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Abstract. We consider a holomorphic foliation F of codimension k ≥ 1
on a homogeneous compact Kähler manifold X of dimension n > k. Assuming

that the singular set Sing(F) of F is contained in an absolutely k-convex

domain U ⊂ X, we prove that the determinant of normal bundle det(NF )
of F cannot be an ample line bundle, provided [n/k] ≥ 2k + 3. Here [n/k]

denotes the largest integer ≤ n/k.

1. Introduction.

Motived by the recently results of Fornæss, Sibony, Wold [13], we study properties

on absolutely k-convex spaces and holomorphic foliations of arbitrary codimension on

homogeneous compact Kähler manifolds. The existence of these domains in the foliated

manifold implies properties of positive for the normal bundle of the foliation involved.

More precisely, using Ohsawa–Takegoshi–Demailly’s decomposition [10] for absolutely

q-convex spaces and the residual formulas of Baum–Bott type [2], we prove the following

result.

Theorem 1. Let F be a holomorphic foliation, of codimension k ≥ 1, on a ho-

mogeneous compact Kähler manifold X of dimension n > k. Suppose that Sing(F) is

contained in an absolutely k-convex domain U ⊂ X and such that

[n/k] ≥ 2k + 3.

Then, the determinant of normal bundle det(NF ) of F cannot be an ample line bundle.

Recently smooth holomorphic foliations on homogeneous compact Kähler manifolds

have been investigated by Lo Bianco–Pereira [16]. It follows from Theorem 1 that a

foliation F of codimension k ≥ 1 on a homogeneous compact Kähler manifold X of

dimension n > k, with det(NF ) ample and [n/k] ≥ 2k+3 is either regular or the singular

set Sing(F) cannot be contained in an absolutely k-convex domain U ⊂ X.

Related papers about codimension-one holomorphic foliations with ample normal

bundle on compact Kähler manifolds of dimension at least three have been studied by

Brunella in [4], [5] and Brunella–Perrone in [6]. Furthermore, Brunella stated in [4] the

following conjecture:
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Conjecture 1.1. Let X be a compact connected complex manifold of dimension

n ≥ 3, and let F be a codimension-one holomorphic foliation on X whose normal bundle

NF is ample. Then every leaf of F accumulates to Sing(F).

In [6], Brunella–Perrone proved the Conjecture 1.1 for codimension-one holomorphic

foliations on projective manifolds with cyclic Picard group. In the case of X = Pn, n ≥ 3,

the above conjecture was proved by Lins Neto [15]. We remark that the conjecture 1.1

can be enunciated in a high codimensional version.

Conjecture 1.2 (Generalized Brunella’s conjecture). Let X be a compact con-

nected complex manifold of dimension n ≥ 3, and let F be a holomorphic foliation of

codimension k < n on X whose normal bundle NF is ample. Then every leaf of F
accumulates to Sing(F), provided n ≥ 2k + 1.

Our main result suggests that the property of accumulation of the leaves of F to

singular set of F (or nonexistence of minimal sets of F , see for instance [7]) depends

of the existence of strongly q-convex spaces contained singularities of F on X. In fact,

suppose that there exist a leaf L of the foliation F of codimension k such that L̄ ∩
Sing(F) = ∅, then Sing(F) would be contained in U := X \ L̄. The problem consists

in proving that U is a strongly k-convex domain with n ≥ 2k + 1. This would be a

contradiction with the amplitude of normal bundle NF .

This note is organized as follows: in Section 2, we recall some definitions and known

results about holomorphic foliations of arbitrary dimension on complex manifolds. Sec-

tion 3 is devoted to study of the singular set of holomorphic foliations of high codimension.

In Section 4, we recall the Baum–Bott formula. In Section 5, we give some definitions

and results about q-complete spaces and holomorphic foliations. Finally, in Section 6,

we proved Theorem 1.

2. Higher codimensional holomorphic foliations.

Let X be a complex manifold. A holomorphic foliation F , of codimension k ≥ 1,

on X is determined by a nonzero coherent subsheaf TF ( TX , of generic rank n − k,

satisfying

(i) F is closed under the Lie bracket, and

(ii) F is saturated in TX (i.e., TX/TF is torsion free).

The locus of points where TX/TF is not locally free is called the singular locus of F ,

denoted here by Sing(F).

Condition (i) allows us to apply Frobenius Theorem to ensure that for every point

x in the complement of Sing(F), the germ of TF at x can be identified with the relative

tangent bundle of a germ of smooth fibration f : (X,x)→ (Ck, 0). Condition (ii) implies

that TF is reflexive and of codimension of Sing(F) is at least two.

There is a dual point of view where F is determined by a subsheaf N∗F , of generic

rank k, of the cotangent sheaf Ω1
X = T ∗X of X. The sheaf N∗F is called conormal sheaf

of F . The involutiveness asked for in condition (i) above is replace by integrability: if
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d stands for the exterior derivative then dN∗F ⊂ N∗F ∧ Ω1
X at the level of local sections.

Condition (ii) is unchanged: Ω1
X/N

∗
F is torsion free.

We have the following exact sequence

0→ TF → TX → NF → 0 ,

where NF is the normal sheaf of F . The k-th wedge product of the inclusion N∗F ⊂ Ω1
X

gives rise to a nonzero twisted differential k-form ω ∈ H0(X,ΩkX⊗N ) with coefficients in

the line bundle N := det(NF ), which is locally decomposable and integrable. To say that

ω ∈ H0(X,ΩkX ⊗N ) is locally decomposable means that, in a neighborhood of a general

point of X, ω decomposes as the wedge product of k local 1-forms ω = η1 ∧ · · · ∧ ηk. To

say that it is integrable means that for this local decomposition one has

dηi ∧ η1 ∧ · · · ∧ ηk = 0, ∀ i = 1, . . . , k.

Conversely, given a twisted k-form ω ∈ H0(X,ΩkX⊗N )\{0} which is locally decomposable

and integrable, we define a foliation of codimension k on X as the kernel of the morphism

ıω : TX → Ωk−1X ⊗N

given by the contraction with ω.

Let Y be an analytic subset of X pure codimension k. We say that Y is invariant

by F if ω|Y ≡ 0, where ω ∈ H0(X,ΩkX ⊗N ) is the twisted k-form inducing F .

We specialize to the case X = Pn. In this context, let F be a singular holomorphic

foliation on Pn, of codimension k ≥ 1, given by a locally decomposable and integrable

twisted k-form

ω ∈ H0(Pn,ΩkPn ⊗N ).

The degree of F , denoted by deg(F), is by definition the degree of the zero locus

of i∗ω, where i : Pk → Pn is a linear embedding of a generic k-plane. Since ΩkPk =

OPq (−k−1) it follows at once that N = OPn(deg(F) +k+ 1). In particular, N is ample.

The vector space H0(Pn,ΩkPn⊗OPn(deg(F)+k+1)) can be canonically identified with

the vector space of k-forms on Cn+1 with homogeneous coefficients of degree d+ 1 whose

contraction with the radial (or Euler) vector field R =
∑n
i=0 xi(∂/∂xi) is identically zero

[14].

When F is a holomorphic foliation on P2. It is well known that an algebraic curve

C invariant by F cannot be disjoint to the singularities of F . In fact, it follows from

Camacho–Sad index Theorem [8] that

0 < deg(C)2 = deg(NC |C) =
∑

p∈Sing(F)∩C

CS(F , C, p).

Then Sing(F) ∩ C 6= ∅. Furthermore, we have the following.

Proposition 2.1. Let X be a projective manifold and F be a singular holomorphic

foliation, of codimension k ≥ 1, on X. Let Y ⊂ X be a closed subscheme of pure
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codimension k invariant by F , and N the normal sheaf of Y . Assume Pic(X) = Z, and
that there is a closed curve C ⊂ X, contained in the smooth locus U of Y such that

deg(N |C) > 0. Then Sing(F) ∩ Y 6= ∅.

Proof. This follows from Esteves–Kleiman’s result [12, Proposition 3.4, p. 12].

In fact, in this case we have that Sing(F) ∩ Y 6= ∅. �

3. Singular set of foliations.

Suppose that F is a codimension-one foliation on Pn, n ≥ 3. Then its singular set

Sing(F) always contains at least one irreducible component of codimension 2 (cf. [15]).

This fact is a consequence of Baum–Bott formula and turns to be fundamental in the

proof nonexistence of non-singular real-analytic Levi-flat hypersurfaces due to Lins Neto

[15]. In order to prove Theorem 1, we need prove an analogous result for holomorphic

foliations of arbitrary dimension. Of course, we prove the following result, which is valid

for foliations with determinant of normal bundle ample on compact complex manifolds.

Theorem 3.1. Let F be a singular holomorphic foliation of codimension k ≥ 1

on a compact complex manifold X, such that codSing(F) ≥ k + 1. If det(NF ) is ample,

then Sing(F) must have at least one irreducible component of codimension k + 1.

The proof of Theorem 3.1 is inspired on Jouanolou’s proof in [14, Proposition 2.7,

p. 97]. Jouanolou supposes that the conormal sheaf N∗F of F is locally free and ample.

The condition that N∗F to be locally free imposes strong restrictions on the singular set

of the foliation F , since in this case F is given by a locally decomposable holomorphic

twisted holomorphic form along to singular set of F . We will show that these hypotheses

are not necessary.

Proof of Theorem 3.1. Denote by S = Sing(F). Suppose that dimC S ≤ n −
k − 2. Consider the cohomological exact sequence

· · · → H2k+1(M,U,C)→ H2k+2(M,C)
ζ→ H2k+2(U,C)→ · · ·

where U = M \ S. Now consider the Alexander duality

A : Hr(M,U,C)→ H2n−r(S,C).

Taking r = 2k + 1 and using that dimR S ≤ 2(n − k) − 4, we conclude that

H2(n−k)−1(S,C) = 0. In particular, H2k+1(M,U,C) = 0 and then the map

H2k+2(M,C)
ζ→ H2k+2(U,C)

is injective. On the other hand, by Bott’s vanishing Theorem, we have

ck+1
1 (NF |U ) = 0.

Since ζ(ck+1
1 (NF )) = ck+1

1 (NF |U ), we conclude that
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ck+1
1 (NF ) = 0.

This is a contradiction, since c1(NF ) = c1(det(NF )) and the ampleness of N = det(NF )

implies that the cohomology class ck+1
1 (det(NF )) is non zero. �

4. Baum–Bott formula.

In this section we recall basic facts on Baum–Bott’s Theory. For more details see

Baum–Bott [2] and Suwa [21].

Let F be a holomorphic foliation of codimension k on a complex manifold X,

dimX = n > k. Assume that F is induced by ω ∈ H0(X,ΩkX ⊗ N ). Denote by

Singk+1(F), the union of the irreducible components of Sing(F) of pure codimension

k + 1. We are interested in the localization of Baum–Bott’s class of F over Singk+1(F).

Set

X0 = X \ Sing(F) and X∗ = X \ Singk+1(F).

Take p0 ∈ X0, then in a neighborhood Uα of p0, ω decomposes as the wedge product

of k local 1-forms ωα = ηα1 ∧ · · · ∧ ηαk . It follows from De Rham division theorem that

the Frobenius condition

dηα` ∧ ηα1 ∧ · · · ∧ ηαk = 0, ∀ ` = 1, . . . , k, (1)

is equivalent to find a matrix of holomorphic 1-forms (θα`s), 1 ≤ `, s ≤ k satisfying

dηα` =

k∑
s=1

θα`s ∧ ηαs , ∀ ` = 1, . . . , k. (2)

Let θα :=
∑k
`=1(−1)`−1θα``. On Uα∩Uβ 6= ∅, we have ωα = gαβωβ , where gαβ ∈ O∗(Uα∩

Uβ) and {gαβ} defines N so that dωα = dgαβ ∧ ωβ + gαβdωβ . From (2), we find(
dgαβ
gαβ

+
k∑
`=1

(−1)`−1θβ`` −
k∑
`=1

(−1)`−1θα``

)
∧ ωα = 0,

which means that

γαβ :=
dgαβ
gαβ

+ θβ − θα

is a section of N∗F , over Uα∩Uβ . Hence {γαβ} is a cocycle of 1-forms vanishing on F , and

it corresponds to a cohomology class in H1(X,N∗F ). By taking the cup product k-times,

we have the natural map

H1(X,N∗F )⊗ · · · ⊗H1(X,N∗F )→ Hk(X,N ∗),

and so we get a class in Hk(X,N ∗) associated to {γαβ}. This class (in Hk(X,N ∗)) is

intrinsically defined by the foliation, that is, it does not depend of the choice made so
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far.

On the other hand, in the singular case, the Saito–De Rham division theorem [20]

implies that the above construction can be made on X∗. Hence we get a well defined

class (Baum–Bott’s class of F)

BBF ∈ Hk(X∗,N ∗)

which is intrinsically associated to F .

Let p ∈ Singk+1(F). We say that BBF extends through p if there is a small ball

Bp ⊂ X centered at p such that BBF extends to a class in Hk(X∗ ∪Bp,N ∗). Denoting

S(Bp) = Singk+1(F) ∩Bp and B∗p = Bp \ S(Bp),

and applying Mayer–Vietoris argument, we observe that BBF extends through p if and

only if

BBF |B∗
p

= 0

for some ball Bp centered at p.

Now we state Baum–Bott’s formula, which is related to the extendibility of the class

BBF from X∗ to X. In this sense, we consider ω = η1 ∧ · · · ∧ ηk a local generator of F
at p and smooth sections of N∗F instead of holomorphic ones, we have the cohomology

group H1(B∗p , N
∗
F ) is trivial, and so it is possible to find a matrix of smooth (1, 0)-forms

(θls), where θ`s ∈ A1,0(B∗p), 1 ≤ `, s ≤ k, such that

dη` =

k∑
s=1

θ`s ∧ ηs, ∀ ` = 1, . . . , k. (3)

As before, set θ =
∑k
`=1(−1)`−1θ``. Observe that the smooth (2k + 1)-form

1

(2πi)k+1
θ ∧ dθ ∧ · · · ∧ dθ︸ ︷︷ ︸

k−th

is closed and it has a De Rham cohomology class in H2k+1(B∗p ,C) and moreover it does

not depend on the choice of ω and θ.

Let Z be an irreducible component of Singk+1(F). Take a generic point p ∈ Z, that

is, p is a point where Z is smooth and disjoint from the other singular components. Pick

Bp a ball centered at p sufficiently small, so that S(Bp) is a subball of Bp of dimension

n − k − 1. Then the De Rham class can be integrated over an oriented (2k + 1)-sphere

Lp ⊂ B∗p positively linked with S(Bp):

BB(F , Z) =
1

(2πi)k+1

∫
Lp

θ ∧ (dθ)k.

This complex number is the Baum–Bott residue of F along Z. It does not depend on the

choice of the generic point p ∈ Z.
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Now we state the main result of this section. The proof can be found in [2] or

[21, Theorem VI.3.7] in more general context. We recall that every irreducible component

Z of Singk+1(F) has a fundamental class [Z] ∈ H2k+2(X,C) (conveniently defined via

the integration current over Z).

Theorem 4.1 (Baum–Bott [2]). Let F be a holomorphic foliation of codimension

k on a complex manifold X. Then the following hold :

(i) for each irreducible component Z of Singk+1(F) there exist complex numbers λZ(F)

which is determined by the local behavior of F near Z.

(ii) If X is compact,

ck+1
1 (N ) =

∑
Z

λZ(F)[Z],

where the sum is done over all irreducible components of Singk+1(F).

Let U0 be a neighborhood of Singk+1(F), then we have that∑
Z

λZ(F)[Z] = j∗Resck+1
1

(F ,Singk+1(F)),

where Resck+1
1

(F ,Singk+1(F)) ∈ H2(n−k)−2(U0,C)∗ is a cocycle and

j∗ : H2(n−k)−2(U0,C)∗ ' H2k+2(X,X\Singk+1(F),C)→ H2k−2(X,C)

is the induced map of the inclusion j : (X, ∅) → (X,X\Singk+1(F)). For more details

about it, we refer [3].

In [2] the complex numbers λZ(F) are not given explicitly. We will show that

λZ(F) = BB(F , Z).

This was proved by Brunella and Perrone in [6] when k = 1.

4.1. Proof of Theorem 4.1.

We cover X by open sets Uα where the foliation is defined by holomorphic k-forms

ωα = ηα1 ∧ · · · ∧ ηαk with ωα = gαβωβ . As before, it is possible to find a matrix of

(1, 0)-forms (θ`s), where θ`s ∈ A1,0(B∗p), 1 ≤ `, s ≤ k, such that

dηα` =

k∑
s=1

θα`s ∧ ηαs , ∀ ` = 1, . . . , k. (4)

We fix a small neighborhood V of Singk+1(F) and choose a matrix of (1, 0)-forms smooth

(θ̃α`s) such that θ̃α`s coincide with θα`s outside of Uα ∩ V . Let θ̃α =
∑k
`=1(−1)`−1θ̃α``. Then

the smooth (1, 0)-forms

γ̃αβ =
dgαβ
gαβ

+ θ̃β − θ̃α
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vanish on F outside of V . This cocycle can be trivialized: γ̃αβ = γ̃α − γ̃β , where γ̃α is

a smooth (1, 0)-form on Uα vanishing on F outside of Uα ∩ V . Therefore, after setting

θ̂α = θ̃α + γ̃α, we find

dgαβ
gαβ

= θ̂α − θ̂β .

Hence, Θ = (1/2πi)dθ̂α is a globally defined closed 2-form which represents, in the

De Rham sense, the Chern class of det(NF ) = N . Therefore,

Θk+1 :=
1

(2πi)k+1
dθ̂α ∧ · · · ∧ dθ̂α︸ ︷︷ ︸

(k+1)−th

represents ck+1
1 (NF ). It follows from Bott’s vanishing theorem that Θk+1 = 0 outside V ,

that is,

Supp(Θk+1) ⊂ V .

If T ⊂ X is a (k + 1)-ball intersecting transversally Singk+1(F) at a single point

p ∈ Z, with V ∩ T b T , then by Stokes formula

BB(F , Z) =
1

(2πi)k+1

∫
∂T

θ̂α ∧ (dθ̂α)k

=
1

(2πi)k+1

∫
T

(dθ̂α)k+1

This means that the 2(k+1)-form Θk+1 is cohomologous, as a current, to the integration

current over ∑
Z

BB(F , Z)[Z].

5. Strongly q-convex spaces.

In this section, we present some results about strongly q-convex spaces. These re-

sults will be applied in the study of invariant sets of holomorphic foliations on complex

manifolds. The concept of q-convexity was first introduced by Rothstein [19] and further

developed by Andreotti–Grauert [1]. More details about it can be found in Demailly’s

book [9].

Let (M,OM ) be a complex analytic space, possibly non reduced. Recall that a

function ϕ : M → R is said to be strongly q-convex in the sense of Andreotti–Grauert

[1] if there exists a covering of M by open patches Aλ isomorphic to closed analytic sets

in open sets Uλ ⊂ CNλ , λ ∈ I, such that each restriction ϕ|Aλ admits an extension ϕ̃λ
on Uλ which is strongly q-convex, i.e. such that i∂∂̄ϕ̃λ has at most q − 1 negative or

zero eigenvalues at each point of Uλ. Note that the strong q-convexity property does not

depend on the covering nor on the embeddings Aλ ⊂ Uλ.

The space M is said to be strongly q-complete, resp. strongly q-convex, if M has
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a smooth exhaustion function ϕ such that ϕ is strongly q-convex on M , resp. on the

complement M \ K of a compact set K ⊂ M . From [10], M is said to be absolutely

q-convex if it admits a smooth plurisubharmonic exhaustion function ϕ : M \ K → R
that is strongly q-convex on M \K for some compact set K ⊂M .

We will use Ohsawa–Takegoshi–Demailly’s Theorem [18] and Andreotti–Grauert

vanishing theorem [1].

Theorem 5.1 (Ohsawa–Takegoshi–Demailly). Let U be an absolutely q-convex

Kähler manifold of dimension n. Then the De Rham cohomology groups with arbitrary

supports have decomposition

Hk(U,C) '
⊕
s+`=k

Hs(U,Ω`), Hs(U,Ω`) ' H`(U,Ωs) k ≥ n+ q.

Theorem 5.2 (Andreotti–Grauert). Let U be a q-complete manifold of dimension

n. For any coherent holomorphic sheaf G on U and any j ≥ q, we have

Hj(U,G) = 0.

We recall that a function ϕ : M → R is strongly q-convex with corners on M if

for every point p ∈ M there is a neighborhood Up and finitely many strongly q-convex

functions {ϕp,j}j≤`p on Up such that ϕ|Up = maxj≤`p{ϕp,j}. The manifold M is said to

be strongly q-convex with corners if it admits an exhaustion function which is strongly q-

convex with corners outside a compact set. Similarly, M is said to be strongly q-complete

with corners if it admits an exhaustion function which is strongly q-convex with corners.

In [11], Diederich and Fornæss proved the following result.

Theorem 5.3 (Diederich–Fornæss). Any q-convex (q-complete) manifold U with

corners, dimU = n, is q̃-convex (q̃-complete) with q̃ = n− [n/q] + 1.

We will also use the following result by M. Peternell for homogeneous manifolds [17].

Theorem 5.4 (Peternell). If X is a homogeneous compact complex manifold and

U  X is a open set in X that is q-convex with corners then U is q-complete with corners.

It follows from Theorem 5.3 and Theorem 5.4 the following.

Corollary 5.5. If X is a homogeneous compact complex manifold and U  X is

a open set in X that is q-convex with corners then U is q̃-complete with q̃ = n− [n/q]+1.

To prove Theorem 1, we need prove the following:

Theorem 5.6. Let F be a holomorphic foliation, of codimension k ≥ 1, on a

homogeneous compact Kähler manifold X of dimension n. Suppose that Singk+1(F) is

contained in an absolutely k-convex open U ⊂ X and that

[n/k] ≥ 2k + 3.
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Then, j∗Resck+1
1

(F ,Singk+1(F)) = 0.

Proof. First of all, it follows from Corollary 5.5 that U is k̃-complete with

k̃ = n−
[n
k

]
+ 1.

Since U ⊂ X is absolutely k-convex and

2(n− k)− 2 ≥ n+ n− [n/k] + 1 ≥ n+ k

it follows from Ohsawa–Takegoshi–Demailly’s Theorem that

H2(n−k)−2(U,C) '
⊕

s+`=2(n−k)−2

Hs(U,Ω`), Hs(U,Ω`) ' H`(U,Ωs).

On the other hand, the condition 2(n − k) − 2 ≥ 2n − [n/k] + 1 implies that is either

s ≥ n − [n/k] + 1 or ` ≥ n − [n/k] + 1. In fact, suppose that s < n − [n/k] + 1 and

` < n− [n/k] + 1. Then

2(n− k)− 2 = s+ ` < 2n− 2[n/k] + 2 < 2n− [n/k] + 1,

absurd since 2(n− k)− 2 ≥ 2n− [n/k] + 1.

Now, if s ≥ k̃ = n− [n/k] + 1 we have

Hs(U,Ω`) = 0

by Andreotti–Grauert’s vanishing Theorem, since U is k̃-complete. Otherwise, if s <

n − [n/k] + 1, then ` ≥ n − [n/k] + 1 and by Andreotti–Grauert’s vanishing Theorem

H`(U,Ωs) = 0. but, by Ohsawa–Takegoshi–Demailly’s Theorem we have

Hs(U,Ω`) ' H`(U,Ωs) = 0.

Therefore, H2(n−k)−2(U,C) = 0. That is, H2(n−k)−2(U,C)∗ = 0. In particular

j∗Rescn−q+1
1

(F ,Singq−1(F)) = 0. �

6. Proof of Theorem 1.

Let F be a singular holomorphic foliation of codimension k ≥ 1 and suppose by

contradiction that N = det(NF ) is ample. Now, by Baum–Bott formula (Theorem 4.1),

we have

ck+1
1 (N ) =

∑
Z

BB(F , Z)[Z] = j∗Resck+1
1

(F ,Singk+1(F)), (5)

where the sum is done over all irreducible components of Singk+1(F). Because N is

ample, the class ck+1
1 (N ) is not zero, and by Theorem 3.1, we infer that Sing(F) always

has irreducible components of codimension k + 1 and so this sum is not zero. But the

hypotheses over Sing(F) implies that Singk+1(F) ⊂ U , where U is an absolutely k-convex
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domain. Applying Theorem 5.6, we must have j∗Resck+1
1

(F ,Singk+1(F)) = 0. It is a

contradiction with (5).
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