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Abstract. We provide characterizations for boundedness of multilinear
Fourier multiplier operators on Hardy or Lebesgue spaces with symbols locally
in Sobolev spaces. Let H?(R"™) denote the Hardy space when 0 < ¢ < 1 and
the Lebesgue space L7(R™) when 1 < ¢ < co. We find optimal conditions on
m-linear Fourier multiplier operators to be bounded from HP1 x --.x HP™ to
LP when 1/p = 1/p1+---+1/pm in terms of local L2-Sobolev space estimates
for the symbol of the operator. Our conditions provide multilinear analogues
of the linear results of Calderén and Torchinsky [1] and of the bilinear re-
sults of Miyachi and Tomita [17]. The extension to general m is significantly
more complicated both technically and combinatorially; the optimal Sobolev
space smoothness required of the symbol depends on the Hardy—Lebesgue ex-
ponents and is constant on various convex simplices formed by configurations
of m2™~! 4 1 points in [0, c0)™.

1. Introduction.

We denote by T, the linear Fourier multiplier operator, acting on Schwartz functions
f, defined by

T.(H) = [ olefe)em=< s (1)

where o is a bounded function on R™ and ]?(5) = [ f(@)e™?™ "8 dz denotes the Fourier
transform of f. Hoérmander [15] proved that T, is bounded from LP(R™) to itself for
1 <p<ooif

sup Ha(2j~)$H < oo (1.2)
jez we

for some s > n/2, where {/; is a smooth function supported in 1/2 < |£| < 2 that satisfies

w2 =1

JEZ

for all £ # 0. In this paper, W* denotes the Sobolev space with norm
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lgllw= = I(T = A)*"2g]l 1,

where I is the identity operator and A = Z?Zl (‘9]2- is the Laplacian on R™. Hormander’s
result strengthens an earlier result of Mikhlin [19].

Throughout this work, H?(R™) denotes the real-variable Hardy space of Fefferman
and Stein [4], for 0 < p < oo. This space coincides with the Lebesgue space LP(R™) when
1 < p < oo. Calderén and Torchinsky [1] provided an extension of Hérmander’s result
to HP(R™) for p < 1. They showed that the Fourier multiplier operator in (1.1) admits
a bounded extension from the Hardy space HP(R™) to HP(R") with 0 < p <1 if

sup oo, <o
and s > (n/p) — (n/2). Moreover, the boundedness of T, on HP may not hold if s <
(n/p) — (n/2); in other words, the Calderén and Torchinsky condition s > (n/p) — (n/2)
is sharp (for this, see for instance [17, Remark 1.3]).

In this work we study analogues of these results for multilinear multipliers defined
on products of Hardy or Lebesgue spaces on the entire range of indices 0 < p < oo.
Multilinear multiplier operators were studied by Coifman and Meyer [2], [3], [16] and
more recently by Grafakos and Torres [14]. Multilinear Fourier multiplier is a bounded
function ¢ on R™® = R™ x ... x R" associated with the m-linear Fourier multiplier
operator

To(five s fm)@) = [ @O (6 )R Talen) (1)

where f; are in the Schwartz space of R" and dg: d&y - - dép,.

A short history of the known results concerning multilinear multipliers with minimal
smoothness is as follows: Tomita [22] obtained LP* X --- x LPm — LP boundedness (1 <
Diy- -y Pm,p < 00) for multilinear multiplier operators under condition (1.2). Grafakos
and Si [12] extended Tomita’s result to the case p < 1 using L"-based Sobolev spaces
with 1 < r < 2. Fujita and Tomita [6] provided weighted extensions of these results
and also noticed that the Sobolev space W* in (1.2) can be replaced by a product-type
Sobolev space W (s1:5m) when p > 2. Grafakos, Miyachi, and Tomita [10] extended
the range of p in [6] to p > 0 and obtained the boundedness even in the endpoint case
where all but one indices p; are equal to infinity. Miyachi and Tomita [17] provided
sharp conditions on the entire range of indices (0 < p; < c0), extending the Calderén
and Torchinsky [1] result to the case m = 2.

In this work we provide extensions of the result of Calderén and Torchinsky [1]
(m = 1) and of Miyachi and Tomita [17] (m = 2) to the cases m > 3. We point out that
the complexity of the problem increases significantly as m increases. In fact, the main
difficulty concerns the case where 1 < p; < 2, in which the boundedness holds exactly in
the interior of a convex simplex in R™. This simplex has m2™~! + 1 vertices but it is
not enough to obtain the corresponding estimates for the vertices of the simplex, since
interpolation between the vertices does not yield minimal smoothness in the interior. We
overcome this difficulty by establishing estimates for all the points inside the simplex
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being arbitrarily close to those m2™~! 4 1 points without losing smoothness.
Before stating our main result we introduce some notation. First, for z € R™ we set
= /1+|z[2. For s1,..., s, > 0, we denote by W(1:5m) the product-type-Sobolev
space consisting of all functions f on R™” such that

-~

9 1/2
Fyi, - ym) W)™ - (ym) ™" dy1---dym> < .

Notice that W (1-5m) is a subspace of L2.
We also denote by 1 a smooth function on R™" whose Fourier transform  is sup-
ported in 1/2 < |€| < 2 and satisfies

Y@ =1,  £#0.

JEZ

The following is the main result of this paper. It concerns boundedness of operators
of the form (1.3) on products of Hardy spaces in the full range of indices.

THEOREM 1.1. Let 0 < p1,...,pm <00, 0 <p < oo, 1/p1+ -+ 1/pm = 1/p,
S1y..+y8m > n/2, and suppose

S0 ) =

for every nonempty subset J C {1,2,...,m}. If o satisfies

—supH (27.) d)H < 00, (1.5)
jEZ Wisi,-o Sm,)
then we have

||T0'HHP1 XX HPM — [P S A (16)

Moreover, this result is optimal in the sense that if (1.5) and (1.6) are valid then we
must necessarily have sy, ..., Sy, > n/2 and

ICRIES o)
keJ
for every nonempty subset J of {1,2,...,m}.
REMARK 1.2.  This paper is a sequel of [13] for the following reasons:
(1) The case p; <1 for all 1 <1 < m is contained in [13].

(2) The endpoint case of Theorem 1.1 in the case where p; = p = oo for all i €
{1,...,m} is proved in [13]:



532 L. GRAFAKOS, A. Mr1vacHl, H. VAN NGUYEN and N. ToMmITA

T Fudllneo S 300 0@ 05 TS

for s1,...,8m > n/2.

for the entire range of indices 0 < p; < 00, 0 < p < o0.

(3) The necessity of the conditions s; > n/2 and (1.7) was shown in [13, Theorem 5.1]

We will consistently use the notation A < B to indicate that A < CB for some
constant C' > 0, and A~ B if A < B and B < A simultaneously.

The paper is structured as follows. Section 2 contains preliminaries and known
results. In Section 3, we give the proof of the main result by considering four cases. In
Section 4, we present detailed proofs of the lemmas used in Section 3. In the last section,
Section 5, we give a result concerning the space L' and weak type estimate.

2. Preliminaries and known results.

Now fix 0 < p < co and a Schwartz function ® with 6(0) # 0. Then the Hardy space
H? contains all tempered distributions f on R™ such that

< 0.

1 llge = ]
0

sup | s * f]
<t<oo Lp

It is well known that the definition of the Hardy space does not depend on the choice
of the function ®. Note that H? = LP for all p > 1. When 0 < p < 1, one of nice
features of Hardy spaces is their atomic decomposition. More precisely, any distribution
f € H? (0 < p < 1) can be decomposed as f = >, Agap, where a;’s are L>-atoms
for H? supported in cubes Q) such that ||ag| e < |Qk|71/p and [27ag(x)dr = 0 for
all |y| < N, and the coefficients Ay satisfy Y., [Ae|” < 27|/ f||%,. The order N of the
moment condition can be taken arbitrarily large.

A fundamental L? estimate for T, is given in the following theorem.

THEOREM 2.1 ([10]). Ifs1, ..., Sm > n/2, then

||T<T||L’f-’><L°°><--~><L°°*>L2 S Csup H0.(2j.)w H

jEZ W(s1:--28m) ’

The following two lemmas are essentially contained in [17], modulo a few minor
modifications.

LEMMA 2.2 ([17]). Let m be a positive integer, o be a function defined on R™",
and K = oV, the inverse Fourier transform of o. Suppose that o is supported in the ball
{yGRm” 2yl §2} and suppose, s; > 0 for 1 <i<m and 1 <p < g <oo. Then for
each multi-index « there exists a constant C,, such that

[y ym) ™™ g KW Lo gmn g g,y < Co W)™ m) ™™ K@) o g, ayy -y

where y = (y1,...,Ym) with y; € R™.
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LEMMA 2.3 ([17]). Let s; > n/2 for 1 < i < m, and let C be a smooth function
which is supported in an annulus centered at zero. Suppose that ® is a smooth function
away from zero that satisfies the estimates

080 (6)| < Cale) 1

for all £ € R™™ & # 0, and for all multi-indices cv. Then there exists a constant C' such
that

sup HJ(QJ‘.)Q)(QJ’.)EH < CsupHa(QJ‘.)QZH

jGZ W(s1,--8m) jGZ Ws1:o sm) ’

Adapting the Calderén and Torchinsky interpolation techniques in the multilinear
setting (for details on this we refer to [10, p. 318]) allows us to interpolate between two
estimates for multilinear multiplier operators from a product of some Hardy spaces or
Lebesgue spaces to Lebesgue spaces.

E<m.For0<6<1,setl/p=(1-0)/p1+0/p2, 1/px = (1 —0)/p1r +6/p2, and
sp = (1—0)s1 ,+0s2 k. Assume that the multilinear operator T, defined in (1.3) satisfies
the estimates

THEOREM 2.4 ([10]). Let 0 < p;,pix < 00 and s;; > 0 fori = 1,2 and 1 <

||T0||Hpi,1X,,.XHPi,,m,*)Lpi S Cl sup O’(2j-)w
jEZ
Jje

where LP¢ should be replaced by BMO if p; = co. Then

HTUHHm oo X HPm —s P < CS_UIZ) H0(2j~)¢ H
je

where LP should be replaced by BMO if p = co.

Fix a Schwartz function K. We denote the multilinear operator of convolution type
associated with the kernel K by

TK(fl’ Tt fm)(x) = K(Jj Y., T ym),fl(yl) e fnL(ynL)dyl ce dym
R7YL’!L
The following result can be verified with a very similar argument to that in [13, Propo-
sition 3.4].

ProprosiTiON 2.5. Let 0 < p1,...,pp < 1 and 1 < piy1,...,pm < 00. Let K
be a smooth function with compact support. Suppose f; € HPi, 1 < i < [, has atomic
representation f; = ka Aik; Qi ks » Where a; i, are L™ -atoms for HP and Zkl ik, |7 <

25 || fill%s. . Suppose fi € LPi for 1 +1<i<m. Then
TE(fryes fm) (@) = Z : "Z)\l,kl A T @y s gy, frans - fn) (2)
k1 ki

for almost all x € R™.
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We also use the following lemmas.

LEMMA 2.6 ([9, Lemma 2.1]). Let 0 < p < 1 and let (fg)ges be a family of
nonnegative integrable functions with supp (fg) C Q for all Q € J, where J is a family
of finite or countable cubes in R™. Then we have

d o fol| = \QI/fQ dw ;

Qe |1 QeJ o
where the implicit constant of the inequality depends only on p.
LEMMA 2.7 ([10, Lemma 3.3]). Let s > n/2, max{1l,n/s} < ¢ < 2, and
Gila) =2""(1+ |2z])™*9, j€Z, =xeR"

Suppose o € W3)(R™) and suppo C {|¢| < 271} for some j € Z. Then there
exists a constant C' > 0 depending only on m, n, s, and q such that

ITo (frsee s ) @] < Clo (@) e (G # LA @)Y (G # | ] ()
for all x € R™.

LEMMA 2.8 ([10, Lemma 3.2]). Let ¢ € S(R™) be such that (0) =0, and set

~

8if(w) = [ T piofied, e, (21)

Let € > 0 and ¢;(z) = 27" (1+ |2jm|)’”*e, jE€Z, x € R"™. Then the following inequalities
hold for each 0 < q < 2:

3 / 1A, £ (@) dz < Ol |2, (2.2)
JEZ
3 / C LD @2C * 18,91 (@) de < Clf1RalglBmo.  (23)
JEZ

LEMMA 2.9. Suppose {F;} C S'(R"™) and suppose there exists a constant B > 1
such that supp F; C {¢ € R™ | B71279 < |[¢| < B2} for all j € Z. Then, for each
0 <p<oo,

sr| 5| (Zme)”

J Hr J Lp

The preceding lemma is well known in the Littlewood—Paley theory, see for example
[23, 5.2.4] and [8, Lemma 7.5.2].
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3. The proof of the main result.
In this section, we prove the main theorem by considering four cases.

3.1. Thefirst case: 0 < p; <1,1 <7< m.
This case is a consequence of the following result established in [13]:

THEOREM 3.1 ([13]). Letn/2 < s1,...,8m <00, 0<p1,...,pm <1, and 1/p1 +
-+ 1/pm = 1/p. Suppose (1.4) holds for every nonempty subset J of {1,2,...,m}.
Then (1.6) holds.

3.2. The second case: 0 < p; < 1 or p; = oo.

THEOREM 3.2. Let n/2 < s1,...,8m <00, 0 < p1,...,p0 < 1,1 <1l < m, and
1/p1+---4+1/p = 1/p. Suppose (1.4) holds for every nonempty subset J of {1,2,...,1}.
Then

||TU||HP1><---><HP1><L°°>< ‘X Lo —LP NSUpH 2] wH S1heesm) (3.1)
JEZ Ws1-sm)

PrROOF. The proof of this theorem is similar to the proof of Theorem 3.1 given in
[13].

By regularization (see [13, Section 3]), we can always assume that the inverse Fourier
transform of ¢ is smooth and compactly supported. The aim is to show that

o (frse s Fdlle S ANFlon - Wil TT WFill e (32)
i=l41

Fix functions f; € HPi. Using atomic representations for HPi-functions, write

fz: ZAi,kiai,k“ 1§’LSZ,
ki, €Z

where a; 1, are L°°-atoms for H?* satisfying

supp (ai,ki) - Qi,ki? ‘

,I/Pi’ / xaai,ki(x)dx =0
ik

for [a] < N; with N; large enough, and Y7, [k, " < 27 || fill}
For a cube @ we denote by @Q* its dilation by the factor 2y/n. Since K = ¢V is
smooth and compactly supported, Proposition 2.5 yields that

Ta(f17~-~7fm) _Z Z)‘lkl Alkl (alk17'"7al,klafl+17~-~7f’m)(x)

k1

for a.e. € R™. Now we can split T, (f1,..., fm) into two parts and estimate

To(f1s- -5 fm) (@) < Gi(2) + Ga(2),

where
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= Z t Z |)\1,k1‘ to |)‘l,kl||T6(a1,k17 sy ALk flJrlv tr fm)|XQ’{klﬁﬂQl*’kl

and

=> - Zl)\uﬁ A To (@ ks ks s - fm)IXG@s, nn@7 )0
ko

The first part G1(z) can be dealt via the argument in [9] (reprised more clearly in
[13]). Suppose the cubes Q7 ,..., Qj, satisfy Q7 ,, N---NQ,, # (). From these
cubes, choose a cube that has the minimum sidelength, and denote it by Ry, . . Then

ey

Qi,kl N Ql & C R,k C Ql ey (10 szjcz’

ok

where Q. denotes a suitable dilation of ()}, . We shall prove

1

Ri |Ta’(a1,k17'"aal,kmfl—i-l""afm)(z”dx
‘ ky,. kz‘ Riy,.

m

<AH|sz T il e - (3.3)

i=l+1

To show this, assume without loss of generality Ry, .k = @7, Theorem 2.1 gives us

/ |Tg(a1,k1,...,alykl,le,...,fm)(:c)|d:c
Riy,... 0k
1/2
S HTa(al,kla ey al,kz7fl+1u sy fm)HL2 |Rk1’~~,kl|

IT 17l

l
1/2
S ARy i Nlar s 1 [

1=2 i=l+1
1/2 1/2 —1/p;
< ARy, i) ?1Qu [V HIQz k| P H I fill o
=1 i=l+1
—1/p;
< AlRy,,.. kl|H|@m| /7 H 1 £ill oo »

i=Il+1

which implies (3.3). Now using Lemma 2.6, the estimate (3.3), and Holder’s inequality,

we obtain
ISTE

></ |T0'(a1,k1a"'7al,kz7fl+1a"'7fm)(x)|dx
Ry, k Lr

(HIA v TT 150,

km i=Il+1

Gl <

Lp
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l m
—1/p;
(S hnr e )| T 15
i=1 N ky e i=l+1
l m
—1/p;
<ATTIDC i 1@k, |7 XQ:s, 1T I#ill
i=1 || ks Lo i=l+1
l m
SATT e TT Il -
i=1 i=l+1
Thus we have
1Gille S Allfillger - I fmll zrom - (34)
Now for the more difficult part, Ga(), we first restrict z € (47 Q7 ,)\(Uies @i x,)
for some nonempty subset J of {1,2,...,1}. To continue, we need the following lemma
whose proof is given in Section 4.
LEMMA 3.3. Let n/2 < $1,...,8m < 00, 0 < p1,...,p; < 1,1 <1 < m, and

suppose (1.4) holds for all J C {1,...,l}. Let o be a function satisfying (1.5). Suppose
a;, 1 <i <1, are HP* atoms supported in the cube Q; such that

P A .
for all |a| < N; with N; sufficiently large. Fiz a non-empty subset Jo of {1,...,1}. Then

.....

(pi)izl,...,m; ag, JO; Ni: and Qi7 and
|Ta'(a17 <o Qg fl+13 ey fm)(.’IJ)| 5 Ab]({E) te bl(CU) Hfl+1HLoo e Hfm”Loo
for all z € (ﬂi@o Qi) \ (Uie]a Q7), and [|bill p, ST, 1< <1
For each nonempty subset J of {1,2,...,1}, Lemma 3.3 guarantees the existence of
positive functions bi’,klv ceey bi],kl depending on Q1 x,, ..., Q1 k, respectively, such that
o0
To(ar ks sk frons oo )| S AD -0, T Ifill
i=l1+1

for all z € (¢ ; Qi k) \ (Uies @i x,) and ||bZ]kHLp1 < 1. Now set

biw = > by
0#£JC{1,2,...,l1}
Then

%)
|To'(a1,k71 PR al7kz7fl+17 ey fm)|X(Q9{,k1m"'mQ;kl)c 5 AbLkl o bl,kl H ||f’L||Loo (35)
i=l+1
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and ||b; ||, S 1. Estimate (3.5) yields

l
Ga(x) S AT] (Z | Ai i
i=1 k

1

bzk(x)> H | fill oo -

i=l+1

Then apply Holder’s inequality to deduce that

||G2||Lp S A ||f1||HP1 ||fl||Hm H Hf2||L°° : (3-6)
i=1+1
Combining (3.4) and (3.6), we obtain (3.2) as needed. This completes the proof. O

3.3. The third case: 0 < p; <1lor 2 < p; < oo.

THEOREM 3.4. Letn/2 < 81,...,8m <00, P1,.-.,Pm € (0,1]U[2,00], 0 < p < 00,
and 1/pr+---+1/pm = 1/p. Assume there exists at least one index i such that p; € (0, 1]
and also assume the condition (1.4) holds for every nonempty subset J of {1,2,...,m}.
Then (1.6) holds.

PrOOF. In addition to the assumptions of the theorem, we also assume there
exists at least one 7 such that p; € [2,00), since otherwise the claim is already covered
by Theorem 3.1 or Theorem 3.2. Thus without loss of generality, we may assume that
0<pi,e oo, €L, 2<prg1,..,Pp <00, Ppgp1 = -+ =Py =00, 1 <1 < p<m, and
1/p1+---+1/p, =1/p. Our goal is to establish the estimate

||TO'HHP1><...><H:D1XLPI,+1X...XLP;)XLOOX...XLOO*)LP SSUP“U(Qj')iﬁ“ . (37)
Jez W(s1ses sm)
Assume momentarily the validity of the following estimate
||TUHHP1><~--><HPZ><L2><---><L2><L°°><-~-><L°°*>LP ,SsupHO'(Qj-)¢H ) Nt (3'8)
jGZ W(él ----- sm)

(p—1)— times (m—p)— times

Then using Theorem 2.4 to interpolate between (3.8) and (3.1), we obtain the estimate
(3.7) as required. (In fact, since the condition (1.4) with (p;)i=1,...m in the estimates of
(3.1), (3.7), and (3.8) gives the same restriction on (s;)i=1,...,m, in order to deduce (3.7)
from (3.8) and (3.1), we may fix (s;);=1,....m and could use the usual real or complex
interpolation for linear operators.) Thus it suffices to prove (3.8). In the rest of the
proof, we assume pj41 =--- =p, = 2.

Before we proceed to the proof of (3.8), we shall see that it is sufficient to consider
o that has support in some cone. To see this, for n = (91,...,9m) € R™" consider
the m + 1 vectors mi, ..., Nm, Tmt1 = Doy M € R™. If 1 belongs to the unit sphere
Y ={neR™ : |n| =1}, then at least two of these m + 1 vectors are not zero. Hence,
by the compactness of 3, there exists a constant a > 0 such that X is covered by the
(m;'l) open sets

V(kl,kig):{nEZ: |nk1| > a, ‘771@2‘ >CL}, 1<k <ky<m+1.
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We take a smooth partition of unity {@k, k, } on X such that supp ¢k, k, C V(k1, k2) and
decompose the multiplier o as

o(§) = Yo ekl = D kw9

1<ki<ka<m+1 1<k1<k2<m+1
Then
SUPP Ok, ky C T(V (k1 k) = {€ € R™ A\ {0} = £/[E] € V(K k2)}

and Lemma 2.3 gives

A < A
) COYSCRT It CICOTE I

The estimate (1.6) follows if we prove it with o, x, in place of . This means that it is
sufficient to prove (1.6) under the additional assumption that

suppo C I'(V(k1, k2)) (3.9)

for some 1 < k1 < ko <m + 1.
To simplify notation, we also assume

Jeb [o2],......, =1 (3.10)
and write
0= 05 0;(§) =o(©)P(27%). (3.11)
JEZL

We shall divide the proof into two cases. First case: o satisfies (3.9) with 1 <k <
ko < m. Second case: o satisfies (3.9) with 1 < k; < m and ks = m + 1. In the first
case, we shall directly prove the estimate

m

1To(frs o fdllLe S H 1 fill o - (3.12)

In the second case, we shall use a Littlewood—Paley function. Notice that, in the second
case, the support of the Fourier transform of T, (f1,..., fi) is included in the annulus
{¢ e R": B7127 < |¢] < B2’} with some constant B > 1. Hence, by Lemma 2.9, we
have

1/2
o (Froe s o)l < (ZmJ fl,_,,7fm)’2) , (3.13)

JEZ p

Thus, in the second case, we shall consider the function
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1/2
GTo(fla"'7fm) = <Z|chj(fla---7fm)’2>

JEZ

and prove the estimate

HGTU(flw-wfm)”Lp SH”JCz”HPL ’ (3-14)
i=1

which combined with (3.13) implies (3.12).
The essential part of the proofs of (3.12) and (3.14) are given in the following two
lemmas.

LEMMA 3.5. Letn/2 < s1,...,8n <00, 0<p1,....,; <1, ppy1 =---=p, =2,
Ppt1 = - = Pm = 00, 1 <1 < p < m, and suppose (1.4) holds for every nonempty
subset J of {1,...,1}. Let a;, 1 <i <1, be HPi atoms such that

suppa; C Qi, laill oo < |Qi|71/pi, /ai(x)xo‘ dz =0

for |a| < N;, where N; is a sufficiently large positive integer and @Q; is a cube. Let
fists-os fo € L% and foq1,..., frm € L. Finally suppose o satisfies (3.10) and (3.9)

with some 1 < ki < ko < m. Then there exist functions by,...,b; and fi41,..., f, such
that
l P m
|T0'(a17'"aalafl+1""7fm H Z H fl( ) H ||leL°°7 (315)
i=1 i=l+1 i=p+1

the function b; depends only on m, n, (8i)i=1,...m, (Di)i=1,...m, O, &, a;, and
(fi)i=p+1,...,m; the function fi depends Only onm,mn, (Sz)z 1,...,m;» i, fi; and (fi)i=p+1,4..,m
and they satisfy the estimates ||b;||;», S1 and I fillze < [l fill 2

LEMMA 3.6. Let s;, p;, a;, and f; be the same as in Lemma 3.5. Suppose o satisfies
(3.10) and (3.9) with some 1 < ky < m and ks = m + 1. Then there exist functions
bi,...,b; and fi4q1,..., f, that satisfy

1 P m
GTa(ala"'7al7fl+17"'afm Hbz H fl( ) H ||f1||L°°
i=1 i=l+1 i=pt1

and have the same properties as in Lemma 3.5.

The proofs of these lemmas will be given in Section 4. We shall continue the proof
of Theorem 3.4. To utilize the above lemmas, we decompose f; € HPi, 1 < i <, into
atoms as f; = Zkiez i ki @ik, With A, , a4 k;, and the cubes @Q; i, being the same as in
the proof of Theorem 3.2.

Consider the first case where o satisfies (3.9) with 1 < k; < ko < m. In this case,
Lemma 3.5 yields functions b; i, (1 <i <, k; € Z) and fi (1+1 < i < p) such that
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l P ~ m
I To@ry - arms fiens - fo) @) S T [0 @) - T fit@) - TT Il
i=1 i=l+1 i=p+1

i S 1and I fillze < | fill .2 Notice that b; r, do not depend on k; with j # ¢
and f; do not depend on kq,...,k;. Hence, by the multilinear property of the operator
T,, we have

l P _ m
T (froeos f) @IS D> P Mgl [ [ oo @) - [T fi@)- [T £l
k1 kq i=1

and ||b; k,

i=l+1 i=p+1
l b m
=H(Z|Ai,ki bi,ki<x>)~ 1 7 T 160~
i=1 N Ky i=l+1 i=pt1

(We omit a necessary limiting argument to treat the infinite sum, which could be achieved
with the aid of Proposition 2.5.) For 1 < ¢ <, we have

Z |/\i7ki | bi,ki
ki

pi

< Z |/\i,ki|pi ||bl7kz| Izm SJ Z |)‘i7ki|pi S ||fl| Z;Iil’i .
k; ki

LPi

The above pointwise inequality and Holder’s inequality now give (3.12).
Next consider the second case where o satisfies (3.9) with 1 < ky < m and ko = m+1.
By the sublinear property of square function, we have

GTG(flv"'vfm)(x) < Z"'Zp‘l,kl "'>‘l7kz|GTU(al,klv"'7al7kzafl+17'~~,fm)(x)‘
k1 k;

(Again we omit the necessary limiting argument.) Hence, using Lemma 3.6 and arguing
in the same way as in the first case, we obtain (3.14). Thus the proof of Theorem 3.4 is
reduced to Lemmas 3.5 and 3.6. (]

3.4. The last case: 0 < p; < oo.

In this subsection, we shall prove the estimate (1.6) for the entire range 0 < p; < co.
Since the necessity of the conditions s; > n/2 and (1.7) has already been shown in
[13, Theorem 5.1], this will complete the proof of Theorem 1.1. To simplify notation, we
use the letters s and p to denote (s1,...,8y,) and (p1,...,Pm), respectively.

We shall slightly change the formulation of the claim of Theorem 1.1. We assume
0<p1,...,pm < 00,

00 > 81,...,8m > n/2, (3.16)

and assume they satisfy (1.7) for every nonempty subset J of {1,...,m}. We shall prove
the estimate

”TUHHM XX HPm — [P S SuIZ HU(2J)¢H W(s1+e,....sm+e) (317)
VIS

holds for every € > 0, where 1/p = 1/p1+---+1/py, and the space L? should be replaced
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by BMO if p1 = -+ = p;, = p = 00. This is equivalent to the estimate given in Theorem
1.1. The proof will be given in two steps.

In the first step, we fix s satisfying (3.16) and consider the set A(s) that consists
of all (1/p1,...,1/pm) € [0,00)™ such that the condition (1.7) holds for every nonempty
subset J of {1,...,m}. We prove the following lemma.

LEMMA 3.7.  If s satisfies (3.16), then A(s) is the convex hull of the point (0,...,0)
and the points (1/p1,...,1/pm) that satisfy

1/pi =0 or1l/p,=s;/n orl/p; =s;/n+1/2 for all i, (3.18)

and
1/p; = s;/n+ 1/2 for exactly one i. (3.19)
PrOOF. Fix s = (s1,...,8,) such that s; > n/2 for all 1 < ¢ < m. Condition

(1.7) gives a clearer presentation of the set A(s) as

1 1 [T 1 i 1

) )
D1 Pm ieJ

where J runs over all non-empty subsets of {1,...,m}. We let H denote the convex hull
of (0,...,0) and of all the points (1/p1,...,1/pm) that satisfy (3.18) and (3.19). We will
show that A(m,s) = H by induction in m.

The case when m = 2 is trivial because A(2,s) is the convex hull of the following
points (0,0), (s1/n+1/2,0), (s1/n+1/2,s2/n), (0,s2/n+1/2) and (s1/n, s2/n+1/2);
hence, the statement of Lemma 3.7 holds obviously in this case.

Now fix an m > 2 and suppose that the statement of the lemma is true for m — 1.
For 1 < k < m, denote

1 1 Sk
Akm,.s:{ — ..., — ) €A(m,s :O<<},
( ) <p1 pm> (m ) a -
1 1 1
k _ . —
Fo(m7s)—{(pl,...,pm)GA(m,s). pk—O},

F{f(ms):{(l i) € A(m, s) : 1:3’“}7

D1 ’ Pm

and

A%(m,s) = {(1,...,1> € A(m, s) :
Y41 Pm
It is easy to see that A(m, s) = |y, A*(m, s). We observe that H is a subset of A(m, s),
since each vertex of H obviously sits inside the convex set A(m, s). Thus, it suffices to
prove that A¥(m, s) is a subset of H for every 0 < k < m.
We first consider A¥(m, s) for 1 < k < m. By induction, the face F}(m, s) is the
convex hull of the following points (0,...,0) and (1/p1,...,1/pm), where 1/p; = 0,
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1/pi € {0,s;/n,s;/n+1/2} for i # k, and there exists exactly one i # k such that
1/p; = s;/n + 1/2. Similarly, the face Ff(m,s) is determined by the same constraints
for all variables 1/p;,i # k as those for F¥(m, s). Therefore, by induction, we have that
FF(m,s) is the convex hull of the points (0,...,0,sx/n,0,...,0) and (1/p1,...,1/pm),
where 1/p,, = si/n, 1/p; € {0,8;/n,s;/n+1/2} for i # k, and there exists exactly one
i # k such that 1/p; = s;/n + 1/2. Note that the point (0,...,0,s;/n,0,...,0) belongs
to the line segment that joins the origin (0,...,0) with (0,...,0,sx/n 4+ 1/2,0,...,0).
Thus F¥(m,s) and Ff(m, s) are contained in H, and hence, A*(m, s) is a subset of H
since A¥(m, s) is a convex hull of two faces F¥(m, s) and FF(m, s).

It remains to check that A%(m,s) C H. In this case, we note that the constraints
0<1/pi—si/n<1/2, ¥1<i<mand

/1 ; 1
> (%)=

b

imply that A°(m,s) is a standard m-simplex with vertices (si/n,...,8,/n) and
(1/p1,...,1/pm), where 1/p; € {s;/n,s;/n+1/2} for 1 <i < m, and there exists exactly
one i such that 1/p; = s;/n + 1/2, which implies A%(m,s) C H with noting that the
point (s1/n,...,8y,/n) € FF(m,s) C H. O

By virtue of Lemma 3.7 and Theorem 2.4, to prove the estimate (3.17) under the
assumptions (3.16) and (1.7), it is sufficient to show it for p = (c0,...,00) and for p
satisfying (3.18) and (3.19). For p = (00,...,00), the estimate (3.17) with BMO in
place of L? is established in [13, Corollary 6.3]. Thus it is sufficient to consider the latter
points.

In the second step, we shall prove the following lemma, which will complete the
proof of Theorem 1.1.

LEMMA 3.8.  Estimate (3.17) holds if s and p satisfy (3.16), (3.18), and (3.19).

PROOF. For p € (0,00]™, we define £(p) to be the number of the indices i €
{1,...,m} such that 1 < p; < 2. We shall prove the claim by induction on ¢(p).

The conditions (3.16) and (3.19) imply in particular that there exists at least one @
such that p; < 1. Hence if ¢(p) = 0 then the claim directly follows from Theorem 3.4.

Assume ¢y > 1 and assume the claim holds if ¢(p) < £y. Let

(po,so) = (p?,...,p?n,s?,...,s%)

be a point that satisfies the conditions (3.16), (3.18), and (3.19), and satisfies £(p°) = £o.
There exists an index i such that 1 < p{ < 2. Notice that 1/p? = s?/n for this index
i. Without loss of generality, we assume 1 > 1/pY = s{/n > 1/2. Then the condition
(3.19) implies that there exists exactly one i such that 2 <i < m and 1/p? = s¥/n+1/2.
Consider the following two points:

(p/7s/) = (1’p87""p9n7n’8(2)7"'789n)7

(p//? s/l) = (Qapga"'7p(7)n7n/2>533"'359n)'
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Both (p’,s’) and (p”,s”) satisfy the conditions (3.16), (3.18), and (3.19), and £(p’) =
£(p") = £y — 1. Hence by the induction hypothesis the estimate (3.17) holds for (p’, s’)
and (p”,s”). Then, by Theorem 2.4, it follows that the estimate (3.17) also holds for
(p®, 8°). This completes the proof of Lemma 3.8. O

4. Proofs of the key lemmas.

PROOF OF LEMMA 3.3. Without loss of generality, we assume that Jo = {1,...,7}
for some 1 <7 <1, and || fil| o =1 forall I +1 < i < m. Fix

me(,thﬁ)\i_LTJle

1=r-4+

(when r =1, just fix v € R™\ Ui’:l Q7). Now we can write
To‘(ah"'7al>fl+17"'afm)(x) = Zg](x>a
JET

where g;(x) is the function

/mn VK (2 (2 = y1), -2 (2 = ym))ar (n) - ac() frar (esr) <<+ fon (Ym) A

with K; = (O’(2j')1ZJ\)\/. Let ¢; be the center of the cube Q; (1 < i <1). For1<i<r,
since z ¢ QF, we have |x —¢;| = |z —y;| for all y; € Q;. Fix 1 < k < r. Using Lemma
2.2 and applying the Cauchy-Schwarz inequality we obtain

T

H <2j (x— ci)>si

=1

9;(x)|

T

l
s / [T =)™ [K5 (2 @ =), 2 (=g ) ] [ Nt A7
Q1% xQyxR(m—mn =1 i=1

l
< 2jmnH|Qi|_1/m / H<2j(x_yi)>8i
=1

Q1 X XQpxR(m=—7)n =1

l T
= 2 [T /™ / [T @)™
=1

QlX“.XQTXR(nl—r)n i=1

K2 (2 =y1), .2 (2= 92) Y1 Ym) | Ay - dypdyr g1 - dym

Kj(2j(x_y1)"'"Qj(x_ym))‘dg

T

l
<ol TL e [ - [l @ e—u)”
Qk

i=1 i=r+1
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T

< T T )™ Ky k1,27 (@ = Yk) Wbt Um) || dypdyris -+~ dym
=1

i#k Lo (dys -+-dyk-+-dyr)
r l
i 1-1/p; —1/p; 1 e .
<ol T 1@l /p/ /|Qk| (2 (a—y))™
i=1 i=r+1 R(mr)an

T

< I T T )™ Ky um—1,27 (2= y0) s Um) || dyndyria - dym

=1
i#k L2(dyy-+-dy.--dyr)
r l
syl Y7 IT 1@ / Qi ™ (2 (@ — i)™
i=1 i=r+1 O
X H<yi>8in(y17'-'7yk71a2j(x_yk)7yk+la'"ay’m) dyk)
i=1
i£k L2(dyy - dyr-+-dym)
r 1
irn 1-1/p; k,0
=21 ) (11 ) ) (41)
i=1 i=r+1
where
1 . s
B 0) :7/ %9 (2 — )™
Qrk
X H<yl>8L Kj(yla'-'7yk71,2j(x_yk)7yk+17"'7ym) dyk:
i=1 —
Gl L2(dyy---dy---dym)

and b;(z) = |Qi|_1/piXQ;f (x) for r + 1 < i < [. The functions b;, r + 1 < i <, obviously
satisfy the estimate ||b;]|;», < 1. Minkowski’s inequality gives

(k,0)
|5

< Q—jn/QHO(Qj.)qZH < A9—in/2.
L2 W(sl ,,,,, Sm)

Using the vanishing moment condition of a; and Taylor’s formula, we write

g(x) =2 3" Ca/ {/01(1 Nt

la|=Ng

x Oy K (2j(x —Y1),-- .72jx§k’yk, c 2 — ym))

< (27 (y — er))¥ar(y1) -+ (i) frar (yiga) -+ Fn (Ym) dt} dyy -+ - dym,
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where zi, =z —cx — t(yr — cx) and OFK;(21,. .., 2m) = 0% Kj(21,. .., 2m). Notice
that |x£k7yk| ~ |z —c| for x & QF, yr € Qk, and 0 < t < 1. Repeating the preceding

argument, we obtain
r r l .
j Si iTn 1-1/p; )1
[T/ =) oo < 2 (TTed ) (1] )iV, a2
i=1 i=1 i=r+1

where b;(z) are the same as above and

hg.k’l)(x)Z(QjE(Qk))NWril Z/ A<2szk,yk>5k

|a|=Ng

!
X H (W) OR K (Ynse k1,27 T,y Ut 1se 5 Ym) dt o dyp
i=1
ik L2(dyy -+ dy-+-dym)

(£(Qr) denotes the sidelength of the cube Q). Minkowski’s inequality and Lemma 2.2
imply that

(k1)
5"

L, S AZTIN20(Qu) M

Combining inequalities (4.1) and (4.2), we obtain

(H (e =) i)

i=1
T l

S QjT"(H |Qi|1_1/pi> ( H bl(x)> min {h;k’o)(x), h;k’l)(a:)} (4.3)
i=1 i=rt1

for all 1 < k <r. The inequalities in (4.3) imply that
|95 ()]
r l
irn — i i —58i . k, k,
< 9 (H Qi1 (2(z—c;)) ) ( H bz(x)) 1r<nkH<lr{h§ 0)(x),h§, 1)(x)}
i=1 i=r+1 =r=

(4.4)

for all z € (ﬂi:rﬂ QH\ (UL, Q)).

Now we need to construct functions uf (1 <k <r) such that

l

lg;(@)| S AT wh(@) [ bile)
k=1

i=r+1

for all z € (ﬂizr+1 Q) \ (Ui, QF) and that HZ] u?HL < 1. Then the lemma follows
P
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by taking by = >, ub (1<k<r).
For this, we choose A\;, 1 < k < r, such that

1 s 1 1
penel Bo Ll
This is possible since (1.4) implies
Zml {1 Sk 1+1}>7"—1
pr 2 2

We set a, = 1/pr — 1/2 4+ A and By = 1 — 2\;. Then we have o > 0, 8 > 0, and
> oreq Be = 1. We set

. . s B
uh = AT QTP (20(- — ) xgpe min {AFO AV 1<k <

Then, from (4.4), it is easy to see that

for all z € (M_,,,Q})\ (Uj—,Q;). It remains to check that Y, [p. [uf(z)[" dz < 1. Since
1/pr = ag + B /2, Holder’s inequality gives

k], < A-e2im |y =/

Br
k . (k,0) 7 (k,1)
HL% mm{hj ,hj }

. —sp
<2j('—ck)> X(Qz)c‘ L1/ 1.2/8 '
k

Since si/ag > n, we have

[ C =)™ xape| ., =277 min {1, @7 0(@Qu)" ).

(5,0)
hj

Ll/o‘k

and hék’l) given above imply

Smin{‘ }
1,2/ Bk L2

5(,42*1’”/2 min {1, (2j€(Qk))Nk} )

The estimates of L?-norms of

o ey

Bk

Therefore
< 2jn|Qk|1*1/Pk2—jn(ak+ﬂk/2) min {17 (2j£(Qk))akn—Sk } min {17 (2J[(Qk))Nkﬂk}

(7(Qg))n PNk B if 26Qr) <1,
B (270(Qy,))n—/Prtarn=sk, it 276(Qk) > 1.

([P

This inequality is enough to establish what we needed .., Jan |u§c (x)|pk dx < 1. The
proof of Lemma 3.3 is complete. O
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ProoF OF LEMMA 3.5. We use the following notations:
I={1,...,0}, I={l+1,...,p}, MI={p+1,....,m}, A={1,...,m}.

Recall that we are assuming I # () and IT # @ (the set IIT might be empty). For a subset
B = {i1,...,ix} of {1,...,m}, we write yg = (¥iy,---,¥i,) and dyp = dy;, - - - dy;,. We
take a smooth function ¢ on R™ such that suppp C {€ € R | 47 'a < [¢| < 4} and
0(€) = 1 on 27ta < [€] < 2, where a is the constant in the definition of V (k1, k2), and
define A}, j € Z, by (2.1). We set s = min{s,..., sy} and take a number ¢ such that

max{l, n/s} < ¢ <2

this is possible since s1, ..., 8y, > n/2.

Let a; (i € I) and f; (¢ € ITUIII) be functions as mentioned in the lemma. Without
loss of generality, we may assume || fi||; - = 1 for i € IIl. We use the decomposition
(3.11) and write

g = To’(aflv"'7a'lvfl+17' afm) = Zg]?
JEZ

where g; = Toj (ah sy A,y fl+17 cee fm)
To prove the pointwise estimate (3.15), we divide R" as R" = J;; Ej, where J
runs over all subsets of I and F; is defined by

E;=(@)'n ) @

ieJ ien\J

In order to prove (3.15), it is sufficient to construct functions b; (i € I) and ﬁ-" (1 € II),
for each J C I, such that

l9(x)| x5, (@) S b (x) b (2) fi1 (@) - F (), (4.5)

where the function b7 depends only on m, n, (si)ica, (Pi)iea, 0, J, i, a;, and (fi)iem;
the function f; depends only on m, n, (si)ica, J, i, fi, and (fi)iemr; and they satisfy
the estimates

171l ,n. < 1. (4.6)
17N g2 S £l (4.7)

In fact, if this is proved, then the desired functions can be obtained by b; =} ;- b/ and
f i = ZJcl f iJ~

First, we shall prove the estimate (4.5) for J =0, Ey = Qi N---NQ;. The argument
to be given below will show the estimate (4.5) with some combination of the following

choices of b? and fi@:

b (x) = My(a;)(x)xo: (), (4.8)
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1/2
b%:)( Mq<Aja¢><x>2) xa: (@), (1.9)
JEZ
1/2
b?m—(Z(@*|aiq><x>2/q<<j*|Ajfk|q><x>2/q) vor(@). kelll  (4.10)
JEZ
(@) = My(fi) (), (4.11)
N 1/2
f?<x>=(ZMq<Ajfi><x>2) , (1.12)
jez
N 1/2
Pa) = (Z(@- e AT @)9(C; # |Ajfk|'I><a:>2/q) . kel (4.13)
JEZ

where (;(2) = 27"(14|27z|) ¢ is the function in Lemma 2.7 and M, denotes the maximal
operator defined by

M) = sup /| ) dy)l/q.

r>0 \ 7"

The above functions b? and f;@ depend on other things as mentioned in the lemma. We
shall see that they also satisfy the estimates (4.6) and (4.7). For f;@ given by (4.11) or
(4.12), the L?-boundedness of My, ¢ < 2, and Lemma 2.8 (2.2) give the L?-estimate (4.7).
For f;@ given by (4.13), Lemma 2.8 (2.3) yields the same L?-estimate since ||fx| 510 <
|| fill e = 1 for k € TIL. For b given by (4.8), the L?-estimate || M,(a;)||,» < ||ai]l > and
Holder’s inequality give the estimate (4.6):

x|\ 1/p;i—1/2 1/p;—1/2
1821] . < I1Mg(a)ll o 1QEYP 2 < a2 QP2 < 1

||LP1:

For b? given by (4.9) or (4.10), the same estimate is proved in a similar way.

We divide the proof of (4.5) for J = ) into the following six cases, (1)—(6), depending
on the indices k1 and ko involved in assumption (3.9).

(1) k1, ke € L. In this case, without loss of generality, we assume {kq, ko} = {1,2} C
L. Then, by the assumption (3.9), it follows that 2/~1a < |&;| < 29H! and 277ta < |&] <
29+ for all £ € supp o, and hence p(279¢;) = p(277&) = 1 on supp ;. We write

95 = TO'J' (Aja,l,Ajag,G,?”. .. 7al7fl+17 .. 'afpa .. afm)
By Lemma 2.7, we have the pointwise estimate

gi1 S (G * 1 Aar|T) Y9G # |Aza|?) (¢ * |as|) T (¢ ar] )M

X (G L frpa| )T (G 1Sl (G o | o] )M
S My(Ajar) My(Ajaz)My(as) - - My(ar) My(fi1) - Mo(fp)-

(Notice that the inequality (¢; * |f]?)Y/? < M,(f) holds because sq > n.) Summing over
j € Z and using the Cauchy—Schwarz inequality, we obtain



550 L. GRAFAKOS, A. Mr1vacHl, H. VAN NGUYEN and N. ToMmITA

1/2

1/2
|g|s(Z{Mq<Aja1>}2) (Z{qum)}?) My(as) - Mq(ar)Mq(fien) -+ My(f,).

JEZ JEZ

This implies (4.5) for J = () with b? of (4.9) for i = 1,2, with b? of (4.8) for 3 < i <,
and with ﬁ-@ of (4.11) forl+1<i<p.

(2) k1, ke € II. In this case, without loss of generality, we assume {k1,k2} = {l +
1,142} C II. Then we can write

g5 = Taj(ala"'7alaAjfl+17Ajfl+2>fl+37"'afpa" 7fm)

Hence, by Lemma 2.7,

1951 S Mg(a1) -~ My(ar) Mo (A fr41) Mo (A, fr2) My(fiys) - - My(f)-

Taking sum over j € Z and using the Cauchy—Schwarz inequality, we obtain

1/2

1/2
9] € My(ay) - Mq(al)(Z{Mq(Ajfz+1)}2> (Z{qujmz)}?)
JEZL JEZ
X Mq(fl+3) e Mq(fp)-

This implies (4.5) for J = § with b of (4.8) for 1 < i < I, with f? of (4.12) for
i=1+1,1+2, and with f? of (4.11) for [+ 3 <i < p.

(3) k1, ko € ITI1. Without loss of generality, we assume {k1, ko} = {p+1,p+2} CIIL
Then g; can be written as

g5 = TO'j(ala--- ;a/l?fl+1a" '7fp7Ajfp+1aAjfp+27fp+3a"'7fm)

and Lemma 2.7 yields

19;1 S (¢ * laa| )V I My (az) - - My(ar)
< (G [ frn DY IMy (fra) -+ Mo () (G # |10 foia |9 * 1A Fora] )4

Taking sum over j € Z and using the Cauchy—-Schwarz inequality, we obtain

1/2
ol < (Z@j e lar)?/(¢; # IAjfp+1q)2/q) My(as) - My(ay)

JEL

1/2
X (Z(cj | fra D) 2(G * Ajfp+2|Q>2/Q) My(fiy2) - My(f,).

JEL

This implies (4.5) for J = @ with the following functions: b? is (4.10) with i = 1 and
k=p+1; b0 s (4.8) for 2<i <1; f | is (4.13) with i =+ 1 and k = p+2; and f? is
(411) for l+2<i<p.

(4) k1 € I and ko € II. Without loss of generality, we assume kq = 1 and ko =1+ 1.
Then
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g; = Taj(Aja17a27"'7al7Ajfl+17fl+23"'7fp7"'7fm)

and Lemma 2.7 yields

1951 S Mg(Ajar)Mg(az) - - - Mg(ar) Mq(Aj fre1) Mq(fraz) -+ Mg(fp)-
Taking sum over j € Z and using the Cauchy—Schwarz inequality, we obtain
1/2
ol < (S 0n@m)1)  Myla) -+ Mo
JEL
1/2
x <Z{Mq(Ajfl+l)}2> Mq(fl+2) T Mq(fp)-
JEZ

This implies (4.5) for J = ) with b? of (4.9) for i = 1, b? of (4.8) for 2 < i <[, with f?
of (4.12) for i = 1 + 1, and with f? of (4.11) for [ +2 <i < p.

(5) k1 € II and ko € III. Without loss of generality, we assume k; = [ + 1 and
ko = p+ 1. Then we have

g; = TUj(ah"'aal7Ajfl+17fl+2,~“afp,Ajprrl,prrZw",fm)

and Lemma 2.7 yields

1951 S (¢ * lar|) "M (az) - - My(ar)
X Mo (D) fryn) Mo (fiya) - Mg(fo)(G5 % |8 fora] ).

Taking sum over j € Z and using the Cauchy—Schwarz inequality, we obtain

1/2
9l < (Z(g e laa1Y2/9(¢, 5 |Ajfp+1|Q>2/Q) M, (az) - M, (ay)

JEZL

1/2
x (Z{Mq(AJ’le)}z) Mq(fl+2)"'Mq(fp)‘

JEZ

This implies (4.5) for J = ) with the following functions: b? is (4.10) with 4 = 1 and
k=p+1; b0 is (4.8) for 2 < i < I; fis (4.12) for i = [+ 1; and f? is (4.11) for
[+2<i<p.

(6) k1 € Tand ko € III. Without loss of generality, we assume k1 = 1 and ky = p+1.
Then g; can be written as

g; = Taj(AjalaaQa' .. 7al7fl+1a .. 'afpaAjfp+1afp+27' . afm)
and Lemma 2.7 yields

9;1 S My(Ajar)My(az) -+ My(ar)
(G o | fra )Y My (fran) - - Mo(£2)(G o 1A g |0
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Using the Cauchy—Schwarz inequality, we obtain

1/2
|gs(Z{Mq<Aja1>}2) My(as) - My(ay)

JEZ

1/2
x (Z(g L feaa9(C; # Ajfp+1|q>2/q> My(fis) - My(f,).

JET

This implies (4 5) for J = () with the following functions: b? is (4.9) for i = 1; b? is (4.8)
for 2 <i <1 fl+1 is (4.13) with¢ =141 and k = p+1; and fw is (4.11) for 142 < i < p.
Thus we have proved (4.5) for J = ().

Next we shall prove (4.5) for J # ). Here we will not use the assumption (3.9). We
fix a nonempty subset J of I. We shall prove that there exist functions u,{ o ked, jeL,
such that

195 (@) xe, (@) S [T wils@) - T 1Qil ™77 xqr (@) - [] Ma(fi)(2) (4.14)

keJ iel\J i€ll

for all j € Z and all z € R™; the function uij depends only on m, n, (s;)iea, (Pi)ica, 0,
J, k, j, N, and Qg, and satisfies the estimate

i il o S min{(276(Qu))™, (276(Q1)) %}, (4.15)

where v, and 0y are positive constants that will be given in terms of n, k, J, (8;)ic,
(pi)ics, and Ni. If we have these functions ui’j, then we have (4.5) with the functions

by = Zuij for k€ J,
JEZ

= |Qi| P xgr for i€\,
F =My (f;) for iell

In fact, b, k € J, depends only on m, n, (si)ics, (pi)ics, o, J, k, Ni, and Qy, and the
estimate (4.6) follows from (4.15). The estimate (4.6) for b/ with i € T\ J is obvious and
the estimate (4.7) for ﬁ with 4 € II holds by the L?-boundedness of M,, ¢ < 2. Thus it
is sufficient to construct the functions u,{ i

Before we proceed to the construction of ui ;» we observe that it is sufficient to treat
only the case j = 0. In fact, if we have (4.14)—(4.15) for j = 0, then the case of general

j € Z can be derived by the use of the dilation formula

To, (f1y- s fn) (@) = Toy2iy (fL2779), o fm(277)) (2 )

and by a simple computation.
Thus we shall consider go(x). Using Ko = (0p)" (the inverse Fourier transform of
00), we write
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go(z) = Ko(x—y17~~7$—ym)Hai(yi)' H fiyi) dy -+ - dymm. (4.16)
Rmn i€l J€TTUITT

We write ¢; to denote the center of the cube Q;. Since |z — y;| = |x — ¢;| for z ¢ QF and
Yi € Q;, from (4.16) we see that the following inequalities hold for z € E;:

H(x —ci)* - [go(2)]

i
S / [T —v* - 1Ko@ =y, ow =y [ [ [ lasCwa) - T 1fiwo)l dyr -+ - dym
Rm™ ieg il J€TTUITT
S/ [ —v) - 1 Kow = w1, 2= y)|
mn ZG.]
< [T1Qi ™" xq.w) - [ 1£i(wa)] dyy -~ dypm.
i€l i€ll

We now fix a k € J and estimate the last integral by

/.

I @-v)" Koz —w,....2 —ym)
e JUII

L (y o\ gry) LY (Y g) L9 (y1r) L (yn)

—1/pi —1/pi
< T 1@ xqu(v:) IT 1@ " xo. ()
ieJ LY (ys\(x}) 1€I\J L= (y1 )
X H<x_yi>_sifi(yi) Ay,
i€ll La(ym)

where we used the following notation for mixed norm and its obvious generalization:

a/p
||F(Zl,22)||Lp(zl)Lq(22) = [/ (/ |F(21, 22)|" dzl) dZQ]

Recall that the mixed norms satisfy

1/q

||F(Zl722)HLP(z1)LQ(Z2) < ||F(2’1,22)||LQ(Z2)LP(ZI) if p<gq. (4.17)

Since s; > n/2, the Cauchy—Schwarz inequality gives

[[E—v) Fla—y,....2—ym)
i€B

. (4.18)

L*(yB)

1@ = g1 sm =yl sy S

Now repeated applications of (4.17), (4.18), and Lemma 2.2 yield

I =) Ko(@—w1,....x = ym)
1€ JUII

L (Y ky) L (yin o) L9 (yir) L (yann)
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S H@ —yi)"  Ko(® — Y15+, @ — Ym)
€A Lo (y g\ gvy) L2 (yryg) L9 (yrr) L2 (ymn)
S H<=’E —yi)"  Ko(® — Y15+, @ — Ym)
€A L2(ya\{x})
= ||{z — yg)°* H (z)% - Ko(21y oy @ = Yky oy Zm)
L2(zp\{k})

ieA\{k}

Since s;q > n by our choice of g, we have

< T Ma(fi ().

L4 (ymr) iell

[T =)~ fitws)

i€ll

Combining the above inequalities, we obtain the following estimate for x € E;:

H(x —ci)® - |go()|

ieJ
SAEO@) T 1@~ T 1Qu ™7 - T My(fi)(a), (4.19)
ieJ i€\J i€ll
where
R0 ()
= \ril/ (x — yg)°* H (2)% - Ko(21y -y @ — Yky -« s Zm) dyp.
@k i€A\{k} L2 (25\(k})
We have
[
L2(R™)
= \ril/ (z —yx)™ H (2i)° - Ko(z1,- -, @ = Y-+, Zm) dyr,
@k ieA\{k} L2(za\ {k}) L2 ()
=TI Koz, 2m) = lloollyerom
iEA L2(z4)
Thus, by the assumption (3.10),
k,0
[R* O oy < 1. (4.20)

On the other hand, using the vanishing moment condition of a; and Taylor’s formula,
we can write go(z) as
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3 O“/m {/01(1—75)%1

la|=Ng

x@kKO(x—yh..., Zk,yk,...,m—ym)

(g — e0)%ar (1) - () fras (n) -~ () dt} dys - - dym,

where 0p Ko(z1, ..., 2m) = 0% Ko(21, .., 2m) and ! =z — ¢ —t(yr — cr). Hence the

Ck Yk

following inequality holds for x € E;:

[Jle=e™ n@l = 2 /mn / AR | O

i€ || =Ny ieJ\{k}

X’agKO( Y1, T ikykv"'vl'_ym)‘

<0(Qr) N TTIQi ™ xq, (i) - T 1fiwa)| dt 3 dys - dyn,

i€l iell

Using this inequality and arguing in the same way as before, we obtain the following
estimate for x € F:

[Ttz =) - lgo(@)| S h* V@) TTIQi T+ TT Qi ™7 - T] Ma(fi) (@), (4.21)

ieJ ieJ i€INJ €1l

where

—1+Ng/n
WD (@) = |Qu| T Y
|a|=Ni "y €Qk

<'rf:k,yk>5k H <Zl>31 'aI?KO(Zlv"'axik7yk7'"azm)
i€A\{k}

X dtdyy.

L2(zp\{x})

Using Lemma 2.2, we obtain

S 1QkM (4.22)

J

From two estimates (4.19) and (4.21), we obtain

lg0(@)| < [t — ey = 1Qil /71T @il =7 [T Ma(fi) () min{h®0) (z), h*D (a)}

icJ ien\J iell

for all z € E; and for each £k € J. We take positive numbers (8;)res satisfying
> rey Be =1 and take a geometric mean of the above estimates to obtain

l90(2)| x, (2) < [ ul(@) - TT 1Q: 7" xq: (2) - [T Ma(fi) ()

keJ i€l\J iell
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where

ul (@) = (@ = &) QW7 gy (@) (min{h*O) (@), h(k’l)(z)})ﬁk .

We choose (i, k € J, so that we have

This is possible since 1/2 > 37, - ; max{0, 1/pj — sx/n} by virtue of our condition (1.4).
If we write 1/py, — Bx/2 = 1/ry, then ri, > 0 and Holder’s inequality gives

H“iHka < H<x e ‘ril/pﬁ_l X(Qz)c(x)‘

L7k
B
X (min{h(k’o)(:z:),h(’“’l)(z)}) ' .
L2/ Bk
Since siTr > n, we have

_1/pk:+1 f |Q ‘ < 1
e M LA S x’ ~ J1Qkl if |Qrl <1,
H< k) Q| X(@3) (z) L |Qk|—1/pk+1—sk/n+1/7"k i 1Qu] > 1.

By (4.20) and (4.22), we have

Bk

)

L2

h(k,n’

H (min{n®O (), h(k’l)(x)})ﬁk

< min { Hh(k’o) o }
< .
Q™ i Qul < 1,
~ 1 if |Qr| > 1.

L2/Bk

Thus

N, n— .
H JH < |Qr| KPr/m=t petd if [Qr] <1,
Uk LPk ~ |Qk|71/Pk+1*Sk/n+1/7‘k lf |Qk| > 1

which implies (4.15) for j = 0 with v, = NiBr —n/pr +n and 6 = n/pr —n+ s —n/r.
We have ~;, > 0 since Ny is sufficiently large and 0, > 0 since §; = nfS;/2 — n + sp >
nBk/2 — n/px + sk > 0 by our choice of 8. This completes the proof of Lemma 3.5. O

PROOF OF LEMMA 3.6. Since the proof is similar to that of Lemma 3.5, we shall
briefly indicate only the key points. We use the same notation as in the proof of Lemma
3.5. We also write

, 1/2
G(e) = GLafa,ovar fissooos S)) = (Slasl )

JEZ

It is sufficient to prove the estimate
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Glz)xe, (@) S [[b/ (@) ]] fil=) (4.23)

i€l €Il

for each subset J of I, where b/ and ﬁ have the same properties as in (4.5).

First we consider the case J = 0, Ey = Q7 N---NQ;. We divide the proof into
the following three cases, (1)—(3), depending on the index k; involved in the assumption
(3.9) with ks =m + 1.

(1) k1 € I. Without loss of generality, we assume k; = 1. We can write

gj :Ta'j(AjalaaQu"'7al7fl+17’"7fp7"'7fm)~
By Lemma 2.7, we have
1951 S Mg(Ajar)Mg(az) - - - Mg(ar) Mo (figr) - - Mq(fp)-
Hence
1/2
G3 <Z{M4(Ajal)}2) Mg(az) - - - Mq(ar) Mg (fis1) - Mo(fp)-
JEL
Thus we obtain (4.23) for J = () with
1/2
by = <Z{Mq(Aja1)}2> XQi
JEL
b = My(ai)xq: for 2<i<l,
JO=My(f;) for 1+1<i<p.

(2) k1 € II. Without loss of generality, we assume k; =1+ 1. We can write
g; = T,,j(al7 e 0 A fis fiv2s s for oo fm)-
By Lemma 2.7, we have
951 S Mg(ax) - - - My(ar) Mo(A; fie) M (fira) - - My(fp)-

Hence

1/2
G < My(ar) - Mq(al)<Z{Mq(Ajfl+l)}2> M (fir2) - Mq(fp)-
jez

Thus we obtain (4.23) for J = () with

b? = Mq(ai)XQ; for 1<i<I,

i = (Z{quml)}?)l/g,

jez
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fP =My(fi) for 1+2<i<p.
(3) k1 € I1I. Without loss of generality, we assume k; = p + 1. We can write

gj :TO'j(a’17"'7a’l7fl+1)'"’fp’Ajf/)+17"'7fm)'

Lemma 2.7 yields

|gj| < (Cj * |a1|q)1/qu(a2) T Mq(al)Mq(le) T Mq(fp)(Cj * |Ajfp+1|q)1/q~

Hence

1/2
GS (Z(Cj * |a1|q)2/q(gj * |Ajfp+1q>2/q) Mg(az) - Mq(ar) Mg (fis1) -~ - Mo(f)-

JEZL

Thus we obtain (4.23) for J = () with

1/2
b = (Z(Cj *Jag | 1)/ (g + |Ajfp+1|q)2/q) XQis
JEZ
b = My(ai)xq: for 2<i<l,
fi@:Mq(fi) for [+1<1i<p.
Finally we prove (4.23) for J # (). The proof is immediate. Observe that the estimate
of g;(z) on Ej, J # 0, given in the latter half of the proof of Lemma 3.5 holds in the

present case as well, since we did not use the assumption (3.9) in that argument. Also
observe that there we have actually proved the estimate

> lgi(@) xp, (x) S bl (2) b (@) fia (@) - 7 ()
JEZ

for J # (. Thus the estimate (4.23) for J # @ also holds since

6= (X gﬂx)z)w <3 lg; (@)

jEz JET

This completes the proof of Lemma 3.6. 0

5. The space L' and weak type estimates.

In this section, we prove that if we replace H' by L', then we obtain the weak type
estimate for T, under the same regularity assumption on the multipliers. Precisely, we
prove the following theorem.

THEOREM 5.1.  Let $1,...,Sm, P1,---,Pm, and p satisfy the same assumptions as
in Theorem 1.1. Define X;, i =1,...,m, by X; = HP ifp; #1 and X; = L' if p; = 1.
Then
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ol spirms S 300 [ @0 (5.1)

The conditions given above are optimal in the sense that if (5.1) holds then we must have
S1y+-+y8m > n/2 and (1.7) for every nonempty subset J of {1,2,...,m}.

The proof depends on the following lemma, which is a slight generalization of the
remark given in Stein [21, 5.24].

LEMMA 5.2.  Let po,p1,9o,q1,7 satisfy n/(n+1) <pg <1< p <00, 0<q <
r<q <oo,and l/pg—1/q0=1/p1 —1/qn =1—1/r. Let T be a linear operators that
maps L1 (R™) to M(R)", the space of all measurable functions on R™. Assume that there
are My and M, positive constants such that for all f € L*(R™) we have

HT(f)HL(qo,OO) < MO Hf”Hpo ) (52)
1T (O par.er < M (| fll o

whenever the right hand sides are finite. Then
IT () proer < CMy~ MY || ]l 11

for all f € L*(R™), where C is a constant depending only on po,p1,qo,q1,7, and n, and
0 is given by 1 = (1 —0)/po +6/p1.

Proor. Let f € L'(R") and we assume || f||;, = 1. Let 0 < A < oo be given. We
apply the Calderén—Zygmund decomposition to f at height d\", where ¢ is a positive
constant to be determined later. Thus we obtain a family of disjoint cubes {Q;} such
that

SN < —/ 2)| dz < 276N,
Q5

|f(z)| < 6A" for a.e. xg_iUQj’
J

STIQi < (a7,

J

and we write f =g+ b, b= 3", b; with

1

d
|QJ| Qj flz)de

bi(z) = (f(x) — fo,;) xq,(x), fq, =
For g, we have

1 -1
lgllZe: < llgllz<" gl < (A7)

Thus (5.3) gives

o |T(9)(@)] > A} < (Mi gl A1)
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q1 q1
< (Ml(zsx)l*l/mxl) - (Mlalfl/m) AT

Each b; satisfies

1

— bi(x)| de < 0N,
‘Q_]| QJ‘]( )|

supp b; C Qj, /bj(x) dz =0,

and thus |Q;| /7 (6A") "' b; is a constant multiple of an L'-atom for HP° since n/(n +
1) < po < 1. Hence we have

10050 < 3 (101770 6x7) " < Xy (0xn) ™ = ()
J

Thus (5.2) gives
[z [To(2)] > A} < (Mo [[b] oo A1)
S/ (MO (5)\7")1—1/200 )\71)(10 _ (Moé‘lfl/l?o)qo AT

Combining the above estimates with the fact that T'(f) = T'(g) + T'(b), we obtain

90 q1
o IT(N@)] > 203 S { (Mo =/ ) " o (ang? =1/ ) o,
Choosing ¢ so that it minimizes the last expression, we obtain
o [T(H) @) > 20} S (Mg~ M)
This completes the proof of Lemma 5.2. g

PROOF OF THEOREM 5.1. Suppose s1, ..., Sy, and py, ..., pn, satisfy the assump-
tions of the theorem and suppose for example p; = 1. If we take € > 0 sufficiently small,
then sq,..., s, also satisfy the assumptions of the theorem with p; = 1 replaced by 1+e.
Thus Theorem 1.1 yields two estimates

ITo(frs for o os Fon)ll pomoor S Allfill e [[foll oz -~ [ ol o »
ITo(f1s fas s )l posoer S AN Sill e

follgoz = I fmll o »

1/p+. We freeze the functions fo, ..., f,,, and apply Lemma 5.2 to the linear operator
fi—=To(f1, foy .-, fin) to obtain

ITo(frs oo Pl Loy S ANl 12l v == [l o -

Repeated application of the same argument gives the desired weak type estimate.
The necessity of the conditions s; > n/2 and (1.7) can be shown by the same method
as in [13, Theorem 5.1]. This completes the proof of Theorem 5.1. 0
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