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Abstract. We establish the mapping properties of the fractional integral
operators with homogeneous kernels on Morrey spaces with variable exponents.

1. Introduction.

The main theme of this paper is the mapping properties of the fractional integral

operators with homogeneous kernels on Morrey spaces with variable exponents.

The fractional integral operators with homogeneous kernels are introduced by Muck-

enhoupt and Wheeden in [35]. We recall the definition of fractional integral operator

with homogeneous kernel from [35]. Let 0 < α < n and Ω be a homogeneous function

on Rn with degree zero. That is, for any x ∈ Rn and λ > 0

Ω(λx) = Ω(x).

The fractional integral operator with homogeneous kernel is defined by

TΩ,αf(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
f(y)dy.

For the mapping properties of TΩ,α on Lebesgue spaces, the reader is referred to

[31, Theorem 3.3.1]. These mapping properties have been extended to the weighted

Lebesgue spaces in [14].

In view of the definition of TΩ,α, we see that TΩ,α is a generalization of the fractional

integral operators (Riesz potentials). For some further generalizations of the fractional

integral operators, such as the generalized fractional integral operators, the reader is

referred to [38], [42], [43].

The mapping properties of the fractional integral operators had been extended to

a number of function spaces, see [39]. The celebrated Adams inequalities, which is the

mapping properties of the fractional integral operators on Morrey spaces, are given in

[1]. The boundedness of the fractional integral operators on generalized Morrey spaces

and Orlicz–Morrey spaces are given in [37], [40], [45].

In addition, the mapping properties of the fractional integral operators on Lebesgue

spaces with variable exponents are established in [2], [5], [8], [10], [15], [17], [28], [41].
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These mapping properties have been further extended to Morrey spaces with variable

exponents in [3], [16], [17], [18], [19], [22], [26], [27], [32], [33], [34].

Therefore, the above mentioned results give us the motivation to study the mapping

properties of TΩ,α on Morrey spaces with variable exponents. Our main results consist

of two theorems, Theorems 3.1 and 3.2.

Even though our main results are the mapping properties of TΩ,α on Morrey spaces

with variable exponents. Some particular cases of the main results have theirs own

independent interests such as the mapping properties of TΩ,α on the classical Morrey

spaces and the Lebesgue spaces with variable exponents.

To establish our main results, several important notions and techniques from har-

monic analysis, such as the weighted norm inequalities, the extrapolation theory and the

block spaces, are involved.

To establish Theorem 3.1, we first need to have the mapping properties of TΩ,α on

Lebesgue spaces with variable exponents. We obtain these results by using the weighted

norm inequalities of TΩ,α on Lebesgue spaces [14]. Then, we apply the “off-diagonal”

extrapolation [20] to these inequalities.

With the mapping properties on Lebesgue spaces with variable exponent, we have

to use the idea of the lifting principle from [21] to obtain the mapping properties for the

Morrey spaces with variable exponents.

To establish Theorem 3.2, we use the duality between the Morrey spaces with vari-

able exponents and the block spaces with variable exponents.

This paper is organized as follows. The definition of Morrey space with variable

exponent and some of its properties are given in Section 2. The main results are presented

in Section 3. To obtain the proofs of our main theorems, we recall some supporting results

in Section 4. The proofs of our main theorems are presented in Section 5.

2. Definitions.

Let M(Rn) denote the class of Lebesgue measurable functions on Rn. For any

Lebesgue measurable set E, the characteristic function of E is denoted by χE . For any

x ∈ Rn and r > 0, let B(x, r) = {y ∈ Rn : |x− y| < r} and B = {B(x0, r) : x0 ∈ Rn, r >
0}.

We recall the definition of the Lebesgue space with variable exponents from [9], [12].

For any Lebesgue measurable function p : Rn → [1,∞), the Lebesgue space with variable

exponent Lp(·) consists of all f ∈M such that

‖f‖Lp(·) = inf {λ > 0 : ρp(f/λ) ≤ 1} <∞

where

ρp(f) =

∫
Rn
|f(x)|p(x)dx.

We call p(x) the exponent function of Lp(·). The reader is referred to [9], [12] for some

basic properties of Lp(·). Particularly, Lp(·) is a Banach function space, see [12, Theorem

3.2.13].
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We find that the associated space of Lp(·) is given by Lp
′(·) where (1/p(x)) +

(1/p′(x)) = 1 [12, Theorem 3.2.13]. The reader is referred to [12, Definition 2.7.1]

for the definition of associate space.

Write

p− = ess inf{p(x) : x ∈ Rn} and p+ = ess sup{p(x) : x ∈ Rn}.

Throughout this paper, we assume that p− > 1 and p+ <∞.

Let 0 ≤ α < n. The fractional maximal operator Mα is given by

Mαf(x) = sup
B3x

1

|B|1−α/n

∫
B

|f(y)|dy

where the supremum is taking over all balls B ∈ B containing x.

Obviously, when α = 0, the fractional maximal operator is the Hardy–Littlewood

maximal operator M .

Definition 2.1. For any exponent function p(·), we write p(·) ∈M if the Hardy–

Littlewood maximal operator M is bounded on Lp(·).

An important class of exponent function p(·) for which p(·) ∈ M is the class of log-

Hölder continuous functions. For the definition and details of this class, the reader is

referred to [9, Chapter 3] and [12, Chapter 4].

By using Jensen’s inequality, for any θ ≥ 1, we have (Mf)θ ≤ M(|f |θ). Therefore,

whenever p(·) ∈M, we find that

‖Mf‖θLθp(·) = ‖(Mf)θ‖Lp(·) ≤ ‖M(|f |θ)‖Lp(·) ≤ C‖|f |θ‖Lp(·) = C‖f‖θLθp(·) ,

hence, θp(·) ∈M.

We have the corresponding class of function spaces for fractional maximal operators

[25, Definition 2.3].

Definition 2.2. Let 0 < α < n. A pair of exponent functions (p(·), q(·)) is said

to be an α-Riesz pair if the fractional maximal operator Mα : Lp(·) → Lq(·) is bounded.

Notice that α-Riesz pairs is defined for general Banach function spaces in [25, Defi-

nition 2.3].

In view of [25, Proposition 2.1], we have the following results for α-Riesz pairs.

Proposition 2.1. Let 0 < α < n. If (p(·), q(·)) is an α-Riesz pair, then there

exists a constant C > 0 such that for any B ∈ B.

‖χB‖Lp′(·)‖χB‖Lq(·) ≤ C|B|
1−α/n.

Notice that in the above result, we do not assume that either p(·) ∈M or q(·) ∈M.

The above result are one of the crucial supporting result to establish the vector-valued

operators with singular kernels in [25].
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The following example of α-Riesz pair is a straight forward consequence of the

boundedness of fractional maximal operators on Lebesgue spaces with variable expo-

nents [8, Corollary 2.12].

Lemma 2.2. Let 0 < α < n, p(·), q(·) : Rn → [1,∞) with p+ < n/α and

1

p(x)
− 1

q(x)
=
α

n
, x ∈ Rn.

If there exists q0 satisfying n/(n − α) < q0 and q(·)/q0 ∈ M, then (Lp(·), Lq(·)) is an

α-Riesz pair.

Next, we have the definition of Morrey spaces with variable exponents.

Definition 2.3. Let p : Rn → [1,∞) and u(x, r) : Rn × (0,∞) → (0,∞) be

Lebesgue measurable functions. The Morrey space with variable exponent Mu
p(·) is the

collection of all Lebesgue measurable functions f satisfying

‖f‖Mu
p(·)

= sup
z∈Rn,R>0

1

u(z,R)
‖χB(z,R)f‖Lp(·) <∞.

In the rest of the paper, we consider those Morrey spaces with variable exponents

with the function u belonging to the following classes.

Definition 2.4. Let q(·) : Rn → [1,∞) and u(x, r) : Rn × (0,∞) → (0,∞) be

Lebesgue measurable functions, we write u ∈Wq(·) if there exists a constant C > 0 such

that for any x ∈ Rn and r > 0, u fulfills

∞∑
j=0

‖χB(x,r)‖Lq(·)
‖χB(x,2j+1r)‖Lq(·)

u(x, 2j+1r) ≤ Cu(x, r). (2.1)

For any 1 ≤ θ <∞, we write u ∈ Wθ
q(·) if

∞∑
k=0

‖χB(x,2kr)‖Lq(·)
‖χB(x,r)‖Lq(·)

|B(x, r)|θ

|B(x, 2kr)|θ
u(x, 2kr) ≤ Cu(x, r) (2.2)

for some C > 0 independent of x ∈ Rn and r > 0.

The class Wq(·) has been used in [21], [22], [24], [25] for the studies of the fractional

integral operators, the vector-valued maximal inequalities and the vector-valued singular

integral operators on Morrey spaces with variable exponents. For some examples of

u such that u ∈ Wq(·), the reader is referred to [22, pp. 366–368]. Additionally, the

discussions given there also apply to the class Wθ
q(·).

3. Main results.

We now ready to present our main results on the boundedness of the fractional

integral operators with homogeneous kernels on Mu
p(·). It consists of two theorems. We
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present them separately so that the conditions involved in each theorem can be clearly

stated.

Theorem 3.1. Let 0 < α < n, 1 < s < ∞ and Ω ∈ Ls(Sn−1). Suppose that

u ∈Wq(·), s
′ < p− ≤ p+ < n/α and

1

p(x)
− 1

q(x)
=
α

n
.

If there exists q0 with ns′/(n − αs′) < q0 such that q(·)/q0 ∈ M, then there exists a

constant C > 0 such that for any f ∈Mu
p(·),

‖TΩ,αf‖Mu
q(·)
≤ C‖f‖Mu

p(·)
.

The following theorem is obtained by using duality through block spaces with vari-

able exponents. The definition of block spaces with variable exponents is given in Section

4.

Theorem 3.2. Let 0 < α < n, 1 < s < ∞ and Ω ∈ Ls(Sn−1). Suppose that

u ∈ W(1/s′)−(α/n)
p′(·) , s′ < (q′)− ≤ (q′)+ < n/α and

1

p(x)
− 1

q(x)
=
α

n
.

If there exists p0 with ns′/(n − αs′) < p0 such that p′(·)/p0 ∈ M, then there exists a

constant C > 0 such that for any f ∈Mu
p(·),

‖TΩ,αf‖Mu
q(·)
≤ C‖f‖Mu

p(·)
.

Recall that in the Introduction, we proclaim that we use the weighted norm inequal-

ities for TΩ,α to obtain our main results. Notice that there are two sets of condition so

that the weighted norm inequalities for TΩ,α holds, see Theorem 4.3. Roughly speaking,

the second one follows from the first one via duality. This is the main reason why we

also have two theorems for our main results.

4. Weighted norm inequalities, extrapolation and block spaces.

In this section, we present some supporting materials for our main results, namely,

the weighted norm inequalities for fractional integral operators, the “off-diagonal” ex-

trapolation and the block spaces with variable exponents.

4.1. Weighted norm inequalities for TΩ,α.

We first state the definition of the class A(p, q) [36] which plays the same role of the

Muckenhoupt Ap class for the study of fractional integral operators.

Definition 4.1. Let 1 < p, q <∞. For any nonnegative locally integrable function

ω, we write ω ∈ A(p, q) if there exists a constant C > 0 such that
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sup
Q

(
1

|Q|

∫
Q

ω(x)qdx

)1/q (
1

|Q|

∫
Q

ω(x)−p
′
dx

)1/p′

< C

where the supremum is taken over those cube Q in Rn. When 1 ≤ q < ∞, we write

ω ∈ A(1, q), if there exists a constant C > 0 such that

sup
Q

(
1

|Q|

∫
Q

ω(x)qdx

)1/q (
esssupQ

1

ω(x)

)
< C.

Let Ap denote the class of Muckenhoupt weights. Then,

ω ∈ A(p, p)⇔ ωp ∈ Ap.

According to the definition of A(p, q) for p > 1, we have

ω ∈ A(p, q)⇔ ω−1 ∈ A(q′, p′). (4.1)

In addition, we have the following properties for the class A(p, q).

Proposition 4.1. Let 1 < p < q <∞. We have

ω ∈ A(p, q)⇔ ωq ∈ A1+(q/p′) ⇔ ω−p
′
∈ A1+(p′/q).

The above proposition follows from Definition 4.1 and [31, Theorem 3.2.2] with

α = (n/p) − (n/q). The following lemma is a supporting result for the boundedness of

TΩ,α on Lp(·).

Lemma 4.2. Let 1 < p < q < ∞ and 1 < s < ∞. If ω ∈ A1, then ωs
′/q ∈

A(p/s′, q/s′).

Proof. We have ω ∈ A1 ⊂ A1+((q/s′)/(p/s′)′). Therefore, Proposition 4.1 assures

that ωs
′/q ∈ A(p/s′, q/s′). �

We state the weighted norm inequalities for TΩ,α from [14], [31].

Theorem 4.3. Let 0 < α < n, 1 < s <∞, 1/q = (1/p)−(α/n) and Ω ∈ Ls(Sn−1).

If

1. 1 ≤ s′ < p < n/α and ωs
′/q ∈ A(p/s′, q/s′), or

2. 1 < p < n/α, s > q and ω−s
′/q ∈ A(q′/s′, p′/s′).

Then, there exists a constant C > 0 such that(∫
Rn
|TΩ,αf(x)|qω(x)dx

)1/q

≤ C
(∫

Rn
|f(x)|pω(x)p/qdx

)1/p

. (4.2)

We slightly rewrite the presentation of the weighted norm inequalities for TΩ,α from

[31, Theorem 3.4.2] because the above presentation is adapted to the formulation of the

extrapolation theory given in the following.
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4.2. Extrapolation.

We state the “off-diagonal” extrapolation results for Lebesgue spaces with variable

exponents from [8, Theorem 1.8].

Theorem 4.4. Given a family F , assume that for some p0 and q0, 0 < p0 ≤ q0 <

∞ and every weight ω ∈ A1,(∫
Rn
f(x)q0ω(x)dx

)1/q0

≤ C0

(∫
Rn
g(x)p0ω(x)p0/q0dx

)1/p0

, (f, g) ∈ F . (4.3)

Assume that p(·) satisfies p0 < p− ≤ p+ < p0q0/(q0 − p0). Define q(x) by

1

p(x)
− 1

q(x)
=

1

p0
− 1

q0
, ∀x ∈ Rn.

If (q(x)/q0)′ ∈M, then for all (f, g) ∈ F such that f ∈ Lq(·), we have

‖f‖Lq(·) ≤ C‖g‖Lp(·) .

Theorem 4.4 had been used in [8] to establish the mapping properties of the fractional

integral operators on Lebesgue spaces with variable exponents [8, Corollary 2.12]. The

reader is also referred to [2], [10], [15], [17], [28], [41] for some related results.

4.3. Block spaces with variable exponents.

The block spaces with variable exponents are introduced in [6]. For the studies of the

vector-valued operators with singular kernels on block spaces with variable exponents, the

reader is referred to [25]. In this paper, we use the mapping properties of the fractional

integral operators on block spaces with variable exponents to establish Theorem 3.2.

We recall the definition of block spaces with variable exponents from [6, Definition

2.2].

Definition 4.2. Let p(·) : Rn → [1,∞) and u : Rn× (0,∞)→ (0,∞) be Lebesgue

measurable functions. A b ∈ M(Rn) is an (u, p(·))-block if it is supported in a ball

B(x0, r), x0 ∈ Rn, r > 0, and

‖b‖Lp(·) ≤
1

u(x0, r)
. (4.4)

We write b ∈ bu,p(·) if b is an (u, p(·))-block.

Define Bu,p(·) by

Bu,p(·) =

{ ∞∑
k=1

λkbk :

∞∑
k=1

|λk| <∞ and bk is an (u, p(·))-block

}
. (4.5)

The space Bu,p(·) is endowed with the norm

‖f‖Bu,p(·) = inf

{ ∞∑
k=1

|λk| such that f =

∞∑
k=1

λkbk

}
. (4.6)
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We call Bu,p(·) the block space with variable exponent.

The family of block spaces for the Lebesgue spaces is introduced and studied in [4],

[29], [44].

The reader is referred to [6] for some basic properties for Bu,p(·). In particular, the

boundedness of the Hardy–Littlewood maximal operator is obtained in [6, Theorem 3.1].

Furthermore, the mapping properties for the vector-valued singular integral operators

and the fractional integral operators on Bu,p(·) are established in [25].

We establish several duality results for Mu
p(·) and Bu,p(·) in the followings. The first

one is the norm conjugate formula.

Proposition 4.5. Let p(·) : Rn → [1,∞) and u : Rn×(0,∞)→ (0,∞) be Lebesgue

measurable functions. We have constants C,D > 0 such that for any f ∈Mu
p(·),

C‖f‖Mu
p(·)
≤ sup
b∈bu,p′(·)

∣∣∣∣∫
Rn
f(x)b(x)dx

∣∣∣∣ ≤ D‖f‖Mu
p(·)
. (4.7)

Proof. Let b be an (u, p′(·))-block with supp b ⊂ B(x0, r). By using the Hölder

inequality for Lp(·) [12, Lemma 3.2.20] and the definition of Mu
p(·), we obtain∣∣∣∣∫

Rn
f(x)b(x)dx

∣∣∣∣ ≤ D‖χBf‖Lp(·)‖b‖Lp′(·)
≤ Du(x0, r)‖f‖Mu

p(·)

1

u(x0, r)
≤ D‖f‖Mu

p(·)
. (4.8)

Therefore, the inequality on the right hand side of (4.7) follows.

Next, we establish the inequality on the left hand side of (4.7). According to the

definition of Mu
p(·), there exists a B(y, t) ∈ B such that

1

2
‖f‖Mu

p(·)
≤ 1

u(y, t)
‖χB(y,t)f‖Lp(·) .

As (Lp(·))′ = Lp
′(·) [12, Theorem 3.2.13], there exists a g ∈ Lp′(·) with ‖g‖Lp′(·) ≤ 1

such that

1

2
‖f‖Mu

p(·)
≤ 1

u(y, t)
‖χB(y,t)f‖Lp(·)

≤ 2

u(y, t)

∣∣∣∣∫
Rn
χB(y,t)(x)f(x)g(x)dx

∣∣∣∣ = 2

∣∣∣∣∫
Rn
f(x)G(x)dx

∣∣∣∣
where

G(x) =
1

u(y, t)
χB(y,t)(x)g(x) ∈ bu,p′(·).

Therefore, we establish (4.7). �

The above proposition extends the norm conjugate formula for Lp(·) [12, Corollary
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3.2.14] to Mu
p(·). Next, we give a characterization of Mu

p(·) via blocks.

Proposition 4.6. Let f be a Lebesgue measurable function. If

sup
b∈bu,p′(·)

∣∣∣∣∫
Rn
f(x)b(x)dx

∣∣∣∣ <∞,
then f ∈Mu

p(·).

Proof. Let g ∈ Lp′(·) with ‖g‖Lp′(·) ≤ 1. We find that for any B(y, r) ∈ B,

G =
1

u(y, r)‖g‖Lp′(·)
χB(y,r)g

is an (u, p′(·))-block. Consequently,

sup
g∈Lp′(·),‖g‖

Lp
′(·)≤1,B(y,r)∈B

1

u(y, r)

∣∣∣∣∫
Rn
χB(y,r)(x)f(x)g(x)dx

∣∣∣∣ (4.9)

≤ sup
b∈bu,p′(·)

∣∣∣∣∫
Rn
f(x)b(x)dx

∣∣∣∣ <∞. (4.10)

The norm conjugate formula Lp(·) and Lp
′(·) [12, Corollary 3.2.14] assures that

sup
g∈Lp′(·),‖g‖

Lp
′(·)≤1

∣∣∣∣∫
Rn
χB(y,r)(x)f(x)g(x)dx

∣∣∣∣ ≥ 1

2
‖χB(y,r)f‖Lp(·) . (4.11)

Therefore, (4.9) and (4.11) yield

sup
B(y,r)∈B

1

u(y, r)
‖χB(y,r)f‖Lp(·) <∞.

That is, f ∈Mu
p(·). �

We also have the Hölder inequality for Mu
p(·) and Bu,p′(·).

Proposition 4.7. Let p(·) : Rn → [1,∞) and u : Rn×(0,∞)→ (0,∞) be Lebesgue

measurable functions. We have∫
Rn
|f(x)g(x)|dx ≤ C‖f‖Mu

p(·)
‖g‖Bu,p′(·) . (4.12)

Proof. Let b ∈ Bu,p′(·). For any ε > 0, there exist a family of (u, p′(·))-block

{bj}j∈N and a sequence of scalars {λj}j∈N such that g =
∑
j∈N λjbj and∑

j∈N
|λj | ≤ (1 + ε)‖b‖Bu,p′(·) .

Thus, for any f ∈Mu
p(·), (4.8) guarantees that
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Rn
|f(x)g(x)|dx ≤

∑
j∈N
|λj |

∫
Rn
|f(x)bj(x)|dx ≤ C

∑
j∈N
|λj |‖f‖Mu

p(·)

≤ C(1 + ε)‖f‖Mu
p(·)
‖g‖Bu,p′(·) .

Since ε > 0 is arbitrary, we obtain (4.12). �

5. Proofs of the main results.

In this section, we give the proofs of Theorems 3.1 and 3.2. We begin with the

boundedness of TΩ,α on Lp(·). This is a supporting result for Theorems 3.1 and 3.2. On

the other hand, it has its own independent interest.

Proposition 5.1. Let 0 < α < n, 1 < s < ∞ and Ω ∈ Ls(Sn−1). Suppose that

p(·), q(·) : Rn → [1,∞) satisfy s′ < p− ≤ p+ < n/α and

1

p(x)
− 1

q(x)
=
α

n
.

If there exists q0 with ns′/(n − αs′) < q0 such that q(·)/q0 ∈ M, then there exists a

constant C > 0 such that for any f ∈ Lp(·),

‖TΩ,αf‖Lq(·) ≤ C‖f‖Lp(·) . (5.1)

Proof. As s′ < p−, we have

ns′

n− αs′
<

np−
n− αp−

. (5.2)

For the given q0, in view of (5.2), we can assume that

q0 <
np−

n− αp−
(5.3)

because q(·)/a ∈M⇒ q(·)/b ∈M provided that b < a.

Define p0 by

1

p0
=

1

q0
+
α

n
.

Since ns′/(n− αs′) < q0 < ∞, we find that α/n < (1/q0) + (α/n) = 1/p0 < 1/s′. That

is,

s′ < p0 <
n

α
. (5.4)

Moreover, the condition p+ < n/α and (5.3) give

1

p0
− 1

q0
=
α

n
<

1

p+
, and p0 < p−, (5.5)

respectively. Therefore, we have p0 < p− ≤ p+ < p0q0/(q0 − p0).
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In view of Theorem 4.3, for any ω with ωs
′/q0 ∈ A(p0/s

′, q0/s
′), we have(∫

Rn
|TΩ,αf(x)|q0ω(x)dx

)1/q0

≤ C
(∫

Rn
|f(x)|p0ω(x)p0/q0dx

)1/p0

.

Lemma 4.2 guarantees that

ω ∈ A1 ⇒ ωs
′/q0 ∈ A

(p0

s′
,
q0

s′

)
.

Therefore, we are allowed to apply Theorem 4.4 to Lp(·), Lq(·) and TΩ,α with respect to

the set F =
{
|TΩ,αf |, |f | : f ∈ L∞comp

}
where L∞comp is the set of bounded function with

compact support. Consequently, we have

‖TΩ,αf‖Lq(·) ≤ C‖f‖Lp(·) , ∀f ∈ L∞comp.

As p+ < n/α < ∞, [12, Theorem 3.2.7] and [12, Theorem 3.4.12] assure that Lp(·)

is a Banach space and L∞comp is dense in Lp(·). Therefore, TΩ,αf can be defined for all

f ∈ Lp(·) via the density argument and, moreover, we establish (5.1). �

The subsequent result is an extension of Lemma 2.2.

Lemma 5.2. Let 0 < α < n, 1 < s <∞ and Ω ∈ Ls(Sn−1). Suppose that p+ < n/α

and

1

p(x)
− 1

q(x)
=
α

n
.

If there exists q0 with ns′/(n− αs′) < q0 such that q(·)/q0 ∈ M, then (p(·)/s′, q(·)/s′) is

a (s′α)-Riesz pair.

Proof. For any 1 < s <∞, we have

1

p(x)/s′
− 1

q(x)/s′
=

s′

p(x)
− s′

q(x)
=
s′α

n
, x ∈ Rn.

Next, we have (p(·)/s′)+ ≤ p+ < n/α.

Write r0 = q0/s
′, we find that (q(·)/s′)/r0 = q(·)/q0 ∈M. Furthermore, the inequal-

ity ns′/(n− αs′) < q0 assures that

r0 >
n

n− αs′
>

n

n− α

because s′ > 1. Therefore, Lemma 2.2 concludes that (p(·)/s′, q(·)/s′) is a (s′α)-Riesz

pair. �

With the above preparation, we are now ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Let f ∈Mu
p(·). For any z ∈ Rn and r > 0, write f(x) =

f0(x) +
∑∞
j=1 fj(x), where f0 = χB(z,2r)f and fj = χB(z,2j+1r)\B(z,2jr)f , j ∈ N\{0}.
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According to Proposition 5.1, TΩ,α : Lp(·) → Lq(·), we have ‖TΩ,αf0‖Lq(·) ≤ C‖f0‖Lp(·) .
We obtain

1

u(z, r)
‖χB(z,r)(TΩ,αf0)‖Lq(·) ≤ C

1

u(z, 2r)
‖χB(z,2r)f‖Lp(·) .

For any x ∈ Rn and r > 0, we have χB(x,2r) ≤ CMχB(x,r) for some C > 0. Consequently,

q(·)/q0 ∈M ensures that

‖χB(x,2r)‖Lq(·) = ‖χB(x,2r)‖
1/q0
Lq(·)/q0

≤ C‖MχB(x,r)‖
1/q0
Lq(·)/q0

≤ C‖χB(x,r)‖Lq(·) .

Hence, (2.1) implies that

u(z, 2r) < Cu(z, r) (5.6)

for some constant C > 0 independent of z ∈ Rn and r > 0. Thus, we have

1

u(z, r)
‖χB(z,r)(Tf0)‖Lq(·) ≤ C sup

y∈Rn
r>0

1

u(y, r)
‖χB(y,r)f‖Lp(·) . (5.7)

Furthermore, there is a constant C > 0 such that, for any j ≥ 1

χB(z,r)(x)|(TΩ,αfj)(x)|

≤ CχB(z,r)(x)

∫
B(z,2j+1r)\B(z,2jr)

|Ω(x− y)||x− y|−n+α|f(y)|dy. (5.8)

The Hölder inequality assures that∫
B(z,2j+1r)\B(z,2jr)

|Ω(x− y)||x− y|−n+α|f(y)|dy

≤ C

(∫
B(z,2j+1r)\B(z,2jr)

|Ω(x− y)|s|x− y|−s(n−α)dy

)1/s

‖χB(z,2j+1r)f‖Ls′

= C

(∫
B(x−z,2j+1r)\B(x−z,2jr)

|Ω(y)|s|y|−s(n−α)dy

)1/s

‖χB(z,2j+1r)f‖Ls′ .

As x ∈ B(z, r), for any y ∈ B(x− z, 2j+1r)\B(x− z, 2jr), we have

|y| ≤ |y − (x− z)|+ |x− z| ≤ 2j+1r + r ≤ 2j+2r

and

|y| ≥ |y − (x− z)| − |x− z| ≥ 2jr − r ≥ 2j−1r.

That is,

B(x− z, 2j+1r)\B(x− z, 2jr) ⊆ B(0, 2j+2r)\B(0, 2j−1r).
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Hence, for any j ≥ 1, we obtain∫
B(z,2j+1r)\B(z,2jr)

|Ω(x− y)||x− y|−n+α|f(y)|dy

≤ C

(∫
B(0,2j+2r)\B(0,2j−1r)

|Ω(y)|s|y|−s(n−α)dy

)1/s

‖χB(z,2j+1r)f‖Ls′

= C

(∫ 2j+2r

2j−1r

∫
Sn−1

|Ω(θ)|st−s(n−α)+n−1dθdt

)1/s

‖χB(z,2j+1r)f‖Ls′ .

Since Ω ∈ Ls(Sn−1), we obtain∫
B(z,2j+2r)\B(z,2j−1r)

|Ω(x− y)||x− y|−n|f(y)|dy

≤ C02−(n−α)(j−1)+n(j−1)/sr−(n−α)+n/s‖χB(z,2j+1r)f‖Ls′

≤ C12−(n−α)(j+1)+n(j−1)/sr−(n−α)+n/s‖χB(z,2j+1r)f‖Ls′

for some C0, C1 > 0.

Thus, (5.8) becomes

χB(z,r)(x)|(TΩ,αfj)(x)| ≤ CχB(z,r)(x)
‖χB(z,2j+1r)f‖Ls′

|B(z, 2j+1r)|(1/s′)−(α/n)
. (5.9)

In view of (5.4) and (5.5), we have s′ < p0 < p−. The condition ns′/(n− αs′) < q0

gives s′ < q0. Define r(x) = p(x)/s′ and t(x) = q(x)/s′. We have r(·), t(·) : Rn → (1,∞).

The Hölder inequality for Lr(·) yields

‖χB(z,2j+1r)f‖Ls′ ≤ C‖χB(z,2j+1r)|f |s
′
‖1/s

′

Lr(·)
‖χB(z,2j+1r)‖

1/s′

Lr′(·)

= C‖χB(z,2j+1r)f‖Lp(·)‖χB(z,2j+1r)‖
1/s′

Lr′(·)
. (5.10)

According to Lemma 5.2, (r(·), t(·)) is a (s′α)-Riesz pair, Proposition 2.1 guarantees that

‖χB‖Lr′(·)‖χB‖Lt(·) ≤ C|B|
1−s′α/n, ∀B ∈ B (5.11)

for some C > 0.

Since ‖χB‖1/s
′

Lt(·)
= ‖χB‖Lq(·) , (5.9), (5.10) and (5.11) give

χB(z,r)(x)|(TΩ,αfj)(x)| ≤ CχB(z,r)(x)
‖χB(z,2j+1r)f‖Lp(·)
‖χB(z,2j+1r)‖Lq(·)

.

Applying the norm ‖ · ‖Lq(·) on both sides of the above inequality, we have

‖χB(z,r)TΩ,αfj‖Lq(·) ≤ C‖χB(z,r)‖Lq(·)
‖χB(z,2j+1r)f‖Lp(·)
‖χB(z,2j+1r)‖Lq(·)

. (5.12)

We find that
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1

u(z, r)
‖χB(z,r)TΩ,αf‖Lq(·)

≤ 1

u(z, r)
‖χB(z,r)Tf0‖Lq(·) +

1

u(z, r)

∞∑
j=1

‖χB(z,r)Tfj‖Lq(·)

≤ ‖Tf0‖Mu
q(·)

+

∞∑
j=1

1

u(z, r)
‖χB(z,r)Tfj‖Lq(·) .

Thus (5.7) and (5.12) assert that

1

u(z, r)
‖χB(z,r)TΩ,αf‖Lq(·)

≤ C‖f0‖Mu
q(·)

+ C

∞∑
j=1

u(z, 2j+1r)

u(z, r)

‖χB(z,r)‖Lq(·)
‖χB(z,2j+1r)‖Lq(·)

1

u(z, 2j+1r)
‖χB(z,2j+1r)f‖Lp(·)

≤ C‖f0‖Mu
q(·)

+ C

∞∑
j=1

u(z, 2j+1r)

u(z, r)

‖χB(z,r)‖Lq(·)
‖χB(z,2j+1r)‖Lq(·)

‖f‖Mu
p(·)
.

Then, (2.1) yields

1

u(z, r)
‖χB(z,r)TΩ,αf‖Mu

q(·)
≤ C‖f‖Mu

p(·)

for some C > 0 independent of z ∈ Rn and r > 0.

Finally, by taking supremum over B(z, r) ∈ B on both sides of the above inequality,

we obtain our desired result. �

Before we give the proof of Theorem 3.2, we first establish the mapping properties

of TΩ,α on block bu,p(·).

Proposition 5.3. Let 0 < α < n, 1 < s < ∞ and Ω ∈ Ls(Sn−1). Suppose that

s′ < p− ≤ p+ < α/n and

1

p(x)
− 1

q(x)
=
α

n
.

If there exists q0 with ns′/(n − αs′) < q0 such that q(·)/q0 ∈ M and u ∈ W(1/s′)−(α/n)
q(·) ,

then there exists a constant C > 0 such that for any b ∈ bu,p(·),

‖TΩ,αb‖Bu,q(·) ≤ C.

Proof. Let z ∈ Rn, r > 0 and b be an (u, p(·))-block with support B(z, r). For

any k ∈ N, write b0 = χB(z,2r)TΩ,αb, Bk = B(z, 2kr) and

bk = χBk\Bk−1
TΩ,αb, k ∈ N\{0}.

Since TΩ,α : Lp(·) → Lq(·) is bounded, (5.6) assures that
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‖b0‖Lq(·) ≤ C‖TΩ,αb‖Lq(·) ≤ C‖b‖Lp(·) ≤
C

u(z, r)
≤ C

u(z, 2r)

for some C > 0 independent of b ∈ bu,p(·), z ∈ Rn and r > 0. Thus, b0 is a constant

multiple of an (u, q(·))-block.

Next, as supp b ⊆ B(z, r) and TΩ,α is a fractional integral operator with the homo-

geneous kernel, we find that

|bk(x)| ≤ χBk\Bk−1
(x)|(TΩ,αb)(x)| ≤ CχBk\Bk−1

(x)

∫
B(z,r)

|Ω(x− y)|
|x− y|n−α

|b(y)|dy.

For any k ∈ N\{0}, x ∈ Bk\Bk−1 and y ∈ B(z, r), we have

|x− y| ≥ |x− z| − |z − y| ≥ 2k−1r − r ≥ 2k−2r.

Consequently, the Hölder inequality yields

|bk(x)| ≤ CχBk\Bk−1
(x)2−(k−2)(n−α)r−n+α

∫
B(z,r)

|Ω(x− y)||b(y)|dy

≤ CχBk\Bk−1
(x)2−(k−2)(n−α)r−n+α

(∫
B(x−z,r)

|Ω(y)|sdy

)1/s

‖b‖Ls′ .

For any x ∈ Bk\Bk−1 and y ∈ B(x− z, r), we have

|y| ≤ |y − (x− z)|+ |x− z| ≤ r + 2kr ≤ 2k+1r

and

|y| ≥ |y − (x− z)| − |x− z| ≥ 2k−1r − r ≥ 2k−2r.

Therefore, for any x ∈ Bk\Bk−1, the belonging Ω ∈ Ls(Rn) assures that

|bk(x)|

≤ C1χBk\Bk−1
(x)2−(k−2)(n−α)r−n+α

(∫
B(0,2k+1r)\B(0,2k−2r)

|Ω(y)|sdy

)1/s

‖b‖Ls′

≤ C1χBk\Bk−1
(x)2−(k−2)(n−α)r−n+α

(∫ 2k+1r

2k−2r

tn−1dt

∫
Sn−1

|Ω(θ)|sdθ

)1/s

‖b‖Ls′

≤ CχBk\Bk−1
(x)2−(k+1)((n/s′)−α)r−(n/s′)+α‖b‖Ls′ ≤ CχBk(x)

‖b‖Ls′
|Bk|(1/s′)−(α/n)

(5.13)

for some C,C1 > 0.

Recall that r(x) = p(x)/s′ and t(x) = q(x)/s′. Since b ∈ bu,p(·), by using the Hölder

inequality for Lr(·), we have
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‖b‖Ls′ ≤ 2‖|b|s
′
‖1/s

′

Lr(·)
‖χB(z,r)‖

1/s′

Lr′(·)
= 2‖b‖Lp(·)‖χB(z,r)‖

1/s′

Lr′(·)
≤ 2
‖χB(z,r)‖

1/s′

Lr′(·)

u(z, r)
.

We apply the norm ‖ · ‖Lq(·) on both sides of the inequality (5.13) and find that

‖bk‖Lq(·) ≤
C

u(z, r)
‖χBk‖Lq(·)

‖χB(z,r)‖
1/s′

Lr′(·)

|Bk|(1/s′)−(α/n)
.

Thus, (5.11) gives

‖bk‖Lq(·) ≤
C2

u(z, 2kr)

u(z, 2kr)

u(z, r)

‖χBk‖Lq(·)
‖χB(z,r)‖Lq(·)

|B(z, r)|(1/s′)−(α/n)

|Bk|(1/s′)−(α/n)

for some C2 independent of b and k.

Write bk = λkβk where

λk = C2
u(z, 2kr)

u(z, r)

‖χBk‖Lq(·)
‖χB(z,r)‖Lq(·)

|B(z, r)|(1/s′)−(α/n)

|Bk|(1/s′)−(α/n)
.

Then, βk is an (u, q(·))-block with support B(z, 2kr).

Furthermore, the condition u ∈ W(1/s′)−(α/n)
q(·) guarantees that

∞∑
k=1

|λk| = C2

∞∑
k=1

u(z, 2kr)

u(z, r)

‖χBk‖Lq(·)
‖χB(z,r)‖Lq(·)

|B(z, r)|(1/s′)−(α/n)

|Bk|(1/s′)−(α/n)
< C3

for some constant C3 > 0 independent of b.

According to the definition of Bu,q(·), we find that

TΩ,αb =

∞∑
k=0

bk =

∞∑
k=0

λkβk

belongs to Bu,q(·) with

‖TΩ,αb‖Bu,q(·) ≤
∞∑
k=0

|λk| < C3

for some C3 > 0 independent of b ∈ bu,p(·). �

We now combine the above result with the duality of Mu
p(·) and Bu,p′(·) to prove

Theorem 3.2.

Proof of Theorem 3.2. We have (q′)+ < α/n and

1

q′(x)
− 1

p′(x)
=

1

p(x)
− 1

q(x)
=
α

n
.

Since Ω̃(x) = Ω(−x) ∈ Ls(Sn−1), Proposition 5.3 guarantees that for any b ∈ bu,q′(·)
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‖TΩ̃,αb‖Bu,p′(·) ≤ C. (5.14)

Consequently, for any f ∈Mu
p(·), (5.14) yields

sup
b∈bu,q′(·)

∣∣∣∣∫
Rn

(TΩ,αf)(x)b(x)dx

∣∣∣∣ = sup
b∈bu,q′(·)

∣∣∣∣∫
Rn
f(x)TΩ̃,αb(x)dx

∣∣∣∣
≤ C‖f‖Mu

p(·)
‖TΩ̃,αb‖Bu,p′(·) ≤ C‖f‖Mu

p(·)

for some C > 0. Therefore, Proposition 4.6 assures that TΩ,αf ∈ Mu
q(·). Moreover,

Proposition 4.5 guarantees that for any f ∈Mu
p(·)

‖TΩ,αf‖Mu
q(·)
≤ C sup

b∈bu,q′(·)

∣∣∣∣∫
Rn

(TΩ,αf)(x)b(x)dx

∣∣∣∣ ≤ C‖f‖Mu
p(·)

for some C > 0. �
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