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Abstract. In the present paper hypergroup structures are investigated
on distinguished dual objects related to a given hypergroup K, especially to

a semi-direct product hypergroup K = H oα G defined by an action α of

a locally compact group G on a commutative hypergroup H. Typical dual
objects are the sets of equivalence classes of irreducible representations of K,

of infinite-dimensional irreducible representations of type I hypergroups K,

and of quasi-equivalence classes of type II1 factor representations of non-type
I hypergroups K. The method of proof relies on the notion of a character of

a representation of K = H oα G.

1. Introduction.

To investigate hypergroup structures on spaces of representations of a hypergroup is

a challenging but also promising task. In general not even the duals of arbitrary locally

compact groups admit a hypergroup structure. There are, however, various classes of

commutative hypergroups K such that the space K̂ of hypergroup characters is again a

commutative hypergroup. In particular the space GB of B-orbits, where G is a locally

compact group and B is a relatively compact subgroup of Aut(G) containing Int(G) have

a hypergroup structure, as Hartmann, Henrichs and Lasser have shown in [6]. Also, the

double coset hypergroups G//H for Riemanian symmetric pairs (G,H), where H is a

compact subgroup of G, admit a dual hypergroup.

Dual hypergroup structures occur in a natural way within the classes of polyno-

mial and of Sturm–Liouville hypergroups, for which double dual hypergroups have been

studied by Zeuner in [18]. See also [2]. In the non-commutative situation we just know

that the group dual Ĝ, i.e. the space of equivalence classes of irreducible representations

of a compact group G, is a discrete commutative hypergroup. In the present paper we

establish hypergroup structures for dual objects within three different settings.

In Section 3 we discuss a hypergroup structure for the set K̂ of equivalence classes

of irreducible representations of a non-commutative finite hypergroup K. In fact we

show that the character set K(Ĥ oα G) of a semi-direct product hypergroup H oα G
is a commutative hypergroup if and only if the action α defining H oα G satisfies a

certain regularity condition. One notes that there is a finite hypergroup K for which no

convolution can be introduced in K(K̂).
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Section 4 is devoted to discussing a hypergroup structure on the set K̂∞ of equiv-

alence classes of infinite-dimensional irreducible representations of a hypergroup K of

type I. There are two situations, for which it can be shown that the space K(K̂∞) is a

hypergroup which coincides with an orbital hypergroup. In both situations K is of the

form H oα G, where H is a commutative hypergroup. In the first situation a compact

Abelian group G acts on H, in the second one G is chosen to be a locally compact Abelian

group such that for the stabilizer G(χ) of χ ∈ Ĥ, G/G(χ) is compact.

Finally, in Section 5, we are concerned with the case of hypergroups of non-type

I. The object of interest is the set K̂II1 of quasi-equivalence classes of type II1 factor

representations of a non-type I hypergroup K = H oα G. Under the condition that

H is a commutative hypergroup of strong type and that a countably infinite discrete

Abelian group G acts on H, the character set K(K̂II1) can be identified with an orbital

hypergroup. Through the three Sections we provide illuminating examples.

2. Technical preparations.

In order to make precise some of the notions on representation theory we choose the

more general framework of normed involutive algebras preferred by Dixmier in [3]. As

a necessary reference to von Neumann algebras the seminal monographs [3] of Dixmer

and [16] of Takesaki are proposed.

2.1. Representations of normed involutive algebras.

Let A be a normed involutive algebra. By a representation π of A with representing

Hilbert space H(π) we mean a continuous homomorphism into the algebra B(H(π)) of

bounded linear operators on H(π). Given representations π1 and π2 of A with repre-

senting Hilbert spaces H(π1) and H(π2) respectively, π1 is said to be equivalent to π2,

in symbols π1 ∼= π2 if there exists an isomorphism φ from H(π1) onto H(π2) such that

φ(π1(x))φ−1 = π2(x)

for all x ∈ A. This definition gives rise to the notion of equivalence classes of represen-

tations of A. In the sequel we apply the convention

π(A) := {π(x) : x ∈ A}

for a representation π of A.

A representation π of A with representing Hilbert spaceH(π) is said to be irreducible

if one of the following equivalent conditions are satisfied:

(i) The only closed π(A)-invariant subspaces of H(π) are {0} and H(π).

(ii) The commutant π(A)′ of π(A) in B(H(π)) reduces to scalars.

(iii) The double commutant π(A)′′ of π(A) coincides with B(H(π)).

If a representation π of A is finite-dimensional in the sense that dimH(π) < ∞, then π

admits a direct decomposition of the form

π =

n∑
k=1

⊕πk,
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where πk is an irreducible representation of A for each k ∈ {1, 2, . . . , n}.
Now let π1 and π2 be representations of A, A(π1) and A(π2) the von Neumann

algebras generated by π1(A) and π2(A) respectively. π1 and π2 are said to be quasi-

equivalent, in symbols π1 ' π2 if there exists an isomorphism φ from A(π1) onto A(π2)

such that

φ(π1(x)) = π2(x)

for all x ∈ A.

Again one can speak of quasi-equivalence classes of representations of A. A repre-

sentation π of A is called a factor representation provided A(π) is a factor in the sense

of von Neumann algebras, i.e. provided A(π) ∩ A(π)′ = C · 1.

Clearly every irreducible representation of A is a factor representation, and on the

space Irr(A) of all irreducible representations of A of type I the equivalence relations ∼=
and ' coincide. From the theory of von Neumann algebra we know the classification by

types. In what follows we need to apply the types I and II1. A representation π of A is

said to be of type I if A(π) is of type I and to be of type II1 if A(π) is of type II1.

2.2. Representations of hypergroups.

We adopt the axiomatics of a (locally compact) hypergroup K from our previous

publications as it has been set up in Jewett [11] and Bloom–Heyer [2]. For the reader’s

convenience we repeat a few basic definitions and facts from the analysis on K. Given a

locally compact space X the space of bounded measures on X will be denoted by M b(X),

its subspace of probability measures is symbolized by M1(X) and the space of bounded

continuous functions on X is denoted by Cb(X). The space M b(X) is equipped with the

weak topology i.e. σ(M b(X), Cb(X))-topology. For each x ∈ X, δx denotes the Dirac

measure of X. There is a natural notion of homomorphism between hypergroups.

Let Aut(K):= AutM b(X) stand for the set of automorphisms of K which together

with the weak topology derived from the weak topology of M b(X) becomes a topological

group. We call α an action of a locally compact group G on a given hypergroup K if α is

a continuous homomorphism from G into Aut(K). We also need the notion of an action

β of a hypergroup K on a locally compact space X defined by the following requirements:

1. β is a continuous Banach algebra homomorphism from M b(K) into the Banach

algebra B(M b(X)) of bounded operators on M b(X).

2. For k ∈ K and x ∈ X, β(δk)δx is a measure in M1(X) with compact support.

Occasionally we abbreviate the image β(δk) under β by β(k) for k ∈ K. For every x ∈ X,

Orb(x) :=
⋃
k∈K

supp(β(k)δx)

denotes the orbit of x under the action β. We also write O(x) instead of Orb(x). Moreover

we apply the notions of smooth, irreducible and absorbing actions as introduced in [9].

Representations π of K with representing separable Hilbert space H(π) are intro-

duced as ∗-homomorphism from M b(K) into B(H(π)) such that π(δe) = 1 and such that

for ξ, η ∈ H(π) the mapping
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µ 7→ 〈π(µ)ξ, η〉

is continuous on M b(K).

A short excursion to the case of a locally compact group seems to be in order. We

recall the profound work of Tatsuuma [17] and Takesaki [15] on a duality theorem for

general locally compact groups. We recall that a locally compact group G is said to be

of type I if the von Neumann algebra A(π) = π(G)′′ is of type I for every representation

π of G. Among the groups of type I we just mention Abelian groups, compact groups,

Heisenberg groups, connected semi-simple Lie groups, connected nilpotent groups. Dis-

crete group are of type I if and only if they possess an Abelian normal subgroup of finite

index. By the way, Glimm showed in [4] that a second countable locally compact group

G is of type I if and only if the dual Ĝ of G is smooth with respect to the topology derived

from the Jacobson topology of the primitive space PrimC∗(G). This fact indicates that

studying duals for type I groups is more promising. See also Mackey [14].

A simple example of a non-type I group is a discrete Mautner group G = C oα Z,

where α is the irrational rotation of Z on C (See Baggett [1]).

A class of hypergroups that will be central to our studying dual objects related

to hypergroups will be the class of semi-direct product hypergroups introduced in [9].

Given a hypergroup H = (H, ◦), a locally compact group G and action α of G on H.

Let K := H ×G be the set product of H and G such that

M b(K) = M b(H)⊗M b(G)

as Banach ∗-algebras, where the cross norm of the tensor product is given by

‖ µ ‖= sup

{∣∣∣∣∣
n∑
k=1

µ1,k(f)µ2,k(g)

∣∣∣∣∣ : f ∈ Cc(H), ‖ f ‖∞≤ 1; g ∈ Cc(G), ‖ g ‖∞≤ 1

}

for µ =
∑n
k=1 µ1,k ⊗ µ2,k ∈ M b(H) ⊗alg M b(G). One defines a convolution of Dirac

measures in M b(K) by

ε(h1,g1) ∗α ε(h2,g2) := (εh1 ◦ εαg1 (h2))⊗ δg1g2

with unit element

ε(e,e) := εe ⊗ δe,

where e denotes the unit element of H as well as of G, and an involution

(µ⊗ δg)− := α−1g (µ−)⊗ δg−1 = α−1g (µ)− ⊗ δg−1

for (h1, g1), (h2, g2) ∈ K, g ∈ G, µ ∈ M b(H). It turns out that (K, ∗α) is in fact a

hypergroup.
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3. Duals related to finite hypergroups.

Let K be a finite hypergroup. For an irreducible representation π of K its character

ch(π) is given by

ch(π) :=
1

dimπ
tr(π(k))

for all k ∈ K. We consider the character set

K(K̂) := {ch(π) : π ∈ K̂}.

We shall say, that the dual K̂ of K admits a hypergroup structure if K(K̂) is a hypergroup

with respect to the product of functions on K. Clearly, the dual Ĝ of a finite group G

always admits a hypergroup structure.

Let α be an action of a finite Abelian group G on a finite commutative hypergroup

H of strong type in the sense that the dual Ĥ of H has a hypergroup structure. Then a

semi-direct product hypergroup K = H oα G can be defined as in Heyer–Kawakami [9]

(See also subsection 2.2 above). Let α̂ be the induced action of G on the dual Ĥ of H,

given by

(α̂g(χ))(h) := χ(α−1g (h)),

where g ∈ G, χ ∈ Ĥ and h ∈ H. Let

G(χ) := {g ∈ G : α̂g(χ) = χ}

be the stabilizer of χ ∈ Ĥ under the action α̂. Now, let

Ĥ := {χ0, χ1, . . . , χn},

where χ0 denotes the trivial character of H.

Definition. The action α is said to satisfy the regularity condition (or is called

regular) provided

G(χk) ⊃ G(χi) ∩G(χj)

for all χk ∈ Ĥ such that

χk ∈ supp(χiχj) := supp(δχi ∗̂δχj )

whenever χi, χj ∈ Ĥ and ∗̂ symbolizes the convolution on Ĥ, k, i, j ∈ {0, 1, . . . , n}.

Lemma 3.1. If the action α satisfies the regularity condition, then the character set

K(Ĥ oα G) of the semi-direct product hypergroup H oα G is a commutative hypergroup,

i.e. Ĥ oα G admits a hypergroup structure.

Proof. This fact is shown in [12] and [7], but we add another distinguished proof
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for consistency with the present paper. Let {O(χ0), O(χ1), . . . , O(χn)} denote the set of

orbits in Ĥ under the action α̂ of G such that O(χ0) = {χ0} and χk ∈ O(χk) for all

k = 0, 1, . . . , n. For each orbit O(χk) we set

ρ(O(χk)) :=
1

|G|
∑
g∈G

α̂g(χk) =
1

|O(χk)|
∑

σ∈O(χk)

σ.

Then the orbital hypergroup

Kα̂(Ĥ) = {ρ(O(χ0)), ρ(O(χ1)), . . . , ρ(O(χn))}

carries the convolution

ρ(O(χi))ρ(O(χj)) =

n∑
k=0

akijρ(O(χk)),

where akij ≥ 0 for all i, j, k ∈ {0, 1, . . . , n} and
∑n
k=0 a

k
ij = 1. Now we specify

supp(ρ(O(χi))ρ(O(χj))) = {O(χk) : akij 6= 0 for k = 0, 1, . . . , n}.

By the Mackey machine (Theorem 7.1 of [9]) each irreducible representation π of

H oα G is of the form

π = π(χ,τ) = indHoαG
HoαG(χ)(χ� τ)

for some χ ∈ Ĥ and τ ∈ Ĝ(χ), where

(χ� τ)(h, g) = χ(h)τ(g)

for h ∈ H, g ∈ G. Moreover, from [10] we deduce that

ch(π(χ,τ))(h, g) = ρ(O(χ))(h) · τ(g) · 1G(χ)(g).

The structure of the convolution of K(Ĥ oα G) is described as follows:

ch(π(χi,τi))ch(π(χj ,τj)) = ρ(O(χi))τi1G(χi)ρ(O(χj))τj1G(χj)

= ρ(O(χi))ρ(O(χj))τiτj1G(χi)1G(χj)

=

n∑
k=0

akijρ(O(χk))τiτj1G(χi)∩G(χj).

For O(χk) ∈ supp(ρ(O(χi))ρ(O(χj))) we put

A(k) := A(χk, τiτj) = {τ ∈ Ĝ(χk) : τ(g) = τi(g)τj(g) for all g ∈ G(χi) ∩G(χj)}.

Now it is easy to see that the character ch(π) of the representation
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σ =
∑

τ∈A(k)

⊕τ

takes on the form

ch(σ) =
1

|A(k)|
∑

τ∈A(k)

τ1G(χk) = τiτj1G(χi)∩G(χj).

As a consequence we obtain that

ch(π(χi,τi))ch(π(χj ,τj)) =
n∑
k=0

akijρ(O(χk))
1

|A(k)|
∑

τ∈A(k)

τ1G(χk)

=

n∑
k=0

∑
τ∈A(k)

akij
|A(k)|

ρ(O(χk))τ1G(χk)

=

n∑
k=0

∑
τ∈A(k)

akij
|A(k)|

ch(π(χk,τ)),

and this shows the existence of a convolution on K(Ĥ oα G). Among the axioms of a

hypergroup for K(Ĥ oα G) we only mention the existence of an involution, namely

ch(π(χ,τ))− := ch(π(χ−,τ−))

for all χ ∈ Ĥ, τ ∈ Ĝ(χ). �

The converse of the statement in Lemma 3.1 is the content of

Lemma 3.2. Let K(Ĥ oα G) be a commutative hypergroup, where α is any action

of G on H. Then this action α satisfies the regularity condition.

Proof. Let ι symbolize the trivial character of G(χ) for χ ∈ Ĥ. Given χi, χj ∈ Ĥ
there exists a decomposition

π(χi,ι) ⊗ π(χj ,ι) ∼=
∑̀
k=1

⊕πk,

where π(χi,ι), π(χj ,ι) are the irreducible representations introduced in the proof of the

previous Lemma and πk ∈ Ĥ oα G. Since K(Ĥ oα G) is assumed to be a hypergroup,

the equality

ch(π(χi,ι))ch(π(χj ,ι)) =
∑̀
k=1

akijch(πk) (∗)

holds, with akij > 0 and
∑`
k=1 a

k
ij = 1, i, j ∈ {0, 1, . . . , n}. For each χk ∈ supp(χiχj) we

have
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O(χk) ∈ supp(ρ(O(χi))ρ(O(χj))),

hence there exists πk such that

πk = π(χk,τ)

for some τ ∈ Ĝ(χk). Now we assume that

G(χk) ⊃ G(χi) ∩G(χj)

does not hold. Then there is a g ∈ G(χi) ∩G(χj), but g 6∈ G(χk). For this element g of

G and the unit h0 ∈ H we obtain

ch(π(χi,ι))ch(π(χj ,ι))(h0, g) = ρ(O(χi))(h0)ρ(O(χj))(h0)1G(χi)∩G(χj)(g) = 1.

On the other hand,

∑̀
k=1

akijch(πk)(h0, g) < 1,

since

ch(πk)(h0, g) = ch(π(χk,τ))(h0, g)

= ρ(O(χk)) · τ(g) · 1G(χk)(g)

= 0.

This contradicts the above equality (∗), and the proof is complete. �

As a summary we state

Theorem 3.3. The character set K(Ĥ oα G) of the semi-direct product hypergroup

H oα G is a commutative hypergroup if and only if the action α of G on H satisfies the

regularity condition.

Now we look at the semi-direct products

D(4) = Z4 oα Z2,

and

W (4) = (Z2 × Z2) oβ Z2

with β being the flip action. We remark that D(4) ∼= W (4) as a group. Considering

q-deformations of D(4) and of W (4) we have the following.

Example 1. Dq(4) = Zq(4) oα Z2 = {h0, h1, h2, h3, g, h1g, h2g, h3g} (0 < q ≤ 1).

The structure of Dq(4) is given by the equalities
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δg ◦ δg = δh2g ◦ δh2g = δh0 ,

δh1g ◦ δh1g = δh3g ◦ δh3g =
1− q

2
δh1

+ qδh2
+

1− q
2

δh3
,

δh1g ◦ δh3g = δh3g ◦ δh1g =
1− q

2
δh1

+ qδh2
+

1− q
2

δh3
,

δh1g ◦ δh2g = δh2g ◦ δh3g = δh3g, δh3g ◦ δh2g = δh2g ◦ δh1g = δh1g.

Example 2. Wq(4) = (Zq(2) × Zq(2)) oβ Z2 = {h0, h1, h2, h3, g, h1g, h2g, h3g}
(0 < q ≤ 1). The structure of Wq(4) is given by the following equalities.

δg ◦ δg = δh0
,

δh1g ◦ δh1g = δh2g ◦ δh2g = δh3 ,

δh3g ◦ δh3g = q2δh0
+ q(1− q)δh1

+ q(1− q)δh2
+ (1− q)2δh3

,

δh1g ◦ δh2g = qδh0
+ (1− q)δh1

,

δh2g ◦ δh1g = qδh0
+ (1− q)δh2

,

δh1g ◦ δh3g = δh3g ◦ δh2g = qδh2
+ (1− q)δh3

,

δh2g ◦ δh3g = δh3g ◦ δh1g = qδh1
+ (1− q)δh3

.

The quaternion group Q(4) is interpreted as a twisted semi-direct product group as

follows:

Q(4) = Z4 ocα Z2, where the 2-cocycle c : Z2 × Z2 −→ Z4 is given by

c(e, e) = c(e, g) = c(g, e) = h0, c(g, g) = h2.

We define the q-deformation Qq(4) of Q(4) as a twisted semi-direct product hypergroup.

Example 3. Qq(4) = Zq(4) ocα Z2 = {h0, h1, h2, h3, g, h1g, h2g, h3g}. The struc-

ture of Qq(4) is given by

δh2g ◦ δh2g = δh2 ,

δg ◦ δg = δh2
,

δh1g ◦ δh1g = δh3g ◦ δh3g =
1− q

2
δh1

+ qδh2
+

1− q
2

δh3
,

δh1g ◦ δh3g = δh3g ◦ δh1g =
1− q

2
δh1

+ qδh2
+

1− q
2

δh3
,

δh1g ◦ δh2g = δh2g ◦ δh3g = δh1g,

δh3g ◦ δh2g = δh2g ◦ δh1g = δh3g.

Results.

1. Ŵq(4) does not admit a hypergroup structure if q 6= 1, since the action β of Z2 on

Zq(2)× Zq(2) does not satisfy the regularity condition.

2. D̂q(4) and Q̂q(4) admit hypergroup structures in the sense that K(D̂q(4)) and

K(Q̂q(4)) are hypergroups respectively. Moreover we see that
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K(D̂q(4)) ∼= K(Q̂q(4)),

although Dq(4) is not isomorphic to Qq(4) as a hypergroup. For more details we

refer to [13].

4. Duals related to hypergroups of type I.

Let K = HoαG be a semi-direct product hypergroup of a commutative hypergroup

H of strong type by a smooth action α of a locally compact Abelian group G. There is

the action α̂ : G→ Aut(Ĥ) induced on Ĥ by

(α̂g(χ))(h) := χ(α−1g (h))

for all χ ∈ Ĥ, g ∈ H, h ∈ H. For χ ∈ Ĥ let

G(χ) := {g ∈ G : α̂g(χ) = χ}

be the stabilizer of χ.

Assume that for χ ∈ Ĥ such that χ is not the trivial character χ0 of H

G(χ) = D,

where G/D is compact.

Given an irreducible (infinite-dimensional) representation π of K which by the

Mackey machine (Theorem 7.1 of [9]) is in the form

π = π(χ,τ) = indHoαG
HoαD(χ� τ)

for some χ ∈ Ĥ and τ ∈ D̂, where

(χ� τ)(h, g) = χ(h)τ(g)

whenever h ∈ H, g ∈ G. Under the assumptions made there exists an α̂-invariant

probability measure µ on Ĥ supported by the orbit O(χ) = Orb(χ) of χ. We note that

the orbit O(χ) is compact and O(χ) ∼= G/G(χ).

Let τ̃ ∈ Ĝ be the extension of τ ∈ Ĝ(χ) to G. Then the representation π is realized

on L2(O(χ), µ) as follows:

For ξ ∈ L2(O(χ), µ)

(π(h, g)ξ)(σ) = σ(h)τ̃(g)ξ(α̂−1g (σ))

for all σ ∈ O(χ), h ∈ H, g ∈ G. Now we choose ξ0 ∈ L2(O(χ), µ) such that ξ0(σ) = 1 for

all σ ∈ O(χ) and consider the spherical function ψ := ψ(χ,τ) on K associated with ξ0,

i.e.

ψ(h, g) = 〈π(h, g)ξ0, ξ0〉
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=

∫
O(χ)

σ(h)τ̃(g)ξ0(α−1g (σ))ξ0(χ)µ(dσ)

=

(∫
O(χ)

σ(h)µ(dσ)

)
· τ̃(g)

whenever h ∈ H, g ∈ G. With the definition

ρ(O(χ)) :=

∫
O(χ)

σ µ(dσ)

we see that

ψ(h, g) = ρ(O(χ))(h)τ̃(g)

and

ψ(h, g)|HoαD = ρ(O(χ))(h)τ(g)

for all h ∈ H, g ∈ G. We denote the set {ψ(χ,τ) : χ ∈ Ĥ, τ ∈ D̂} by K(K̂∞).

Since the orbital hypergroup Kα̂(Ĥ) can be written as

Kα̂(Ĥ) = {ρ(O(χ)) : χ ∈ Ĥ},

we obtain

Theorem 4.1.

K(K̂∞) ∼= Kα̂(Ĥ)× D̂.

In the special case that D = {e} one has

K(K̂∞) ∼= Kα̂(Ĥ).

Example 1. Let K = M(2) = C oα T be the two-dimensional motion group,

where the action α of T on C is given by

αζ(z) := ζ · z

for all ζ ∈ T, z ∈ C. Any infinite-dimensional representation of K has the form

πλ = indKC χ
λ (λ > 0),

where

χλ(z) := eiRe(λz),

the reason for this being the fact that

G(χλ) = {1}
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for any λ > 0. It is easy to see that in this situation

ρ(O(χλ))(z) = J0(λ|z|)

for all z ∈ C, where J0 denotes the Bessel function of order 0. Hence

K(K̂∞) ∼= Kα̂(C)

coincides with the Bessel–Kingman hypergroup BK(J0) of order 0 (See [2]).

Example 2. Let K = Coα R, where the action α of R on C is given by

αθ(z) := eiθ · z

for all θ ∈ R, z ∈ C. In this case

G(χλ) = D = 2πZ

for χλ (λ > 0),

D̂ ∼= T

and

Kα̂(C) = BK(J0),

as we saw in Example 1. Consequently

K(K̂∞) ∼= Kα̂(C)× D̂ ∼= BK(J0)× T.

5. Duals related to hypergroups of non-type I.

In this section we assume given a countably infinite discrete Abelian group G, a

commutative hypergroup H of strong type and an action α of G on H. By Heyer–

Kawakami [9] the semi-direct product hypergroup K = H oαG is defined. As before we

have the induced action α̂ of G on the hypergroup dual Ĥ of H given by

(α̂g(χ))(h) = χ(α−1g (h))

for all g ∈ G, χ ∈ Ĥ and h ∈ H. The stabilizer of χ ∈ Ĥ under the action α̂ of G is

again symbolized by G(χ). For the subsequent discussion the following Assumptions are

made:

1. The action α̂ of G on Ĥ is free, i.e. G(χ) = {e} for all χ ∈ Ĥ except the trivial

character χ0.

2. Every orbit in Ĥ under the action α̂ of G is relatively compact.

We note that in this case the action α̂ of G on Ĥ is non-smooth.
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Under these assumptions K = HoαG has a type II1 factor representation and represents

a hypergroup of non-type I.

Now, let Γ denote the set of closures of orbits in Ĥ under the action α̂ of G. For

O ∈ Γ such that O 6= O(χ0) and an α̂-invariant ergodic probability measure µ on O such

that supp(µ) = O, the canonical type II1 factor representation πO of K = H oα G is

defined on the space L2(O,µ)⊗ `2(G) in the following way:

For ξ ∈ L2(O,µ)⊗ `2(G)

(πO(h, g)ξ)(χ, k) := χ(h)ξ(α̂−1g (χ), kg)

whenever h ∈ H, g ∈ G and χ ∈ Ĥ, k ∈ G. Since

{πO(h, g) : h ∈ H, g ∈ G}′′ ∼= L2(O,µ) oα̂ G,

πO is a type II1 factor representation of K.

Given a type II1 factor representation π of K we introduce the character ch(π) of π

by

ch(π)(k) := τ(π(k))

for all k ∈ K, where τ denotes the unique trace of the type II1 factor π(K)′′ (See [3] or

[16]).

The dual object to be considered in this section will be the set K̂II1 of quasi-

equivalence classes of type II1 factor representations of the (non-type I) hypergroup K.

We are interested in studying the character set

K(K̂II1) := {ch(π) : π ∈ K̂II1} ∪ {1H}.

For a type II1 factor representation π of the hypergroup K = H ×α G we write

ρ := ResHπ

and

u := ResGπ.

Indeed, for the canonical type II1 factor representation πO we have for the restrictions

ρO and uO that

(ρO(h)ξ)(χ, k) = χ(h)ξ(χ, k)

and

(uOξ)(χ, k) = ξ(α̂−1g (χ), kg) (g ∈ G,χ ∈ Ĥ, k ∈ H)

respectively.

The von Neumann algebra ρ(H)′′ generated by ρ(H) is commutative, hence isomor-

phic to L∞(O,µ) for O ∈ Γ, O 6= O0 and an α̂-invariant ergodic probability measure
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µ =: µπ with supp(µπ) = O. The corresponding imprimitivity relation

ugρ(f)u∗g = ρ(α̂−1g (f))

holds, whenever f ∈ L∞(O,µπ).

Lemma 5.1. Let π be a type II1 factor representation of the hypergroup K = HoαG
with representing Hilbert space H such that µπ = µπ

O

. Then π is quasi-equivalent to πO.

Proof. For any Hilbert space H we denote by B(H) and U(H) the spaces of

bounded and unitary operators on H respectively. Since the measure µπ is ergodic, we

may assume that

H = L2(O,µ)⊗H1, ρ
π(H)′′ = L∞(O,µ)⊗ C

and

ρπ(H)′ = L∞(O,µ)⊗B(H1),

where µ = µπ = µπ
O

.

Since the von Neumann algebra π(K)′′ is not type I,H1 must be infinite-dimensional.

Then we may further assume that

H1 = `2(G)

and

H = L2(O,µ)⊗ `2(G).

By applying

ugρ(f)u∗g = ρ(α̂−1g (f))

and

uOg ρ(f)(uOg )∗ = ρ(α̂−1g (f))

for f ∈ L∞(O,µ) we see that

uOg (uOg )∗ ∈ L∞(O,µ)′ = L∞(O,µ)⊗B(`2(G)).

Therefore there exists a U(`2(G))-valued 1-cocycle c = c(χ, k) of G on Ĥ satisfying

ugξ(χ, k) = c(χ, k)uOg ξ(χ, k) = c(χ, k)ξ(α̂−1g (χ), kg).

The cocycle condition reads as

c(χ, k1k2) = c(χ, k1)c(α̂−1k1 (χ), k2)
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for χ ∈ Ĥ, k1, k2 ∈ G. If we take k1 = k, k2 = k−1, then

c(χ, kk−1) = c(χ, k)c(α̂−1k (χ), k−1)

and

c(χ, kk−1) = c(χ, e) = I,

where I denotes the identity operator. Consequently,

c(χ, k)c(α̂−1k (χ), k−1) = I

and

c(α̂k(χ), k)c(χ, k−1) = I.

Let W be an operator in U(L2(O,µ)⊗ `2(G)) given by

(Wξ)(χ, k) := c(α̂k(χ), k)ξ(χ, k)

for ξ ∈ L2(O,µ)⊗ `2(G). Clearly,

(W ∗ξ)(χ, k) = c(χ, k−1)ξ(χ, k)

for all χ ∈ Ĥ, k ∈ G. Now we obtain that

WugW
∗ = uOg .

Indeed, for ξ ∈ L2(O,µ)⊗ `2(G), χ ∈ Ĥ, k ∈ G

(WugW
∗ξ)(χ, k) = W (ugW

∗ξ)(χ, k)

= c(α̂k(χ), k)ug(W
∗ξ)(χ, k)

= c(α̂k(χ), k)c(χ, g)(W ∗ξ)((α̂−1g (χ), kg)

= c(α̂k(χ), k)c(χ, g)c(α̂−1g (χ), g−1k−1)ξ(α̂−1g (χ), kg)

= c(α̂k(χ), k)c(χ, g)c(α̂−1g (χ), g−1)c(χ, k−1)ξ(α̂−1g (χ), kg)

= c(α̂k(χ), k)Ic(χ, k−1)ξ(α̂−1g (χ), kg)

= Iξ(α̂−1g (χ), kg)

= (uOg ξ)(χ, k).

This means that the representation u of G is unitarily equivalent to uO, i.e. the repre-

sentation π of K is quasi-equivalent to πO. �

Finally, let L be a compact Abelian group and G a countably infinite discrete sub-

group of L which is dense in L. Suppose that the action α̂ of L on Ĥ is free.

Lemma 5.2. Under the assumption just stated any G-invariant ergodic probability
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measure µ with supp(µ) = OrbG(χ) = OrbL(χ) exists and it is unique.

Proof. Since the action α̂ of L on the orbit O(χ) of χ in Ĥ is smooth and free,

there exists uniquely the ergodic probability measure µ on O(χ) under the action α̂ of L,

which is equivariant to the normalized Haar measure of the compact group L. The action

α̂ of L on the orbit O(χ) induces the continuous action α̂ of L on the C∗-algebra C(O(χ))

consisting of continuous functions on O(χ) with the uniform topology. For f ∈ C(O(χ)),

suppose that µ(α̂g(f)) = µ(f) for all g ∈ G. Then for any ` ∈ L one can take a sequence

g1, g2, . . . , gn, . . . in G such that

µ(α̂`(f)) = lim
n→∞

µ(α̂gn(f)),

since G is dense in L. Hence we have

µ(α̂`(f)) = µ(f)

for all ` ∈ L. This implies f = c · 1O(χ), c ∈ C. Therefore the measure µ is also ergodic

under the action α̂ of G. Let ν be an arbitrary ergodic probability measure under the

action of G supporting the orbit O(χ). Then this measure ν is ergodic under the action

of L so that ν = µ.

Hence the desired conclusion is obtained. �

In summary we obtain

Theorem 5.3. Keeping the assumptions preceding Lemma 5.2 and considering

the semi-direct product hypergroup K = H oα G the character set K(K̂II1) becomes a

commutative hypergroup isomorphic to the orbital hypergroup KL(Ĥ) of Ĥ under the

action α̂ of L.

Example 1 (Discrete Mautner group). Let K = Coα Z ⊂ Coα T. Then

Γ(Ĉ) = {Oλ : λ ∈ R+}

where Oλ = {z ∈ C : |z| = λ}. For each λ ∈ R+ a type II1 factor representation πλ is

defined and

πλ(K)′′ = L∞(Oλ) oα Z

is a type II1 factor whenever λ 6= 0. Moreover,

ch(πλ)(z, n) = J0(λ|z|) · 1{0}(n)

for all z ∈ C, n ∈ Z, and K(K̂II1) is isomorphic to the Bessel–Kingman hypergroup

BK(J0) of order 0 (See [2]).
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