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Abstract. We give a precise behavior of spectral functions for symmet-
ric stable processes applying the asymptotic expansion of resolvent kernels.

1. Introduction.

Let {X;}¢>0 be the rotationally invariant a-stable process on R?, the Hunt process
with generator H = (—A)*/? (0 < o < 2). We denote by (£, F) the associated Dirichlet
form on L2(R%, m), i.e. E(u,v) = (VHu,VHv) for u,v € F = D(VH). Here m is the
Lebesgue measure on R? and (-, -) is the inner product of L*(R%,m).

Let V(x) be a non-negative continuous function on R? with compact support and
define the Schrodinger-type operator H* = H — AV for A > 0. Then the equation
Ou/0t = —H>u admits the fundamental solution p*(¢,x,y), in particular, p°(t,z,y) is
the transition density function of {X;};>0. We write simply p(¢, z,y) for p°(t,z,y). In
[12], we established a necessary and sufficient condition for p*(¢, z,y) to satisfy

Clp(ta z, y) S p)\(ta €z, y) S 02p(t7 Z, y)
for some positive constants c¢; and co; we call this property stability of fundamental
solution. To show this, we define the bottom of the spectrum of the operator (1/V)H by

Ay = inf {S(U,u) ‘ we F, | w?@)V(z)dz = 1} .

Rd
Note that Ay describes the smallness of V(z); if V1 < Vi, Ay, > Ay,. The stability of the
fundamental solution is equivalent to A < Ay, and then AV (x) is said to be subcritical.
Takeda and Uemura [11] established other conditions equivalent to the subcriticality.
More specifically, they defined the Feynman—Kac expectation ey (¢,x) by

exv(t,z) =E, [exp <>\ /0 t V(Xs)dsﬂ

and showed that the subcriticality of AV (z) is equivalent to the gaugeability, i.e.
SUp,cpa exv (00, ) < oo. In particular, ey (t,z) converges to eyy(oo,z) as t — oo.
If A = Ay(respA > Ay), AV (x) is said to be critical (resp. supercritical). In these
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cases, the Feynman—Kac expectation diverges as t — oo. To know the growth order of
the Feynman—Kac expectation, we consider the logarithmic moment generating function
A(x) defined by

1 t
A(z) = lim - logE, [exp (/\/ V(Xs)ds)] .
t—oo t 0
Takeda [9] showed that A(x) is equal to the bottom of the spectrum for H*, that is,

C(A):—inf{g’\(u,u) ‘ ueF, u2(:r)dx:1},

R4

where £ is the corresponding form to the operator H* given by

EMNu,u) = E(u,u) — X [ u?(x)V(z)dz. (1.1)
Rd

We see that C'(Ay) = 0 by the definition of A\y. Moreover, Takeda and Tsuchida [10]
proved that C'(A) > 0 if and only if A > Ay. For A = Ay, there exists a positive function
ho(z)(¢ F in general) which attains the minimum of (1.1), i.e. € (hg,ho) = 0. hg(x)
is uniquely determined up to multiple constant and is called ground state of H — Ay V.
It was proved in [10] that for a transient {X;};>0 with 1 < d/a < 2, the spectral
function C'(\) is differentiable on R, in particular, at A = Ay. The purpose of this paper
is to give more precise asymptotic behavior of the spectral function as A | Ay. Moreover,
we also treat recurrent processes. Note that Ay = 0 for recurrent processes, while Ay > 0

for transient ones. We then prove the following main theorem:

THEOREM 1.1.  If {X;} is recurrent, the spectral function C'(\) satisfies the follow-
ing asymptotics as A | 0:

C(\ Cya Y C d d 2
O~ (Gnterm) - G fven @oice

C(\) = exp (—OZQ d=a=1),

where A ~ B means B/A — 1 and A < B means ¢; < B/A < ¢y for some positive
constants ¢1 and cs.

If {X:} is transient, the spectral function C(\) satisfies the following asymptotics as
Al Ay

C(\) ~ {af(d/2) sin(((d/a) — 1)7) (v/Vho, vV ho

a/(d—a)
)
P i= @2 VR ) (1< d/a<2),

'(a+1)(vVho, VVhg) A=Ay B
O 2 (VT o8 M) @e=2,
C(\) ~ M(A —\v) (d/a > 2).

(ho, ho)
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Note that this result is an extension of Cranston et al [2, Theorem 6.1] where the
same problem was studied for the Brownian motion on R¢, i.e. the Hunt process with
generator (—A). Indeed, substituting a = 2, we can obtain their preceding result. In [2],
they first considered the asymptotic expansion of S-order resolvent as 3 | 0 to obtain the
asymptotic behavior of the spectral function. This is easy for the Brownian motion, since
the resolvent is expressed through the Hankel functions. For the rotationally invariant
a-stable processes, we cannot express the resolvent through a special function. We first
express the heat kernel by means of the function with respect to |x —y|/ 1/, Using this
expression, we obtain the asymptotic expansion of S-order resolvent as | 0.

This paper is organized as follows: In Section 2, we give the asymptotic behavior of
the -order resolvent. In Section 3, we define a compact operator on L?(R?) from the
resolvent kernel and the function V'(x), following the method of Klaus and Simon [5].
We also give a relation between the principal eigenvalue of the compact operator and
the spectral function. In Section 4, we give the asymptotic expansion of the principal
eigenvalue applying the first order perturbation theory in Kato [4], and prove Theorem
1.1. ¢;’s are unimportant positive constants varying from line to line.

2. The asymptotic behavior of the resolvent.

Let {X¢}+>0 be the rotationally invariant a-stable process (0 < a < 2) on R%. Then
the associated Dirichlet form is given by

) = [[[ ) @) 0) o)) e dady, F = HOR).

Here H*/2(R%) is the Sobolev space with order /2 and A4, is a positive constant

_ a'2a_1r((a+d)/2> o > s—1_—x
Ago = (1= (a)2) T'(s) .—/O e dx.

The characteristic function of {X;}¢>o is

Eq[exp(i€ - (X¢ — 2))] = /Rd exp(i€ - (y — z))p(t, z, y)dy = e 11" ¢ e RY.

Here p(t,z,y) is the transition density function. Applying the Fourier inverse transfor-
mation, we have

o) = g [ expl—tlel” i€ (o - ) (2.1)

The following lemma is a precise version of Kolokoltsov [6, p.314] or Blumenthal
and Getoor [1, (2,1)].

LEMMA 2.1.  The transition density function of {X;}+>o is expressed by

— T —
p(t,2,y) = Caut™ g (' tl/ay|> , (2.2)
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where

(ma)~! (@=1)
Caa= (2d1ﬁ<d+1>/2p (d21> oz) B (d>2)

and g 1is the function on [0,00) defined by
g(w) = / s/ =1e=s cog (wsl/o‘) ds (d=1), (2.3)
07'{' (o)
g(w) = / / s/ =1e=5 cog (wsl/a cos 9) sin?~2 0dsdf (d>2). (2.4)
o Jo

PrOOF. For d =1, (2.1) implies

™

-1/ e o]
= t / s/ =1e=s o5 (x — Y| s(l/o‘)> ds.
0

T ti/a

1 o0
Pt 2yy) = — / exp(—tr®) cos(|z — ylr)dr
0

For d > 2, (2.1) implies
p(t,z,y) = C’d/ / exp(—tr® + irlz — y| cos ) - r¢~ 1 sin?2 Gdrdf
o Jo
= Cd/ / exp(—tr®) cos(r|z — y| cos §) - 71 sin?=2 Odrde, (2.5)
o Jo

where

d—3
2 g 1
= in” 0df = .
Ca= Gnya T_[/ S0 = ST (0 - 1)/2)

Substituting tr* = s in (2.5), we have

t*d/a 7" S —
/ / sld/@)=1e=5 g (|a: Yl s cos 0) sin?=2 Odsdb.
o Jo

20=17(d+1)/27 ((d — 1)/2) « t1/a
U
We next consider the properties of the function ¢ in (2.3)—(2.4).
LEMMA 2.2.  The function g in (2.3)—(2.4) satisfies the following properties:
(i) It follows that
1
r(:) (=1
et
9(0) = (2.6)
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(ii) There exists positive constants ci,co satisfying

(1 Aw™ %) < g(w) < ea(1 Aw™472), (2.7)

(iii) There ezxists a positive constant cs depending on d and o such that

9(0) = g(w) < czw?. (2.8)

PrROOF. We obtain (i) by simple calculation. Blumenthal and Getoor [1] showed
that g(w) is a positive continuous function and satisfies

lim w*t®
w—r 00

g(w) = cq.
Hence, we have (ii). For d =1,
9(0) — g(w) = / s/ =1e=3(1 — cos(ws'/*))ds
0

00 1/« 2 00
= 2/ s(1/e)—Lg=s in2 (ws > ds < w—/ sB/)—1le=sqs — cw?.
0 2 2 Jo

For d > 2,
9(0) — g(w) = / / sld/a)—1g=s (1 — cos (wsl/o‘ cos 9)) sin?~2 0dsdb
o Jo

T 1
= 2/ /00 sld/a)=1o=5 gin? <ws/2c059> sin?~2 0dsdb
o Jo

2 T o)
< % / / sldt2)/a—1o=s .02 9 sind=2 9dsdf = cw?.
o Jo

Hence, we have (iii). O

For 8 > 0, let Gg(x,y) be the S-resolvent kernel,

Gplz,y) = /OOO p(t,z,y)e™ dt. (2.9)

We next consider the asymptotic behavior of the [S-resolvent when S tends to 0. If
{Xi}i>0 is recurrent, Gg(z,y) diverges as 8 | 0. The following theorem describes an
exact behavior of this divergence.

THEOREM 2.3. Suppose d =1 and 1 < o < 2, that is, {X;}i>0 is recurrent. Then
the resolvent kernel Gg(x,y) satisfies the following asymptotics as 5 tends to 0.

. g/a)-1 .
sz, y) = asinr/a + Eg(z,y) (1<a<?2), (2.10)

log 3~ 1

Gp(x,y) = + Es(z,y) (a=1), (2.11)
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where Eg(x,y) satisfies

cilr —y|ot (I<a<?2)

Es(x, <
[Bs () {62(1+|10g|x—y|+ﬁlw—yl) (a=1).

PROOF. Suppose 1 < a < 2. Using (2.2), we have
Gg(z,y) = /00 Ltil/("g ] e Ptdt
’ 0 TQ i/

_ B(l/a)fl oo S—l/a ﬁl/a|(£ _ y| 5 ds
T 0 g sl/e '
Note that

L[> ez — 1 1 1
— s~y B — ) e *ds » —g(O)T'(1—— ) = ———+~
T sl/e T e asinm/a
0

as ( tends to 0. Setting the function Eg(z,y) by

-1 (> 4. x— _
Bae) = = [~ (500 —g (1) ) erar

we obtain (2.10). Moreover, (2.7) and (2.8) imply g(0) — g(w) < ¢1(1 Aw?), and thus

lz—y| )
|Es(z,y)| < / et~ Vedt + / CQt_S/a\x —y|Pdt < eslz —y|* L
0

z—y|*
Suppose o = 1. First we express Gg(z,y) as follows:
|z—y| o)
Gp(z,y) = / p(t,z,y)e " dt +/ p(t,z,y)e Ptdt =: I + I.
0 |

z—y|

By the upper bound of the heat kernel, the first term satisfies

lz—yl t
Il §cl/ 72(#:62.
0 |z =y

For the second term, we have

1 [ - —Bt 1 [ - -
]2:,/ g(|m y|>_e dtzf/ g<ﬁ|xy|).e ds
T Jlz—y| t t ™ JBle—y| s s
o —s 1 S — -
_ 90 / < 7/ <g(0> iy (Wyl)) s = — .
T JBla—y| S ™ JBla—y| § 5

To obtain the asymptotic expansion for Ji, we first note

oo — N e o]
s _\n 1
/ € ds= lim 14 E (=9) —ds
3 s N—oo —~ n! s

lz—yl Blz—y
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o (—Blz — : o (=N
= ~log(Blz —yl) - Z n- n' +ngnoo logN+Z n-n!
n=1

n=1

N 176 w
~log(Ble - Z 7‘1 n' +A}gnoo Zii dw s
n=1

(2.12)

where

alg|

1= g {3 g .
k=1

We see that the last term of (2.12) converges to 0 as N — co. Indeed, we have

N1 Ny N1 N
- 2T dw=S"7—(1—eM)logN —w)
Zk /0 " dw Zk (1—e ) log —l—/o e~ log wdw

k=1 k=1

—>’y+/ e Ylogwdw (N — 00). (2.13)
0

Since the Gamma function has the representation

o= T ) ")

we obtain

=—. (2.14)

“Ylogwdw =T"(1) = =
/0 e~ logwdw (1) T i

Hence, J; has the asymptotic expansion

Furthermore, noting that for z < 0,

z w e’ —1
OSfE :7/ E dw:/ dw < —2z,
n=1n~n! 0 = n! . w

we have

|Es(z,y)| < er(1+ |log |z — yl| + Blz — yl).

For J,, we obtain from (2.8)

o] 2 2 —s o] 2 2

xr — e X —

J2§cl/ M.idsgcl/ Fle ol g < oy,
Blz—yl s s Blz—y| s
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Define Es(x,y) by Es(z,y) = I, + Eg(x,y) — Jo. Then we have (2.11) and
|Bs(2,y)| < I+ |Bg(z,y)| + J2 < e1(1+ [log [z — y|| + Blz — y]). 0

If {X;}i>0 is transient, (2.9) makes a sense for § = 0, i.e. Go(z,y) < oo for = # y.
Go(x,y) is called Green kernel and in the sequel we write G(z,y) for Go(x,y) simply.
The next theorem gives us the asymptotic expansion of Gg(z,y) as 8 ] 0.

THEOREM 2.4.  Suppose d/a > 1, that is, {X;}i>0 is transient.
(i) Forl<d/a<?2,

ol—d_1-(d/2)
Ga(w,y) = Glz,y) — — @ em(dja) ~ )
Es(z,y) < c1Blx —y|2*

BN 4 Eg(x,y),  (2.15)

(ii) Ford/a =2,

21—dﬂ_—d/2
Gﬁ(.’li,y) = G((E,y) - mﬁlogﬁ_l + Eﬂ(xuy)v (216>

|Es(x, )| < c1f(1 + |log |z —y|| + Ble —y[).
(iii) For d/a > 2,
Gs(z,y) = Gz,y) - Glz,9)B + Es(x,y), (2.17)
where G(x,y) is defined by
G(z,y) = /Ooo tp(t, z, y)dt = il —y[**77

and Eg(x,y) satisfies

ey Bld/)-1 (2 < dfa < 3)
Eg(z,y) < Q cof?log 71 + 352 (1 + |log |z — y|| + Blz — y|*)  (d/a = 3)
coff?|z — y[Po e (d/a > 3).

PROOF. Suppose 1 < d/a < 2. Applying (2.2), we have

Ge) = Gola) = Ca [~ (B ) 1=
0

00 1/al,.
_ Od,aﬂ(d/a)fl/ Sfd/ozg <ﬂ |$ y|) (1 _ efs)ds.

o sl/e

Note that
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o AN o d
/ sY1 —e7%)ds = — <1 — > / si(d/e)e=sgs = r (2 - ) .
0 « 0

d—«

681

Thus, we obtain

d—«
e ol—d 1—(d/2) domt §
= Glzy) aT(d/2)sin(((dfa) = D)m)" + Bs(@.y),

where Eg(z,y) is defined by

Bao) = Caa [ 01 (50 - (572 ) e

Since ¢(0) — g(w) < ¢1 (1 A |w|?) from (2.7)—(2.8),

Eg(z,y) < 025/0 t=(d/e) (g(O) —g <|3’;17ay|)> dt

lo—y|* oo
<33 ( / =) qp / (@) — y|2dt> < cafilw —y)* !
0 |z—y|>

and we obtain (2.15).

Gao1) = Gla.9) = Cang0)- 7T (2= 5) 5901 4 By(ay)

Suppose d/a = 2. Similarly to the case d = o = 1, we first have
le—y|* 5t
Glay) = Galep) = [ pltag)(— e Pt
0

Jr/ p(t,z,y)(1 — e PYdt = I + I. (2.18)
|

T—y|>

Using the upper bound of the heat kernel, we have

ey o—yl® g2 o19)
I < 63/ —  Btdt = Cg,ﬁ/ Lt =y 2.19
0 |z — yldte 0 |z — y[3
For Iy, we have
00 1/a)y
I, =Cguaf s7%g (6 |$a y|) (1 —e"")ds.
Blz—yle §

Since s72(1 — e~*) is integrable on [3|x — y|*, 00),

I = C’d’ag(O)B/ s72(1—e *)ds
Blz—yl®

o0

1/a),.
—Ca.af — s (9(0) -9 <W>) (1—e™")ds

= Jl — JQ. (220)
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Using integration by parts, we have

1— e Ple—yl® *° e *
T = Caag(0)8 <ﬁ|x—y|a +/Bzy|a : ds) .

Substituting S|z — y|* for Bla — y| in (2.12) and combining with (2.13) and (2.14), we
have

oo — oo
e* Blz —y|*)
ds = —log(Blz — - .
/leyla s nzz:l n - n!
Thus, J; admits the asymptotic expansion
Ji = Ca.ag(0)f ﬂ—lo(m— B f: (=Blz —y[*)"
1 — d,ag 5|ZZ,' _ y|a g y ’7 — n - n|
Blog B! -
=: E . 2.21
Qdflﬂ_d/2p(a+ 1) + Eg(z,y) ( )
Similarly to the case d = a =1,
|Eg(z,y)| < c2B(1+ [log | — yl[ + Bl — y|*). (2.22)
Moreover, (2.8) implies
0 1/a),.
Jy < e st (ﬂ ‘ffa y|>
Blz—y|>
— cl,BH(Q/O‘)\m — y|2/ sT1-@/)gs < caf3. (2.23)
lo—y|™

Combining the formulae (2.18), (2.20) and (2.21), we have

Ga(x,y) =G(z,y) — (L + ) =G(z,y) — L — 1 + )2

Blog8~' -

:G(x7y)_ 2d_17Td/2F(a+1> Eﬁ(m)y)_ll+JQ

Set Eg(z,y) = —Eg(z,y) — I1 + J2. Then we see from (2.19), (2.22) and (2.23) that

|Es(z,y)| < csB(1 +[log |z —yl| + Blz —y|*)

and obtain (2.16).
It follows that for d/a > 2,

oo OC 1—(d |z —y| 2a—d
/ tp(t, z,y)dt = / Cyot' ™/ g e dt = eq|z — y|* >~
0 0

Thus, we have
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Glx.y) — Gp(e,y) = /0 2y (1 — et
=G(z,y)B + /000 p(t,z,y)(1 — Bt — e Pt)dt.

Setting

Eg(z,y) :/ p(t, @, y)(Bt — 1+e_[3t)dt7
0
we obtain (2.17). For the estimate of Eg(z,y), first note that

0<pBt—1+e Pt < @ (2.24)

For d/a > 3,

(ﬁg)zp(t, x,y)dt

Eato) < [

o0 tS .
< C1ﬂ2/ (tZ(d/a) A )dt < 02/82|I 7y‘3a7d
0

|z — yl|dte

and the desired result follows.
For d/a < 3,

Bste.) = [ pltay)(e— 1+ e )i
0
0 1/a) .
— clﬁ(d/a)*l/ Sid/ag (ﬂ 5‘ y|) (3 -1+ eis)dS
0 s

< CQﬁ(d/a)fl/ Sfd/oz('S ~1 +€78)d3 < Cgﬂ(d/a)fl
0

on account of the integrability of s™%%(s — 1 + e~*) and the inequality g(w) < g(0).
For d/a = 3, we have

lz—y|®
Ep(a,y) = / p(t 2, y) (Bt — 1+ e~ P)dt

+/ Caat™2g ('x_m) (Bt — 1+ e Yt = I + L.
|

z—y|* t/e

By the upper bound of the heat kernel and (2.24),

o-ul®
L < C1/ - BP1Pdt < 8.
0 |z — y[ie

For I, we have
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o0 o0

t3(ft — 1+ e Pdt = 0152/ s3(s—1+e %)ds
Blz—yl*

Blr —y|® — 1+ e Ble—vl” /°° 1 _
:c2ﬁ2 + 7(1—6 S)ds .
( Q(B‘x - y|a)2 Blez—yl| 252

Thus, similarly to the case d/a = 2, we have

I < Carag(0) /

|z—y|>

I < c3fPlog B + ca?(1 4 | log |z — yl| + Blz — y|*)
and we can conclude

Eg(z,y) < c1flog B + c28%(1 + |log |z — y|| + Blz — y|). O

3. Construction of compact operators and their principal eigenvalues.

Let V be a positive continuous function with support contained in {z : |z| < R} for
some R > 0. We define the bottom of the spectrum of the operator (1/V)H by

Ay = inf {e(u, W |uer., /R 2 (2)V (2)dz = 1} , (3.1)

where F. is an extended Dirichlet space, i.e., the family of m-measurable functions
such that |u| < co m-a.e. and there exists an £-Cauchy sequence {uy,} of functions in F
such that lim,_,c ty, = u m-a.e. For A > 0, we define the Schrédinger form £* and the
spectral function C()\) by

EMu,v) = E(u,v) — X y u(x)v(x)V (z)de,

C()) = —int {5)‘(u, w) ‘ weF, | w?(z)de = 1} . (3.2)

R4

LEMMA 3.1.  The function C(X) is positive if and only if X > \y.

PROOF. Suppose {X;};>0 is recurrent. Since 1 € F, and £(1,1) = 0, we have
Ay = 0. Let {u,} C F be an approximating sequence for 1 € F,.. For A > 0,

EMtn, tn) = E(tUn,un) — A | u(x)V(x)dz.
Rd
By Fatou’s lemma, we have

liminf [ w2 (2)V(z)dz > / V(z)dx > 0.

n—oo R4 R4

Thus, for large n € N, £y, u,,) < 0 and it follows that C()\) > 0.
Let {v,} be the normalization of {u,} in L?(R?). Noting that |ju,|2> — oo as
n — oo, we have



Asympotic behavior of resolvent kernels and spectral functions 685
E(vp,vp) =0 (n — 00).

Hence, C'(0) = 0 and the assertion follows. For transient {X;};>0, the assertion follows
from [10, Lemma 2.2]. O

For 8 > 0, we define Ag by

Ag = inf {Eg(u,u) ’ u € Fe, /Rd u?(2)V (z)dx = 1} . (3.3)

where Eg(u, u) = E(u, u) + B{u, u). In particular, Ag = Ay. The next lemma follows from
Rellich’s theorem [7, Theorem 8.6].

LEMMA 3.2.  For 8> 0, (F,&s) is compactly embedded into L*(V -m). If {X;}i>0
is transient, (Fe, &) is also compactly embedded into L*(V - m).

The next lemma gives a relation between (3.2) and (3.3).
LEMMA 3.3.  C(\) is the inverse function of Ag, i.e. C(Ag) = for 8 > 0.

ProoF. We first assume that 8 > 0. By the definition of Az, we have for h € F
Es(h,h) > Aﬁ/ R?(2)V (x)dz. (3.4)
]Rd

By Lemma 3.2, there exists an element hg in F which attains the infimum of the right
hand side of (3.3). Thus hg satisfies the equality in (3.4) and we have

EN (hg, hg) = fﬂ/ h3(x)dx. (3.5)
Rd

hg/||hgll2 attains the infimum of (3.2) and thus C(Ag) = S.

If {X:}4>0 is recurrent and 8 = 0, we have the assertion from C(0) = Ao = 0. If
{Xi}t>0 is transient and 8 = 0, we can prove that there exists an element hg in F. such
that

EX(ho, ho) =0

by the same argument as in 8 > 0. If hg € L2(R?), ho/||ho||2 attains the infimum of (3.2)
and C()\g) = 0. If hg ¢ L?(R?), let {u,} C F be an approximating sequence for hy. By
the definition of \g, we have

lim inf £2° (uy,, u,) > 0.

n—00

Moreover, Fatou’s lemma implies

limsupé')‘o (unaun) < 5)\0 (hOa hO) =0

n—oo

and thus, £ (u,,u,) — 0 as n — co. Noting that ||u,|/2 — oo as n — co by Fatou’s
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lemma, we see that

lim £ (v,,v,) =0,
n—oo

where {v,} is the normalization of {u,} in L?(R%). Thus, we have C()\g) = 0. O

REMARK 3.4.  We call the function hg(x) ground state of the Schrédinger operator
H*V = H — \yV. Takeda and Tsuchida [10] showed

c1(1A 2|2 < ho(z) < ea(1 A |z 9).
In particular, ho(z) € L?(R9) if and only if d/a > 2.

Define the operator Kz : L?(R%) — L?(R%) by

Kof@) = V@) [ Gole.n)V/ T Fwiy.

THEOREM 3.5.  For 8 > 0, the operator Kg is a compact operator. If {X;} is
transient, Ko is also compact.

PrROOF. Let f be in L2(R?). For B > 0, Gs(v/Vf) belongs to F. Since F is
compactly embedded into L?(V -m) by Lemma 3.2, K3 is a compact operator. If {X;};>0
is transient and 8 = 0, it is sufficient to prove that GB(\/Vf) belongs to the class F,
similarly to the case § > 0. We first show that Ky is a bounded operator. Since
supp[V] C {z | |z| < R} for some R > 0, we have

Ko@) < V(@) [ Ul =)Vl fldy

where U(x) = G(0,x) - 1{4j<2r}. Applying the Young inequality and the Holder inequal-
ity, we have

Hm/ U= y)VV )l f)ldy

< IVVIs U IVV ol fllz < 2l f]l2-
2

Hence || Ko f|l2 < cs]|f||2 and Kq is a bounded operator. If f is non-negative, G(v/V f)
satisfies

» VVF(x) - GWV f)(x)de = /Rd f(z) - Kof(z)dr < oo.

Hence, [3, Theorem 1.5.4] implies G(vV f) € F,. For general f € L*(R%), we have
f = f+ — f- for non-negative functions fi := f Vv 0 and f_ := —(f A0), and thus the
assertion holds. g

The following theorem describes a relation between the eigenvalue of Kz and the
bottom of the spectrum Ag.
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THEOREM 3.6.  The compact operator Kg admits the principal eigenvalue )\gl,

PrROOF. Note that
E5(hs.hs) = X [ B3V (@)do = AsEs(GlVha): ). (36)

Setting vg = )\51, we have

Es(Gp(Vhg) —vhp, hg) = 0.

Let kg be the function satisfying Gg(Vhg) = vshg + kg. Then we see that kg = 0.
Indeed, (3.3) implies

& (iohs + ks 9hs +K5) 205" [ (b (o) + ko) PV (@)
Noting that £s(hg, ks) = 0 and hy satisfies (3.6), we have
Es(kg, k) > 2/Rd hg()ks(x)V (z)dz +v5" /R k3 (z)V (z)dx
=285(G(Vhg), kp) + 75" /R k3 (2)V(2)dw
=285(kg, kg) + 75" /Rd k3 (2)V (x)da.

For 8 > 0 (resp. § = 0), F (resp. F) is a Hilbert space with inner product &g (resp.
&). Thus, we have kg = 0 and G3(Vhg) = yshs. Substituting gs = vVVhg, we see that
Kpggs = 7395 and v is the eigenvalue of Kg. If v53 were not maximum, there would be
gs € L*(R?) and 45 > v such that Kzgs = 4505. Set iLB = G3(VVjs). Then we see
that izﬁ € F, from Theorem 3.5 and thus

Es(hp, hp) =75 " E3(Gp(Vhg), hp)

= agl/ h2(2)V (z)dz < 751/ h%(2)V (z)dz.
Rd Rd
This is a contradiction to the minimum property of A\g = 'ygl. O

4. Asymptotics of spectral functions.

To know the behavior of the spectral function, we first consider the behavior of v,
the principal eigenvalue of K3. We give the asymptotic behavior of vg as 3 | 0 via the
asymptotic expansion for Kz obtained from the asymptotic expansion for Gg(z,y) in
Section 2.

LEMMA 4.1.  Suppose d =1 and 1 < o < 2, namely {X,}1>0 is recurrent. For
B 10, the principal eigenvalue vg satisfies
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Cy
= (1/a)-1 _
8 Oéblnﬂ'/aﬂ +0(1), Cv /RV(m)dx 1I<a<?2),
1
= %+0(1) (a=1).

Proor. For 1 < o < 2, the operator Kz satisfies

g(1/a)-1

Kg=—D1+D
P~ asinm/a 1+ L2,

where the operators Dy and D5 are defined by
D1 (@) = V@) [ VT (11)
D21 (@) = V@) [ Eslan) Vo (42)

Since Dy and D5 are bounded operators, this formula gives an asymptotic expansion for
Kjp. Indeed, for f € L*(R) it follows that

2
1Dy fI3 = / V() / V@) f(y)dy
< VI ( / \/V(y)lf(y)ldy> < IWVIBIFIE < erll £I2

dx

|a—1

and thus D; is a bounded operator. Since |Eg(z,y)| < c1]z — y|*~ ", we have

D2 f(2)] < 1/ V(z) / Ul — )V @) (v)ldy,

where U(x) = 1{z/<2ry|2|*~*. Applying the Young inequality and the Holder inequality,
we have

HW/RU('W)WU@M@ 2

Hence D, is a bounded operator.

Let g be the principal eigenvalue of K3 and gg be the corresponding eigenfunction.
Note that gg = VV hg for some hg € F. Using the Schwartz inequality, we have for
heF

(VT h, Dy (vVh)) (/v ) < /RV(y)dy/RV(y)h2(y)dy. (4.3)

Thus, we see that

< IVVIslUIIVV el £llz < 2l fll2.

Cy

asmﬂ/aﬁ(l/a) F+0). (4.4)

V5 <
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Furthermore, there exists hy € F such that ho(z) = 1 on the support of V(z), since
C&°(R) is dense in F = H®/2(R). Here C§°(R) is the family of infinitely differentiable
functions with compact support. Then, hg is an element which attains the equality in
(4.3) and we have

C

— Vg1 L o1). (4.5)

>
7= asinm/a

Combining (4.4) and (4.5), we have the desired result.
Suppose a = 1. Kj satisfies

1 —1
Ks = ng Dy + Dy

for Dy and Dj defined by (4.1) and (4.2). Similarly to the case 1 < o < 2, we obtain the
desired assertion. O

Setting v; ' = 0 for convention, we see that 7/;1 is the inverse function of the spectral
function C'(A) for 8 > 0.

If {X;}¢>0 is transient, we obtain the asymptotic expansion for vz by the first order
perturbation theory of compact operators in Kato [4].

LEMMA 4.2.  Suppose d/a > 1, namely {X;}i>0 is transient. For B | 0, the
principal eigenvalue g satisfies

21_d7r1—(d/2)<\/‘77\/vh0>2
(d/2)sin(((d/a) — 1)7)(v'Vho, V'V o)
21_d7r_d/2<\/‘7’\/‘7h0>2 og B~ Y +o(Blog Bt a=
ot (Y VhoV/Thgy 1088 HolBlogf™) (d/a=2)

(ho,ho) . .
<)\V\/Vh07)\v\/x7h0>ﬂ+ (B) (d/a>2).

PROOF. Suppose 1 < d/a < 2. By (2.15), the operator Kg admits the asymptotic
expansion as follows:

Bld/)=1 4 o(Bd/)=1y (1 < d/a < 2),

75_%_041“

Y8 =" —

Y8 =" —

9l—d 1 (d/2)

Kz =Ky — ﬁlﬁ(d/a)_lDl + Do, K1 = al (d/2)sin(((d/a) — 1))’

where the operators Dy and D5 are defined by
D1 (@) = V7@ [ V) )y, (1.6
D21 (@) = VT | Bale.s) V) (@7
We first consider the principal eigenvalue of the operator Ko — k13 ~1D;. Since

Ky is a compact operator and D; is a bounded operator, we can apply [4, Theorem
VIII.2.6]. Recall that g is the principal eigenvalue of Ky and vV hg is the corresponding
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eigenfunction, where hg is the ground state for the Schréodinger operator H — Ay V. Let
P be the projection operator defined by

<f7 \/Vh0> x
(VVho, VVh) VVho().

Then the eigenvalue of the operator PD1P considered in the principal eigenspace is
calculated by

Pf(x) =

(PD1P(\VVho),VVhe)  (VV,VVhy)?

(VVho, VVho) (VVho,NVho)

Thus, the principal eigenvalue of Ky — r18%*~1D; admits the asymptotic expansion as
follows:

. (VV,V/Vho)?
10 Vo ho, vV ho)

Furthermore, similarly to Lemma 4.1, Eg(z,y) < ¢ 8|z—y[?**~? implies that the operator
norm of Dy is dominated by c23. Hence, vz satisfies

_ — K <\/V7\/‘7h0>2
T W hoy Vo)

Suppose d/a = 2. By (2.16),

Bt/ =1 | (gld/e-1),

Blfe)=1 4 o(gld/e)=1).

ol—d —d/2

Kg = Koy — kofBlog 7Dy + D ="
8 o — k2fBlog B 1+ D, K2 NCESIR

where Dy and Do are defined by (4.6) and (4.7). Thus, the principal eigenvalue of
Ko — kofSlog 71D, admits the asymptotic expansion

— K <W7Wh0>2
70 A ho Vo)

Furthermore, noting that the operator norm of Dy is dominated by ¢, 8 from the estimate

Blog B~ + o(Blog B71).

of Eg(x,y) in Theorem 2.4, we obtain the desired formula.
Suppose d/a > 2. By (2.17),

Kg = Ko — 8Dy + Dy,

where D1 is defined by
Duf(@) =V [ G T, Glen) = [ it

and Dy is defined by (4.7). We see that D is a bounded operator. Indeed, G(z,y) =
cilr — y|?*~¢ and supp[V] C {x | |z| < R} imply ||D1f|l2 < ca|[Kofl|l2. Thus, the
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principal eigenvalue of Ky — D7 admits the asymptotic expansion

_ (PDP(V'Vhy),VVh)
’YO (VVho,V'Vho)

B+ o(B).

Note that the operator H~2 = G2 has the integral kernel G(z, y) since the operator e~ *H

has the integral kernel p(t, z,y). Hence we have

(PD1P(VVho),VVho) = (VVG?(Vhg), VV he)

(G(Vho),G(Vho)) = Ay (ho, ho).

Furthermore, we see that the operator norm of Dy is dominated by ¢; 3(#/®)=DA3/2 from
the estimate of Eg(x,y) in Theorem 2.4. Hence 74 satisfies

(ho, ho)
AV Vho, Ay V'V h)

VB =Y — B+ o(B). U

(Proof of Theorem 1.1)
The asymptotic behavior of 4 is given in Lemmas 4.1 and 4.2. The spectral function
C() is the inverse function of 'ygl = Mg and we have the desired result.

REMARK 4.3. Let &9 be the Dirac measure at the origin. In [8] the principal
eigenvalue of (—A)%/2/2 — \§; is calculated for d = 1 and 1 < o < 2, which is consistent
with Theorem 1.1.
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