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Abstract. It is well-known that reduced smooth orbifolds and proper
effective foliation Lie groupoids form equivalent categories. However, for cer-
tain recent lines of research, equivalence of categories is not sufficient. We
propose a notion of maps between reduced smooth orbifolds and a definition
of a category in terms of marked proper effective étale Lie groupoids such that
the arising category of orbifolds is isomorphic (not only equivalent) to this
groupoid category.

1. Introduction.

Given a reduced orbifold (in local charts) and an orbifold atlas representing its
orbifold structure it is well known how to construct (in an explicit way) a proper effective
foliation groupoid (orbifold groupoid) from these data (see, e. g., Haefliger [4] or the book
by Moerdijk and Mrčun [8]). Over the years various authors (in particular, Moerdijk [7],
Pronk [10]) used this link to provide a definition of a category of orbifolds by proposing
a definition of a category of orbifold groupoids, either as a 2-category or as a bicategory
of fractions. Lerman [5] provides a very good discussion of these approaches. These
approaches have in common that the morphisms in the orbifold category are only given
implicitly.

While the notion of isomorphisms between orbifolds is clear, that of more general
maps allows variations. Various propositions for orbifold maps in local charts have been
made serving different purposes, e. g., by Borzellino and Brunsden [2] or the Chen–Ruan
good maps [3]. Unfortunately, neither of these definitions model the morphisms coming
from the groupoid category. We remark that Lupercio and Uribe [6], even though widely
believed, do not prove that Chen–Ruan good maps correspond to groupoid homomor-
phisms (a counterexample to the characterization of groupoid homomorphisms via good
maps and thus to [6, Proposition 5.1.7] is provided by the unique map between any
orbifold with at least two charts in any orbifold atlas and the 0-dimensional connected
reduced orbifold).

All these proposed groupoid categories are just equivalent, not isomorphic, to the
orbifold category. This is caused by the fact that the construction mentioned above
assigns the same groupoid to different (but isomorphic) orbifolds, and conversely vari-
ous (Morita equivalent) groupoids to the same orbifold. Moerdijk and Pronk [9] show
that isomorphism classes of orbifolds correspond to Morita equivalence classes of orb-
ifold groupoids. For many investigations about orbifolds, an equivalence of categories
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suffices to translate the problem to groupoids. However, one cannot investigate e.g. the
diffeomorphism group of an orbifold using any of the groupoid categories.

In this article we provide a correct characterization of groupoid homomorphisms
in local charts. We use the arising maps to define a geometrically motivated notion of
orbifold maps as certain equivalence classes. This allows us to define a geometrically
natural orbifold category (with orbifolds as objects). Characterizing these orbifold maps
in terms of groupoid homomorphisms enables us to define a category in terms of marked
proper effective étale Lie groupoids (which is not the classical one) which is isomorphic
to the orbifold category.

The results in this article are used by Schmeding [13] to show that the diffeomor-
phism group of a paracompact reduced orbifold can be endowed with the structure of
an (infinite-dimensional) Lie group. Moreover, this Lie group is even Ck-regular for any
k ∈ N0 ∪ {∞} and a fortiori regular in the sense of Milnor; we refer to [13] for details.

For convenience we briefly comment on the outline of the paper. We start by review-
ing the necessary background material on orbifolds, groupoids, pseudogroups, and the
well-known construction of a groupoid from an orbifold and an orbifold atlas representing
its orbifold structure. Groupoids which arise in this way will be called atlas groupoids. To
overcome the problem that different orbifolds are identified with the same atlas groupoid
we introduce, in Section 3, a certain marking of atlas groupoids. It consists in attaching
to an atlas groupoid a certain topological space and a certain homomorphism between its
orbit space and the topological space. The general concept of marking already appeared
in [7]. There, however, the relation between a marking of a groupoid and an orbifold
atlas (in local charts) is not discussed. The specific marking of an atlas groupoid intro-
duced here allows us to recover the orbifold. There is a natural notion of homomorphisms
between marked atlas groupoids. In Section 4 we characterize these homomorphisms in
local charts. On the orbifold side, this characterization involves the choice of representa-
tives of the orbifold structures, namely those orbifold atlases which were used to construct
the marked atlas groupoids. Hence, at this point we get a notion of orbifold map with
fixed representatives of orbifold structures, which we will call charted orbifold maps. In
Section 5 we introduce a natural definition of composition of charted orbifold maps and
a geometrically motivated definition of the identity morphism (a certain class of charted
orbifold maps), which allows us to establish a natural equivalence relation on the class
of charted orbifold maps. An orbifold map (which does not depend on the choice of orb-
ifold atlases) is then an equivalence class of charted orbifold maps. The leading idea for
this equivalence relation is geometric: we consider charted orbifold maps as equivalent
if and only if they induce the same charted orbifold map on common refinements of the
orbifold atlases. Moreover, using the same idea, we define the composition of orbifold
maps. In this way, we construct a category of reduced orbifolds. Finally, in Section 6,
we characterize orbifolds as certain equivalence classes of marked atlas groupoids, and
orbifold maps as equivalence classes of homomorphisms of marked atlas groupoids. These
equivalence relations are natural adaptations of the classical Morita equivalence. In this
way, there arises a category of marked atlas groupoids which is isomorphic to the orbifold
category. As an additional benefit the isomorphism functor is constructive. As a final
step, in Section 7, we show that the category of marked atlas groupoids is isomorphic
to an analogously defined category of marked proper effective étale Lie groupoids (by
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embedding).
Even though the category of marked proper effective étale Lie groupoids constructed

in this article not the classical one, all the classical groupoid (2- or bi-) categories can be
recovered by considering elements in an equivalence class as stand-alone entities and the
equivalence-providing maps as 2-morphisms, and by forgetting the marking. The ultimate
orbifold category constructed here is the one which is satisfying from a geometric point
of view (cf. the results in [13]) and also allows to adapt without any difficulties all results
on groupoids that are invariant under Morita equivalence (e.g. the behavior of orbifold
vector bundles under pullback).

We expect that all these constructions can be performed in a similar way for orbifolds
over other fields, e. g., complex ones, and for orbifolds with additional structures such as
Riemannian ones.
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Notation and conventions. We use N0 = N ∪ {0} to denote the set of non-
negative integers. If not stated otherwise, every manifold is assumed to be real, para-
compact, Hausdorff and smooth (C∞). We also consider second-countable manifolds,
and it will always be indicated whether we require a given manifold to be just paracom-
pact or even second-countable. If M is a manifold, then Diff(M) denotes the group of
diffeomorphisms of M . If G is a subgroup of Diff(M), then

G\M := {Gm | m ∈M}

denotes the space of G-orbits endowed with the final topology. If A1, A2, B are sets
(manifolds) and f1 : A1 → B, f2 : A2 → B are maps (submersions), then we denote the
fibered product of f1 and f2 by A1 f1×f2 A2 and identify it with the set (manifold)

A1 f1×f2 A2 = {(a1, a2) ∈ A1 ×A2 | f1(a1) = f2(a2)}.

Finally, we say that a family V = {Vi | i ∈ I} is indexed by I if I → V, i 7→ Vi, is a
bijection.
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2. Reduced orbifolds, groupoids, and pseudogroups.

In this section we recall the necessary background on reduced orbifolds and
groupoids. The notion of (reduced) orbifolds goes back to at least Satake [11], [12], and
has been refined since then, see e. g., [1], [4], [8], [14]. Here, we use one of these more
modern definitions of reduced orbifolds, and we consider different flavors for the mani-
folds involved. We recall that throughout any manifold is required to be real, smooth,
Hausdorff and paracompact.

2.1. Reduced orbifolds.
Let Q be a topological space, and n ∈ N0. A reduced orbifold chart of dimension n

on Q is a triple (V,G, ϕ) where V is a connected n-manifold without boundary, G is a
finite subgroup of Diff(V ), and ϕ : V → Q is a map with open image ϕ(V ) that induces
a homeomorphism from G\V to ϕ(V ). In this case, (V,G, ϕ) is said to uniformize ϕ(V ).

One might argue that orbifold charts should better be called orbifold parametriza-
tions. However, orbifold charts are the more established notion and we prefer to stick to
it. The orbifold charts are called reduced (or effective) to indicate that the action of G
is effective.

Two reduced orbifold charts (V,G, ϕ), (W,H,ψ) on Q are called compatible if for
each pair (x, y) ∈ V ×W with ϕ(x) = ψ(y) there are open connected neighborhoods Ṽ
of x and W̃ of y and a diffeomorphism h : Ṽ → W̃ with ψ ◦h = ϕ|Ṽ . The map h is called
a change of charts. The neighborhoods Ṽ and W̃ and the diffeomorphism h can always
be chosen in such a way that h(x) = y. Moreover Ṽ may assumed to be open G-stable.
This means that Ṽ is open and connected, and for each g ∈ G we either have gṼ = Ṽ or
gṼ ∩ Ṽ = ∅. In this case, W̃ is open H-stable by [8, Proposition 2.12(i)].

A reduced orbifold atlas of dimension n on Q is a collection of pairwise compatible
reduced orbifold charts

V := {(Vi, Gi, ϕi) | i ∈ I}

of dimension n on Q such that
⋃
i∈I ϕi(Vi) = Q. Two reduced orbifold atlases are

equivalent if their union is a reduced orbifold atlas. A reduced orbifold structure of
dimension n on Q is an equivalence class of reduced orbifold atlases of dimension n on Q.
A reduced (paracompact resp. second-countable) orbifold of dimension n is a pair (Q,U)

where Q is a (paracompact resp. second-countable) Hausdorff space and U is a reduced
orbifold structure of dimension n onQ. We note that since the manifolds V in the orbifold
charts (V,G, ϕ) are assumed to be connected and finite-dimensional, paracompactness
of V is equivalent to second-countability of V . However, since the topological space Q
is not required to be connected, paracompactness does not necessarily imply second-
countability of Q.

Let U be a reduced orbifold structure on Q. Each reduced orbifold atlas V in U is
called a representative of U or a reduced orbifold atlas of (Q,U).

Since we are considering reduced orbifolds only, we omit the term “reduced” from
now on. Moreover, when implicitly understood we will omit the terms “paracompact”
and “second-countable”.
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Let (V,G, ϕ), (W,H,ψ) be orbifold charts of identical dimension on the topological
space Q. Then an (open) embedding µ : (V,G, ϕ)→ (W,H,ψ) between these two orbifold
charts is an (open) embedding µ : V → W between manifolds which satisfies ψ ◦ µ = ϕ.
We remark that any embedding is automatically open by the Theorem on the Invariance
of Domain. If, in addition, µ is a diffeomorphism between V and W , then µ is called an
isomorphism from (V,G, ϕ) to (W,H,ψ). Suppose that S is an open G-stable subset of
V and let GS := {g ∈ G | gS = S} denote the isotropy group of S. Then (S,GS , ϕ|S) is
an orbifold chart on Q as well, the restriction of (V,G, ϕ) to S.

Remark 2.1. Suppose that µ : (V,G, ϕ) → (W,H,ψ) is an embedding. By [8,
Proposition 2.12(i)], µ(V ) is an open H-stable subset of W , and moreover that there is a
unique group isomorphism µ : G→ Hµ(V ) for which µ(gx) = µ(g)µ(x) for g ∈ G, x ∈ V .

In the following example we provide two orbifolds with the same underlying topo-
logical space. These orbifolds are particularly simple since both orbifold structures have
one-chart-representatives. Despite their simplicity they serve as motivating examples for
several definitions in this paper.

Example 2.2. Let Q := [0, 1) be endowed with the induced topology of R. The
map

f : Q→ Q, x 7→ x2

is a homeomorphism. Further the map pr: (−1, 1) → [0, 1), x 7→ |x|, induces a homeo-
morphism {± id}\(−1, 1)→ Q. Then

V1 :=
(
(−1, 1), {± id},pr

)
and V2 :=

(
(−1, 1), {± id}, f ◦ pr

)
are two orbifold charts on Q. They are easily seen to be non-compatible.

Let U1 be the orbifold structure on Q generated by V1, and U2 be the one generated
by V2.

2.2. Groupoids and homomorphisms.
A groupoid is a small category in which each morphism is an isomorphism. In the

context of orbifolds this concept is most commonly expressed (equivalently) in terms of
sets and maps. The morphisms are then called arrows.

A groupoid G is a tuple G = (G0, G1, s, t,m, u, i) consisting of the set G0 of objects,
or the base of G, the set G1 of arrows, and five structure maps, namely the source map
s : G1 → G0, the target map t : G1 → G0, the multiplication or composition m : G1 s×t
G1 → G1, the unit map u : G0 → G1, and the inversion i : G1 → G1 which satisfy that

(i) for all (g, f) ∈ G1 s×t G1 we have s(m(g, f)) = s(f) and t(m(g, f)) = t(g),

(ii) for all (h, g), (g, f) ∈ G1 s×t G1 we have m(h,m(g, f)) = m(m(h, g), f),

(iii) for all x ∈ G0 we have s(u(x)) = x = t(u(x)),

(iv) for all x ∈ G0 and all (u(x), f), (g, u(x)) ∈ G1 s×t G1 it follows m(u(x), f) = f and
m(g, u(x)) = g,
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(v) for all g ∈ G1 we have s(i(g)) = t(g) and t(i(g)) = s(g), and m(g, i(g)) = u(t(g))

and m(i(g), g) = u(s(g)).

We often use the notations m(g, f) = gf , u(x) = 1x, i(g) = g−1, and g : x→ y or
g

x→ y

for an arrow g ∈ G1 with s(g) = x, t(g) = y. Moreover, G(x, y) denotes the set of arrows
from x to y.

Classically, the base space of a Lie groupoid is required to be a second-countable
manifold. However, parts of the theory of Lie groupoids stay valid if the base manifold is
just paracompact. Therefore, as with orbifolds, we consider two flavors of Lie groupoids
here.

A (paracompact resp. second-countable) Lie groupoid is a groupoid G for which G0 is
a paracompact resp. second-countable manifold, G1 is a smooth (possibly non-Hausdorff,
possible non-second-countable) manifold, the structure maps s, t : G1 → G0 are smooth
submersions (hence G1 s×t G1, the domain of m, is a smooth, possibly non-Hausdorff
manifold), and the structure maps m,u and i are smooth. A Lie groupoid is called
étale if its source and target map are local diffeomorphisms. It is called proper if G1 is
Hausdorff and the map (s, t) : G1 → G0×G0 is proper. An étale Lie groupoid G is called
effective if the map

g 7→ germs(g)(t ◦ (s|U )−1),

where g ∈ G1 and U is an open neighborhood of g in G1 such that t|U and s|U are
injective, is injective.

Let G and H be groupoids. A homomorphism from G to H is a functor ϕ : G→ H,
i. e., it is a tuple ϕ = (ϕ0, ϕ1) of maps ϕ0 : G0 → H0 and ϕ1 : G1 → H1 which commute
with all structure maps. If G and H are Lie groupoids, then ϕ is a homomorphism
between them if it is a homomorphism of the abstract groupoids with the additional
requirement that ϕ0 and ϕ1 be smooth maps.

Let G be a groupoid. The orbit of x ∈ G0 is the set

Gx := t(s−1(x)) =
{
y ∈ G0

∣∣∣ ∃ g ∈ G1 : x
g→ y

}
.

Two elements x, y ∈ G0 are called equivalent, x ∼ y, if they are in the same orbit. The
quotient space |G| := G0/∼ is called the orbit space of G. The canonical quotient map
G0 → |G| is denoted by pr or prG, and [x] := pr(x) for x ∈ G0.

2.3. Pseudogroups and groupoids.
We recall how to construct a Lie groupoid from an orbifold and a representative of

its orbifold structure. This construction is well known, see e.g. the book by Moerdjik
and Mrčun [8]. We provide it here for the convenience of the reader and to introduce
the notations we will use later on. It is a two-step process in which one first assigns a
pseudogroup to the orbifold, which depends on the representative of the orbifold struc-
ture. Then one constructs an étale Lie groupoid from the pseudogroup. For reasons of
generality and clarity we start with the second step.

Definition 2.3. Let M be a manifold. A transition on M is a diffeomorphism
f : U → V where U, V are open subsets of M . In particular, the empty map ∅ → ∅ is a
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transition on M . The product of two transitions f : U → V , g : U ′ → V ′ is the transition

f ◦ g : g−1(U ∩ V ′)→ f(U ∩ V ′), x 7→ f(g(x)).

The inverse of f is the inverse of f as a function. If f : U → V is a transition, we use
dom f to denote its domain and cod f to denote its codomain. Further, if x ∈ dom f ,
then germx f denotes the germ of f at x.

Let A(M) be the set of all transitions on M . A pseudogroup on M is a subset P
of A(M) which is closed under multiplication and inversion. A pseudogroup P is called
full if idU ∈ P for each open subset U of M . It is said to be complete if it is full and
satisfies the following gluing property: Whenever there is a transition f ∈ A(M) and an
open covering (Ui)i∈I of dom f such that f |Ui ∈ P for all i ∈ I, then f ∈ P .

We now recall how to construct an étale Lie groupoid from a full pseudogroup.

Construction 2.4. Let M be a manifold and P a full pseudogroup on M . The
associated groupoid Γ := Γ(P ) is given by

Γ0 := M, Γ1 := {germx f | f ∈ P, x ∈ dom f},

and

Γ(x, y) := {germx f | f ∈ P, x ∈ dom f, f(x) = y}.

For f ∈ P define Uf := {germx f | x ∈ dom f }. The topology and differential structure
of Γ1 is given by the germ topology and germ differential structure, that is, for each
f ∈ P the bijection

ϕf :

{
Uf → dom f

germx f 7→ x

is required to be a diffeomorphism. The structure maps (s, t,m, u, i) of Γ are the obvious
ones, namely

s(germx f) := x

t(germx f) := f(x)

m(germf(x) g, germx f) := germx(g ◦ f)

u(x) := germx idU for an open neighborhood U of x

i(germx f) := germf(x) f
−1.

Obviously, Γ(P ) is an étale Lie groupoid.

Special Case 2.5. Let (Q,U) be an orbifold, and let

V = {(Vi, Gi, πi) | i ∈ I}

be a representative of U indexed by I. We define



762 A. Pohl

V :=
∐
i∈I

Vi and π :=
∐
i∈I

πi.

Then

Ψ(V) :=
{
f transition on V

∣∣ π ◦ f = π|dom f

}
.

is a complete pseudogroup on V . The associated groupoid

Γ(V) := Γ(Ψ(V))

is the proper effective étale Lie groupoid we shall associate to Q and V. Note that this
groupoid depends on the choice of the representative of the orbifold structure U of Q. A
groupoid which arises in this way we call atlas groupoid.

If (Q,U) is a second-countable orbifold, then we can choose V to be countable and the
associated atlas groupoid has a second-countable base. Whenever dealing with second-
countable orbifolds in the following, we will assume that the chosen representative of the
orbifold structure is countable.

Example 2.6. Recall the orbifolds (Q,Ui) (i = 1, 2) from Example 2.2, and con-
sider the representative Vi := {Vi} of Ui. Proposition 2.12 in [8] implies that

Ψ(Vi) =
{
g|U : U → g(U)

∣∣ U ⊆ (−1, 1) open, g ∈ {± id}
}
.

In both cases the associated groupoid Γ := Γ(Vi) is

Γ0 = (−1, 1)

Γ(x, y) =



{
germ0 id, germ0(− id)

}
if x = 0 = y{

germx id
}

if x = y 6= 0{
germx(− id)

}
if x = −y 6= 0

∅ otherwise.

3. Marked Lie groupoids and their homomorphisms.

In Example 2.6 we have seen that it may happen that the same atlas groupoid is
associated to two different orbifolds. The reason for this is that in the definition of
the pseudogroup which is needed for the construction of the atlas groupoid one loses
information about the projection maps ϕ of the orbifold charts (V,G, ϕ). To be able to
distinguish atlas groupoids constructed from different orbifolds, we mark the groupoids
with a topological space and a homeomorphism. It will turn out that this marking suffices
to identify the orbifold one started with.

A marked Lie groupoid is a triple (G,α,X) consisting of a Lie groupoid G, a topo-
logical space X, and a homeomorphism α : |G| → X.

For atlas groupoids there exists a specific marking which is crucial for the isomor-
phism between the orbifold category and the groupoid category. It is stated in the
following lemma of which we omit its straightforward proof.
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Lemma 3.1. Let (Q,U) be an orbifold and

V = {(Vi, Gi, πi) | i ∈ I}

a representative of U indexed by I. Set V :=
∐
i∈I Vi and π :=

∐
i∈I πi : V → Q. Then

the map

α :

{
|Γ(V)| → Q

[x] 7→ π(x)

is a homeomorphism.

Let (Q,U) be an orbifold. To each (countable if (Q,U) is second-countable) orb-
ifold atlas V of Q we assign the marked atlas groupoid (Γ(V), αV , Q) with αV being the
homeomorphism from Lemma 3.1. We often only write Γ(V) to refer to this marked
groupoid.

Example 3.2. Recall from Example 2.6 the orbifolds (Q,Ui) for i = 1, 2, their
respective orbifold atlases Vi, and the associated groupoids Γ = Γ(Vi). The orbit of
x ∈ Γ0 is {x,−x}. Hence the homeomorphism associated to (Q,Ui) is αVi : |Γ| → Q

given by αV1([x]) = |x| resp. αV2([x]) = x2. Thus, the associated marked groupoids
(Γ, αV1 , Q) and (Γ, αV2 , Q) are different.

Proposition 3.3. Let (Q,U) and (Q′,U ′) be orbifolds. Suppose that V is a rep-
resentative of U , and V ′ a representative of U ′. If the associated marked atlas groupoids
(Γ(V), αV , Q) and (Γ(V ′), αV′ , Q′) are equal, then the orbifolds (Q,U) and (Q′,U ′) are
equal. More precisely, we even have V = V ′.

Proof. Clearly, Q = Q′. Suppose that

V = {(Vi, Gi, πi) | i ∈ I} and V ′ = {(V ′j , G′j , π′j) | j ∈ J},

indexed by I resp. by J . From Γ(V) = Γ(V ′) it follows that∐
i∈I

Vi = Γ(V)0 = Γ(V ′)0 =
∐
j∈J

V ′j .

Since each Vi and each V ′j is connected, there is a bijection between I and J . We may
assume I = J and Vi = V ′i for all i ∈ I. Let x ∈ Vi. Then πi(x) = αV([x]) = αV′([x]) =

π′i(x). Therefore πi = π′i for all i ∈ I. Thus Ψ(V) = Ψ(V ′). Moreover

Gi = {f ∈ Ψ(V) | dom f = Vi = cod f} = G′i.

To show that the actions Gi and G′i on Vi are equal, let g ∈ Gi. For each x ∈ Vi we have
π′i(g(x)) = π′i(x). This shows that g(x) ∈ G′ix for each x ∈ Vi. By [8, Lemma 2.11] there
exists a unique element g′ ∈ G′i such that g = g′. From this it follows that Gi = G′i as
acting groups. Thus, V = V ′. �

Lemma 3.4. Let (G,α,X) and (H,β, Y ) be marked Lie groupoids and suppose that
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ϕ = (ϕ0, ϕ1) : G → H is a homomorphism of Lie groupoids. Then ϕ induces a unique
map ψ such that the diagram

G0

prG //

ϕ0

��

|G| α // X

ψ

��
H0

prH // |H|
β // Y

commutes. Moreover, ψ is continuous.

Proof. The map ϕ induces a unique map |ϕ| : |G| → |H| such that |ϕ| ◦ prG =

prH ◦ϕ0, which is continuous. Then ψ = β ◦ |ϕ| ◦ α−1. �

4. Groupoid homomorphisms in local charts.

In this section we characterize homomorphisms between marked atlas groupoids on
the orbifold side, i. e., in terms of local charts. We proceed in a two-step process. First we
define a concept which we call representatives of orbifold maps. Each representative of an
orbifold map gives rise to exactly one homomorphism between the associated marked atlas
groupoids. Since, in general, each groupoid homomorphism corresponds to several such
representatives, we then impose an equivalence relation on the class of all representatives
for fixed orbifold atlases. The equivalence classes, called charted orbifold maps, turn out
to be in bijection with the homomorphisms between the marked atlas groupoids. The
constructions in this section are subject to a fixed choice of representatives of the orbifold
structures. In the following sections we will use this construction as a basic building block
for a notion of maps (or morphisms) between orbifolds which is independent of the chosen
representatives.

Throughout this section let (Q,U), (Q′,U ′) denote two orbifolds.

Definition 4.1. Let f : Q→ Q′ be a continuous map, and suppose that (V,G, π) ∈
U , (V ′, G′, π′) ∈ U ′ are orbifold charts. A local lift of f with respect to (V,G, π) and
(V ′, G′, π′) is a smooth map f̃ : V → V ′ such that π′ ◦ f̃ = f ◦ π. In this case, we call f̃
a local lift of f at q for each q ∈ π(V ).

Recall the pseudogroup A(M) from Definition 2.3.

Definition 4.2. Let M be a manifold and A a pseudogroup on M which satisfies
the gluing property from Definition 2.3 and is closed under restrictions. The latter means
that if f ∈ A and U ⊆ dom f is open, then the map f |U : U → f(U) is in A. Suppose
that B is a subset of A(M). Then A is said to be generated by B if B ⊆ A and for
each f ∈ A and each x ∈ dom f there exist some g ∈ B with x ∈ dom g and an open set
U ⊆ dom f ∩dom g such that x ∈ U and f |U = g|U . In this case we say that B generates
A.

Definition 4.3. Let M be a manifold. A subset P of A(M) is called a quasi-
pseudogroup on M if it satisfies the following two properties:
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(i) If f ∈ P and x ∈ dom f , then there exist an open set U with x ∈ U ⊆ dom f and
g ∈ P such that there exists an open set V with f(x) ∈ V ⊆ dom g and(

f |U
)−1

= g|V .

(ii) If f, g ∈ P and x ∈ f−1(cod f ∩ dom g), then there exists h ∈ P with x ∈ domh

such that we find an open set U with

x ∈ U ⊆ f−1(cod f ∩ dom g) ∩ domh and g ◦ f |U = h|U .

A quasi-pseudogroup is designed to work with the germs of its elements. Therefore
identities (like inversion and composition) of elements in quasi-pseudogroups are only
required to be satisfied locally, whereas for (ordinary) pseudogroups these identities have
to be valid globally. One easily proves that each quasi-pseudogroup generates a unique
pseudogroup which satisfies the gluing property from Definition 2.3 and is closed under
restrictions. Conversely, each generating set for such a pseudogroup is necessarily a
quasi-pseudogroup.

In the following definition of a representative of an orbifold map, the underlying
continuous map f is the only entity which is stable under change of orbifold atlases or, in
other words, under the choice of local lifts. The pair (P, ν) should be considered as one
entity. It serves as a transport of changes of charts from one orbifold to another. Here
we ask for a quasi-pseudogroup P instead of working with all of Ψ(V) (recall Ψ(V) from
Special Case 2.5) for two reasons. In general, P is much smaller than Ψ(V). Sometimes
it may even be finite. In Example 4.6 below we see that for some orbifolds, P may
consist of only two elements. Moreover, if the orbifold is a connected manifold, P can
always be chosen to be {id}. The other reason is that it is much easier to construct
a quasi-pseudogroup P and a compatible map ν from a given groupoid homomorphism
than a map ν defined on all of Ψ(V).

Examples 4.5 and 4.6 below show that the objects requested in the following defini-
tion need not exist nor, if they exist, are uniquely determined.

Definition 4.4. A representative of an orbifold map from (Q,U) to (Q′,U ′) is a
tuple

f̂ := (f, {f̃i}i∈I , P, ν)

where

(R1) f : Q→ Q′ is a continuous map,

(R2) for each i ∈ I, the map f̃i is a local lift of f with respect to some orbifold charts
(Vi, Gi, πi) ∈ U , (V ′i , G

′
i, π
′
i) ∈ U ′ such that⋃

i∈I
πi(Vi) = Q

and (Vi, Gi, πi) 6= (Vj , Gj , πj) for i, j ∈ I, i 6= j,
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(R3) P is a quasi-pseudogroup which consists of changes of charts of the orbifold atlas

V := {(Vi, Gi, πi) | i ∈ I}

of (Q,U) and generates Ψ(V).

(R4) Let ψ :=
∐
i∈I f̃i and let V ′ be a representative of U ′ which contains

{(V ′i , G′i, π′i) | i ∈ I}.

Then ν : P → Ψ(V ′) is a map which assigns to each λ ∈ P an embedding

ν(λ) : (W ′, H ′, χ′)→ (V ′, G′, ϕ′)

between some orbifold charts in V ′ such that

(a) ψ ◦ λ = ν(λ) ◦ ψ|domλ,

(b) for all λ, µ ∈ P and all x ∈ domλ ∩ domµ with germx λ = germx µ, we have

germψ(x) ν(λ) = germψ(x) ν(µ),

(c) for all λ, µ ∈ P , for all x ∈ λ−1(codλ ∩ domµ) we have

germψ(λ(x)) ν(µ) · germψ(x) ν(λ) = germψ(x) ν(h),

where h is an element of P with x ∈ domh such that there is an open set U
with

x ∈ U ⊆ λ−1(codλ ∩ domµ) ∩ domh

and µ ◦ λ|U = h|U ,
(d) for all λ ∈ P and all x ∈ domλ such that there exists an open set U with

x ∈ U ⊆ domλ and λ|U = idU we have

germψ(x) ν(λ) = germψ(x) idU ′

with U ′ :=
∐
i∈I V

′
i .

The orbifold atlas V is called the domain atlas of the representative f̂ , and the set

{(V ′i , G′i, π′i) | i ∈ I}

is called the range family of f̂ . The latter set is not necessarily indexed by I.

Condition (R4c) is in fact independent of the choice of h. The technical (and easily
satisfied) condition in (R2) that each two orbifold charts in V be distinct is required
because we use I as an index set for V in (R3) and other places.

Example 4.5 below shows that the continuous map f in (R1) cannot be chosen
arbitrarily. It is not even sufficient for f to be any homeomorphism.
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Example 4.5. Recall the orbifold (Q,U1) from Example 2.2. The map

f : Q→ Q, f(x) =
√
x,

is a homeomorphism on Q. We show that f has no local lift at 0. Each orbifold chart in
U1 that uniformizes a neighborhood of 0 is isomorphic to an orbifold chart of the form
(I, {± idI},pr) where I = (−a, a) for some 0 < a < 1. Seeking a contradiction assume
that f̃ is a local lift of f at 0 with domain I = (−a, a). For each x ∈ I, necessarily
f̃(x) ∈

{
±
√
|x|
}
. Since f̃ is required to be continuous, there remain four possible

candidates for f̃ , namely

f̃1(x) =
√
|x|, f̃2 = −f̃1,

f̃3(x) =

{√
x x ≥ 0

−
√
−x x ≤ 0,

f̃4 = −f̃3.

But none of these is differentiable in x = 0, hence there is no local lift of f at 0.

The following example shows that the pair (P, ν) is not uniquely determined by the
choice of the family of local lifts.

Example 4.6. Recall the orbifold (Q,U1) and the representative V1 = {V1} of U1
from Example 2.2. The map f : Q → Q, q 7→ 0, is clearly continuous and has the local
lift

f̃ :

{
(−1, 1)→ (−1, 1)

x 7→ 0

with respect to V1 and V1. Consider the quasi-pseudogroup P = {± id(−1,1)} on (−1, 1).
Proposition 2.12 in [8] implies that P generates Ψ(V1). The triple (f, f̃ , P ) can be
completed in the following two different ways to representatives of orbifold maps on
(Q,U1):

(a) ν1(± id(−1,1)) := id(−1,1),

(b) ν2(id(−1,1)) := id(−1,1), ν2(− id(−1,1)) := − id(−1,1).

We will see in Example 4.8 below that (f, f̃ , P, ν1) and (f, f̃ , P, ν2) give rise to different
groupoid homomorphisms.

Proposition 4.7. Let f̂ = (f, {f̃i}i∈I , P, ν) be a representative of an orbifold
map from (Q,U) to (Q′,U ′). Suppose that V = {(Vi, Gi, πi) | i ∈ I}, is the domain
atlas of f̂ , which is an orbifold atlas of (Q,U) indexed by I. Let V ′ be an orbifold
atlas of (Q′,U ′) which contains the range family

{
(V ′i , G

′
i, π
′
i)
∣∣ i ∈ I}. Define the map

ϕ0 : Γ(V)0 → Γ(V ′)0 by

ϕ0 :=
∐
i∈I

f̃i.

Suppose that ϕ1 : Γ(V)1 → Γ(V ′)1 is determined by
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ϕ1(germx λ) := germϕ0(x) ν(λ)

for all λ ∈ P , x ∈ domλ. Then

ϕ = (ϕ0, ϕ1) : Γ(V)→ Γ(V ′)

is a homomorphism. Moreover, αV′ ◦ |ϕ| = f ◦ αV .

Proof. Obviously, ϕ0 is smooth. To show that ϕ1 is a well-defined map on all of
Γ(V)1, let g ∈ Ψ(V) and x ∈ dom g. Then there exists λ ∈ P such that x ∈ domλ and

g|U = λ|U

for some open subset U ⊆ dom g ∩ domλ with x ∈ U . Hence germx g = germx λ. Thus

ϕ1(germx g) = ϕ1(germx λ) = germϕ0(x) ν(λ).

If there is µ ∈ P such that x ∈ domµ and g|W = µ|W for some open subset W of
dom g ∩ domµ with x ∈ W , then germx µ = germx λ. By (R4b), germϕ0(x) ν(µ) =

germϕ0(x) ν(λ) and thus

ϕ1(germx µ) = ϕ1(germx λ).

This shows that ϕ1 is indeed well-defined on all of Γ(V)1. The properties (R4a), (R4c)
and (R4d) yield that ϕ commutes with the structure maps. It remains to show that ϕ1

is smooth. For this, let germx λ ∈ Γ(V)1 with λ ∈ P . The definition of ν shows that ϕ1

maps

U := {germy λ | y ∈ domλ}

to

U ′ := {germz ν(λ) | z ∈ dom ν(λ)}.

Now the diagram

U

s

��

ϕ1 // U ′

s

��

germy λ
� //

_

��

germϕ0(y) ν(λ)
_

��
domλ

ϕ0 // dom ν(λ) y � // ϕ0(y)

commutes, the vertical maps (restriction of source maps) are diffeomorphisms and ϕ0 is
smooth, so ϕ1 is smooth. Finally, suppose x ∈ Vi. Then

(αV′ ◦ |ϕ|)
(
[x]
)

= αV′
(
[ϕ0(x)]

)
= π′i(f̃i(x)) = f(πi(x)) = (f ◦ αV)

(
[x]
)
.

This completes the proof. �
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Example 4.8 below shows that the choice of (P, ν) in Definition 4.4 is not unique,
and more elaborated examples would immediately show that not each pair (P, ν) auto-
matically satisfies the compatibility conditions in (R4a). However, for some important
types of maps between orbifolds (e.g. isomorphisms) the choice of (P, ν) is canonical and
the compatibility conditions are also automatic, which is the essence of Proposition 5.5
below.

Example 4.8. Recall the setting of Example 4.6 and the associated groupoid Γ :=

Γ(V1) from Example 2.6. The homomorphism ϕ = (ϕ0, ϕ1) of Γ induced by (f, f̃ , P, ν1)

is ϕ0 = f̃ and

ϕ1(germx(± id(−1,1))) = germ0 id(−1,1) .

The homomorphism ψ = (ψ0, ψ1) : Γ→ Γ induced by (f, f̃ , P, ν2) is ψ0 = f̃ and

ψ1(germx id(−1,1)) = germ0 id(−1,1),

ψ1(germx(− id(−1,1))) = germ0(− id(−1,1)).

The following proposition is the converse to Proposition 4.7. Its proof is constructive.
In Section 6 we will use this construction to define the functor between the category of
orbifolds and that of marked atlas groupoids.

Proposition 4.9. Let V be a representative of U , V ′ a representative of U ′, and

ϕ = (ϕ0, ϕ1) : Γ(V)→ Γ(V ′)

a homomorphism. Then ϕ induces a representative of an orbifold map

(f, {f̃i}i∈I , P, ν)

with domain atlas V, range family contained in V ′, and

f̃i = ϕ0|Vi

for all i ∈ I. Moreover, we have f = αV′ ◦ |ϕ| ◦ α−1V .

Proof. We start by showing that for each h ∈ Ψ(V) and each x ∈ domh there
exist an element g ∈ Ψ(V ′) and an open neighborhood U of x (which may depend on g)
with U ⊆ domh such that for each y ∈ U we have

ϕ1(germy h) = germϕ0(y) g. (1)

So, let h ∈ Ψ(V) and x ∈ domh. By the definitions of Γ(V)1 and ϕ1, there exists
g ∈ Ψ(V ′) such that

ϕ1(germx h) = germϕ0(x) g.

Since ϕ1 is continuous, the preimage of the germϕ0(x) g–neighborhood
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U ′g = {germz g | z ∈ dom g}

is a neighborhood of germx h. Hence there exists an open neighborhood U of x with
U ⊆ domh such that

Uh|U = {germy h | y ∈ U} ⊆ ϕ−11

(
U ′g
)
.

Thus, for all y ∈ U we have (1) as claimed. We remark that each two possible choices
for g coincide on some neighborhood of ϕ0(x).

For each h ∈ Ψ(V) and each x ∈ domh we now choose a pair (g, U) where g ∈ Ψ(V ′)
is an embedding between some orbifold charts in U ′ and U is an open neighborhood of
x such that h|U is a change of charts of V. Let P (h, x) := (g, U). We adjust choices
such that for h1, h2 ∈ Ψ(V) and x1 ∈ domh1, x2 ∈ domh2 the chosen pairs P (h1, x1) =

(g1, U1) resp. P (h2, x2) = (g2, U2) are either equal or U1 6= U2. Let P denote the family
of the changes of charts we have chosen in this way:

P = {h|U : U → h(U) | h ∈ Ψ(V), x ∈ domh, P (h, x) = (g, U)}.

By construction, P is a quasi-pseudogroup which generates Ψ(V). We define the map
ν : P → Ψ(V ′) by

ν(λ) := g

where g is the unique element in Ψ(V ′) attached to λ ∈ P by our choices. For λ ∈ P and
x ∈ domλ we clearly have

ϕ1(germx λ) = germϕ0(x) ν(λ). (2)

Properties (R4) are easily checked using the compatibility of ϕ with the structure maps.
It remains to show that the image of ϕ0|Vi is contained in V ′j for some orbifold chart

(V ′j , G
′
j , π
′
j) ∈ V ′. Since Vi is connected, the image ϕ0(Vi) is connected as well. The

connected components of Γ(V ′)0 are exactly the sets W ′ with (W ′, G′, ϕ′) ∈ V. From
this the claim follows. �

Proposition 4.9 guarantees that each homomorphism

ϕ = (ϕ0, ϕ1) : Γ(V)→ Γ(V ′)

induces a representative of an orbifold map (f, {f̃i}i∈I , P, ν) with domain atlas V, range
family contained in V ′, f̃i = ϕ0|Vi , and f = αV′ ◦ |ϕ| ◦ α−1V . For the pair (P, ν), Propo-
sition 4.9 allows (in general) a whole bunch of choices. On the other hand, different
representatives of an orbifold map may induce the same groupoid homomorphism. In
view of Proposition 4.7 and the proof of Proposition 4.9, the relevant information stored
by the pair (P, ν) are the germs of the elements in P and the via ν associated germs of
elements in Ψ(V ′). This observation is the motivation for the equivalence relation in the
following definition.

Definition 4.10. Let
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f̂ := (f, {f̃i}i∈I , P1, ν1) and ĝ := (g, {g̃i}i∈I , P2, ν2)

be two representatives of orbifold maps with the same domain atlas V representing the
orbifold structure U on Q and both range families being contained in the orbifold atlas
V ′ of (Q′,U ′). Set ψ :=

∐
i∈I f̃i. We say that f̂ is equivalent to ĝ if f = g, f̃i = g̃i for all

i ∈ I, and

germψ(x) ν1(λ1) = germψ(x) ν2(λ2)

for all λ1 ∈ P1, λ2 ∈ P2, x ∈ domλ1 ∩ domλ2 with germx λ1 = germx λ2. This defines
an equivalence relation. The equivalence class of f̂ will be denoted by [f̂ ] or

(f, {f̃i}i∈I , [P1, ν1]),

or even f̂ if it is clear that we refer to the equivalence class. It is called an orbifold
map with domain atlas V and range atlas V ′, in short orbifold map with (V,V ′) or, if the
specific orbifold atlases are not important, a charted orbifold map. The set of all orbifold
maps with (V,V ′) is denoted Orb(V,V ′). For convenience we often denote an element
ĥ ∈ Orb(V,V ′) by

V ĥ−→ V ′.

Remark 4.11. Instead of using the pair [P, ν] in the definition of charted orbifold
maps one could also define a variant where [P, ν] is replaced by a mapping

θ : Germ(Ψ(V))→ Germ(Ψ(V ′)),

which maps germs of transitions to germs such that the equivalence conditions in (R4a)
are satisfied by θ. This would stress the actual “germ nature” of [P, ν] and might simplify
the compositions of charted orbifold maps as defined in Construction 5.9 below and
support the intuition for its definition. Anyhow, for the reasonings in this manuscript
(and other concrete situations) it is more convenient to work with the actual transitions
and to have the possibility to choose “small” quasi-pseudogroups P , for which reason we
decided to use the variant with the pair [P, ν].

Propositions 4.7 and 4.9 yield the following statement of which we omit the proof.

Proposition 4.12. Let V be a representative of U , and V ′ a representative of U ′.
Then the set Orb(V,V ′) of all orbifold maps with (V,V ′) and the set Hom(Γ(V),Γ(V ′)) of
all homomorphisms from Γ(V) to Γ(V ′) are in bijection. More precisely, the construction
in Proposition 4.7 induces a bijection

F1 : Orb(V,V ′)→ Hom(Γ(V),Γ(V ′)),

and the construction in Proposition 4.9 defines a bijection

F2 : Hom(Γ(V),Γ(V ′))→ Orb(V,V ′),
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which is inverse to F1.

5. The category of reduced orbifolds.

To define an orbifold category where the objects are orbifolds and the morphisms are
equivalence classes of charted orbifold maps we have to answer the following questions:

(i) When shall two charted orbifold maps be considered as equal? In other words, what
shall be the equivalence relation?

(ii) What shall be the identity morphism of an orbifold?

(iii) How does one compose ϕ ∈ Orb(V,V ′) and ψ ∈ Orb(V ′,V ′′)?

(iv) What is the composition in the category?

The leading idea is that charted orbifold maps are equivalent if and only if they
induce the same charted orbifold map on common refinements of the orbifold atlases.
Therefore, we will introduce the notion of an induced charted orbifold map.

It turns out that answers to the questions (ii) and (iii) naturally extend to answers
of (i) and (iv), and that the arising category has a counterpart in terms of marked atlas
groupoids and homomorphisms. We start with the definition of the identity morphism of
an orbifold. This definition is based on the idea that the identity morphism of (Q,U) shall
be represented by a collection of local lifts of idQ which locally induce idS on some orbifold
charts, and that each such collection which satisfies (R2) shall be a representative.

5.1. The identity morphism.
Definition and Remark 5.1. Let (Q,U) and (Q′,U ′) be orbifolds and let f : Q→

Q′ be a continuous map. Suppose that f̃ is a local lift of f with respect to the orbifold
charts (V,G, π) ∈ U and (V ′, G′, π′) ∈ U ′. Further suppose that

λ : (W,K,χ)→ (V,G, π) and µ : (W ′,K ′, χ′)→ (V ′, G′, π′)

are embeddings between orbifold charts in U resp. in U ′ such that

f̃(λ(W )) ⊆ µ(W ′).

Then the map

g̃ := µ−1 ◦ f̃ ◦ λ : W →W ′

is a local lift of f with respect to (W,K,χ) and (W ′,K ′, χ′). We say that f̃ induces the
local lift g̃ with respect to λ and µ, and we call g̃ the induced lift of f with respect to f̃ ,
λ and µ.
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Suppose that f̃ is a local lift of the identity idQ for some orbifold (Q,U). Propo-
sition 5.3 below shows that f̃ induces the identity on sufficiently small orbifold charts.
This means that locally f̃ is related to the identity itself via embeddings. In particular,
f̃ is a local diffeomorphism. For its proof we need the following lemma, which is easily
shown and crucially depends on the finiteness of G and the Hausdorff property ofM . We
refer to [13, Lemma B.3] for the details of the construction of the G-stable neighborhood
S.

Lemma 5.2. Let M be a manifold, G a finite subgroup of Diff(M), and x ∈ M .
There exist arbitrary small open G-stable neighborhoods S of x. Moreover, one can choose
S so small that GS = Gx, the isotropy group of x.

Proposition 5.3. Let (Q,U) be an orbifold and suppose that f̃ is a local lift of
idQ with respect to (V,G, π), (V ′, G′, π′) ∈ U . For each v ∈ V there exist a restriction
(S,GS , π|S) of (V,G, π) with v ∈ S and a restriction (S′, (G′)S′ , π

′|S′) of (V ′, G′, π′) such
that f̃ |S is an isomorphism from (S,GS , π|S) to the orbifold chart (S′, (G′)S′ , π

′|S′). In

particular, f̃ |S induces the identity idS with respect to idS and
(
f̃ |S
)−1

.

Proof. Let v ∈ V and set v′ := f̃(v). Then π(v) = π′(v′). By compatibility of
orbifold charts there exist a restriction (W,H,χ) of (V,G, π) with v ∈ W and an open
embedding λ : (W,H,χ) → (V ′, G′, π′) such that λ(v) = v′. Lemma 5.2 yields an open
H-stable neighborhood S of v with S ⊆ f̃−1(λ(W )) ∩W . Let

g̃ := λ−1 ◦ f̃ |S : S →W

denote the induced lift of idQ. Since χ ◦ g̃ = χ, [8, Lemma 2.11] shows the existence of a
unique h ∈ H such that g̃ = h|S . Thus f̃ |S = λ ◦ h|S : S → λ(h(S)) is a diffeomorphism.
In turn

f̃ |S : (S,HS , χ|S)→ (f̃(S), G′
f̃(S)

, π′|f̃(S))

is an isomorphism of orbifold charts. �

Not each local lift of the identity is a global diffeomorphism, as the following example
shows.

Example 5.4. Let Q be the open annulus in R2 with inner radius 1 and outer
radius 2 centered at the origin, i. e.,
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Q = {w ∈ C | 1 < |w| < 2}.

The map α : Q→ C× R,

α(w) :=

(
w2

|w|2
, |w| − 1

)
maps Q onto the cylinder Z := S1 × (0, 1). Note that α(Q) covers Z twice. Then the
map β : Z → C,

β(z, s) :=
2

2− s
z

is the linear projection of Z from the point (0, 2) ∈ C × R to the complex plane. The
composed map f̃ = β ◦ α : Q→ C,

f̃(w) :=
2w2

(3− |w|)|w|2

is smooth (where we consider C = R2 as a 2-dimensional real manifold) and maps Q onto
Q. Further it induces a homeomorphism between Q/{± id} and Q. Hence, if we endow
Q with the orbifold atlas {(

Q, {± id}, f̃
)
,
(
Q, {id}, id

)}
,

then f̃ is a local lift of idQ with respect to (Q, {± id}, f̃) and (Q, {id}, id) but not a global
diffeomorphism.

Proposition 5.5. Let (Q,U) be an orbifold and {f̃i}i∈I a family of local lifts of
idQ which satisfies (R2). Then there exists a pair (P, ν) such that (idQ, {f̃i}i∈I , P, ν) is a
representative of an orbifold map on (Q,U). The pair (P, ν) is unique up to equivalence
of representatives of orbifold maps.

Proof. This follows immediately from Proposition 5.3 in combination with (R4a).
�

Proposition 5.6. Let Q be a topological space and suppose that U and U ′ are
orbifold structures on Q. Let

f̂ =
(
f, {f̃i}i∈I , [P, ν]

)
be a charted orbifold map for which f = idQ, the domain atlas V is a representative of
U , the range family V ′, which here is an orbifold atlas, is a representative of U ′, and for
each i ∈ I, the map f̃i is a local diffeomorphism. Then U = U ′.

Proof. Let (Vi, Gi, πi) ∈ V, (V ′j , G
′
j , π
′
j) ∈ V ′ and x ∈ Vi, y ∈ V ′j such that

πi(x) = π′j(y). Since f̃i : Vi → V ′i is a local diffeomorphism, there are open neighborhoods
U of x in Vi and U ′ of f̃i(x) in V ′i such that f̃i|U : U → U ′ is a diffeomorphism. We have
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π′i
(
f̃i(x)

)
= πi(x) = π′j(y).

Therefore there exist open neighborhoods W ′1 of f̃i(x) in U ′ and W ′2 of y in V ′j and a
diffeomorphism h : W ′1 → W ′2 satisfying π′j ◦ h = π′i. Shrinking U shows that (Vi, Gi, πi)

and (V ′j , G
′
j , π
′
j) are compatible. Thus U = U ′. �

The following example shows that the requirement in Proposition 5.6 that the local
lifts are local diffeomorphisms is essential.

Example 5.7. Recall the orbifolds (Q,Ui), i = 1, 2, from Example 2.2, the repre-
sentatives V1 := {V1} and V2 := {V2} of U1 resp. U2, and set g(x) := x2 for x ∈ (−1, 1).
Then g is a lift of idQ with respect to V2 and V1. Further let

P := {± id(−1,1)} and ν(± id(−1,1)) := id(−1,1) .

Then (idQ, {g}, [P, ν]) is an orbifold map with (V2,V1) from (Q,U2) to (Q,U1), but U1 6=
U2.

Motivated by Propositions 5.5 and 5.6 we make the following definition.

Definition 5.8. Let (Q,U) be an orbifold and let f̂ = (f, {f̃i}i∈I , [P, ν]) be a
charted orbifold map whose domain atlas is a representative of U . If and only if f = idQ
and f̃i is a local diffeomorphism for each i ∈ I, we call f̂ a lift of the identity id(Q,U) or
a representative of id(Q,U). The set of all lifts of id(Q,U) is the identity morphism id(Q,U)
of (Q,U).

5.2. Composition of charted orbifold maps.
Construction 5.9. Let (Q,U), (Q′,U ′) and (Q′′,U ′′) be orbifolds, and

V := {(Vi, Gi, πi) | i ∈ I}, V ′ := {(V ′j , G′j , π′j) | j ∈ J}

resp. V ′′ be representatives for U , U ′ resp. U ′′, where V resp. V ′ are indexed by I resp.
J . Suppose that

f̂ = (f, {f̃i}i∈I , [Pf , νf ]) ∈ Orb(V,V ′)

and

ĝ = (g, {g̃j}j∈J , [Pg, νg]) ∈ Orb(V ′,V ′′)

are charted orbifold maps and that α : I → J is the unique map such that for each i ∈ I,
f̃i is a local lift of f with respect to (Vi, Gi, πi) and (V ′α(i), G

′
α(i), π

′
α(i)). The composition

ĝ ◦ f̂ := ĥ = (h, {h̃i}i∈I , [Ph, νh]) ∈ Orb(V,V ′′)

is given by h := g ◦ f and h̃i := g̃α(i) ◦ f̃i for all i ∈ I. To construct a representative
(Ph, νh) of [Ph, νh] we fix representatives (Pf , νf ) and (Pg, νg) of [Pf , νf ] and [Pg, νg],
respectively. The leading idea to define (Ph, νh) is to take Ph = Pf and νh = νg ◦ νf .
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But since νf (λ) is not necessarily in Pg for λ ∈ Pf , the composition νg ◦ νf might be
ill-defined. In the following we refine this idea.

Let µ ∈ Pf and suppose that domµ ⊆ Vi and codµ ⊆ Vj for the orbifold charts
(Vi, Gi, πi) and (Vj , Gj , πj) in V. By (R4a)

f̃j ◦ µ = νf (µ) ◦ f̃i|domµ,

where νf (µ) ∈ Ψ(U ′). By possibly shrinking domains, we may assume that νf (µ) ∈
Ψ(V ′). For x ∈ domµ we set yx := f̃i(x), which is an element of dom νf (µ). Hence we
find (and fix a choice) ξµ,x ∈ Pg with yx ∈ dom ξµ,x and an open set U ′µ,x ⊆ dom ξµ,x ∩
dom νf (µ) such that yx ∈ U ′µ,x and

ξµ,x|U ′µ,x = νf (µ)|U ′µ,x .

Then we find (and fix) an open set Uµ,x ⊆ domµ with x ∈ Uµ,x such that f̃i(Uµ,x) ⊆ U ′µ,x.
By adjusting choices we achieve that for µ1, µ2 ∈ Pf and x1 ∈ domµ1, x2 ∈ domµ2 we
either have

µ1|Uµ1,x1 6= µ2|Uµ2,x2 or ξµ1,x1 = ξµ2,x2 . (3)

Define

Ph :=
{
µ|Uµ,x

∣∣ µ ∈ Pf , x ∈ domµ
}
,

which obviously is a quasi-pseudogroup generating Ψ(V), and set

νh
(
µ|Uµ,x

)
:= νg(ξµ,x)

for µ|Uµ,x ∈ Ph. Property (3) yields that νh is a well-defined map from Ph to Ψ(U ′′).
One easily sees that νh satisfies (R4a)–(R4d), and that the equivalence class of (Ph, νh)

does not depend on the choices we made for the construction of Ph and νh.

Remark 5.10. The construction of the composition of two charted orbifold maps
immediately implies that the maps F1 and F2 (see Proposition 4.12) are both functorial.

The following lemma provides the definition of induced charted orbifold map and
shows its relation to lifts of the identity.

Lemma and Definition 5.11. Let (Q,U) and (Q′,U ′) be orbifolds. Further let

V = {(Vi, Gi, πi) | i ∈ I} be a representative of U , indexed by I,

V ′ = {(V ′l , G′l, π′l) | l ∈ L} be a representative of U ′, indexed by L,

f̂ =
(
f, {f̃i}i∈I , [Pf , νf ]

)
∈ Orb(V,V ′),

and let β : I → L be the unique map such that for each i ∈ I, f̃i is a local lift of f with
respect to (Vi, Gi, πi) and (V ′β(i), G

′
β(i), π

′
β(i)). Suppose that we have

• a representative W = {(Wj , Hj , ψj) | j ∈ J} of U , indexed by J ,
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• a subset {(W ′j , H ′j , ψ′j) | j ∈ J} of U ′, indexed by J (not necessarily an orbifold
atlas),

• a map α : J → I,

• for each j ∈ J , an embedding

λj :
(
Wj , Hj , ψj

)
→
(
Vα(j), Gα(j), πα(j)

)
,

and an embedding

µj :
(
W ′j , H

′
j , ψ
′
j

)
→
(
V ′β(α(j)), G

′
β(α(j)), π

′
β(α(j))

)
such that

f̃α(j)
(
λj(Wj)

)
⊆ µj(W ′j).

For each j ∈ J set

h̃j := µ−1j ◦ f̃α(j) ◦ λj : Wj →W ′j .

Then

(i) ε :=
(

idQ, {λj}j∈J , [Pε, νε]
)
∈ Orb(W,V) (with [Pε, νε] provided by Proposition 5.5)

is a lift of id(Q,U).

(ii) The set {(W ′j , H ′j , ψ′j) | j ∈ J} and the family {µj}j∈J can be extended to a repre-
sentative

W ′ =
{

(W ′k, H
′
k, ψ

′
k)
∣∣ k ∈ K}

of U ′ and a family of embeddings {µk}k∈K such that

ε′ :=
(

idQ′ , {µk}k∈K , [Pε′ , νε′ ]
)
∈ Orb(W ′,V ′)

(with [Pε′ , νε′ ] provided by Proposition 5.5) is a lift of the identity id(Q′,U ′).

(iii) There is a uniquely determined equivalence class [Ph, νh] such that

ĥ := (f, {h̃j}j∈J , [Ph, νh]) ∈ Orb(W,W ′)

and such that the diagram

V
f̂ // V ′

W

ε

>>

ĥ // W ′

ε′
aa

commutes.

We say that ĥ is induced by f̂ .
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Proof. (i) is clear by Propositions 5.3 and 5.5. To show that (ii) holds we con-
struct one possible extension: Let

y ∈ Q′ \
⋃
j∈J

ψ′j(W
′
j).

Then there is a chart (V ′, G′, π′) ∈ V ′ such that y ∈ π′(V ′). Extend the set

{(W ′j , H ′j , ψ′j) | j ∈ J}

with (V ′, G′, π′) and the family {µj}j∈J with idV ′ . If this is done iteratively, one finally
gets an orbifold atlas of Q′ as wanted. Then Propositions 5.3 and 5.5 yield the remaining
claim of (ii). The following considerations are independent of the specific choices of
extensions. Concerning (iii) we remark that each h̃j is obviously a local lift of f . Fix
a representative (Pf , νf ) of [Pf , νf ]. In the following we construct a pair (Ph, νh) for
which ĥ is an orbifold map and the diagram in (iii) commutes. It will be clear from the
construction that the equivalence class [Ph, νh] is independent of the choice of (Pf , νf )

and uniquely determined by the requirement of the commutativity of the diagram. Let
γ ∈ Ψ(W) and x ∈ dom γ. Possibly shrinking the domain of γ, we may assume that
dom γ ⊆ Wj and cod γ ⊆ Wk for some j, k ∈ J . In the following we further shrink the
domain of γ to be able to define νh as a composition of νf with elements of {µj}j∈J . Let
y := λj(x). Since

γ̃ := λk ◦ γ ◦ (λj |dom γ)
−1

: λj(dom γ)→ λk(cod γ)

is an element of Ψ(V), we find βγ ∈ Pf such that y ∈ domβγ and germy βγ = germy γ̃.
Then

z := f̃α(j)(y) ∈ dom νf (βγ) ∩ µj(W ′j).

Since

νf (βγ)(z) = f̃α(k)(βγ(y)) ∈ µk(W ′k),

the set

U ′ := dom νf (βγ) ∩ µj(W ′j) ∩ νf (βγ)−1(µk(W ′k))

is an open neighborhood of z. Define

U1 := {w ∈ domβγ ∩ λj(dom γ) | germw βγ = germw γ̃},

which is an open neighborhood of y. Then also

U := U1 ∩ f̃−1α(j)(U
′)

is an open neighborhood of y. We fix an open neighborhood Uγ,x of x in λ−1j (U). Further
we suppose that for γ1, γ2 ∈ Ψ(W), x1 ∈ dom γ1, x2 ∈ dom γ2, we either have
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γ1|Uγ1,x1 6= γ2|Uγ2,x2 or νf (βγ1) = νf (βγ2). (4)

Then we define

Ph :=
{
γ|Uγ,x

∣∣ γ ∈ Ψ(W), x ∈ dom γ
}

and set

νh
(
γ|Uγ,x

)
:= µ−1k ◦ νf (βγ) ◦ µj

for γ|Uγ,x ∈ Ph with x ∈ Wj and γ(x) ∈ Wk (j, k ∈ J). The map νh : Ph → Ψ(W ′) is
well-defined by (4). One easily checks that (Ph, νh) satisfies all requirements of (iii). �

We consider two charted orbifold maps as equivalent if they induce the same charted
orbifold map on common refinements of the orbifold atlases. The following definition
provides a precise specification of this idea.

Definition 5.12. Let (Q,U) and (Q′,U ′) be orbifolds. Further let V1,V2 be rep-
resentatives of U , and V ′1,V ′2 be representatives of U ′. Suppose that f̂1 ∈ Orb(V1,V ′1)

and f̂2 ∈ Orb(V2,V ′2). We call f̂1 and f̂2 equivalent (f̂1 ∼ f̂2) if there are a representative
W of U , a representative W ′ of U ′, ε1 ∈ Orb(W,V1), ε2 ∈ Orb(W,V2) lifts of id(Q,U),
ε′1 ∈ Orb(W ′,V ′1), ε′2 ∈ Orb(W ′,V ′2) lifts of id(Q′,U ′), and a map ĥ ∈ Orb(W,W ′) such
that the diagram

V1
f̂1 // V ′1

W

ε1

>>

ĥ //

ε2   

W ′

ε′1
``

ε′2~~
V2

f̂2

// V ′2

commutes.

Proposition 5.15 below shows that ∼ is indeed an equivalence relation. For its proof
we need the following two lemmas. The first lemma discusses how local lifts which belong
to the same charted orbifold map are related to each other. The second lemma shows
that two charted orbifold maps which are induced from the same charted orbifold map
induce the same charted orbifold map on common refinements of orbifold atlases. This
means that ∼ satisfies the so-called diamond property.

Lemma 5.13. Let (Q,U) and (Q′,U ′) be orbifolds and let

f̂ := (f, {f̃i}i∈I , [P, ν]) ∈ Orb(V,V ′)

be a charted orbifold map where V is a representative of U and V ′ one of U ′. Suppose that
we have orbifold charts (Va, Ga, πa), (Vb, Gb, πb) ∈ V and points xa ∈ Va, xb ∈ Vb such
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that πa(xa) = πb(xb). Then there are arbitrarily small orbifold charts (W,K,χ) ∈ U ,
(W ′,K ′, χ′) ∈ U ′ and embeddings

λ : (W,K,χ)→ (Va, Ga, πa)

λ′ : (W ′,K ′, χ′)→ (V ′a, G
′
a, π
′
a)

µ : (W,K,χ)→ (Vb, Gb, πb)

µ′ : (W ′,K ′, χ′)→ (V ′b , G
′
b, π
′
b)

with xa ∈ λ(W ) and xb ∈ µ(W ) such that the induced lift g̃ of f with respect to f̃a, λ, λ′

coincides with the one induced by f̃b, µ, µ′. In other words, the diagram

Va
f̃a // V ′a

W

λ

>>

g̃ //

µ
  

W ′

λ′
``

µ′~~
Vb

f̃b // V ′b

commutes.

Proof. By compatibility of orbifold charts we find an arbitrarily small restriction
(W,K,χ) of (Va, Ga, πa) with xa ∈W and an embedding

µ : (W,K,χ)→ (Vb, Gb, πb)

such that µ(xa) = xb. Then µ : W → µ(W ) is an element of Ψ(V). Fix a representative
(P, ν) of [P, ν]. Hence there is γ ∈ P with xa ∈ dom γ and an open neighborhood U of
xa such that U ⊆ dom γ ∩W and

µ|U = γ|U .

With loss of generality, γ = µ. Property (R4a) yields that

ν(µ) ◦ f̃a|W = f̃b ◦ µ.

By shrinking the domain of ν(µ), we can achieve that cod ν(µ) ⊆ V ′b and still f̃a(W ) ⊆
dom ν(µ) =: W ′. With µ′ := ν(µ) it follows

f̃b(µ(W )) = µ′(f̃a(W )) ⊆ µ′(W ′)

and further

f̃a|W = (µ′)−1 ◦ f̃b ◦ µ.

This proves the claim. �
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Lemma 5.14. Let (Q,U) and (Q′,U ′) be orbifolds, V a representative of U , and
V ′ one of U ′. Further let f̂ ∈ Orb(V,V ′). Suppose that ĥ ∈ Orb(W1,W ′1) and ĝ ∈
Orb(W2,W ′2) are both induced by f̂ . Then we find a representative W of U and charted
orbifold maps ε1 ∈ Orb(W,W1), ε2 ∈ Orb(W,W2) which are lifts of id(Q,U), and a
representative W ′ of U ′ and charted orbifold maps ε′1 ∈ Orb(W ′,W ′1), ε′2 ∈ Orb(W ′,W ′2)

which are lifts of id(Q′,U ′), and a charted orbifold map k̂ ∈ Orb(W,W ′) such that the
diagram

W1
ĥ // W ′1

W

ε1

>>

k̂ //

ε2   

W ′

ε′1
aa

ε′2}}
W2

ĝ // W ′2

commutes. If the orbifolds are second-countable, we can choose W,W ′ to be countable.

Proof. Suppose that f̂ = (f, {f̃a}a∈A, [Pf , νf ]), ĥ = (f, {h̃i}i∈I , [Ph, νh]) and
ĝ = (f, {g̃j}j∈J , [Pg, νg]). Let

W1 := {(W1,i, H1,i, ψ1,i) | i ∈ I}, indexed by I,

W ′1 := {(W ′1,k, H ′1,k, ψ′1,k) | k ∈ K}, indexed by K,

W2 := {(W2,j , H2,j , ψ2,j) | j ∈ J}, indexed by J ,

W ′2 := {(W ′2,l, H ′2,l, ψ′2,l) | l ∈ L}, indexed by L,

and let α1 : I → K resp. α2 : J → L be the map such that for each i ∈ I, h̃i is a local lift
of f with respect to (W1,i, H1,i, ψ1,i) and (W ′1,α1(i)

, H ′1,α1(i)
, ψ′1,α1(i)

) resp. for each j ∈ J ,
g̃j is a local lift of f with respect to (W2,j , H2,j , ψ2,j) and (W ′2,α2(j)

, H ′2,α2(j)
, ψ′2,α2(j)

).
Further let

δ1 = (idQ, {λ1,i}i∈I , [R1, σ1]) ∈ Orb(W1,V),

δ2 = (idQ, {λ2,j}j∈J , [R2, σ2]) ∈ Orb(W2,V)

be lifts of id(Q,U) and

δ′1 = (idQ′ , {µ1,k}k∈K , [R′1, σ′1]) ∈ Orb(W ′1,V ′),
δ′2 = (idQ′ , {µ2,l}l∈L, [R′2, σ′2]) ∈ Orb(W ′2,V ′)

be lifts of id(Q′,U ′) such that f̂ ◦ δ1 = δ′1 ◦ ĥ and f̂ ◦ δ2 = ĝ ◦ δ′2. With loss of generality
we assume that all λ1,i, µ1,k, λ2,j and µ2,l are embeddings. We will use Lemma 5.11
to show the existence of k̂. More precisely, we attach to each q ∈ Q an orbifold chart
(Wq, Hq, ψq) ∈ U with q ∈ ψq(Wq) and an orbifold chart (W ′q, H

′
q, ψ
′
q) ∈ U ′ with f(q) ∈

ψ′q(W
′
q). We consider orbifold charts defined for distinct q to be distinct. In this way, we
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get a representative

W := {(Wq, Hq, ψq) | q ∈ Q} (5)

of U which is indexed by Q, and a subset {(W ′q, H ′q, ψ′q) | q ∈ Q} of U ′, indexed by Q as
well. Moreover, we will find maps β1 : Q→ I and β2 : Q→ J and embeddings

ξ1,q :
(
Wq, Hq, ψq

)
→
(
W1,β1(q), H1,β1(q), ψ1,β1(q)

)
ξ2,q :

(
Wq, Hq, ψq

)
→
(
W2,β2(q), H2,β2(q), ψ2,β2(q)

)
χ1,q :

(
W ′q, H

′
q, ψ
′
q

)
→
(
W ′1,α1(β1(q))

, H ′1,α1(β1(q))
, ψ′1,α1(β1(q))

)
χ2,q :

(
W ′q, H

′
q, ψ
′
q

)
→
(
W ′2,α2(β2(q))

, H ′2,α2(β2(q))
, ψ′2,α2(β2(q))

)
such that for each q ∈ Q the local lift k̃q of f induced by h̃β1(q), ξ1,q and χ1,q coincides
with the one induced by g̃β2(q), ξ2,q and χ2,q. Then Lemma 5.11 shows that ĥ resp. ĝ
induces a charted orbifold map (f, {k̃q}q∈Q, [P1, ν1]) resp. (f, {k̃q}q∈Q, [P2, ν2]). It then
remains to show that we can choose all the embeddings ξ1,q, ξ2,q, χ1,q, χ2,q in a way that
[P1, ν1] equals [P2, ν2].

Let q ∈ Q. We fix i ∈ I such that q ∈ ψ1,i(W1,i) and we pick w1 ∈ W1,i with q =

ψ1,i(w1). We set β1(q) := i. Further we fix j ∈ J such that q ∈ ψ2,j(W2,j), and pick an
element w2 ∈W2,j with q = ψ2,j(w2). We set β2(q) := j. By Lemma 5.13 we find orbifold
charts (Wq, Hq, ψq) ∈ U with q ∈ ψq(Wq), say q = ψq(wq), and (W ′q, H

′
q, ψ
′
q) ∈ U ′ with

f(q) ∈ ψ′q(W ′q) and embeddings ξ1,q, ξ2,q, χ1,q, χ2,q with w1 = ξ1,q(wq), w2 = ξ2,q(wq),
and a local lift k̃q of f such that the diagram

λ1,β1(q)

(
W1,β1(q)

) f̃β1(q)// µ1,α1(β1(q))

(
W ′1,α1(β1(q))

)

W1,β1(q)

λ1,β1(q)

OO

h̃β1(q) // W ′1,α1(β1(q))

µ1,α1(β1(q))

OO

Wq

ξ1,q
88

ξ2,q &&

k̃q // W ′q

χ1,q

hh

χ2,q
vv

W2,β2(q)

g̃β2(q) //

λ2,β2(q)

��

W ′2,α2(β2(q))

µ2,α2(β2(q))

��
λ2,β2(q)

(
W2,β2(q)

) f̃β2(q)// µ2,α2(β2(q))

(
W ′2,α2(β2(q))

)
commutes. We may assume that ξ1,q = id and χ1,q = id. Now

η := λ2,β2(q) ◦ ξ2,q ◦ λ
−1
1,β1(q)

: λ1,β1(q)(Wq)→ λ2,β2(q)

(
ξ2,q(Wq)

)
is an element of Ψ(V) with y := λ1,β1(q)(ξ1,q(wq)) in its domain. We pick a representative
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(Pf , νf ) of [Pf , νf ]. Then there is an element γ ∈ Pf with y ∈ dom γ and an open
neighborhood U of y such that U ⊆ dom γ ∩ dom η and η|U = γ|U . By (R4a),

νf (γ) ◦ f̃β1(q)|U = f̃β2(q) ◦ γ|U = f̃β2(q) ◦ η|U .

The map

µ := µ2,α2(β2(q)) ◦ χ2,q ◦ µ−11,α1(β1(q))
: µ1,α1(β1(q))(W

′
q)→ µ2,α2(β2(q))

(
χ2,q(W

′
q)
)

is a diffeomorphism as well. Further there exists an open neighborhood V of y such that

f̃β2(q) ◦ η|V = µ ◦ f̃β1(q)|V .

Hence

νf (γ) ◦ f̃β1(q) = µ ◦ f̃β1(q)

on some neighborhood of y. Therefore, after possibly shrinking Wq, we can redefine W ′q,
χ2,q and k̃q such that

χ2,q = µ−12,α2(β2(q))
◦ νf (γ) ◦ µ1,α1(β1(q))|W ′q . (6)

We remark that this redefinition might be quite serious if f̃β1(q) and hence h̃β1(q), g̃β2(q)

and f̃β2(q) are highly non-injective. But since these maps all behave in the same way,
we may perform the changes without running into problems. Let W be defined by (5).
Lemma 5.11, more precisely its proof, shows that ĥ resp. ĝ induces the orbifold maps

k̂1 = (f, {k̃q}q∈Q, [P1, ν1]) resp. k̂2 = (f, {k̃q}q∈Q, [P2, ν2])

with (W,W ′), where W ′ is a representative of U ′ which contains the set

{(W ′q, H ′q, ψ′q) | q ∈ Q}

(the proof of Lemma 5.11 shows that we can indeed have the same W ′ for k̂1 and k̂2).
It remains to show that [P1, ν1] = [P2, ν2]. Recall from Lemma 5.11 that [P1, ν1]

is uniquely determined by ĥ, {ξ1,q}q∈Q and {χ1,q}q∈Q, and analogously for [P2, ν2]. Al-
ternatively, we may consider k̂1 and k̂2 to be induced by f̂ . Thus, [P1, ν1] is uniquely
determined by f̂ , {λ1,β1(q) ◦ ξ1,q}q∈Q and {µ1,α1(β1(q)) ◦χ1,q}q∈Q, and [P2, ν2] is uniquely
determined by f̂ , {λ2,β2(q) ◦ ξ2,q}q∈Q and {µ2,α2(β2(q)) ◦χ2,q}q∈Q. We fix a representative
(Pf , νf ) of [Pf , νf ]. Let γ be a change of charts in Ψ(W) and x ∈ dom γ. Suppose
dom γ ⊆Wp and cod γ ⊆Wq. Using the same arguments and notation as in the proof of
Lemma 5.11 (without discussing the necessary shrinking of domains, since we are only
interested in equality in a neighborhood of x) we have

βh = λ1,β1(q) ◦ γ ◦ λ
−1
1,β1(p)

,

βg = λ2,β2(q) ◦ ξ2,q ◦ γ ◦ ξ
−1
2,p ◦ λ

−1
2,β2(p)

,
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ν1(γ) = µ−11,α1(β1(q))
◦ νf (βh) ◦ µ1,α1(β1(p)),

ν2(γ) = χ−12,q ◦ µ
−1
2,α2(β2(q))

◦ νf (βg) ◦ µ2,α2(β2(p)) ◦ χ2,p.

Hence

βg = λ2,β2(q) ◦ ξ2,q ◦ λ
−1
1,β1(q)

◦ βh ◦ λ1,β1(p) ◦ ξ
−1
2,p ◦ λ

−1
2,β2(p)

.

Definition (6) shows that

νf (λ2,β2(q) ◦ ξ2,q ◦ ξ
−1
1,q ◦ λ

−1
1,β1(q)

) = µ2,α2(β2(q)) ◦ χ2,q ◦ µ−11,α1(β1(q))
.

Then

ν2(γ) = µ−11,α1(β1(q))
◦ νf (βh) ◦ µ1,α1(β1(p)) = ν1(γ).

Hence the induced equivalence classes [P1, ν1] and [P2, ν2] indeed coincide. The lift
ε1 of id(Q,U) is given by the family {ξ1,q}q∈Q, the lift ε2 by {ξ2,q}q∈Q, the lift ε′1 of
id(Q′,U ′) is any extension of {χ1,q}q∈Q, and the lift ε′2 is any extension of {χ2,q}q∈Q.

If the orbifolds are second-countable, we find countable subfamilies of W and W ′
which are themselves orbifold atlases and restricted to which the orbifold map k̂ still sat-
isfies the statement of the lemma. Alternatively, we could have started the construction
with an appropriate countable subset of Q. �

The following proposition now follows immediately.

Proposition 5.15. The relation ∼ from Definition 5.12 is an equivalence relation.

The equivalence class of a charted orbifold map f̂ with respect to the equivalence
from Definition 5.12 is denoted by [f̂ ]. It will always be clear from context whether
f̂ is a charted orbifold map and [f̂ ] denotes an equivalence class of charted orbifold
maps, or f̂ is a representative of an orbifold map and [f̂ ] denotes an equivalence class of
representatives, that is, a charted orbifold map (cf. Definition 4.10).

5.3. The orbifold category.
Now we can define the category of reduced orbifolds.

Definition 5.16. The category Orb of reduced (paracompact resp. second-
countable) orbifolds is defined as follows: In both cases, the class of objects is the class
of orbifolds. For two paracompact orbifolds (Q,U) and (Q′,U ′), the morphisms (orbifold
maps) from (Q,U) to (Q′,U ′) are the equivalence classes [f̂ ] of all charted orbifold maps
f̂ ∈ Orb(V,V ′) where V is any representative of U , and V ′ is any representative of U ′,
that is

Morph
(
(Q,U), (Q′,U ′)

)
:=

{[
f̂
] ∣∣∣∣ f̂ ∈ Orb(V,V ′), V representative of U ,
V ′ representative of U ′

}
.

For second-countable orbifolds we restrict to countable representatives of the orbifold
structures. We now describe the composition in Orb. For this let
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[f̂ ] ∈ Morph
(
(Q,U), (Q′,U ′)

)
and [ĝ] ∈ Morph

(
(Q′,U ′), (Q′′,U ′′)

)
be orbifold maps. Choose representatives f̂ ∈ Orb(V,V ′) of [f̂ ] and ĝ ∈ Orb(W ′,W ′′)
of [ĝ]. Then find (countable, if the orbifolds are second-countable) representatives K,
K′, K′′ of U , U ′, U ′′, resp., and lifts of identity ε ∈ Orb(K,V), ε′1 ∈ Orb(K′,V ′), ε′2 ∈
Orb(K′,W ′), ε′′ ∈ Orb(K′′,W ′′) and two charted orbifold maps ĥ ∈ Orb(K,K′), k̂ ∈
Orb(K′,K′′) such that the diagram

V
f̂ // V ′ W ′

ĝ // W ′′

K

ε

??

ĥ // K′

ε′1

``
ε′2

==

k̂ // K′′

ε′′
aa

commutes. The composition of [ĝ] and [f̂ ] is defined to be

[ĝ] ◦ [f̂ ] := [k̂ ◦ ĥ].

The following lemma shows that this composition is always possible, Proposition 5.18
below that it is well-defined.

Lemma 5.17. Let (Q,U), (Q′,U ′) and (Q′′,U ′′) be orbifolds. Further let V be a
representative of U , V ′ and W ′ be representatives of U ′, and W ′′ a representative of U ′′.
Suppose that f̂ ∈ Orb(V,V ′) and ĝ ∈ Orb(W ′,W ′′). Then there exist representatives K of
U , K′ of U ′, K′′ of U ′′, lifts of the respective identities ε ∈ Orb(K,V), η1 ∈ Orb(K′,V ′),
η2 ∈ Orb(K′,W ′), δ ∈ Orb(K′′,W ′′), and charted orbifold maps ĥ ∈ Orb(K,K′), k̂ ∈
Orb(K′,K′′) such that the diagram

V
f̂ // V ′ W ′

ĝ // W ′′

K ĥ //

ε

??

K′ k̂ //

η1

``
η2

==

K′′

δ

aa

commutes. For second-countable orbifolds we can choose K,K′ and K′′ to be countable.

Proof. Let f̂ =
(
f, {f̃i}i∈I , [Pf , νf ]

)
and ĝ =

(
g, {g̃j}j∈J , [Pg, νg]

)
. Suppose that

V = {(Vi, Gi, πi) | i ∈ I}, indexed by I,

V ′ = {(V ′c , G′c, π′c) | c ∈ C}, indexed by C,

W ′ = {(W ′j , H ′j , ψ′j) | j ∈ J}, indexed by J ,

W ′′ = {(W ′′d , H ′′d , ψ′′d ) | d ∈ D}, indexed by D.

Let τ : I → C be the map such that for each i ∈ I, f̃i is a local lift of f with respect to
(Vi, Gi, πi) and (V ′τ(i), G

′
τ(i), π

′
τ(i)), and ν : J → D the map such that for each j ∈ J , g̃j

is a local lift of g with respect to (W ′j , H
′
j , ψ
′
j) and (W ′′ν(j), H

′′
ν(j), ψ

′′
ν(j)). By Lemma 5.11

it suffices to find
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• a representative K = {(Ka, La, χa) | a ∈ A} of U , indexed by A,

• a representative K′ = {(K ′b, L′b, χ′b) | b ∈ B} of U ′, indexed by B,

• a subset {(K ′′b , L′′b , χ′′b ) | b ∈ B} of U ′′, indexed by (the same set) B,

• a map α : A→ I,

• an injective map β : A→ B,

• for each a ∈ A, an embedding

λa : (Ka, La, χa)→ (Vα(a), Gα(a), πα(a))

and an embedding

µa : (K ′β(a), L
′
β(a), χ

′
β(a))→ (V ′τ(α(a)), G

′
τ(α(a)), π

′
τ(α(a)))

such that

f̃α(a)
(
λa(Ka)

)
⊆ µa(K ′β(a)),

• a map γ : B → J ,

• for each b ∈ B, an embedding

%b : (K ′b, L
′
b, χ
′
b)→ (W ′γ(b), H

′
γ(b), ψ

′
γ(b))

and an embedding

σb : (K ′′b , L
′′
b , χ
′′
b )→ (W ′′ν(γ(b)), H

′′
ν(γ(b)), ψ

′′
ν(γ(b)))

such that

g̃γ(b)
(
%b(K

′
b)
)
⊆ σb(K ′′b ).

Let q ∈ Q and set r := f(q). We fix i ∈ I and j ∈ J such that q ∈ πi(Vi) and
r ∈ ψ′j(W ′j). Further we choose v′ ∈ V ′τ(i) and w

′ ∈W ′j such that π′τ(i)(v
′) = r = ψ′j(w

′).
By compatibility of orbifold charts we find a restriction (K ′q, L

′
q, χ
′
q) of (V ′τ(i), G

′
τ(i), π

′
τ(i))

with v′ ∈ K ′q and an embedding

%q : (K ′q, L
′
q, χ
′
q)→ (W ′j , H

′
j , ψ
′
j).

Since f̃i is continuous, there is a restriction (Kq, Lq, χq) of (Vi, Gi, πi) such that q ∈
χq(Kq) and f̃i(Kq) ⊆ K ′q. We set

(K ′′q , L
′′
q , χ
′′
q ) := (W ′′j , H

′′
j , ψ

′′
j ).

We consider orbifold charts constructed for distinct q to be distinct. Then we set

A := Q, α(q) := i, λq := id, µq := id,
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B := Q tQ′ \ f(Q), β(q) := q, γ(q) := j, σq := id for q ∈ Q.

For q′ ∈ Q′ \ f(Q) we fix j ∈ J with q′ ∈ ψ′j(W ′j) and set γ(q′) := j. Further we set

(K ′q′ , L
′
q′ , χ

′
q′) := (W ′j , H

′
j , ψ
′
j) and (K ′′q′ , L

′′
q′ , χ

′′
q′) := (W ′′j , H

′′
j , ψ

′′
j ).

Again we consider orbifold charts built for distinct q′ to be distinct and to be distinct
from all those defined for some q ∈ Q, and we define %q′ := id and σq′ := id. Then
all requirements are satisfied. If the orbifolds are second-countable, then we see as in
Lemma 5.14 that we may restrict this construction to countably many points of Q and
Q′ resp. countable sets A and B to achieve that K,K′ and K′′ are countable. �

Proposition 5.18. The composition in Orb is well-defined.

Proof. We use the notation from the definition of the composition. We have to
show that the composition of [f̂ ] and [ĝ] neither depends on the choice of the induced
orbifold maps ĥ and k̂ nor on the choice of the representatives of [f̂ ] and [ĝ]. To prove
independence of the choice of ĥ and k̂, suppose that we have two pairs (ĥj , k̂j) of induced
orbifold maps ĥj ∈ Orb(Kj ,K′j), k̂j ∈ Orb(K′j ,K′′j ) (j = 1, 2) such that the diagram

K1
ĥ1 //

��

K′1
k̂1 //

~~ !!

K′′1

}}
V

f̂ // V ′ W ′
ĝ // W ′′

K2
ĥ2 //

??

K′2
k̂2 //

`` ==

K′′2

aa

commutes. The non-horizontal maps are lifts of identity. Lemma 5.14 shows the ex-
istence of representatives H of U , H′, I ′ of U ′, I ′′ of U ′′, and charted orbifold maps
ĥ3 ∈ Orb(H,H′), k̂3 ∈ Orb(I ′, I ′′), and appropriate lifts of identity such that the dia-
grams

K1
ĥ1 // K′1 K′1

k̂1 // K′′1

H ĥ3 //

>>

  

H′

``

~~

I ′ k̂3 //

>>

  

I ′′

``

~~
K2

ĥ2 // K′2 K′2
k̂2 // K′′2

commute. By Lemma 5.17 we find representatives K,K′,K′′ of U ,U ′,U ′′, resp., charted
orbifold maps ĥ ∈ Orb(K,K′), k̂ ∈ Orb(K′,K′′), and appropriate lifts of identity such
that
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H ĥ3 // H′ I ′ k̂3 // I ′′

K ĥ //

??

K′ k̂ //

>>``

K′′

aa

commutes. Hence, altogether we have the commutative diagram

K1
ĥ1 // K′1

k̂1 // K′′1

K ĥ //

OO

��

K′ k̂ //

OO

��

K′′

OO

��
K2

ĥ2 // K′2
k̂2 // K′′2

(7)

which shows that k̂1 ◦ ĥ1 and k̂2 ◦ ĥ2 are equivalent (see Remark 5.19 below for some
more details).

For the proof of the independence of the choices of the representatives of [f̂ ] and [ĝ],
let f̂1 ∈ Orb(V1,V ′1), f̂2 ∈ Orb(V2,V ′2) be representatives of [f̂ ], and ĝ1 ∈ Orb(W ′1,W ′′1 ),
ĝ2 ∈ Orb(W ′2,W ′′2 ) be representatives of [ĝ]. Further, for j = 1, 2, let ĥj ∈ Orb(Kj ,K′j)
be induced by f̂j , and k̂j ∈ Orb(K′j ,K′′j ) be induced by ĝj . Since f̂1 and f̂2 are equivalent,
we find representatives V, V ′ of U , U ′, resp., a charted orbifold map f̂ ∈ Orb(V,V ′) and
appropriate lifts of identities, and analogously for ĝ1 and ĝ2, such that the diagrams

V1
f̂1 // V ′1 W ′1

ĝ1 // W ′′1

V
f̂ //

??

��

V ′

``

~~

W ′
ĝ //

==

!!

W ′′

aa

}}
V2

f̂2 // V ′2 W ′2
ĝ2 // W ′′2

commute. Lemma 5.17 yields the existence of ĥ ∈ Orb(K,K′) and k̂ ∈ Orb(K′,K′′) and
appropriate lifts of identities such that

V
f̂ // V ′ W ′

ĝ // W ′′

K ĥ //

??

K′ k̂ //

`` ==

K′′

aa

commutes. Since ĥ is induced by f̂1 and by f̂2, and likewise, k̂ is induced by ĝ1 and by
ĝ2, we conclude as above that k̂1 ◦ ĥ1 and k̂2 ◦ ĥ2 are both equivalent to k̂ ◦ ĥ. This yields
that the composition map is well-defined. �



The category of reduced orbifolds in local charts 789

Remark 5.19. We elaborate on a subtle issue in the proof of Proposition 5.18. By
the reasoning in the proof, the diagram (7) a priori is of the form

K1
ĥ1 // K′1 K′1

k̂1 // K′′1

H ĥ3 //

OO

H′

OO

I ′ k̂3 //

OO

I ′′

OO

K ĥ //

OO

��

K′ k̂ //

>>

  

``

~~

K′′

OO

��
H ĥ3 //

��

H′

��

I ′ k̂3 //

��

I ′′

��
K2

ĥ2 // K′2 K′2
k̂2 // K′′2

and we implicitly claim that the two maps from K′ to K′1 as well as from K′ to K′2 are
identical. This might lead to the suspicion that the composition of charted orbifold maps
as defined above is not well-defined.

However, since ĥ, ĥ1, ĥ2 are all induced by f̂ , and k̂, k̂1, k̂2 are all induced by ĝ,
the arising maps K′ → K′1 are indeed identical as well as the arising maps K′ → K′2.
The diagram in Figure 1 shows the maps between the local charts, which proves the
latter statement as well as that diagram (7) is indeed commutative. The notation in
this diagram is intuitive, e.g. K is an orbifold chart in K, all greek letters refer to
diffeomorphisms. To improve readability we may assume without loss of generality that
K ′ ⊆ K ′1, K ′1 ⊆ V ′ ∩W ′ and K ′2 ⊆ V ′ ∩W ′. The latter two choices implicitly mean
that we assume that the local diffeomorphism between V ′ and W ′ is the identity, which
we indeed may. Otherwise we would just need to add the same local diffeomorphism to
several maps in the diagram. The local diffeomorphism between K ′ and K ′2 is denoted
by ξ (note that we are not allowed to suppose that ξ = id in general). Note that the top
and bottom maps in the diagram are identical.

We end this section with a discussion of the equivalence class represented by a lift of
identity. The following proposition shows that it is precisely the class of all lifts of identity
of the considered orbifold. This justifies the notion “identity morphism” in Definition 5.8.

Proposition 5.20. Let (Q,U) be an orbifold and ε a lift of id(Q,U). Then the
equivalence class [ε] of ε consists precisely of all lifts of id(Q,U).

Proof. Let ε1 ∈ Orb(V1,W1) and ε2 ∈ Orb(V2,W2) be two lifts of id(Q,U). Propo-
sitions 5.3 and 5.5 imply that there is a representative V of U such that ε1 and ε2 both
induce the orbifold map

îdQ := (idQ, {idVi}i∈I , [R, σ])
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K

��

h // K ′ ⊆ K ′1

ε1
zz

ε2
$$

k // K ′′

��
H

h3=f |H//

��

H ′

ε−1
1

$$

I ′

ε−1
2

zz

k3=g|I′ // I ′′

��
K1

h1 //

��

K ′1
k1 //

ε1
zz

ε2
$$

K ′′1

��
V

f // V ′ W ′
g // W ′′

K2

OO

h2 // K ′2

η1

dd
η2

::

k2 // K ′′2

OO

H

OO

h3=f |H// H ′
η−1
1

::

I ′
η−1
2

dd

k3=g|I′ // I ′′

OO

K

OO

h // K ′

ξ−1◦η1
dd

ξ−1◦η2
::

k // K ′′

OO

Figure 1. Maps in local charts.

with (V,V). Thus, each two lifts of id(Q,U) are equivalent.
Let f̂ be a charted orbifold map which is equivalent to ε. With loss of generality we

may assume that ε = îdQ. To fix notation let

V = {(Vi, Gi, πi) | i ∈ I}, indexed by I,

K1 = {(K1,a, L1,a, χ1,a) | a ∈ A}, indexed by A,

K2 = {(K2,b, L2,b, χ2,b) | b ∈ B}, indexed by B,

W1 = {(W1,j , H1,j , ψ1,j) | j ∈ J}, indexed by J ,

W2 = {(W2,k, H2,k, ψ2,k) | k ∈ K}, indexed by K,

be representatives of U . Let

f̂ =
(
f, {f̃j}j∈J , [Pf , νf ]

)
∈ Orb(W1,W2).

Suppose that

ĝ =
(
g, {g̃a}a∈A, [Pg, νg]

)
∈ Orb(K1,K2)

is a charted orbifold map and

ε1 =
(

idQ, {λ1,a}a∈A, [P1, ν1]
)
∈ Orb(K1,V)
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ε2 =
(

idQ, {λ2,a}a∈A, [P2, ν2]
)
∈ Orb(K1,W1)

δ1 =
(

idQ, {µ1,b}b∈B , [R1, σ1]
)
∈ Orb(K2,V)

δ2 =
(

idQ, {µ2,b}b∈B , [R2, σ2]
)
∈ Orb(K2,W2)

are lifts of id(Q,U) such that the diagram (which shows that f̂ and îdQ are equivalent)

V
îdQ // V

K1

ε1

==

ε2 !!

ĝ // K2

δ1

aa

δ2}}
W1

f̂ // W2

commutes. Clearly, g = idQ and hence f = idQ. Let α : A → I, β : A → J , γ : A → B,
δ : B → I, η : B → K and ζ : J → K be the induced maps on the index sets as, e.g., in
Construction 5.9. For each a ∈ A, we have

idVα(a)
◦λ1,a = µ1,γ(a) ◦ g̃a.

Since idVα(a)
, λ1,a and µ1,γ(a) are local diffeomorphisms, so is g̃a. Now

f̃β(a) ◦ λ2,a = µ2,γ(a) ◦ g̃a

for each a ∈ A. Hence f̃β(a) is a local diffeomorphism. Lemma 5.13 implies that f̃j is a
local diffeomorphism for each j ∈ J . Therefore, f̂ is a lift of id(Q,U). �

6. The orbifold category in terms of marked atlas groupoids.

Proposition 4.12 and Remark 5.10 show that charted orbifold maps and their com-
position correspond to homomorphisms between marked atlas groupoids and their com-
position. By characterizing lifts of identity and equivalence of charted orbifold maps in
terms of marked atlas groupoids and their homomorphisms, we construct a category for
marked atlas groupoids which is isomorphic to the one of reduced orbifolds. To that
end we first show that lifts of identity correspond to unit weak equivalences, a notion
we define below. Throughout this section let pr1 denote the projection onto the first
component.

A homomorphism ϕ = (ϕ0, ϕ1) : G → H between Lie groupoids is called a weak
equivalence if

(i) the map

t ◦ pr1 : H1 s×ϕ0
G0 → H0

is a surjective submersion, and
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(ii) the diagram

G1
ϕ1 //

(s,t)

��

H1

(s,t)

��
G0 ×G0

ϕ0×ϕ0// H0 ×H0

is a fibered product.

Two Lie groupoids G,H are called Morita equivalent if there is a Lie groupoid K and
weak equivalences

G K
ϕoo ψ // H.

Definition 6.1. Let (G1, α1, X1) and (G2, α2, X2) be marked atlas groupoids. A
homomorphism

ϕ = (ϕ0, ϕ1) : (G1, α1, X1)→ (G2, α2, X2)

is called a unit weak equivalence if ϕ : G1 → G2 is a weak equivalence and α2 ◦|ϕ|◦α−11 =

idX1
. Necessarily we haveX1 = X2 =: X. A unit Morita equivalence between (G1, α1, X)

and (G2, α2, X) is a pair (ψ1, ψ2) of unit weak equivalences

ψj : (G,α,X)→ (Gj , αj , X)

where (G,α,X) is some marked atlas groupoid. If such a unit Morita equivalence ex-
ists, then the marked atlas groupoids (G1, α1, X) and (G2, α2, X) are called unit Morita
equivalent.

In contrast to Morita equivalence of Lie groupoids, unit Morita equivalence of
marked atlas groupoids requires the third (marked) Lie groupoid to be an atlas groupoid.
In Proposition 6.3 below we will show that unit Morita equivalence of marked atlas
groupoids is indeed an equivalence relation.

The following proposition identifies lifts of identity with unit weak equivalences.

Proposition 6.2. Let U and U ′ be orbifold structures on the topological space Q.
Further let V resp. W ′ be a representative of U resp. of U ′.

(i) Suppose that U = U ′. If f̂ ∈ Orb(V,W ′) is a lift of id(Q,U), then F1(f̂) is a unit
weak equivalence.

(ii) Let ε ∈ Hom(Γ(V),Γ(W ′)) be a unit weak equivalence. Then U = U ′, and F2(ε) is
a lift of id(Q,U).

Proof. Let

V = {(Vi, Gi, πi) | i ∈ I} resp. W ′ = {(W ′j , H ′j , ψ′j) | j ∈ J},
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indexed by I resp. by J , and let G := Γ(V) and H := Γ(W ′). We will first prove
(i). Suppose f̂ = (idQ, {f̃i}i∈I , [P, ν]). By Proposition 4.7 it suffices to show that ε =

(ε0, ε1) := F1(f̂) is a weak equivalence. We first show that

t ◦ pr1 :

{
H1 s×ε0 G0→ H0

(h, x) 7→ t(h)

is a submersion. Let (h, x) ∈ H1 s×ε0 G0. Recall from Proposition 5.3 that ε0 is a local
diffeomorphism, and from Special Case 2.5 that G and H are étale groupoids. Choose
open neighborhoods Ux of x in G0 and Uh of h in H1 such that ε0|Ux and s|Uh are
embeddings with s(Uh) = ε0(Ux). Then Uh s×ε0 Ux is open in H1 s×ε0 G0. Further

Uh s×ε0 Ux = {(k, y) ∈ Uh × Ux | s(k) = ε0(y)}

=
{(
k, ε−10 (s(k))

) ∣∣ k ∈ Uh} .
Therefore,

pr1 : Uh s×ε0 Ux → Uh

is a diffeomorphism. Since t is a local diffeomorphism, t ◦ pr1 is a submersion.
Now we prove that t◦pr1 is surjective. Let y ∈ H0, say y ∈W ′j , and set ψ′j(y) =: q ∈

Q. Then there is an orbifold chart (Vi, Gi, πi) ∈ V such that q ∈ πi(Vi), say q = πi(x).

Vi
f̃i //

πi
��

W ′i

ψ′i~~
Q

Set z := f̃i(x), hence ψ′i(z) = q = ψ′j(y). Hence, there are a restriction (S′,K ′, χ′) of
(W ′i , H

′
i, ψ
′
i) with z ∈ S′ and an embedding

λ : (S′,K ′, χ′)→ (W ′j , H
′
j , ψ
′
j)

such that λ(z) = y. Then λ ∈ Ψ(W ′) and (germz λ, x) ∈ H1 s×ε0 G0 with

t ◦ pr1(germz λ, x) = t(germz λ) = y.

This means that t ◦ pr1 is surjective.
Set

K := (G0 ×G0) (ε0,ε0)×(s,t) H1.

It remains to show that the map

β :

{
G1 → K

germx g 7→ (x, g(x), ε1(germx g))
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is a diffeomorphism. Note that β = (s, t, ε1). Let (x, y, germε0(x) h) be in K, hence
germε0(x) h : ε0(x)→ ε0(y). By the definition of H1 there are open neighborhoods U ′1 of
ε0(x) and U ′2 of ε0(y) in W ′ :=

∐
j∈JW

′
j such that h : U ′1 → U ′2 is an element of Ψ(W ′).

Since ε0 is a local diffeomorphism, there are open neighborhoods U1 of x and U2 of y
in V :=

∐
i∈I Vi such that ε0|Uk is an embedding with ε0(Uk) ⊆ U ′k (k = 1, 2). After

shrinking U ′k we can assume that ε0(Uk) = U ′k. Let γk := ε0|Uk . Then

g := γ−12 ◦ h ◦ γ1 : U1 → U2

is a diffeomorphism, hence g ∈ Ψ(V). By Proposition 5.5 (or rather its proof), we have
ν(g) = h and hence (see (R4a) and recall Proposition 4.7)

ε1(germx g) = germε0(x) h.

Finally, we see

β(germx g) = (x, g(x), ε1(germx g)) = (x, y, germε0(x) h).

Therefore β is surjective. Since germx g does not depend on the choice of Uk and U ′k,
the map β is also injective. Finally, we will show that β is a local diffeomorphism.
Since s and t are local diffeomorphisms, we only need to prove that ε1 is one as well.
Let germx f ∈ G1. Choose an open neighborhood U of x such that U ⊆ dom f and
ε0|U : U → ε0(U) is a diffeomorphism. By the germ topology, the set

Ũ := {germy f | y ∈ U}

is open in G1, and the set

Ṽ := {germz ν(f) | z ∈ ε0(U)}

is open in H1. Further the diagrams

Ũ
ε1 //

��

Ṽ

��

germy f
� ε1 //

_

��

germε0(y) ν(f)
_

��
U

ε0
// ε0(U) y �

ε0
// ε0(y)

commute. Since the vertical arrows are diffeomorphisms by definition,

ε1|Ũ : Ũ → Ṽ

is a diffeomorphism as well. This completes the proof of (i).
We will now prove (ii). Proposition 3.3 shows that the orbifold atlases V and W ′

are determined completely by the marked atlas groupoids Γ(V) and Γ(W ′), resp. Hence
we can apply Proposition 4.9, which shows that F2(ε) is well-defined. Suppose that

F2(ε) =
(
f, {f̃i}i∈I , [P, ν]).
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Proposition 4.9 yields f = idQ. By [8, Exercises 5.16(4)] ε0 is a local diffeomorphism.
Thus, Proposition 4.9 implies that each f̃i is a local diffeomorphism. The domain atlas
of F2(ε) is V, its range family is W ′. From Proposition 5.6 it follows that U = U ′. By
Definition 5.8 F2(ε) is a lift of id(Q,U). �

The combination of Propositions 3.3, 6.2 and Remark 5.10 now allows to identity
each step in the construction of the category of reduced orbifolds and each intermediate
object in terms of marked atlas groupoids. For an orbifold (Q,U) we define

Γ(Q,U) :=
{(

Γ(V), αV , Q
) ∣∣ V is a (countable) representative of U

}
.

We recall from Special Case 2.5 the convention that for second-countable orbifolds we
always restrict here to countable representatives of the orbifold structure. For non-
second-countable, we also consider non-countable representatives.

Then Proposition 5.20 gives rise to the following proposition.

Proposition 6.3. Unit Morita equivalence of marked atlas groupoids is an equiv-
alence relation. Further, if V is a (countable) representative of the orbifold structure U
of the orbifold (Q,U), then the unit Morita equivalence class of (Γ(V), αV , Q) is Γ(Q,U).

Equivalence of charted orbifold maps translates to marked atlas groupoids as follows.

Definition 6.4. Let (G1, α1, X), (G2, α2, X), as well as (H1, β1, Y ) and
(H2, β2, Y ) be marked atlas groupoids. For j = 1, 2 let

ψj : (Gj , αj , X)→ (Hj , βj , Y )

be a homomorphism of marked Lie groupoids. We call ψ1 and ψ2 unit Morita equiv-
alent if there exist marked atlas groupoids (G,α,X) and (H,β, Y ), a homomorphism
χ : (G,α,X) → (H,β, Y ), and unit weak equivalences εj : (G,α,X) → (Gj , αj , X),
δj : (H,β, Y )→ (Hj , βj , Y ) such that the diagram

(G1, α1, X)
ψ1 // (H1, β1, Y )

(G,α,X)

ε1

88

ε2 &&

χ // (H,β, Y )

δ1

ff

δ2xx
(G2, α2, X)

ψ2 // (H2, β2, Y )

commutes.

Proposition 5.15 in terms of atlas groupoids means the following.

Proposition 6.5. Unit Morita equivalence of homomorphisms between marked
atlas groupoids is an equivalence relation.



796 A. Pohl

We define the category Agr of marked atlas groupoids as follows: Its class of objects
consists of all Γ(Q,U). The morphisms from Γ(Q,U) to Γ(Q′,U ′) are the unit Morita
equivalence classes [ϕ] of homomorphisms ϕ : (G,α,Q)→ (G′, α′, Q′) where (G,α,Q) is
any representative of Γ(Q,U) and (G′, α′, Q′) is any representative of Γ(Q′,U ′).

The composition of two morphisms [ϕ] ∈ Morph
(
Γ(Q,U),Γ(Q′,U ′)

)
and [ψ] ∈

Morph
(
Γ(Q′,U ′),Γ(Q′′,U ′′)

)
is defined as follows: Choose representatives

ϕ : (G,α,Q)→ (G′, α′, Q′) of [ϕ]

and

ψ : (H ′, β′, Q′)→ (H ′′, β′′, Q′′) of [ψ].

Then find representatives (K, γ,Q), (K ′, γ′, Q′), (K ′′, γ′′, Q′′) of the classes Γ(Q,U),
Γ(Q′,U ′), Γ(Q′′,U ′′), resp., and unit Morita equivalences

ε : (K, γ,Q)→ (G,α,Q),

ε′1 : (K ′, γ′, Q′)→ (G′, α′, Q′),

ε′2 : (K ′, γ′, Q′)→ (H ′, β′, Q′),

ε′′ : (K ′′, γ′′, Q′′)→ (H ′′, β′′, Q′′),

and homomorphisms of marked Lie groupoids

χ : (K, γ,Q)→ (K ′, γ′, Q′),

κ : (K ′, γ′, Q′)→ (K ′′, γ′′, Q′′)

such that the diagram

(G,α,Q)
ϕ // (G′,α′,Q′) (H′,β′,Q′)

ψ // (H′′,β′′,Q′′)

(K,γ,Q)

ε

OO

χ // (K′,γ′,Q′)

ε′1
ff

ε′2
88

κ // (K′′,γ′′,Q′′)

ε′′

OO

commutes. Then the composition of [ϕ] and [ψ] is defined as

[ψ] ◦ [ϕ] := [κ ◦ χ].

Invoking Lemmas 5.11, 5.17 and Proposition 5.18 we deduce the following proposi-
tion.

Proposition 6.6. The composition in Agr is well-defined.

We define an assignment F from the orbifold category Orb to the category of marked
atlas groupoids Agr as follows. On the level of objects, F maps the orbifold (Q,U) to
Γ(Q,U). Suppose that [f̂ ] is a morphism from the orbifold (Q,U) to the orbifold (Q′,U ′).
Then F maps [f̂ ] to the morphism [F1(f̂)] from Γ(Q,U) to Γ(Q′,U ′).
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Theorem 6.7. The assignment F is a covariant functor from Orb to Agr. Even
more, F is an isomorphism of categories. The functor F and its inverse are constructive.

In the following example we show that the representatives of orbifold maps from
Example 4.6 define different orbifold maps. In this example we use G(x, y) to denote the
set of arrows g of the groupoid G with s(g) = x and t(g) = y.

Example 6.8. Recall the representatives of orbifold maps

f̂1 = (f, f̃ , P, ν1) and f̂2 = (f, f̃ , P, ν2)

from Examples 4.6 and 4.8. We claim that f̂1 and f̂2 are representatives of different
orbifold maps. Assume for contradiction that f̂1 and f̂2 define the same orbifold map
on (Q,U1). This means that the groupoid homomorphisms ϕ and ψ from Example 4.8
are Morita equivalent. Hence there exist marked atlas groupoids K and H, unit weak
equivalences

α = (α0, α1) : K → Γ, γ = (γ0, γ1) : H → Γ,

β = (β0, β1) : K → Γ, δ = (δ0, δ1) : H → Γ,

and a homomorphism χ = (χ0, χ1) : K → H such that the diagram

Γ
ϕ // Γ

K

α

??

β ��

χ // H

γ
__

δ��
Γ

ψ // Γ

commutes. Since α is a (unit) weak equivalence, there exists x ∈ K and g ∈ Γ with
s(g) = α0(x) and t(g) = 0. Necessarily, g ∈ {germ0(± id)}, and hence α0(x) = 0. In
turn, α1 induces a bijection between K(x, x) and Γ(0, 0). Thus K(x, x) consists of two
elements, say K(x, x) = {k1, k2}. Let x′ := χ0(x). Then

0 = ϕ0(α0(x)) = γ0(x′).

This shows that γ1 induces a bijection between H(x′, x′) and Γ(0, 0). For j = 1, 2 we
have

γ1(χ1(kj)) = ϕ1(α1(kj)) = germ0 id,

which implies that χ1(k1) = χ1(k2). Further β1 induces a bijection between K(x, x) and
Γ(β0(x), β0(x)). Hence β0(x) = 0, and thus

ψ1(β1(k1)) 6= ψ1(β1(k2)).

But this contradicts to
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ψ1(β1(k1)) = δ1(χ1(k1)) = δ1(χ1(k2)) = ψ1(β1(k2)).

In turn, ϕ and ψ are not Morita equivalent.

7. Extension to marked proper effective étale Lie groupoids.

Let Pgr denote the category of marked proper effective étale Lie groupoids which
is defined analogously to the category Agr of marked atlas groupoids with the only
difference that any marked atlas groupoid may be a marked proper effective étale Lie
groupoid. Note that the objects in Pgr are not the single marked proper effective étale
Lie groupoids themselves but the unit Morita equivalence classes of these.

In this final section we show that these two categories are isomorphic via the canon-
ical embedding. As before we consider two different flavors of categories distinguished
by whether the involved topological spaces are required to be just paracompact or even
second-countable. These differences do not cause any distinctions in statements or proofs
and therefore will be implicit.

Theorem 7.1. The embedding functor Agr→ Pgr is an isomorphism.

Proof. We prove that we can lift any given homomorphism (weak equivalence)
between two proper effective étale Lie groupoids to a homomorphism (weak equivalence)
between weakly equivalent atlas groupoids:

G // G′

Γ(U)

==

// Γ(U ′).

bb

Let G be a proper effective étale Lie groupoid. By [8, Corollary 5.31] there exists an
orbifold atlas U on the base space G0 of G such that Γ(U) is weakly equivalent to G.
More precisely, let (Ui)i∈I be a covering of G0 by open connected subsets such that for
each i ∈ I, there exists a point x ∈ Ui such that

Gi := Gx := {g ∈ G1 |
g

x −→ x} = G1|Ui

and Ui is Gi-stable, and such that the action groupoid Gi n Ui is isomorphic to G|Ui .
Then the family

U := {(Ui, Gi,pr) | i ∈ I}

is an orbifold atlas on G0. We identify Ui with {i}×Ui. Let H := Γ(U). Then the weak
equivalence ϕ : H → G is given by

ϕ0 : H0 → G0, (i, x) 7→ x

and
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ϕ1 : H1 → G1,
k

(i, x) −→ (j, y) 7→ k
x −→ y .

Now let G,G′ be two proper effective étale Lie groupoids and χ : G→ G′ be a homomor-
phism (weak equivalence). Choose orbifold atlases (in the way as above)

U := {(Ui, Gi,pr) | i ∈ I}, U ′ := {(U ′j , G′j ,pr) | j ∈ J}

on G0 resp. G′0 such that there exists a map β : I → J such that

χ0(Ui) ⊆ U ′β(i)

for all i ∈ I (this is possible). Set H := Γ(U), H ′ := Γ(U ′) and define α : H → H ′ via

α0 : H0 → H ′0, (i, x) 7→ (β(i), χ0(x))

α1 : H1 → H ′1,
k

(i, x) −→ (j, y) 7→
χ1(k)

(β(i), χ0(x)) −→ (β(j), χ0(y)) .

One easily checks that α is a homomorphism (weak equivalence).
With this lifting property we can bring back all equivalence relations between marked

proper effective étale Lie groupoids and between maps between these groupoids to state-
ments purely between marked atlas groupoids and maps between those. This proves the
theorem. �
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