P(ω)/fin-like forcing notion underlying Hindman’s The-

orem [Hi] (see also [To, Theorem 2.41]). Let FIN denote the finite non-empty subsets

of ω. For k ≤ ω, a sequence (di : i < k) of elements of FIN is called a block sequence if

for all i < k − 1, di < di+1, that is, max(di) < min(di+1). (FIN)ω denotes the collection

of infinite block sequences and (FIN)<ω stands for the finite block sequences. If k ≤ ω

and D = (di : i < k) is a block sequence, FU(D) = {e ∈ FIN : ∃Γ ⊆ k finite non-empty

such that e =
⋃
i∈Γ di} is the collection of finite unions from D. With this notation,

Hindman’s Theorem reads:

Hindman’s Theorem. For every partition π : FIN→ k there is D ∈ (FIN)ω such

that π�FU(D) is constant.

We equip (FIN)ω with an order relation, as follows. An infinite block sequence

E = (ei : i ∈ ω) is a condensation of D = (di : i ∈ ω) ∈ (FIN)ω, E v D in symbols,

if E ⊆ FU(D) (or, equivalently, FU(E) ⊆ FU(D)). E is an almost condensation of

D, E v∗ D in symbols, if there is n ∈ ω such that (ei : i ≥ n) ⊆ FU(D). It is

easy to see that ((FIN)ω,v∗) is a σ-closed forcing notion and thus similar to P(ω)/fin.

It generically adjoins a stable ordered-union ultrafilter on FIN [Ei, Proposition 3.2].

Recall that an ultrafilter U on FIN is an ordered-union ultrafilter if witnesses for the

conclusion of Hindman’s Theorem can be found within U ; that is, if for all partitions

π : FIN→ k, k ∈ ω, there is D ∈ (FIN)ω such that FU(D) ∈ U and π�FU(D) is constant

(or, equivalently, if U has a basis of sets of the form FU(D)). An ultrafilter U on FIN is

stable if given (Dn : n ∈ ω) ⊆ (FIN)ω such that Dn+1 v∗ Dn and FU(Dn) ∈ U for all n,

there is E ∈ (FIN)ω such that FU(E) ∈ U and E v∗ Dn for all n.

A basic question one may ask about such relatives of P(ω)/fin is whether they are

forcing equivalent or, at least, whether one can be completely embedded into another.

Recall that two p.o.’s P and Q are forcing equivalent if they have the same completions,

i.e., r.o.(P) = r.o.(Q). P completely embeds into Q, P<◦ Q in symbols, if there is an

embedding e : r.o.(P) → r.o.(Q) preserving ordering, incompatibility and maximal an-

tichains or, equivalently, if there is a projection π : r.o.(Q) → r.o.(P) preserving the

ordering such that for all q ∈ r.o.(Q) and all p ≤ π(q) in r.o.(P) there is q′ ≤ q in r.o.(Q)

with π(q′) ≤ p. This implies that (but is not equivalent to) forcing with Q adds a generic

for P.

In many cases, this basic question has a trivial answer under CH for then all σ-closed

forcing notions of size c = ℵ1 are forcing equivalent. Hence the real question is whether

complete embeddability is provable in ZFC or whether it consistently fails. P(ω)/fin

and even its square (P(ω)/fin)2 are easily seen to completely embed into (FIN)ω (see

Proposition 5 in Section 1 below for the argument) and this embedding is “very definable”
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in the sense that the projection π : (FIN)ω → ([ω]ω)2 is a continuous function. Indeed,

there are mappings ϕ0 : FIN → ω : e 7→ min(e) and ϕ1 : FIN → ω : e 7→ max(e) such

that for all D ∈ (FIN)ω and all (B0, B1) ⊆∗ (ϕ0[D], ϕ1[D]) there is E v∗ D such that

(ϕ0[E], ϕ1[E]) ⊆∗ (B0, B1). (Here we write (B0, B1) ⊆∗ (A0, A1) for B0 ⊆∗ A0 and

B1 ⊆∗ A1.) If 2 is replaced by 3 a strong version of the non-existence of such mappings

is an easy consequence of Taylor’s Canonization Theorem [Ta] (see also [To, Theorem

5.28]).

Taylor’s Theorem. For every D ∈ (FIN)ω and every function ϕ : FU(D)→ ω,

there is E v D such that ϕ�FU(E) is one of the following five canonical functions:

• a constant function,

• a function of min-type, i.e., ϕ(x) = ϕ(y) ⇐⇒ min(x) = min(y) for all x, y ∈
FU(E),

• a function of max-type, i.e., ϕ(x) = ϕ(y) ⇐⇒ max(x) = max(y) for all x, y ∈
FU(E),

• a function of min-max-type, i.e., ϕ(x) = ϕ(y) ⇐⇒ min(x) = min(y) ∧max(x) =

max(y) for all x, y ∈ FU(E),

• a one-to-one function.

Corollary to Taylor’s Theorem. Assume ϕj : FU(D) → ω, j < 3. Then

there is E v D such that for all (A0, A1, A2) ∈ ([ω]ω)3 there is (B0, B1, B2) ⊆∗
(A0, A1, A2) with FU(E) ∩ (ϕ0)−1(B0) ∩ (ϕ1)−1(B1) ∩ (ϕ2)−1(B2) = ∅.

(The proof of the corollary from the theorem is implicit in the second part of the

proof of Main Lemma 33 below. Here we only give a brief sketch: let E be such that all

three functions ϕj are canonical on FU(E) in the sense of Taylor’s Theorem. If at least

one function is constant, the conclusion is immediate. If this is not the case, split into

two cases, according to whether or not at least two functions are of min-type.)

This corollary suggests that there is no definable—and even no ZFC-provable—

complete embedding of (P(ω)/fin)3 into (FIN)ω. In fact, in all cases in which complete

embeddability has been established, the witness is “very definable” in the above sense.

Closely connected with the problem of complete embeddability is the relationship

between the distributivity numbers of the forcing notions involved. Given a p.o. P, its

distributivity number h(P) is the minimal κ such that there is a family (Dα : α < κ)

of dense open subsets of P whose intersection is not dense. Equivalently, h(P) is the

minimal κ such that there is p ∈ P forcing that a new function from κ to V is adjoined.

Using this reformulation, we immediately see that P<◦ Q implies h(P) ≥ h(Q). So, for

example, hFIN ≤ h2 where hFIN := h((FIN)ω) and hn := h((P(ω)/fin)n) for n ∈ ω.

Clearly, the hn form a decreasing chain, and Shelah and Spinas (see [SS1], [SS2]) proved

that hn+1 < hn is consistent for every n. In fact, for a number of relatives P,Q of

P(ω)/fin, the consistency of P 6<◦ Q has been established by showing the consistency of

h(P) < h(Q). Along these lines we prove:
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Theorem 1. h3 < hFIN is consistent.

In particular, consistently (P(ω)/fin)3 6<◦ (FIN)ω. In view of the preceding discus-

sion, this result also strengthens the consistency of h3 < h2 obtained by Shelah and

Spinas [SS2]. Also:

Theorem 2. It is consistent that hFIN < hn holds for all n.

The consistency of (FIN)ω 6<◦ (P(ω)/fin)n for all n follows.

There is another way to look at hFIN: by the general base tree theorem [BDH,

Theorem 2.1], whose assumptions are satisfied for the partial order ((FIN)ω,v∗), there

are maximal antichains Dα ⊆ (FIN)ω, α < hFIN, such that D =
⋃
α<hFIN

Dα is a tree

of height hFIN with α-th level Dα, each D ∈ D has c many immediate successors, and

D is dense in (FIN)ω. This was originally established for P(ω)/fin in [BPS]. As a

consequence, one obtains that forcing with (FIN)ω collapses the continuum exactly to

hFIN.

Another interesting problem concerns possible cardinalities of maximal antichains in

such relatives of P(ω)/fin. Note that A ⊆ [ω]ω is a maximal antichain in P(ω)/fin iff it

is a MAD family, that is, iff any two distinct members A and B of A are almost disjoint

(i.e., A ∩B is finite) and A is maximal with this property (i.e., for all C ∈ [ω]ω there is

A ∈ A such that C ∩ A is infinite). In analogy, say that D and E in (FIN)ω are almost

disjoint FIN if there is no F ∈ (FIN)ω with F v∗ D,E or, equivalently, if FU(D)∩FU(E)

is finite. D ⊆ (FIN)ω is an ADFIN family if its members are pairwise almost disjoint FIN.

D is a MADFIN family if it is ADFIN and maximal with this property, that is, for all

E ∈ (FIN)ω there is D ∈ D such that FU(D) ∩ FU(E) is infinite. Clearly, the MADFIN

families are exactly the maximal antichains in (FIN)ω.

The almost disjointness number a is the minimal size of an infinite MAD family.

Similarly, aFIN is the minimal size of a MADFIN family of size at least 2. The reason

for the restriction on size in these definitions is that finite partitions of ω into infinite

sets clearly are finite MAD families, and that the block sequence ({n} : n ∈ ω) is a

MADFIN family of size 1. A classical result says that a ≥ b where b is the unbounding

number [Bl2, Proposition 8.4]. (This is still true if a is replaced by an, the minimal size

of an infinite maximal antichain in (P(ω)/fin)n (or, equivalently, an infinite MAD family

of n-dimensional cuboids) [Sp1]. It is clear that the an form a decreasing chain like the

hn, but the consistency of an+1 < an is an open problem.)

For aFIN we get a better lower bound:

Theorem 3. aFIN ≥ non(M).

Here non(M) is the uniformity of the meager ideal M, that is, the least size of a

nonmeager set of reals. As a consequence we obtain the consistency of aFIN > a (see

Corollary 20 in Section 3). We also note that the consistency of aFIN > non(M) can be

easily established by the methods of [Br2, Section 4]. While we do not know of an upper

bound for aFIN in terms of classical cardinal invariants of the continuum, we show:

Theorem 4. aFIN < c is consistent. In fact, aFIN = ℵ1 in the Cohen model.
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While there is a natural way to produce an AD family from an ADFIN family (see

Proposition 21 in Section 3), the former never is maximal. In particular, we do not know

the answer to the following:

Question. Is aFIN < a consistent? Or does a ≤ aFIN hold in ZFC?

We have touched upon two cardinal invariants related to (FIN)ω, namely, hFIN and

aFIN, but it is clear that, as this has been done for example for (ω)ω [CKMW], other

cardinals like sFIN or rFIN should be studied as well.

This paper is organized as follows: in Section 1 we collect a couple of basic re-

sults concerning complete embeddings and discuss Mathias-like forcing notions related

to (FIN)ω [G2], to P(ω)/fin [Ma] and to its products [SS2], as well as their connection

with MAD families and with distributivity numbers. In Section 2 we prove Theorem 4,

in Section 3, Theorem 3, and in Section 4, Theorem 1. Section 5 gives an outline of the

proof of Theorem 2. Since many arguments are similar to the proof of Theorem 1, we

only present the proofs whose combinatorics is substantially different.

Our notation is standard. ∀∞n denotes “for all but finitely many n ∈ ω”, and ∃∞n
stands for “there are infinitely many n ∈ ω”. For basic results on cardinal invariants,

we refer to [Bl2] or [BJ], for forcing theory, to [Ku] or [BJ], and for Ramsey theory,

to [To].

1. Preliminaries.

For D = (di : i ∈ ω) ∈ (FIN)ω let min(D) = {min(di) : i ∈ ω} and max(D) =

{max(di) : i ∈ ω}. A similar definition applies to finite block sequences. We begin with:

Proposition 5. The product P(ω)/fin×P(ω)/fin completely embeds into (FIN)ω.

In particular, hFIN ≤ h2.

Proof. Define the projection π : (FIN)ω → ([ω]ω)2 as follows: for D = (di :

i ∈ ω) ∈ (FIN)ω, let

π(D) := (min(D),max(D)).

It is straightforward to see that π is order-preserving: if D v∗ D′, then min(D) ⊆∗
min(D′) and max(D) ⊆∗ max(D′), and therefore π(D) ≤ π(D′). Clearly ran(π) is dense

in ([ω]ω)2.

Now let D = (di : i ∈ ω) ∈ (FIN)ω and assume (A,B) ≤ π(D) for some (A,B) ∈
([ω]ω)2. We need to find D′ v∗ D such that π(D′) ≤ (A,B). To this end, first choose

A′ = {a′i : i ∈ ω} ⊆ A ∩ min(D) and B′ = {b′i : i ∈ ω} ⊆ B ∩ max(D) such that

a′i < b′i < a′i+1 for all i ∈ ω. Since A′ ⊆ {min di : i ∈ ω} and B′ ⊆ {max di : i ∈ ω},
a′i = min dji and b′i = max dli for some ji ≤ li < ji+1, for all i ∈ ω. Letting d′i = dji ∪ dli
for all i ∈ ω and D′ = (d′i : i ∈ ω), we see that D′ v D and π(D′) = (A′, B′) ≤ (A,B).

Hence (P(ω)/fin)2 is a projection of (FIN)ω. �

There are other ways to look at the mapping π giving rise to this projection. Assume

U is a stable ordered-union ultrafilter on FIN. Letting
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Umin = {A ⊆ ω : ∃D ∈ (FIN)ω such that FU(D) ∈ U and min(D) ⊆ A}

and, similarly,

Umax = {A ⊆ ω : ∃D ∈ (FIN)ω such that FU(D) ∈ U and max(D) ⊆ A},

Umin and Umax are two Ramsey ultrafilters on ω [Bl1, Theorem 4.2 and Corollary 4.3], and

they may be thought of as constructed from U via the mapping π: π(U) = (Umin,Umax).

Now, if U̇ is the generic stable ordered-union ultrafilter added by (FIN)ω, then π(U̇) is

the pair of generic Ramsey ultrafilters added by P(ω)/fin× P(ω)/fin.

Next recall that Mathias forcing M [Ma] consists of pairs (s,A) where s ∈ [ω]<ω,

A ∈ [ω]ω, and max(s) < min(A), ordered by (t, B) ≤ (s,A) if s ⊆ t, B ⊆ A, and t\s ⊆ A.

If F is a filter on ω, Mathias forcing M(F) with F consists of all (s,A) ∈M with A ∈ F ,

with the same ordering. M is a proper non-ccc forcing while M(F) is σ-centered and thus

ccc. It is well-known that M decomposes as a two-step iteration M ∼= P(ω)/fin ?M(U̇)

where U̇ is the generic Ramsey ultrafilter added by P(ω)/fin [Ma]. Furthermore, a real

C ∈ [ω]ω is M-generic over V iff for all MAD families A in V , there is A ∈ A such that

C ⊆∗ A [Ma]. Iterating M with countable support for ω2 stages produces a model for

h = ℵ2.

In [G2] (see also [G1]), the second author defined an analogue of M for (FIN)ω:

the forcing PFIN consists of pairs (σ,D) where σ = (σi : i < |σ|) ∈ (FIN)<ω is a finite

block sequence and D = (di : i ∈ ω) ∈ (FIN)ω with max(σ|σ|−1) < min(d0), ordered

by (τ, E) ≤ (σ,D) if σ ⊆ τ , E v D, and τi ∈ FU(D) for all i with |σ| ≤ i < |τ |. If F
is a filter on FIN, PF consists of (σ,D) ∈ PFIN such that FU(D) ∈ F , with the same

ordering. Again, PFIN is proper non-ccc while PF is σ-centered and thus ccc. Also, PFIN

decomposes as a two-step iteration PFIN
∼= (FIN)ω ? PU̇ where U̇ is the generic stable

ordered-union ultrafilter added by (FIN)ω [G2, Lemma 4.16]. Furthermore, a block

sequence E ∈ (FIN)ω is PFIN-generic over V iff for all MADFIN families D ∈ V , there is

D ∈ D such that E v∗ D [G3, Theorem 3.9]. The ω2-stage countable support iteration

of PFIN forces hFIN = ℵ2.

Since (P(ω)/fin)2 completely embeds into (FIN)ω, it would be natural if a product

of two copies of Mathias forcing also embedded into PFIN. This is true—as long as

“product” is interpreted in the right way. M2 consists of all pairs ((s,A), (t, B)) ∈M×M
such that |s| = |t| and if s = {si : i < n} and t = {ti : i < n} are the increasing

enumerations of s and t, respectively, then si ≤ ti < si+1 for all i < n. M2 is equipped

with the product ordering: ((s′, A′), (t′, B′)) ≤ ((s,A), (t, B)) if (s′, A′) ≤ (s,A) and

(t′, B′) ≤ (t, B). This is the special case n = 2 of a forcing originally introduced by

Shelah and Spinas [SS2, Definition 1.3], albeit with slightly different notation.

Proposition 6. M2 completely embeds into PFIN.

Proof. Define the projection π : PFIN →M2 as follows: given (σ,D) ∈ PFIN, let

π((σ,D)) := ((min(σ),min(D)), (max(σ),max(D))).

It is easy to see that π preserves order and that ran(π) is dense in M2. We need to show
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that for all ((s,A), (t, B)) ∈ M2 and for all (σ,D) ∈ PFIN such that ((s,A), (t, B)) ≤
π((σ,D)), there is (σ′, D′) ≤ (σ,D) such that π((σ′, D′)) ≤ ((s,A), (t, B)).

Assume σ = (σ0, . . . , σm−1) and D = (di : i ∈ ω). There are A′ ⊆ A and B′ ⊆ B

such that if A′ = {a′i : i ∈ ω} and B′ = {b′i : i ∈ ω} are their increasing enumerations,

then a′i < b′i < a′i+1 for all i ∈ ω. Since A′ ⊆ A ⊆ min(D) and B′ ⊆ B ⊆ max(D), we

can define D′ = (d′l : l ∈ ω) as follows: for l ∈ ω, d′l = dil ∪ djl , where a′l = min dil and

b′l = max djl . It is clear that D′ v D.

Let l := |s| = |t|. Since ((s,A′), (t, B′)) ∈ M2, we have s0 ≤ t0 < s1 ≤ t1 < · · · <
sl−1 ≤ tl−1. Notice that s ⊇ min(σ) and if x ∈ s \min(σ), then x ∈ min(D). Similarly,

for all y ∈ t \ max(σ), y ∈ max(D). Thus, for m ≤ k < l, we have sk = min dik
and tk = max djk where ik ≤ jk < ik+1. Define σk := dik ∪ djk for such k. Put

σ′ = σ (̂σm, . . . , σl−1). Now (σ′, D′) ≤ (σ,D) and π((σ′, D′)) = ((s,A′), (t, B′)) ≤
((s,A), (t, B)).

Thus PFIN adds a generic for M2: if D∗ is a PFIN-generic block sequence over V ,

then π(D∗) = (min(D∗),max(D∗)) is an M2-generic over V . �

M2 is different from the usual product of two copies of Mathias forcing because of

the following well-known fact whose proof we include for completeness’ sake.

Observation 7. M×M adds a Cohen real (in fact, C<◦M×M where C denotes

Cohen forcing).

Proof. Let (m0,m1) be a pair of Mathias reals M×M-generic over V . We define

c ∈ 2ω as follows:

c(i) =

{
0 if m0(i) ≤ m1(i)

1 if m0(i) > m1(i)

We shall show that c is a Cohen real over V . Let D ⊆ C be a dense subset.

Given (a, b) ∈ [ω]<ω × [ω]<ω such that |a| = |b| = k, and a = {ai : i < k} and

b = {bi : i < k} are increasing enumerations of a and b, respectively, we define a function

q(a,b) : k → 2 as follows:

q(a,b)(i) =

{
0 if ai ≤ bi
1 if ai > bi

Define

D′ := {((a,A), (b, B)) ∈M×M : |a| = |b| and ∃q ∈ D such that q = q(a,b)}.

Claim 8. D′ is a dense subset of M×M.

Proof. Let ((a,A), (b, B)) ∈ M × M. Assume without loss of generality that

|a| ≤ |b|. There exists a condition (a′, A′) ∈ M such that (a′, A′) ≤ (a,A) and |a′| =

|b| = k. Consider q(a′,b) defined as before. Since D is dense in C, there is q ∈ D

such that q ≤ q(a′,b), i.e., q � k = q(a′,b). Assume |q| = `. Find increasing sequences

(ai : k ≤ i < `) ⊆ A′ and (bi : k ≤ i < `) ⊆ B such that, for all i with k ≤ i < `,
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ai ≤ bi iff q(i) = 0. Let a′′ = a′ ∪ {ai : k ≤ i < `}, b′ = b ∪ {bi : k ≤ i < `},
A′′ = A′ \ (a`−1 + 1), and B′ = B \ (b`−1 + 1). Then ((a′′, A′′), (b′, B′)) ≤ ((a,A), (b, B))

and ((a′′, A′′), (b′, B′)) ∈ D′. So D′ is a dense subset of M×M. �

Since the generic filter G for M × M meets all such D′, the real c ∈ 2ω extends

a q ∈ D for all dense D ⊆ C. Hence c is a Cohen real. In fact, the map π sending

((a,A), (b, B)) ∈M×M to q(a,b) is a projection establishing C<◦M×M. �

By [G2, Theorem 4.26 and Corollary 4.28], PFIN has the Laver property and thus

does not add Cohen reals, and the same is true for M2 by Proposition 6 (the latter was

already proved by Shelah and Spinas [SS2, Lemma 1.17]). In particular, M×M cannot

completely embed into either M2 or PFIN.

On the other hand, it is easy to see that M2 completely embeds into M × M: if

(A,A′) ∈ ([ω]ω)2 is a generic for M × M, then define B0 = {b0i : i ∈ ω} ⊆ A0 and

B1 = {b1i : i ∈ ω} ⊆ A1 recursively as follows:

b00 = min(A0),

b10 = min(A1 \ b00),

b0n+1 = min{x ∈ A0 : x > b1n},
b1n+1 = min{x ∈ A1 : x ≥ b0n+1}.

We leave it to the reader to verify that (B0, B1) ∈ ([ω]ω)2 is generic for M2.

2. Proof of Theorem 4.

This is similar to the proof that a = ℵ1 in the Cohen model [Ku, Chapter VIII,

Theorem 2.3].

Let V be a model of CH. In V , we shall construct a MADFIN family A of size ω1

such that for all I ∈ V , A remains maximal in V [G] whenever G is Fn(I, 2)-generic

over V . By [Ku, Chapter VIII, Lemma 2.2], it is sufficient to verify maximality of A in

the extension via I0 which are countable in V , because any X ∈ (FIN)ω in V [G] is in

V [G∩Fn(I0, 2)], for some such I0. When |I0| = ω in V , Fn(I0, 2) is isomorphic to Fn(ω, 2)

in V . It is therefore sufficient to define A such that whenever G is Fn(ω, 2)-generic over

V , no infinite block sequence in V [G] is ADFIN from all elements in A.

From now on, all forcing terminology refers to the p.o. Fn(ω, 2). Within V , do

the following: by CH, let (pξ, τξ) for ω ≤ ξ < ω1 enumerate all pairs (p, τ) such that

p ∈ Fn(ω, 2) and τ is a nice name for an infinite block sequence. By recursion, pick

infinite Aξ ∈ (FIN)ω as follows. Let An, for n < ω, be any disjoint-FIN infinite block

sequences. If ω ≤ ξ < ω1, and we have Aη for η < ξ, choose Aξ such that:

(1) ∀η < ξ (| FU(Aη) ∩ FU(Aξ) |< ω), and

(2) if pξ  “τξ is an element of (FIN)ω” and

∀η < ξ (pξ | FU(τξ) ∩ FU(Aη) |< ω), (∗)

then for all n and all q ≤ pξ there are r ≤ q and s ∈ FU(Aξ) such that min(s) > n

and r  s ∈ FU(τξ).
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If (∗) fails then only (1) needs to be considered and we simply apply the fact that there

are no MADFIN families of size ω.

Assume that pξ  τξ ∈ (FIN)ω and pξ | FU(τξ) ∩ FU(Aη) |< ω for all η < ξ. Let

Bi, i ∈ ω, enumerate {Aη : η < ξ} and let (ni, qi), i ∈ ω, enumerate ω × {q : q ≤ pξ}.
By (∗), for each i, qi | FU(τξ) \ (FU(B0) ∪ · · · ∪ FU(Bi)) |= ω. We recursively produce

Aξ = (di : i ∈ ω) as follows.

Assume that we have elements d0, . . . , dj of FIN such that di < di+1 for all i < j,

min di > ni for all i ≤ j,
⋃
l∈I dl ∪ dj 6∈ FU(B0) ∪ · · · ∪ FU(Bj) for all I ⊆ j, and

such that there is ri ≤ qi with ri  di ∈ FU(τξ) for all i ≤ j. Let k = max{max blm :

l ∈ {0, . . . , j + 1}}, where Bl = (bli : i ∈ ω) and m is the least number such that

blm > dj for all l ∈ {0, . . . , j + 1}. Since qj+1 | FU(τξ) \ FU(B0) ∪ · · · ∪ FU(Bj+1) |= ω,

there exist rj+1 ≤ qj+1 and dj+1 ∈ FIN such that min dj+1 > max{k, nj+1}, dj+1 6∈
FU(B0) ∪ · · · ∪ FU(Bj+1) and rj+1  dj+1 ∈ FU(τξ).

Claim 9.
⋃
l∈I dl ∪ dj+1 6∈ FU(B0) ∪ · · · ∪ FU(Bj+1) for all I ⊆ j + 1 .

Proof. Assume that there exists I ′ ⊆ j + 1 such that
⋃
l∈I′ dl ∪ dj+1 ∈ FU(Bi)

for some i ≤ j + 1. Since dj < bim < dj+1 this implies that dj+1 ∈ FU(Bi), which is a

contradiction. �

Let Aξ = (di : i ∈ ω). Clearly Aξ satisfies (1) and (2). This completes the recursive

construction.

Consider A = {Aξ : ξ < ω1}. By (1), A is an ADFIN-family. Let G be a Fn(ω, 2)-

generic filter over V .

Claim 10. A is a MADFIN family in V [G].

Proof. If A is not maximal in V [G], there exists ξ < ω1 such that pξ ∈ G,

pξ  τξ ∈ (FIN)ω and pξ  ∀η < ω1 (| FU(τξ) ∩ FU(Aη) |< ω). Thus (∗) holds at ξ

and also pξ | FU(τξ) ∩ FU(Aξ) |< ω. Therefore there are q ≤ pξ and n ∈ ω such that

q 
⋃

(FU(τξ) ∩ FU(Aξ)) ⊆ n. But by (2), there are r ≤ q and s ∈ FU(Aξ) such that

min(s) > n and r  s ∈ FU(τξ), a contradiction. �

This completes the proof of Theorem 4.

3. Proof of Theorem 3.

As a preliminary step towards proving Theorem 3, we first show the weaker inequality

b ≤ aFIN (Proposition 12 below).

We say that an infinite block sequence A = (an : n ∈ ω) has almost no holes if

• ∀∞n (an = [min(an),max(an)]),

• ∀∞n (max(an) + 1 = min(an+1)).

Otherwise A has infinitely many holes. Note that A has almost no holes is equivalent to⋃
A is cofinite.
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Lemma 11. Let A and A′ be two almost disjoint infinite block sequences such that A

and A′ have almost no holes. Define B := min(A) and B′ := min(A′), then |B∩B′| < ω.

Proof. Let A = (an : n ∈ ω) and A′ = (a′n : n ∈ ω). Assume that |B ∩ B′| = ω.

Let B′′ = B ∩B′ = {bi : i ∈ ω} such that bi < bi+1 for all i ∈ ω. We have bi = min ani =

min a′mi for some strictly increasing sequences (ni : i ∈ ω) and (mi : i ∈ ω). Since A

and A′ have almost no holes, we have
⋃ni+1−1
j=ni

aj =
⋃mi+1−1
j=mi

a′j for almost all i ∈ ω .

Therefore, |FU(A) ∩ FU(A′)| = ω, which is a contradiction. Hence |B ∩B′| < ω. �

Proposition 12. b ≤ aFIN.

Proof. Let 2 ≤ κ < b and assume {Aα : α < κ} is an almost disjoint FIN family.

Say Aα = (aαn : n ∈ ω). For every α < κ such that Aα has infinitely many holes we define

a function fα : ω → ω as follows:

fα(n) = min
{
k : k 6∈

⋃
Aα and k > n

}
.

Note that fα(n) > n for all n ∈ ω.

Also define Bα = min(Aα) for all α < κ. If there is an α such that Aα has almost

no holes, fix such an α and let B = Bα. Bα is coinfinite because κ ≥ 2. Otherwise, let

B be an arbitrary infinite coinfinite set.

Since κ < b, there is f : ω → ω such that fβ <
∗ f for all β < κ. Define A = (an :

n ∈ ω) as follows: for all n ∈ ω

• an is an interval, i.e., an = [min an,max an]

• min an ∈ B

• max an + 1 6∈ B

• f(min an) ≤ max an

We shall prove that |FU(A) ∩ FU(Aβ)| < ω for all β < κ.

First assume that Aβ has infinitely many holes.

Claim 13. For all β < κ such that Aβ has infinitely many holes, an 6⊆
⋃
Aβ for

almost all n.

Proof. Let β < κ such that Aβ has infinitely many holes. There exists m ∈ ω
such that fβ(k) < f(k) for all k ≥ m . Let n ∈ ω such that min an ≥ m. Then

fβ(min an) ∈ an because

min an < fβ(min an) < f(min an) ≤ max an.

Thus an 6⊆
⋃
Aβ follows. �

Therefore |FU(Aβ) ∩ FU(A)| < ω follows for β such that Aβ has infinitely many

holes.
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So assume Aβ has almost no holes. First suppose β = α. Then B = Bα = {min aαi :

i ∈ ω}. Note that ∀∞i, j ∈ ω, max ai 6= max aαj , because max ai + 1 6∈ B while max aαj +

1 = min aαj+1 ∈ Bα = B. Assume towards a contradiction that |FU(A) ∩ FU(Aα)| = ω.

Then there is C ∈ (FIN)ω with C v A and C v Aα. Therefore, if b ∈ C then b ∈
FU(A) ∩ FU(Aα), so max b = max ai for some i and max b = max aαj for some j, which

is a contradiction. Hence |FU(A) ∩ FU(Aα)| < ω.

Next suppose that β 6= α. By Lemma 11, |Bα ∩ Bβ | < ω. Assume that |FU(A) ∩
FU(Aβ)| = ω. Then |B∩Bβ | = ω, contradicting B = Bα. Therefore |FU(A)∩FU(Aβ)| <
ω. �

? ? ?

For completing the proof of Theorem 3, recall the following cardinal invariants:

b(p 6=∗) = min{ |F| : F ⊆ ωω and for all partial functions g : ω → ω

with infinite domain ∃f ∈ F ∃∞n ∈ dom(g) (f(n) = g(n))}

For h : ω → ω with h(n)→∞ as n→∞, let

bh(p 6=∗) = min{ |F| : F ⊆ ωω and for all partial functions g : ω → ω

with infinite domain bounded by h

∃f ∈ F ∃∞n ∈ dom(g) (f(n) = g(n))}

It is well-known that this cardinal does not depend on the function h. We include a proof

for completeness’ sake.

Lemma 14. bh(p 6=∗) = bh′(p 6=∗) for h, h′ ∈ ωω with h(n), h′(n)→∞ as n→∞.

Proof. For k ∈ ω let nk be such that h′(k) < h(nk) and nk < nk+1 and k < nk.

Let F be a witness of bh(p 6=∗). Given f ∈ F , define f ′ : ω → ω by f ′(k) = f(nk).

Consider F ′ = {f ′ : f ∈ F}. Note that |F ′| ≤ |F|. We claim that F ′ is a witness for

bh′(p 6=∗).
Let g : ω → ω be partial such that |dom(g)| = ω and g(k) < h′(k) for all k ∈ dom(g).

Define a partial function g′ : ω → ω as follows: dom(g′) = {nk : k ∈ dom(g)} and

g′(nk) = g(k) for k ∈ dom(g). For every k ∈ dom(g), g′(nk) = g(k) < h′(k) < h(nk).

Hence there is f ∈ F such that f(nk) = g′(nk) for infinitely many nk ∈ dom(g′). Thus

f ′(k) = f(nk) = g′(nk) = g(k) for infinitely many k ∈ dom(g), and F ′ is as required.

This shows bh′(p 6=∗) ≤ bh(p 6=∗) and, by symmetry, bh′(p 6=∗) = bh(p 6=∗) follows.

�

Let b(pbd 6=∗) be the common value of the bh(p 6=∗). The following is also a folklore

result whose proof we include.

Lemma 15. b(p 6=∗) = max{b, b(pbd 6=∗)}.

Proof. If F is a witness for b(p 6=∗), then clearly it is a witness for both b

and b(pbd 6=∗). On the other hand, assume H is an unbounded family consisting of
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increasing functions and for each h ∈ H, Fh is a witness for bh(p 6=∗). We claim that

F =
⋃
{Fh : h ∈ H} is a witness for b(p 6=∗).

Indeed, if g : ω → ω is a partial function, |dom(g)| = ω, then there is h ∈ H such that

h(n) > g(n) for infinitely many n ∈ dom(g). Let g′ = g�{n ∈ dom(g) : h(n) > g(n)}.
Since Fh is a witness for bh(p 6=∗), there is f ∈ Fh such that f(n) = g′(n) = g(n) for

infinitely many n ∈ dom(g′), as required. �

An old result of Miller [Mi] (see also [BJ, Lemma 2.4.8]) says:

Miller’s Theorem. non(M) = b(p 6=∗).

We note that, by a result of Bartoszyński [Ba] (see also [BJ, Theorem 2.4.7 and

Lemma 2.4.8]), this is also true when only total functions are considered. However, the

two preceding lemmata are false for total functions, and this is why we work with partial

functions here. By Lemma 15 and Proposition 12, the proof of Theorem 3 is complete if

we show:

Theorem 16. b(pbd 6=∗) ≤ aFIN.

Proof. Fix h : ω → ω such that h(n) → ∞ when n → ∞. By Lemma 14 and

the discussion after its proof, b(pbd 6=∗) = bh(p 6=∗). Let A be an ADFIN family of size

2 ≤ κ < bh(p 6=∗). We shall prove that A is not maximal.

For A = (an : n ∈ ω) in A, let EA =
⋃
{an ∈ A : an singleton}. Note that EA

is coinfinite, because otherwise A is not almost disjoint from other elements in A (here

we use κ ≥ 2). Also, if A,A′ are distinct elements of A, then |EA ∩ EA′ | < ω, because

|EA ∩ EA′ | = ω implies |FU(A) ∩ FU(A′)| = ω, which is a contradiction.

We will define finite sets cn and dn, where cn = {c0n, . . . , c
h(n)+1
n }, dn =

{d0
n, . . . , d

h(n)+1
n }, cn < dn < cn+1 < dn+1 for all n ∈ ω and |cn| = |dn| = h(n) + 2.

Assume that there is A0 = (an : n ∈ ω) in A such that A0 contains infinitely many

singletons, i.e., EA0
is infinite. In this case we choose cn and dn such that

⋃
{cn : n ∈

ω} ⊆ EA0
and

⋃
{dn : n ∈ ω} ∩EA0

= ∅. If there is no A0 such that EA0
is infinite then

we choose cn and dn arbitrarily.

For n ∈ ω and k < h(n), define

bkn = {c0n, . . . , ckn, ck+2
n , . . . , c

h(n)+1
n , d0

n, . . . , d
k
n, d

k+2
n , . . . , d

h(n)+1
n }

= (cn ∪ dn) \ {ck+1
n , dk+1

n }.

Let g : ω → ω be partial with |dom(g)| = ω and g(n) < h(n) for all n ∈ dom(g). Define

an infinite block sequence Bg = (bgn : n ∈ dom(g)) by bgn = b
g(n)
n for n ∈ dom(g).

For a, b ∈ FIN, b is an interval inside a if b ⊆ a and a\ b ⊆ min(b)∪ω \ (max(b) + 1).

Let A be an element in A. We say that bkn is compatible with A if there is a ∈ FU(A)

such that bkn is an interval inside a.

Claim 17. Assume k 6= k′ and bkn, bk
′

n are compatible with A, then {ck+1
n }, {ck′+1

n },
{dk+1
n }, {dk′+1

n } ∈ A.
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Proof. Without loss of generality assume k < k′ < h(n). Since bkn and bk
′

n are

compatible with A, there exist a, a′ ∈ FU(A) such that bkn is an interval inside a and bk
′

n

is an interval inside a′.

Note that ck+1
n and dk+1

n do not belong to bkn and thus not to a, but ck+1
n , dk+1

n ∈ bk′n .

Since ck+1
n ∈ bk′n and bk

′

n ⊆ a′, there is ai ∈ A such that ck+1
n ∈ ai. Clearly ai is an

interval inside a′ and ai ∩ a = ∅. If |ai| ≥ 2, then, since ai and bk
′

n both are intervals

inside a′, we must have either {ckn, ck+1
n } ⊆ ai or {ck+1

n , ck+2
n } ⊆ ai or (in case k′ = k+ 1)

{ck+1
n , ck+3

n } ⊆ ai. In either case we obtain a contradiction because ckn, c
k+2
n , ck+3

n all

belong to a and ai ∩ a = ∅. Hence |ai| = 1, so {ck+1
n } = ai and {ck+1

n } ∈ A.

In a similar way we prove that {ck′+1
n }, {dk+1

n } and {dk′+1
n } belong to A. �

Claim 18. For A ∈ A there exists fA : ω → ω such that for almost all n ∈ ω, if

k 6= fA(n) then bkn is not compatible with A.

Proof. Assume that there are A ∈ A and M ⊆ ω such that |M | = ω and for all

n ∈ M there are k′n 6= kn such that bknn and b
k′n
n are compatible with A. Then {ckn+1

n },
{ck

′
n+1
n }, {dkn+1

n } and {dk
′
n+1
n } are elements of A by the previous claim.

If A 6= A0, then |EA ∩ EA0 | = ω, which is a contradiction. If A = A0, then

EA ∩
⋃
n∈ω dn 6= ∅, which is a contradiction. In the case that there is no A0 which

contains infinitely many singletons, cn and dn are arbitrary and A has infinitely many

singletons, which is a contradiction.

Hence for all A ∈ A and almost all n, there is at most one k such that bkn is compatible

with A. Thus we define

fA(n) =

{
k if bkn is compatible with A

0 otherwise

We now have that there exists an m such that for all n ≥ m, if k 6= fA(n), then bkn is not

compatible with A. �

Consider F = {fA : A ∈ A}. Since |F| < bh(p 6=∗), there is g such that |dom(g)| =
ω, g(n) < h(n) for all n ∈ dom(g) and for all A ∈ A and almost all n ∈ dom(g),

g(n) 6= fA(n). In view of the preceding claim, this means in particular that for all A ∈ A
and almost all n ∈ dom(g), b

g(n)
n is not compatible with A.

Claim 19. For all A ∈ A, Bg is incompatible with A.

Proof. Fix A ∈ A. There is l ∈ ω such that for all n ≥ l with n ∈ dom(g), b
g(n)
n

is not compatible with A. Assume there is a ∈ FU(Bg)∩FU(A) with max(a) ≥ max(dl).

Then a =
⋃
i∈I b

g(ni)
ni for some finite I ⊆ dom(g) with ni ≥ l for some i ∈ I. Since all

b
g(ni)
ni are intervals inside a and thus compatible with A, this is a contradiction. Hence

FU(Bg) ∩ FU(A) is finite, and it follows that Bg is incompatible with A. �

This completes the proof of Theorem 16—and also of Theorem 3. �

Corollary 20. a < aFIN is consistent.
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Proof. In fact, this holds in the random model, that is, the model obtained by

adding (at least) ω2 many random reals to a model of CH with the measure algebra.

Then a = ℵ1 by [Bl2, Section 11.4]. On the other hand, non(M) = c = ℵ2 [BJ, Model

7.6.8], and aFIN = c = ℵ2 follows by Theorem 3. �

? ? ?

A natural way to construct an almost disjoint family from an almost disjoint FIN family

is as follows. Let A be an almost disjoint FIN family. Put BA = {FU(A) : A ∈ A}. Then

BA is an almost disjoint family of subsets of FIN. However, it is never maximal.

Proposition 21. Assume |A| ≥ 2. Then BA is not maximal.

Proof. Let B0 = (b0i : i ∈ ω) and B1 = (b1i : i ∈ ω) in A. Define C = (ci : i ∈
ω) ⊆ FIN by c0 := b10 ∪ b0i0 where b0i0 > b10, c1 := b10 ∪ b1j1 ∪ b

0
i1

where b0i1 > b1j1 > b0i0 , and

cn := b10 ∪ b1j1 ∪ · · · ∪ b
1
jn
∪ b0in such that b0in > b1jn > b0in−1

. It is clear that C ⊆ FIN and

|C| = ω.

Claim 22. |C ∩ FU(A)| < ω for all A ∈ A.

Proof. Since b0in ∈ B
0 and cn \ b0in ∈ FU(B1), we have cn \ b0in /∈ FU(B0) and

b0in /∈ FU(B1) for almost all n. Thus |C ∩ FU(B0)| < ω and |C ∩ FU(B1)| < ω follow.

Let A ∈ A be different from B0 and B1. There is ` such that for all n ≥ `,

cn \ b0in /∈ FU(A). If cn ∈ FU(A) for some such n, then there must be a ∈ A such that

a ∩ b1jn and a ∩ b0in are both non-empty. Then, however, we have that for all m > n,

a ∩ cm 6= ∅ and a \ cm 6= ∅. Thus cm /∈ FU(A). Again, |C ∩ FU(A)| < ω follows. �

This completes the proof of the proposition. �

4. Proof of Theorem 1.

The framework for the proof of Theorem 1 is similar to the arguments of [Br3,

Theorem 3.1] and [Br4, Theorems 1 and 2], but the combinatorial details are rather

different. We therefore do not assume knowledge of either [Br3] or [Br4] and present

the whole argument.

We assume CH and ♦S2
1
. Recall that the latter means that there is a sequence

{Sα : cf(α) = ω1 and α < ω2} such that for all S ⊆ ω2, the set {α < ω2 : cf(α) = ω1

and S ∩ α = Sα} is stationary. We perform a finite support iteration (Pα, Q̇α : α < ω2)

of ccc forcing such that

(A) if cf(α) = ω1 then Q̇α is Laver forcing LU̇α with a stable ordered-union ultrafilter

U̇α in (FIN)ω,

(B) if cf(α) 6= ω1 then Q̇α is Hechler forcing Ḋ.

(The definition and description of these forcing notions will be given below, after

Lemma 26.) The idea is that at limit stages α of cofinality ω1 we use (A) to kill po-

tential witnesses for hFIN = ℵ1 by building the Uα accordingly. More explicitly, Uα will
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diagonalize (an initial segment of) a witness for hFIN handed down by ♦S2
1
, see below,

Lemma 35 and the discussion preceding its proof. Since every witness for hFIN = ℵ1 will

have initial segments guessed by the diamond sequence stationarily often on S2
1 , this will

complete the argument for hFIN = ℵ2.

The main point of the argument is the proof of h3 = ℵ1. We shall build, along the

iteration, families {Aβ : β < ω1} such that

(a) all Aβ are MAD families of cuboids in ω3 (that is, all Aβ are maximal antichains

in (P(ω)/fin)3),

(b) β < β′ implies that Aβ′ refines Aβ (that is, for all (A′, B′, C ′) ∈ Aβ′ there is

(A,B,C) ∈ Aβ with A′ ⊆∗ A, B′ ⊆∗ B, and C ′ ⊆∗ C).

Put A≤αβ = Aβ ∩Vα. This set will always be a member of Vα. For simplicity let A≤0
β = ∅

for all β < ω1 (though this choice does not really matter). A book-keeping argument will

hand us down an ordinal α = α(X,Y,Z),β ∈ ω2 for (X,Y, Z) ∈ ([ω]ω)3 and β < ω1 such

that (X,Y, Z) ∈ Vα and the function sending the pair (X,Y, Z), β to α is one-to-one and

onto ordinals of cofinality less than ω1. For α with cf(α) 6= ω1, let (X,Y, Z)α and βα be

unique such that α = α(X,Y,Z)α,βα . The idea is that at each successor stage α + 1 with

cf(α) 6= ω1, countably many Aβ will get exactly one new element. More explicitly, we

stipulate

(c) A≤αβ =
⋃
γ<αA

≤γ
β for limit ordinals α, and A≤α+1

β = A≤αβ if cf(α) = ω1 or β ≥ βα,

(d) if β < βα and if A≤αβ is not predense below (X,Y, Z)α, then there is (A,B,C) ⊆∗

(X,Y, Z)α belonging to A≤α+1
β \ A≤αβ ,

(e) for all α and for β < β′ < ω1, A≤αβ′ refines A≤αβ ,

(f) whenever β < βα and (A,B,C) ∈ A≤α+1
β \ A≤αβ , A = {an : n ∈ ω}, B = {bn : n ∈

ω}, and C = {cn : n ∈ ω} are their increasing enumerations, then

d(d(an)) < bn < d(d(bn)) < cn < d(d(cn)) < an+1

for all n, where d = dα is the dominating real over Vα added by Qα = D.

This last condition should be seen as meaning that A,B,C grow fast with respect to

reals in Vα. Let us verify that we can indeed extend the AD families so as to guarantee

these conditions.

Observation 23. If cf(α) < ω1, (A,B,C) ∈ A≤α+1
β \A≤αβ can be chosen so as to

satisfy (c), (d), (e), and (f ).

Proof. Let β0 be minimal such that A≤αβ0 is not predense below (X,Y, Z)α (if

there is such a β0). Then, by (e) for α, A≤αβ is not predense below (X,Y, Z)α for all

β ≥ β0. If there is no such β0 or if β0 ≥ βα, we will have A≤α+1
β = A≤αβ for all β, and

there is nothing to prove.
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So assume β0 < βα. Let (A0, B0, C0) ⊆∗ (X,Y, Z)α be incompatible with all of A≤αβ0 .

Since A≤αβ is predense below (A0, B0, C0) for all β < β0, we can find a decreasing chain

(Aβ , Bβ , Cβ) ∈ A≤αβ , β < β0, all compatible with (A0, B0, C0). Let (A1, B1, C1) be a

common extension of (A0, B0, C0) and this chain. Finally let (A,B,C) be an extension of

(A1, B1, C1) such that, letting A = {an : n ∈ ω}, B = {bn : n ∈ ω}, and C = {cn : n ∈ ω}
be their respective increasing enumerations,

d(d(an)) < bn < d(d(bn)) < cn < d(d(cn)) < an+1

holds for all n. Adding (A,B,C) to A≤α+1
β for β0 ≤ β < βα, we see that (d) and (e) are

satisfied. �

Corollary 24. The Aβ =
⋃
α<ω2

A≤αβ satisfy (a) and (b).

Proof. (b) follows from (e), and (a) follows from (d) together with the book-

keeping. �

? ? ?

To argue that {Aβ : β < ω1} witnesses h3 = ℵ1, we need to show that for all α < ω2,

∀(X,Y, Z) ∈ ([ω]ω)3 ∩ Vα ∃β < ω1 ∀(A,B,C) ∈ Aβ(X 6⊆∗ A or Y 6⊆∗ B or Z 6⊆∗ C)

By (f), it suffices to show by induction on α < ω2 that

(∗α)

{
∀(X,Y, Z) ∈ ([ω]ω)3 ∩ Vα ∃β < ω1 ∀(A,B,C) ∈ A≤αβ
(X 6⊆∗ A or Y 6⊆∗ B or Z 6⊆∗ C)

For technical reasons we shall need a slightly stronger property:

(?α)


∀k ∀Xj,i = {xj,in : n ∈ ω} ∈ [ω]ω ∩ Vα (j < 3 and i < k)

listed in increasing enumeration ∃β < ω1 ∀(A0, A1, A2) ∈ A≤αβ
∃ countable D ⊆ ω ∃j < 3 ∀i < k ∀n ∈ D (xj,in /∈ Aj)

Note that (∗α) is (?α) for the case k = 1. In the proof of Main Lemma 33, we will need

a reformulation of (?α) which we now explain. Say that X = {xs : s ∈ FIN} ∈ [ω]ω is

listed in canonical enumeration if

• the listing is of one of the four canonical types (in Taylor’s Theorem) min, max,

min-max, or one-to-one,

• if the listing is of min-type, then min(s) < min(s′) implies xs < xs′ ,

• if the listing is of one of the three other types, then max(s) < max(s′) implies

xs < xs′ .

Clearly, these clauses completely determine the listing for the min- and max-types, but

not for the other two types. Now consider the following property:
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(†α)


∀k ∀Xj,i = {xj,is : s ∈ FIN} ∈ [ω]ω ∩ Vα (j < 3 and i < k)

listed in canonical enumeration ∃β < ω1 ∀(A0, A1, A2) ∈ A≤αβ
∃ countable D ⊆ ω ∃j < 3 ∀i < k ∀s ⊆ D (xj,is /∈ Aj)

Again (†α) is obviously stronger than (?α). However, the two properties are in fact

equivalent.

Observation 25. (?α) implies (†α).

Proof. Assume k and Xj,i = {xj,is : s ∈ FIN}, j < 3 and i < k, are given as

required. Given j, i and s ∈ FIN, form new sets X̄j,i,s = {xj,i,sn : n > max(s)} as follows:

• if Xj,i is of min-type, then xj,i,sn = xj,i{n},

• if Xj,i is not of min-type, then xj,i,sn = xj,is∪{n}.

Note that, by our definition of canonical enumeration, these are indeed increasing enu-

merations. By (?α), for each n0, there is a βn0
satisfying the conclusion for the family of

sets X̄j,i,s where s ⊆ n0 and i < k. Let β be the supremum of the βn0
, n0 ∈ ω. We claim

that β witnesses (†α). Fix (A0, A1, A2) ∈ A≤αβ . It clearly suffices to verify the following:

(∗) ∀n0 ∃n ≥ n0 ∃j ∀s ⊆ n0 ∀i < k (xj,i,sn /∈ Aj)

For indeed, (∗) easily implies that for some j there is an infinite D ⊆ ω such that for all

n ∈ D, s ⊆ D with max(s) < n, and i < k, xj,i,sn does not belong to Aj . This clearly

implies that for s ⊆ D and i < k, xj,is does not belong to Aj .

To show (∗), fix n0. By (?α) there are infinite D ⊆ ω and j < 3 such that for all

i < k, s ⊆ n0, and n ∈ D, xj,i,sn does not belong to Aj . �

Preservation of (?α) is the main issue of the proof of h3 = ℵ1. We start with

preservation in limit steps.

Lemma 26. (?α) is preserved in limit steps.

Proof. Clearly it suffices to consider limit steps of cofinality ω. Assume cf(α) =

ω, α is the increasing union of the αm, and (?γ) holds for all γ < α. We need to show

that (?α) holds.

Fix k, and let Ẋj,i = {ẋj,in : n ∈ ω} be Pα-names for subsets of ω, j < 3 and i < k.

Fix m, and let Gm be Pαm -generic. In Vαm = V [Gm] let {p`m : ` ∈ ω} be a decreasing

sequence of conditions in the remainder forcing P[αm,α) such that p`m decides the values

of ẋj,in for n ≤ ` and all j and i. Say p`m  ẋj,in = xj,im,n. By (?αm) we find βm such that

for all (A0, A1, A2) ∈ A≤αmβm
, there are countable Dm ⊆ ω and j < 3 with xj,im,n /∈ Aj for

all i < k and all n ∈ Dm.

Now step back into the ground model V . By ccc-ness there is a β < ω1 such that

the trivial condition forces that all βm are smaller than β. We show that this β witnesses

(?α). To this end fix (A0, A1, A2) ∈ A≤αβ in the generic extension Vα. By construction

there is some m0 such that (A0, A1, A2) belongs to A≤αm0

β . That is, (Ȧ0, Ȧ1, Ȧ2) is a
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Pαm0
-name. Next fix p ∈ Pα and m1 ∈ ω. By increasing m1, if necessary, we may assume

that m1 ≥ m0 and p ∈ Pαm1
. It suffices to show that there are q ≤ p, n ≥ m1, and j < 3

such that

(∗∗) q  ẋj,in /∈ Ȧj for all i < k.

Then a genericity argument will yield (?α) in the extension.

To see (∗∗) step into Vαm1
such that p ∈ Gm1 . Let n ∈ Dm1 with n ≥ m1 and j < 3

such that xj,im1,n /∈ A
j for all i < k. Thus pnm1

forces ẋj,in /∈ Aj for all i < k. In Gm1
there

is p̄ ≤ p deciding n, j and pnm1
. Then q given by q�αm1

= p̄ and q�[αm1
, α) = pnm1

will

force ẋj,in /∈ Ȧj for all i < k, as required. �

? ? ?

We next come to preservation of (?α) under Hechler forcing D. We start with a discussion

of rank arguments for Laver-style forcing notions. Such rank arguments for forcing go

back to [BD] and have been used often since.

Let F be a filter on a countable set Ω extending the filter of cofinite sets. Laver

forcing LF with the filter F consists of all trees T ⊆ Ω<ω such that for any node σ ∈ T
beyond the stem, the set {a ∈ Ω : σ â ∈ T} belongs to F . LF is ordered by inclusion.

It is easy to see that LF is a σ-centered forcing notion which adds a dominating real

`F :=
⋃
{stem(T ) : T ∈ G} =

⋂
{[T ] : T ∈ G} ∈ Ωω, where G is the generic filter.

Furthermore, the range of `F is a pseudointersection of the filter F , i.e., ran(`F ) ⊆∗ F
for all F ∈ F .

Let ψ be a sentence of the LF -forcing language. Say that σ ∈ Ω<ω forces ψ if

there is T ∈ LF with stem σ such that T  ψ. Say that σ favors ψ if σ does not force

¬ψ. Clearly, any σ can force at most one of ψ and ¬ψ and favors at least one them.

Alternatively, “σ favors ψ” can be defined using a rank function. Since we shall use rank

arguments later on in various places, it is instructive to explain this rank here. Define

by recursion on α:

rkψ(σ) = 0⇐⇒ σ forces ψ

α > 0 : rkψ(σ) = α⇐⇒¬(rkψ(σ) < α) ∧ {a ∈ Ω : rkψ(σ â) < α} ∈ F+

where F+ denotes the collection of F-positive sets, that is, F+ = {A ⊆ Ω : ∀B ∈
F (A∩B 6= ∅)}. Say rkψ(σ) =∞ if the rank is undefined. Clearly, either rkψ(σ) < ω1 or

rkψ(σ) =∞. Furthermore, an easy argument left to the reader shows that rkψ(σ) < ω1

iff σ favors ψ.

Now assume k ∈ ω and LF -names Ẋj,i = {ẋj,in : n ∈ ω}, j < 3 and i < k, as in (?α)

are given. By thinning out these sets, we may assume, without loss of generality, that

there is a total order R on 3× k such that

(∗ ∗ ∗) (j, i)R(j′, i′)⇐⇒ ∀n  ẋj,in ≤ ẋj
′,i′

n

We can also assume that the function n 7→ ẋj,in dominates the Laver generic real for all

j and i.
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Fix n ∈ ω. Let ψ be a sentence of the LF -forcing language. For any pair j, i define

the rank ρψj,i,n of the name ẋj,in relative to ψ by recursion on α as follows.

ρψj,i,n(σ) = 0⇐⇒ for some ` ∈ ω, σ favors the statement “ψ ∧ ẋj,in = `”

α > 0 : ρψj,i,n(σ) = α⇐⇒¬(ρψj,i,n(σ) < α) ∧ {a ∈ Ω : ρψj,i,n(σ â) < α} ∈ F+

Note that ρψj,i,n(σ) > 0 means that for all ` ∈ ω, σ forces either ¬ψ or ẋj,in 6= `. In

particular, ρψj,i,n(σ) > 0 does not imply that σ forces ¬ψ. Notice that the definition

for α > 0 is exactly the same as for the general rank above. If ψ is trivial (i.e., any

tautology), we omit it.

Claim 27. Assume σ favors ψ. Then ρψj,i,n(σ) < ω1.

Proof. Assume that ρψj,i,n(σ) =∞. Then there is T ∈ LF with stem σ such that

for all τ ∈ T extending the stem, ρψj,i,n(τ) = ∞. On the other hand, since σ favors ψ,

there is T ′ ≤ T forcing ψ. Now let T ′′ ≤ T ′ be such that T ′′ decides the value of ẋj,in ,

and let τ be the stem of T ′′. By construction of T , τ has rank ∞, while by definition of

the rank, τ has rank 0, a contradiction. �

Claim 28. If (j′, i′)R(j, i) then ρψj′,i′,n(σ) ≤ ρψj,i,n(σ).

Proof. By induction on rank ρψj,i,n(σ). If this rank is 0, there is ` such that σ

favors ψ ∧ ẋj,in = `. We claim that for some `′ ≤ `, σ favors ψ ∧ ẋj′,i′n = `′, thus showing

ρψj′,i′,n(σ) = 0. For if this were not the case, for every `′ ≤ `, σ forces ¬ψ ∨ ẋj′,i′n 6= `′.

Hence there is a condition T with stem σ forcing this. Since σ favors ψ ∧ ẋj,in = `, there

is T ′ ≤ T forcing this. Thus T ′ must force ẋj
′,i′

n > `. This contradicts (∗ ∗ ∗).
The case rank > 0 is straightforward and left to the reader. �

Let Ω = ω and let F be the filter of cofinite sets. Define Hechler forcing D to be the

forcing LF . Notice that this is not the standard definition of Hechler forcing. Our reason

for using LF is that this simplifies rank arguments. It is known that D = LF completely

embeds into standard Hechler forcing, and vice-versa – and, therefore, they have the

same effect in iterated forcing constructions – but they are not forcing equivalent [Pa].

Main Lemma 29. Hechler forcing preserves (?α). More explicitly, if cf(α) 6= ω1

and (?α) holds in Vα, then (?α+1) holds in Vα+1.

Proof. Assume k ∈ ω and D-names Ẋj,i = {ẋj,in : n ∈ ω}, j < 3 and i < k, are

given as in the discussion in the paragraphs preceding the main lemma.

Fix n ∈ ω. Let I be a (possibly empty) R-initial segment of 3 × k. Let (j0, i0)

be the R-minimal element not belonging to I. Let J be a non-empty R-interval with

min J = (j0, i0). Finally, let L = (`j,i : (j, i) ∈ I) be a sequence of natural numbers and

let ψ be the statement “ẋj,in = `j,i for all (j, i) ∈ I”. Let σ ∈ ω<ω. Say that σ is n-good

for the triple (I, J, L) if

• σ favors ψ,
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• ρψj,i,n(σ) = 1 for all (j, i) ∈ J ,

• ρψj,i,n(σ) > 1 for all (j, i) R-larger than maxJ .

Using the previous claim, for such n-good σ, we can find an infinite set V σ,n = {vσ,nm :

m ∈ ω} ⊆ ω and numbers `j,i,σ,nm , (j, i) ∈ J and m ∈ ω, such that for all m,

• ρψj,i,n(σ v̂σ,nm ) = 0 and, in fact, σ v̂σ,nm favors “ψ and ẋj,in = `j,i,σ,nm for (j, i) ∈ J”,

• ρψj,i,n(σ v̂σ,nm ) ≥ 1 for all (j, i) R-larger than maxJ .

Note that the function m 7→ `j,i,σ,nm must be finite-to-one for all (j, i) ∈ J . For otherwise

we would have ρψj,i,n(σ) = 0, a contradiction. Therefore we may assume that all functions

m 7→ `j,i,σ,nm are in fact one-to-one and that the finitely many sets Lj,i,σ,n = {`j,i,σ,nm :

m ∈ ω}, (j, i) ∈ J , are listed in increasing enumeration. For (j, i) /∈ J , let Lj,i,σ,n =

{`j,i,σ,nm : m ∈ ω} be arbitrary sets listed in increasing enumeration.

Unfix n. For each n ∈ ω, each finite set Σ ⊆ ω<ω such that all σ ∈ Σ are n-good

for some triple (I, J, L), apply (?α) to the family {Lj,i,σ,n : j < 3, i < k and σ ∈ Σ} to

obtain a βn,Σ depending on n and Σ. Let β be the supremum of the countably many

βn,Σ so obtained. We may assume β ≥ βα.

Now let T ∈ D be arbitrary. Fix n0 ∈ ω. Also fix (A0, A1, A2) ∈ A≤αβ = A≤α+1
β . To

complete the proof of the main lemma, it clearly suffices to show the following:

Claim 30. For some n ≥ n0, some T ′ ≤ T , and some j < 3, T ′ forces ẋj,in /∈ Aj
for all i < k.

For then an easy genericity argument yields the conclusion of (?α+1).

Proof. Let n ≥ n0 be such that ρj,i,n(σ) ≥ 1 for any (j, i) ∈ 3 × k where σ

is the stem of T . Such an n must exist because the functions n 7→ ẋj,in dominate the

generic real. By extending σ, if necessary, we may assume, without loss of generality,

that ρj,i,n(σ) = 1 for the R-minimal (j, i).

Since for each finite Σ consisting of n-good τ we can find j such that the conclusion

of (?α) holds for the Lj,i,τ,n (i < k and τ ∈ Σ) and for (A0, A1, A2), the directedness of

the Σ yields that there is a single j0 that works for all Σ. Fix such j0.

Recursively build σ = σ0 ⊂ σ1 ⊂ · · · ⊂ σq all in T , I0, I1, . . . , Iq−1, and `j,i, j < 3

and i < k, such that

• the Ir form an interval partition of the total order (3× k,R),

• `j0,i /∈ Aj0 ,

• σr is n-good for (I<r, Ir, Lr) where I<r :=
⋃
t<r It and Lr := {`j,i : (j, i) ∈ I<r};

in particular, σr favors ψ<r and ρψ<rj,i,n(σr) = 1 for all (j, i) ∈ Ir where ψ<r is

“ẋj,in = `j,i for all (j, i) ∈ I<r”.

To carry out the recursive construction, assume σr (as well as all items with lower index)

has been obtained for some r ≥ 0 such that ρψ<rj,i,n(σr) = 1 for the R-minimal (j, i) /∈ I<r
(in particular, I<r is a strict R-initial segment of 3×k). By Claim 28, the (j, i) such that
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ρψ<rj,i,n(σr) = 1 form a (non-trivial) R-initial segment Ir of (3×k) \ I<r, and ρψ<rj,i,n(σr) > 1

for all (j, i) beyond this initial segment. By assumption (?α) and choice of j0, we find

m ∈ ω such that σr v̂
σr,n
m ∈ T and `j0,i,σr,nm /∈ Aj0 for all i. Put `j,i = `j,i,σr,nm for

(j, i) ∈ Ir. Since ρψ<rj,i,n(σr v̂
σr,n
m ) = 0 for all (j, i) ∈ Ir, σr v̂σr,nm in fact favors ψ≤r. We

also know that ρψ<rj,i,n(σr v̂
σr,n
m ) ≥ 1 for all (j, i) /∈ I≤r. A fortiori, ρ

ψ≤r
j,i,n(σr v̂

σr,n
m ) ≥ 1

for all (j, i) /∈ I≤r. In case I≤r ⊂ 3 × k, we can extend σr v̂
σr,n
m to σr+1 ∈ T such that

ρ
ψ≤r
j,i,n(σr+1) = 1 for the R-minimal (j, i) /∈ I≤r. In case I≤r = 3 × k, let q = r + 1 and

σq = σr v̂
σr,n
m .

Now, σq favors “ẋj,in = `j,i for all (j, i) ∈ 3× k” and `j0,i /∈ Aj0 for all i < k. Hence

we can find T ′ ≤ T with stem extending σq such that T ′ forces that ẋj0,in /∈ Aj0 for all

i < k, as required. �

This completes the proof of the main lemma. �

? ? ?

To prove the preservation of (?α) under forcing of the type LU is harder, and, in fact, we

need a property stronger than (?α) to be able to build a stable ordered-union ultrafilter

U preserving (?α):

(♣α)


∀k ∀D ∈ (FIN)ω ∀ϕj,i : FU(D)→ ω (j < 3 and i < k) in Vα

of one of the four types min,max,min-max, or one-to-one

∃E v D ∃β < ω1 ∀(A0, A1, A2) ∈ A≤αβ ∀E′ v E ∃E′′ v E′

∃j < 3 ∀i < k (FU(E′′) ∩ (ϕj,i)−1(Aj) = ∅)

For technical reasons (see below, Lemma 35 and Main Lemma 36) we stated this principle

for arbitrary k, but it turns out that this is equivalent to the simpler case where k = 1.

We shall use this observation below in the proof of Main Lemma 33.

Observation 31. (♣α) is the same if restricted to k = 1.

Proof. Assume (♣α) for 1 and let k be arbitrary. Let D and ϕj,i be given. Let

{f` : ` ∈ k3} list all functions from 3 to k. Recursively construct sets E` and ordinals β`
such that

• E0 v D, E`+1 v E`, and β`+1 ≥ β`,

• E` and β` witness (♣α) for the triple of functions ϕj,f`(j), j < 3.

Let β = βk3−1 and E = Ek3−1. We shall see that β and E witness (♣α) for the given ϕj,i.

To this end, let (A0, A1, A2) ∈ A≤αβ and E′ v E. By repeatedly applying Hindman’s

Theorem we find E′′ v E′ such that

• either ∃j < 3 ∀i < k ({ϕj,i(s) : s ∈ FU(E′′)} ∩Aj = ∅),

• or ∀j < 3 ∃i = f(j) ({ϕj,i(s) : s ∈ FU(E′′)} ⊆ Aj).

Letting ` be such that f = f`, we see that the second alternative contradicts step ` of

the construction. Hence the first alternative must hold and we are done. �
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Also, (♣α) is clearly stronger than (?α). (This is not really needed in the proof.)

Observation 32. (♣α) implies (?α).

Proof. Let Xj,i = {xj,in : n ∈ ω} be given and let ϕj,i : FIN→ Xj,i be canonical

bijections. Let β and E be as given by (♣α). Next let (A0, A1, A2) ∈ A≤αβ and fix

E′′ v E and j < 3 such that {ϕj,i(s) : s ∈ FU(E′′)} ∩Aj = ∅ for all i < k. Then clearly

D = {n ∈ ω : xj,in = ϕj,i(s) for some s ∈ FU(E′′)} is as required (note that the definition

of D is independent of the choice of j, i). �

On the other hand, in limit stages of cofinality ω1, not only (?α) but even the

stronger (♣α) will hold – and this is the heart of the proof.

Main Lemma 33. Assume cf(α) = ω1 and (?γ) holds for all γ < α. Then (♣α)

holds.

Proof. By Observation 31, it suffices to consider the case k = 1. Let D ∈ (FIN)ω

and ϕj : FU(D) → ω in Vα be given as required. Since cf(α) = ω1, there is γ < α such

that D and the ϕj belong to Vγ .

First step. We show that there are β < ω1 and E v D in Vγ+1 such that the

conclusion of (♣α) holds for all (A0, A1, A2) ∈ A≤γ+1
β .

For the moment work in the model Vγ . Say that a set F ⊆ FIN is non-trivial if

there is a non-zero condition in the forcing (FIN)ω below it, that is, if there is E ∈
(FIN)ω such that FU(E) ⊆ F . Otherwise F is trivial. For Aj ⊆ ω (j < 3), consider

FĀ = FU(D) ∩ (ϕ0)−1(A0) ∩ (ϕ1)−1(A1) ∩ (ϕ2)−1(A2). For β < ω1, let Eβ = {FĀ :

Ā = (A0, A1, A2) ∈ A≤γβ and FĀ is non-trivial}. Notice that if Ā and B̄ are two distinct

elements of A≤γβ , then FĀ ∩ FB̄ is necessarily trivial. Thus the Eβ are antichains.

Suppose first that there is some β such that Eβ is not a maximal antichain below

FU(D), that is, there is E v D such that for all Ā ∈ A≤γβ , FU(E) ∩ FĀ is trivial.

Without loss of generality assume β ≥ βγ . Then E ∈ Vγ is as required. (For suppose

that Ā ∈ A≤γ+1
β = A≤γβ and E′ v E. Applying Hindman’s Theorem three times we find

E′′ v E′ such that for all j < 3 either FU(E′′) ⊆ (ϕj)−1(Aj) or FU(E′′)∩(ϕj)−1(Aj) = ∅.
By triviality, the first alternative cannot always hold, so there must be j with FU(E′′)∩
(ϕj)−1(Aj) = ∅.)

Hence we may assume that all Eβ are maximal antichains below FU(D). The follow-

ing argument is reminiscent of the proof of the base-tree lemma [BPS] (see also [Bl2,

Theorem 6.20] or [BDH]). We build an increasing sequence βn of ordinals, a binary tree

Āσ = (A0
σ, A

1
σ, A

2
σ) of conditions in ([ω]ω)3, and a binary tree of Eσ v D, σ ∈ 2<ω, such

that

• Āσ ∈ A≤γβn where n = |σ|,

• Āσ 0̂ and Āσ 0̂ are incompatible extensions of Āσ,

• Eσ 0̂ and Eσ 1̂ are incompatible extensions of Eσ,

• FU(Eσ) ⊆ FĀσ .
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To see that this can be done, first choose β0 and Ā∅ arbitrary with FĀ∅ ∈ Eβ0 . Then find

E∅ v D with FU(E∅) ⊆ FĀ∅ . Assume βn and Āσ, Eσ for σ ∈ 2n have been constructed.

Fix σ ∈ 2n. Let xjs = ϕj(s) for s ∈ FU(Eσ). Applying (†γ) to the Xj = {xjs : s ∈
FU(Eσ)} we obtain βσ > βn such that the conclusion of (†γ) holds. Unfixing σ, let

βn+1 be the maximum of the βσ. Applying (†γ) together with the maximality of the

antichain Eβn+1
, we see that there must be two distinct Āσ 0̂ and Āσ 1̂ ∈ A≤γβn+1

such that

FU(Eσ) ∩ FĀσˆ0 and FU(Eσ) ∩ FĀσˆ1 are both non-trivial. Hence we can find Eσ î with

FU(Eσ î) ⊆ FU(Eσ) ∩ FĀσ î as required.

Let β be the supremum of the βn. For f ∈ 2ω, choose Ef v∗ Ef�n for all n. Again

by maximality, there must be Āf ∈ A≤γβ such that FU(Ef ) ∩ FĀf is non-trivial. Note

that for such Āf we necessarily must have Ajf ⊆∗ A
j
f�n for all n. (We know that Āf

refines a member Ān of A≤γβn . If Ān were distinct from Āf�n, then FU(Ef�n) ∩ FĀn , and

thus FU(Ef ) ∩ FĀf , would be trivial, a contradiction.)

Now step into Vγ+1. Without loss of generality assume β ≥ βγ . So A≤γ+1
β = A≤γβ .

Let f ∈ 2ω ∩ (Vγ+1 \ Vγ) (note that each stage of the forcing adds a new real, so clearly

there is such an f). Consider Ef . Suppose that FU(Ef ) ∩ FĀf is non-trivial for some

Āf ∈ A≤γ+1
β . By the discussion in the preceding paragraph, we see that Ajf ⊆∗ A

j
f�n

for all n. This means, however, that from Āf we can reconstruct the function f . This

contradicts the fact that Āf ∈ Vγ and f /∈ Vγ . Thus FU(Ef ) ∩ FĀ is trivial for all

Ā ∈ A≤γ+1
β and E = Ef ∈ Vγ+1 is as required, by the same argument as above (in the

case one of the Eβ is not a maximal antichain).

Second step. We show by induction on δ with γ < δ ≤ α that the conclusion of

(♣α) holds for all (A0, A1, A2) ∈ A≤δβ , for the β and E obtained in the first step.

The case δ = γ + 1 is the first step. The limit step is trivial. So assume this has

been proved for δ, and we show it for δ + 1. Let (A0, A1, A2) ∈ A≤δ+1
β \ A≤δβ . Assume

Aj = {ajn : n ∈ ω} are their respective increasing enumerations. We use condition (f).

Assume first two of the three functions ϕj are of min-type, say ϕ0 and ϕ1. Note

that the functions f j : k 7→ min{s : ϕj(s) = k}, j = 0, 1, are partial one-to-one functions

from Vγ ⊆ Vδ. In particular, we have f j , (f j)−1 ≤∗ d = dδ (on the respective domains

of the functions). Let n0 be large enough so that for all n ≥ n0 we have f j(ajn) < d(ajn)

and ajn = (f j)−1(f j(ajn)) < d(f j(ajn)), j = 0, 1. Then we see that

f0(a0
n) < d(a0

n) < f1(a1
n) < d(a1

n) < f0(a0
n+1)

where the second inequality follows from d(d(a0
n)) < a1

n for f1(a1
n) ≤ d(a0

n) would yield

a1
n < d(f1(a1

n)) ≤ d(d(a0
n)), a contradiction to (f). Similarly for the forth inequality.

Hence, (ϕ0)−1(A0) and (ϕ1)−1(A1) have only finitely many mins in common. Thus

clearly FU(E) ∩ (ϕ0)−1(A0) ∩ (ϕ1)−1(A1) is trivial.

Similarly, if two of the functions are not of min-type, say again, ϕ0 and ϕ1, then

we see that (ϕ0)−1(A0) and (ϕ1)−1(A1) only have finitely many maxs in common, and

we conclude as before. The only slight complication is that this time the functions

f j : k 7→ max{s : ϕj(s) = k} are only finite-to-one and not necessarily one-to-one. We

leave details to the reader. This ends the proof of the main lemma. �
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Note that the second step of this argument is the only place in the proof of Theorem 1

where we use that we work with triples (A0, A1, A2).

? ? ?

Now consider the following property of ultrafilters U on FIN in Vα:

(♠α)


∀k ∀D ∈ (FIN)ω with FU(D) ∈ U ∀ϕj,i : FU(D)→ ω (j < 3 and i < k)

in Vα of one of the four types min,max,min-max, or one-to-one

∃β < ω1 ∀(A0, A1, A2) ∈ A≤αβ ∃E v D with FU(E) ∈ U
∃j < 3 ∀i < k (FU(E) ∩ (ϕj,i)−1(Aj) = ∅)

Again this is equivalent to the special case k = 1, but we will not need this.

Observation 34. If U is an ordered-union ultrafilter, then (♠α) is the same if

restricted to k = 1.

Proof. Like the proof of Observation 31. �

Lemma 35. Assume cf(α) = ω1 and (♣α) holds. Then, in Vα, there is a stable

ordered-union ultrafilter Uα satisfying (♠α) and diagonalizing the witness handed down

by ♦S2
1

at stage α.

The latter means that if the α-th object of the diamond sequence is a Pα-name which

interprets as a family {Dβ : β < ω1} where each Dβ is an open dense set in (FIN)ω, then,

for all β, there is D ∈ Dβ such that FU(D) ∈ Uα. This implies that LUα will generically

add an E ∈ (FIN)ω belonging to all Dβ so that {Dβ : β < ω1} cannot be extended to a

witness for hFIN = ℵ1 in the final model, as required.

Proof. Work in Vα. Note that CH still holds. {Fδ : δ < ω1} lists [FIN]ω, that

is, the infinite subsets of FIN. Also let {{ϕj,iδ : j < 3 and i < kδ} : δ < ω1} list all finite

sequences of functions from FIN to ω. Recursively construct Eδ ∈ (FIN)ω (the infinite

block sequences) and ordinals βδ < ω1, δ < ω1, such that

(i) the sequence Eδ is v∗-decreasing,

(ii) FU(Eδ+1) ⊆ Fδ or FU(Eδ+1) ⊆ ω \ Fδ,

(iii) Eδ+1 ∈ Dδ (see the paragraph preceding the proof),

(iv) if all ϕj,iδ �FU(D) are one of the four types, for some D v Eδ, then Eδ+1 v D and

βδ+1 satisfy the conclusion of (♣α).

Item (i) is taken care of in limit steps, items (ii) through (iv) in successor steps. To

get (ii) use Hindman’s Theorem. The other conditions can be easily guaranteed using

the assumptions. (i) and (ii) imply that the decreasing chain of the FU(Eδ) generates a

stable ordered-union ultrafilter Uα. We are left with showing (♠α).

Let k, D, and ϕj,i, j < 3 and i < k, be given as required. Let δ be such that k = kδ
and ϕj,i = ϕj,iδ . We may assume D extends Eδ. Hence Eδ+1 and βδ+1 were constructed
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so as to satisfy (♣α). Now take (A0, A1, A2) ∈ A≤αβδ+1
. Since Uα is an ordered-union

ultrafilter, there is E v Eδ+1 with FU(E) ∈ Uα such that for all j and i,

• either FU(E) ∩ (ϕj,i)−1(Aj) = ∅,

• or FU(E) ⊆ (ϕj,i)−1(Aj).

If for all j there were i with FU(E) ⊆ (ϕj,i)−1(Aj), this would clearly contradict the

conclusion of (♣α). Hence the conclusion of (♠α) holds. �

Main Lemma 36. Assume the stable ordered-union ultrafilter Uα satisfies (♠α).

Then the forcing LUα preserves (?α). In particular, if cf(α) = ω1 and (♣α) holds in Vα,

then (?α+1) holds in Vα+1.

Proof. This proof is very similar to the proof of Main Lemma 29. Since the filter

is an ultrafilter this time, “forces” and “favors” mean the same, and we do not need the

relativized ranks. We do need, however, the relation R and the ranks ρj,i,n as discussed

in the paragraphs preceding Main Lemma 29.

Assume k ∈ ω and LUα -names Ẋj,i = {ẋj,in : n ∈ ω}, j < 3 and i < k, are given. Fix

n for the moment. As in the proof of Main Lemma 29, let J be a non-empty R-interval.

Say that σ ∈ (FIN)<ω is n-good for J if

• ρj,i,n(σ) = 0 for all (j, i) R-smaller than minJ ,

• ρj,i,n(σ) = 1 for all (j, i) ∈ J ,

• ρj,i,n(σ) > 1 for all (j, i) R-larger than maxJ .

Using the definition of the rank, we can find a set E ∈ (FIN)ω such that FU(E) ∈ Uα
and functions ϕj,i,σ,n : FU(E)→ ω, (j, i) ∈ J , such that for all e ∈ FU(E),

• ρj,i,n(σ ê) = 0 and, in fact, σ ê forces ẋj,in = ϕj,i,σ,n(e) for (j, i) ∈ J ,

• ρj,i,n(σ ê) ≥ 1 for all (j, i) R-larger than maxJ .

Since Uα is a stable ordered-union ultrafilter and thus satisfies Taylor’s Theorem by [Bl1,

Theorem 4.2], we may assume that all the functions ϕj,i,σ,n, (j, i) ∈ J , are of one of the

five canonical types. Furthermore, no such function can be of constant type, because

ϕj,i,σ,n being constant would imply ρj,i,n(σ) = 0, contradicting the assumption. Hence

they are of one of the other four types. For (j, i) /∈ J , let ϕj,i,σ,n : FU(E) → ω be an

arbitrary function of one of the four types.

Unfix n. For each n ∈ ω, each finite set Σ ⊆ (FIN)<ω such that all σ ∈ Σ are n-good

for some J , apply (♠α) to the family {ϕj,i,σ,n : j < 3, i < k and σ ∈ Σ} to obtain βn,Σ
depending on n and Σ and satisfying the conclusion of (♠α). Let β be the supremum of

the βn,Σ.

Now let T ∈ LUα be arbitrary. Fix n0 ∈ ω. Also fix (A0, A1, A2) ∈ A≤αβ = A≤α+1
β .

Again, a standard genericity argument shows that it suffices to prove the following:

Claim 37. For some n ≥ n0, some T ′ ≤ T , and some j < 3, T ′  ẋj,in /∈ Aj for

all i < k.
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Proof. The proof is similar to the proof of Claim 30. Let n ≥ n0 be such that

ρj,i,n(σ) ≥ 1 for any (j, i) ∈ 3 × k where σ is the stem of T . Again assume that

ρj,i,n(σ) = 1 for the R-minimal (j, i).

Now, for each finite Σ consisting of n-good τ , we can find j = jΣ and EΣ v D with

FU(EΣ) ∈ Uα such that the conclusion of (♠α) holds for the ϕj,i,τ,n, i < k and τ ∈ Σ,

and (A0, A1, A2). The directedness of the Σ yields that a single j0 works for all Σ. Fix

such j0.

Recursively build σ = σ0 ⊂ σ1 ⊂ · · · ⊂ σq all in T , an interval partition

I0, I1, . . . , Iq−1 of (3× k,R), and numbers `j,i, j < 3 and i < k, such that

• `j0,i /∈ Aj0 ,

• σr is n-good for Ir; in particular, ρj,i,n(σr) = 1 for all (j, i) ∈ Ir,

• σr forces ẋj,in = `j,i for all (j, i) ∈ I<r :=
⋃
t<r It.

To do the recursion, assume σr has been obtained for some r ≥ 0 such that ρj,i,n(σr) = 1

for the R-minimal (j, i) /∈ I<r (in particular, I<r is a proper R-initial segment of 3× k).

By Claim 28, the (j, i) with ρj,i,n(σr) = 1 form an R-initial segment Ir of (3× k) \ I<r.
By assumption (♠α) and choice of j0, we find e ∈ FIN such that σr ê ∈ T , σ ê forces

ẋj,in = ϕj,i,σr,n(e) for all (j, i) ∈ Ir, ϕj0,i,σr,n(e) /∈ Aj0 for all i, and ρj,i,n(σr ê) ≥ 1 for all

(j, i) /∈ I≤r. Put `j,i = ϕj,i,σr,n(e) for (j, i) ∈ Ir. In case I≤r is a proper subset of 3× k,

we can extend σr ê to σr+1 ∈ T such that ρj,i,n(σr+1) = 1 for the R-minimal (j, i) /∈ I≤r.
If I≤r = 3× k, let q = r + 1 and σq = σr ê.

Now, σq forces “ẋj,in = `j,i for all (j, i) ∈ 3× k” and `j0,i /∈ Aj0 for all i < k. Hence

we can find T ′ ≤ T with stem σq forcing ẋj0,in /∈ Aj0 for all i < k, as required. �

This completes the proof of the main lemma. �

This also completes the proof of Theorem 1.

5. Proof of Theorem 2.

The proof of Theorem 2 is very similar to the proof of Theorem 1. Therefore, we

will confine ourselves to stressing the main combinatorial differences and leave the proofs

of a number of facts to the reader.

Before starting, however, it is instructive to review what we did in the proof of

Theorem 1. We used ♦S2
1

and a Laver-style forcing in limit steps of cofinality ω1 to get

hFIN = ℵ2 – and that was the easy part. We also built up a family of ℵ1 many maximal

antichains in ([ω]ω)3 as a witness for h3 = ℵ1 along the iteration. For preserving this

family we introduced property (?α) which was only slightly stronger than the obviously

needed property. Preservation of (?α) in limit steps and successor steps α + 1 with

cf(α) 6= ω1 – the places where we used Hechler forcing – were straightforward albeit

technical. Then main problem was the preservation of (?α) in successor steps α+ 1 with

cf(α) = ω1 – and for this we needed that the ultrafilter Uα of the Laver forcing LUα
satisfied property (♠α). To be able to build Uα with (♠α), property (♣α) was necessary,

and the heart of the whole argument was to prove (♣α) for α with cf(α) = ω1, just
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assuming (?γ) – more explicitly, its equivalent reformulation (†γ) – for γ < α. This

central argument was based on a canonization theorem, Taylor’s Theorem.

For the proof of CON(hn > hFIN for all n), we shall again need a canonization

result, the Erdős–Rado Theorem [To, Theorem 1.8] which is a direct consequence of

Ramsey’s Theorem. Fix ` ∈ ω. Let A = (Aj : j < `) be infinite subsets of ω. By
~A we denote the set of all strictly increasing sequences in the product of the Aj , i.e.,
~A = {ā = (aj : j < `) ∈

∏
j<`A

j : aj < aj+1 for all j < ` − 1}. If all Aj are equal to

ω, write ~ω – or ~ω` if we want to stress the number of coordinates – for ~A. We say that
~B ≤ ~A if Bj ⊆ Aj for all j < `. Similarly, we define ≤∗: ~B ≤∗ ~A if Bj ⊆∗ Aj for all

j < `.

Erdős–Rado Theorem. For every A = (Aj : j < `) ∈ ([ω]ω)` and every function

f : ~A→ ω, there are ~B ≤ ~A and T ⊆ ` such that f� ~B depends exactly on the coordinates

in T , that is, for all ā, b̄ ∈ ~B,

f(ā) = f(b̄)⇐⇒ ∀j ∈ T (aj = bj)

Assume again CH and ♦S2
1
. We make a finite support iteration (Pα, Q̇α : α < ω2)

such that

(A′) if cf(α) = ω1, then Q̇α is Laver forcing LU̇α where U̇α is an Erdős–Rado ultrafilter

on ω`α with `α being a natural number handed down by the diamond sequence,

(B′) if cf(α) = ω1, then Q̇α is Hechler forcing Ḋ.

(Here an ultrafilter is Erdős-Rado if canonical sets in the sense of the Erdős–Rado The-

orem can be found in the ultrafilter; see after Main Lemma 42 for details.) h` = ℵ2 for

all ` will again follow as in the proof of Theorem 1, and the main point is the argument

for hFIN = ℵ1. Construct families {Dβ : β < ω1} such that

(a′) the Dβ are MADFIN-families,

(b′) β < β′ implies that Dβ′ refines Dβ .

Again we have D≤αβ = Dβ ∩ Vα ∈ Vα, and a book-keeping argument gives α = αE,β for

E ∈ (FIN)ω and β < ω1 with E ∈ Vα, such that the function E, β 7→ α is one-to-one and

onto ordinals of cofinality < ω1. For α with cf(α) 6= ω1, denote by Eα and βα the unique

E and β with α = αE,β . Again we stipulate

(c′) D≤αβ =
⋃
γ<αD

≤γ
β for limit α, and D≤α+1

β = D≤αβ if cf(α) = ω1 or β ≥ βα,

(d′) if β < βα and if D≤αβ is not predense below Eα, then there is D v∗ Eα belonging

to D≤α+1
β \ D≤αβ ,

(e′) for all α and for β < β′ < ω1, D≤αβ′ refines D≤αβ ,

(f′) whenever β < βα and D ∈ D≤α+1
β \ D≤αβ , D = (dn : n ∈ ω), then

d(min(dn)) < max(dn) and d(max(dn)) < min(dn+1)
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for all n, where d = dα is the dominating real over Vα added by Qα.

It is easy to see that this can be done. See the discussion in Observation 23 and Corol-

lary 24.

? ? ?

To see that {Dβ : β < ω1} witnesses hFIN = ℵ1, by (f′) it suffices to show by induction

on α < ω2 that

(∗∗α) ∀E ∈ (FIN)ω ∩ Vα ∃β < ω1 ∀D ∈ D≤αβ (E 6v∗ D)

We shall preserve the following slightly stronger property:

(??α)

{
∀k ∀enumerations Ei = {ein : n ∈ ω} ∈ [FIN]ω ∩ Vα (i < k)

∃β < ω1 ∀D ∈ D≤αβ ∃∞n ∀i < k (ein /∈ FU(D))

Clearly (??α) strengthens (∗∗α). Note that we allow the Ei to be arbitrary infinite subsets

of FIN and not just block sequences. This is important for preservation purposes. Say

that E = {eā : ā ∈ ~ω} ⊆ FIN is listed in canonical enumeration if the listing is one of

the non-constant canonical types given by the Erdős–Rado Theorem. Now consider:

(††α)


∀` ∀k ∀Ei = {eiā : ā ∈ ~ω`} ∈ [FIN]ω ∩ Vα (i < k)

listed in canonical enumeration ∃β < ω1 ∀D ∈ D≤αβ
∃~R ≤ ~ω` ∀ā ∈ ~R ∀i < k (eiā /∈ FU(D))

Observation 38. (??α) and (††α) are equivalent.

Proof. This is similar to the proof of Observation 25. However, since the combi-

natorial structure is different, we include the argument.

Assume `, k, and Ei = {eiā : ā ∈ ~ω`}, i < k, are given as required. Since all listings

Ei are of non-constant canonical type, for each i < k there is T i ⊆ `, T i 6= ∅, such that

for all ā, b̄ ∈ ~ω`,

eiā = eib̄ ⇐⇒ ∀j ∈ T
i (aj = bj)

Let ji = max(T i). For j < `, i < k such that ji = j, and c̄ ∈ ~ωj , define the sets

Ei,c̄ = {ei,c̄n : n > max c̄} where ei,c̄n = eiā with ā�j = c̄ and aj = n. Note that for

ā, b̄ ∈ ~ω` with c̄ ⊆ ā, b̄,

eiā = eib̄ ⇐⇒ aj = bj

so that ei,c̄n is welldefined and Ei,c̄ is an enumeration of an infinite subset of FIN.

By (??α), for each m ∈ ω, there is a βm satisfying the conclusion for the family of

sets Ei,c̄ where max c̄ ≤ m and i < k. Let β be the supremum of the βm, m ∈ ω. We

claim that β witnesses (††α). To see this, fix D ∈ D≤αβ . It is easy to see that

(∗∗) ∀j ∀m ∃∞n > m ∀i with ji = j ∀c̄ ∈ ~ωj with max c̄ ≤ m (ei,c̄n /∈ FU(D))
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In fact, this is a straightforward consequence of the conclusion of (??α) and the choice

of β.

(∗∗), however, allows us to build infinite sets Rj ⊆ ω, j < `, such that for all i with

ji = j, all c̄ ∈ ~R�j, and all n ∈ Rj with n > max c̄, ei,c̄n /∈ FU(D). This means that for

ā ∈ ~R and i < k, eiā does not belong to FU(D). �

Lemma 39. (??α) is preserved in limit steps of finite support iterations.

Proof. Like the proof of Lemma 26. �

Lemma 40. (??α) is preserved by Hechler forcing.

Proof. Like the proof of Main Lemma 29, but simpler because we only have one

set Ei for each i and not three sets Xj,i, j < 3. �

To prove the preservation of (??α) under forcing of type LU , we need again a stronger

property:

(♣♣α)


∀` ∀k ∀A = (A0, . . . , A`−1) ∀f i : ~A→ FIN (i < k) in Vα

of non-constant canonical type

∃ ~B ≤ ~A ∃β < ω1 ∀D ∈ D≤αβ ∀ ~B′ ≤ ~B ∃ ~B′′ ≤ ~B′

∀i < k ( ~B′′ ∩ (f i)−1(FU(D)) = ∅)

Observation 41. (♣♣α) is the same if restricted to k = 1.

Proof. Like the proof of Observation 31 but easier. �

Again, it is easy to see that (♣♣α) implies (??α) (cf. Observation 32).

Main Lemma 42. Assume cf(α) = ω1 and (??γ) holds for all γ < α. Then (♣♣α)

holds.

Proof. The proof proceeds like the proof of Main Lemma 33, in two steps. The

first step is similar, and we shall confine ourselves to only sketching the argument, while

the second step involves the combinatorics of the Erdős–Rado Theorem and will be

presented in detail.

By Observation 41, it suffices to consider the case k = 1. Let ` ∈ ω, A =

(A0, . . . , A`−1), and f : ~A→ FIN in Vα be given. Let γ < α be such that ~A, f ∈ Vγ .

First step. Show that there are β < ω1 and ~B ≤ ~A in Vγ+1 satisfying the conclusion

of (♣♣α) for all D ∈ D≤γ+1
β .

Work in Vγ . Say C ⊆ ~A is non-trivial if there is ~B ⊆ C. For D ∈ (FIN)ω, consider

CD = ~A ∩ f−1(FU(D)). For β < ω1, let Cβ = {CD : D ∈ D≤γβ and CD is non-trivial}.
Note that if D and E are two distinct elements of D≤γβ , then CD ∩ CE is trivial (this is

so because, if D and E are incompatible, then FU(D) ∩ FU(E) is finite; since f is not a

constant function, it is one-to-one in at least one coordinate, and then CD ∩CE is finite

in this coordinate).
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If, for some β ≥ βγ , Cβ is not maximal below ~A, then we find ~B ≤ ~A in Vγ incom-

patible with everything from Cβ , and this ~B is easily seen to be as required.

If, for all β, Cβ is maximal below ~A, we build a tree as in the proof of Main Lemma 33,

using the assumption (††γ) which is equivalent to (??γ) by Observation 38, and argue

that a new branch from Vγ+1 \ Vγ gives us ~B ≤ ~A incompatible with everything from Cβ
for some β ≥ βγ . Again, this ~B is as required.

Second step. Show by induction on δ with γ < δ ≤ α that the conclusion of (♣♣α)

holds for all D ∈ D≤δβ , for the β and ~B obtained in the first part.

The case δ = γ + 1 was done above, and the limit step is trivial. So assume this is

true for δ, and we shall show this for δ + 1. Let D = (dn : n ∈ ω) ∈ D≤δ+1
β \ D≤δβ .

Recall that T ⊆ ` is the set of coordinates on which the function f depends, that

is, for all ā, b̄ ∈ ~B, f(ā) = f(b̄) iff aj = bj for all j ∈ T . Since f is of non-constant

type, T 6= ∅. Since it suffices to show that for all ~B′ ≤ ~B there is ~B′′ ≤ ~B′ such that
~B′′ ∩ f−1(FU(D)) is trivial, we may assume that ~B has further canonization properties.

So suppose that ~B is canonical with respect to the function min f , that is, there is a set

Tmin ⊆ T such that for all ā, b̄ ∈ ~B, min(f(ā)) = min(f(b̄)) iff aj = bj for all j ∈ Tmin.

Put j0 := maxT .

Case 1. j0 ∈ Tmin. Let {bj0n : n ∈ ω} be the increasing enumeration of Bj0 . Since f

does not depend on coordinates beyond j0, for each n there are only finitely many values

f(ān) where ān ∈ ~B is arbitrary with aj0n = bj0n . Also, min{min(f(ān)) : ān ∈ ~B and

aj0n = bj0n } goes to ∞ as n → ∞. Since d = dδ is dominating over Vδ, we conclude that,

for almost all n, the following holds: for all ān ∈ ~B with aj0n = bj0n , d(min(f(ān))) >

max(f(ān)). For such ān, f(ān) cannot belong to FU(D), for if some dm was an initial

segment of f(ān), then by (f′)

max(dm) > d(min(dm)) = d(min(f(ān))) > max(f(ān))

a contradiction. Hence ~B ∩ f−1(FU(D)) is trivial.

Case 2. j0 /∈ Tmin. Fix strictly increasing bj ∈ Bj for j ∈ T \ {j0}. Let b̄ :=

(bj : j ∈ T \ {j0}). Let ān = āb̄,n ∈ ~B be arbitrary with ajn = bj for j ∈ T \ {j0} and

aj0n = bj0n . Note that f(ān) then depends only on aj0n = bj0n . Think of f(ān) ∈ FIN as

an element of the Cantor space 2ω. By thinning out the set Bj0 , if necessary, we may

assume that there is a real x = xb̄ ∈ 2ω such that the sequence f(ān), n ∈ ω, converges

to x. Again, identify x with a subset of ω. (Note that x is non-empty because j0 /∈ Tmin

means that n 7→ min(f(ān)) is constant and therefore min(f(ān)) ∈ x.) Unfixing the bj

we may assume that for each b̄, the sequence f(āb̄,n), n ∈ ω, converges to xb̄. To see that
~B ∩ f−1(FU(D)) is trivial, it suffices to show that for all b̄, for almost all n, f(āb̄,n) does

not belong to FU(D). Fix b̄. We consider two cases.

Case 2a. x = xb̄ is finite. Note that for large enough n, f(āb̄,n) ∈ FU(D) is equivalent

to f(āb̄,n) \ xb̄ ∈ FU(D). Also, for large enough n, d(min(f(āb̄,n) \ xb̄)) > max(f(āb̄,n))

holds because d is a dominating real. Thus, as in Case 1, if dm was an initial segment of

f(āb̄,n) \ xb̄, then by (f′)

max(dm) > d(min(dm)) = d(min(f(āb̄,n) \ xb̄)) > max(f(āb̄,n))
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a contradiction. Hence f(āb̄,n) does not belong to FU(D) for almost all n, as required.

Case 2b. x = xb̄ is infinite. Say x = {yp : p ∈ ω} is its increasing enumeration. Note

that each yp must belong to almost all f(āb̄,n). Also, for large enough p, d(yp) > yp+1

because d is a dominating real. Thus, for large enough n, if f(āb̄,n) belonged to FU(D), we

would have that for some p and m, yp = max(dm), yp, yp+1 ∈ f(āb̄,n), and d(yp) > yp+1.

However, by (f′),

min(dm+1) > d(max(dm)) = d(yp) > yp+1

then contradicts f(āb̄,n) ∈ FU(D), a contradiction. �

? ? ?

To be able to complete the proof of Theorem 2, we introduce the ultrafilters which we

use for the Laver forcing in limit steps of uncountable cofinality, and discuss their basic

properties.

Fix ` ∈ ω, ` ≥ 1. An ultrafilter U on ω` is Erdős–Rado if for all A = (Aj : j <

`) ∈ ([ω]ω)` with ~A ∈ U and all f : ~A → ω, there is ~B ≤ ~A such that ~B ∈ U and f� ~B
is canonical (in the sense of the Erdős–Rado Theorem). We collect a couple of basic

properties of such ultrafilters.

Observation 43. Assume U is an Erdős–Rado ultrafilter on ω`, ` ≥ 1. Then:

(i) U has a basis of sets of the form ~A.

(ii) If ~An ∈ U , ~An+1 ≤∗ ~An for all n, then there is ~B ∈ U with ~B ≤∗ ~An for all n.

(iii) The projection of U on the j-th coordinate, U j = {X ⊆ ω : {ā ∈ ω` : aj ∈ X} ∈ U},
j < `, is a Ramsey ultrafilter on ω.

Furthermore, for ` = 1, U is Erdős-Rado iff U is Ramsey.

Proof. (i) Assume X ⊆ ω`, X ∈ U . Define f : ~ω` → 2 by

f(ā) =

{
0 if ā /∈ X
1 if ā ∈ X

Let ~A ∈ U be such that f� ~A is canonical. Since f is two-valued, f� ~A must be constant.

Since ~A ∩X 6= ∅, the constant value must be 1, and ~A ⊆ X follows.

(ii) Let ~An ∈ U be given as required. For simplicity assume ~An+1 ≤ ~An and⋂
n
~An = ∅. Define f : ~A0 → ω by

f(ā) = min{n : ā /∈ ~An+1}

Assume ~B ∈ U canonizes f . We must show ~B ≤∗ ~An for all n. Suppose this was false,

let n be minimal such that ~B 6≤∗ ~An+1 and let j be such that Bj 6⊆∗ Ajn+1. Since ~An+1

and ~B both belong to U and U is Erdős-Rado, (Bj ∩Ajn) \Ajn+1 and Bj ∩Ajn+1 are both

infinite. This means we can find distinct i0, i1 ∈ (Bj ∩Ajn) \Ajn+1, i2 ∈ Bj ∩Ajn+1, and
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ā2 ∈ ~B ∩ ~An+1 such that aj2 = i2 and ā0, ā1 given by ā0�` \ {j} = ā1�` \ {j} = ā2�` \ {j},
aj0 = i0, and aj1 = i1 also belong to ~B. But then f(ā2) > n while f(ā0) = f(ā1) = n,

contradicting the assumption that f is canonical on ~B. Hence ~B is as required.

(iii) Given f : ω → ω, let g : ω` → ω be defined by g(ā) = f(aj). Let ~A ∈ U be

canonical for g. Then f is either constant or one-to-one on Aj ∈ Uj . Hence U j is a

Ramsey ultrafilter.

The final statement is immediate from (iii) and the definition of Ramseyness. �

Now consider the following property of ultrafilters U on ω` in Vα:

(♠♠α)


∀k ∀A = (A0, . . . , A`−1) with ~A ∈ U ∀f i : ~A→ FIN (i < k) in Vα

of non-constant canonical type

∃β < ω1 ∀D ∈ D≤αβ ∃ ~B ≤ ~A with ~B ∈ U
∀i < k ( ~B ∩ (f i)−1(FU(D)) = ∅)

Lemma 44. Assume cf(α) = ω1 and (♣♣α) holds. Then, in Vα, there is an Erdős–

Rado ultrafilter Uα satisfying (♠♠α) such that Uα diagonalizes the witness for h` handed

down at stage α where ` = `α.

Again, the last part of this statement means that if the α-th object of the ♦S2
1
-

sequence is a Pα-name which interprets as a family {Aβ : β < ω1} where each Aβ is an

open dense set in ([ω]ω)` with ` = `α, then for all β < ω1 there is A = (A0, . . . , A`−1) ∈
Aβ such that ~A ∈ Uα. This entails that LUα adds a set C ⊆ ω` such that, letting

Bj = {b : ∃c̄ ∈ C (cj = b)}, a standard genericity argument shows that all Bj are infinite

and that B = (B0, . . . , B`−1) belongs to all Aβ so that {Aβ : β < ω1} cannot be an

initial segment of a witness for h` = ℵ1 in the final model.

Proof. This is a standard recursive construction, like the construction of the

ultrafilter in Lemma 35. We leave the details to the reader. �

Lemma 45. Assume the Erdős-Rado ultrafilter Uα satisfies (♠♠α). Then the forc-

ing LUα preserves (??α). In particular, if cf(α) = ω1 and (♣♣α) holds in Vα, then

(??α+1) holds in Vα+1.

Proof. This is similar to, but easier than, the proof of Main Lemma 36. �

This completes our outline of the proof of Theorem 2.

References
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